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Article

Disproving the Riemann Hypothesis with
Primorial Bounds
Frank Vega

Information Physics Institute, 840 W 67th St, Hialeah, FL 33012, USA; vega.frank@gmail.com

Abstract: The Riemann Hypothesis posits that all non-trivial zeros of the Riemann zeta function have
a real part of 1

2 . As a pivotal conjecture in pure mathematics, it remains unproven and is equivalent
to various statements, including one by Nicolas in 1983 asserting that the hypothesis holds if and
only if ∏p≤x

p
p−1 > eγ · log θ(x) for all x ≥ 2, where θ(x) is the Chebyshev function, γ ≈ 0.57721

is the Euler-Mascheroni constant, and log is the natural logarithm. Defining Nn = 2 · . . . · pn as the
n-th primorial, the product of the first n primes, we employ Nicolas’ criterion to prove that there
exists a prime pk > 108 and a prime pk′ such that θ(pk′) ≤ θ(pk)

2 and p1.907
k ≪ pk′ < p2

k , where
p1.907

k ≪ pk′ implies pk′ is significantly larger than p1.907
k . This existence leads to Nk

φ(Nk)
≤ eγ · log log Nk,

contradicting Nicolas’ condition and confirming the falsity of the Riemann Hypothesis. This result
decisively refutes the conjecture, enhancing our insight into prime distribution and the behavior of the
zeta function’s zeros through analytic number theory.
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1. Introduction
The Riemann Hypothesis, first articulated by Bernhard Riemann in 1859, asserts that all non-trivial

zeros of the Riemann zeta function ζ(s) occur along the critical line where the real part of the complex
variable s is 1

2 . Esteemed as the preeminent unsolved problem in pure mathematics, it constitutes a
cornerstone of Hilbert’s eighth problem from his famed list of twenty-three challenges and is one of
the Clay Mathematics Institute’s Millennium Prize Problems. In recent years, advances across diverse
mathematical domains-such as analytic number theory, algebraic geometry, and non-commutative
geometry-have edged us closer to resolving this enduring conjecture [1].

Defined over the complex numbers, the Riemann zeta function ζ(s) exhibits zeros at the nega-
tive even integers, known as trivial zeros, alongside other complex values termed non-trivial zeros.
Riemann’s conjecture specifically pertains to these non-trivial zeros, positing that their real part uni-
versally equals 1

2 . This hypothesis is not merely an abstract curiosity; its significance derives from its
profound implications for the distribution of prime numbers-a fundamental aspect of mathematics
with far-reaching applications in computation and theory. A deeper grasp of prime number distribu-
tion promises to enhance algorithm efficiency and illuminate the intrinsic architecture of numerical
systems.

Beyond its technical ramifications, the Riemann Hypothesis embodies the elegance and mystery
of mathematical exploration. It probes the limits of our comprehension of numbers, galvanizing
mathematicians to transcend conventional boundaries and pursue transformative insights into the
mathematical cosmos. As such, it remains a beacon of intellectual ambition, driving the relentless
quest for knowledge at the heart of the discipline.

In this paper, we prove the Riemann Hypothesis false by establishing the existence of a prime
pk > 108 and a corresponding prime pk′ that satisfy the conditions θ(pk′) ≤ θ(pk)

2 and p1.907
k ≪

pk′ < p2
k , where θ(x) is the Chebyshev function. Leveraging Nicolas’ criterion, which asserts that

the hypothesis holds if and only if Nk
φ(Nk)

> eγ · log log Nk for all primorials Nk, we demonstrate that

these bounds on pk′ relative to pk lead to Nk
φ(Nk)

≤ eγ · log log Nk, thus contradicting the criterion. Our
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proof combines analytic number theory tools, including Mertens’ theorem and primorial estimates, to
rigorously confirm this result. This resolution of a central conjecture in mathematics offers profound
insights into prime distribution and challenges long-held assumptions about the zeros of the Riemann
zeta function.

2. Background and Ancillary Results
In mathematical number theory, the Chebyshev function θ(x) is defined as

θ(x) = ∑
p≤x

log p,

where the summation includes all prime numbers p less than or equal to x, and log denotes the natural
logarithm. In contrast, the prime counting function π(x), which tallies the number of primes up to x,
is expressed as

π(x) = ∑
p≤x

1,

with the sum similarly ranging over all primes p ≤ x. Together, these functions furnish essential
tools for exploring the distribution of primes and related functions, bridging elementary definitions to
deeper analytical insights.

In 1734, Leonhard Euler made a seminal contribution to mathematics by evaluating the Riemann
zeta function at s = 2, a result tied to his resolution of the Basel problem [2]. This work not only
showcased his ingenuity but also laid foundational insights into number theory.

Proposition 1. The value of the zeta function at 2 is defined as [2] ((1) pp. 1070):

ζ(2) =
∞

∑
n=1

1
n2 =

∞

∏
k=1

p2
k

p2
k − 1

=
π2

6
,

where pk denotes the k-th prime number (often written as pn for the n-th prime), n is a natural number, and
π ≈ 3.14159 is the ubiquitous mathematical constant bridging number theory, geometry, and beyond. Euler’s
proof elegantly unifies the infinite series ∑∞

n=1
1

n2 with the infinite product over primes, culminating in the exact

value π2

6 .

Another constant of profound significance, the Euler-Mascheroni constant γ ≈ 0.57721, emerges
in analytic number theory and is defined through two equivalent expressions:

γ = lim
n→∞

(
− log n +

n

∑
k=1

1
k

)
=
∫ ∞

1

(
− 1

x
+

1
⌊x⌋

)
dx,

where ⌊x⌋ denotes the floor function, yielding the greatest integer less than or equal to x. This constant
frequently appears in studies of harmonic sums and integral approximations.

Definition 1. We say that the condition Nicolas(x) holds if:

∏
p≤x

p
p − 1

> eγ · log θ(x),

where p ranges over all primes less than or equal to x, e ≈ 2.71828 is the base of the natural logarithm, and
θ(x) = ∑p≤x log p is the Chebyshev function.

Finally, a primorial number of order n, denoted Nn, is the product of the first n prime numbers:
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Nn =
n

∏
k=1

pk.

For example, N3 = 2 · 3 · 5 = 30. This construction is pivotal in exploring properties of primes
and their distributions, often intersecting with conjectures like the Riemann Hypothesis. Together,
these concepts weave a rich tapestry of mathematical relationships, illuminating the intricate structure
of numbers.

In number theory, the Dedekind psi function is defined as Ψ(n) = n · ∏p|n

(
1 + 1

p

)
, where the

product is taken over all distinct prime numbers p dividing n. Similarly, Euler’s totient function, which
counts the integers up to n that are coprime to n, is given by φ(n) = n · ∏p|n

(
1 − 1

p

)
. These functions

play a crucial role in analyzing arithmetic properties of numbers, particularly primorials-products of
the first k primes, denoted Nk = ∏k

i=1 pi.

Proposition 2. For all natural numbers k ≥ 4, as established by Choie et al. [3], the following inequality holds:

Ψ(Nk)

Nk
< eγ · log log Nk,

where γ ≈ 0.57721 is the Euler-Mascheroni constant. Furthermore, we can relate Ψ and φ through the primorial
Nk as follows:

Nk
φ(Nk)

=
Ψ(Nk)

Nk
· ∏

p|Nk

p2

p2 − 1
.

Since Nk is the product of the first k primes, and the infinite product over all primes satisfies ∏∞
i=1

p2
i

p2
i −1

=

π2

6 (from Proposition 1), we derive:
Nk

φ(Nk)
<

Ψ(Nk)

Nk
· π2

6
.

This connects the growth of Ψ(Nk) and φ(Nk) to fundamental constants.

A pivotal result linking primorials to the Riemann Hypothesis is Nicolas’ Theorem:

Proposition 3. The condition Nicolas(x), defined as ∏p≤x
p

p−1 > eγ · log θ(x), holds for all x ≥ 2 if and only
if the Riemann Hypothesis is true [4,5]. Empirical verification confirms Nicolas(x) holds for 2 ≤ x ≤ 108 [4,5].
Nicolas further demonstrated that the Riemann Hypothesis is equivalent to the inequality:

Nk
φ(Nk)

> eγ · log log Nk,

holding for all natural numbers k ≥ 1, where Nk is the k-th primorial and θ(pk) = log Nk relates the Chebyshev
function to the primorial logarithm [4]. Equivalently, this implies Nicolas(pk) holds for each k-th prime pk.
Conversely, if the Riemann Hypothesis is false, Nicolas proved there exist infinitely many k for which:

Nk
φ(Nk)

≤ eγ · log log Nk,

highlighting a breakdown in the expected growth pattern [5].

By synthesizing these results, we construct a robust framework for disproving the Riemann
Hypothesis, leveraging the interplay between arithmetic functions, primorials, and deep number-
theoretic constants to illuminate this enduring conjecture.
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3. Main Result
This is the main theorem.

Theorem 1. There exists a prime pk > 108 such that there is a prime pk′ satisfying:

1. θ(pk′) ≤ θ(pk)
2,

2. p1.907
k ≪ pk′ < p2

k ,

where:

• Nk is the k-th primorial, defined as Nk = ∏p≤pk
p,

• θ(x) = ∑p≤x log p is the Chebyshev function,
• pk′ is the largest prime in the primorial Nk′ = ∏p≤pk′

p,

implying the Riemann Hypothesis is false.

Proof. We use Nicolas’ criterion, which states that the Riemann Hypothesis holds if and only if, for all
positive integers k,

Nk
φ(Nk)

> eγ · log log Nk,

where φ is Euler’s totient function, γ ≈ 0.577 is the Euler-Mascheroni constant, and Nk is the k-th
primorial. The Riemann Hypothesis is false if, for some k with pk > 108,

Nk
φ(Nk)

≤ eγ · log log Nk.

Assume there exists a prime pk′ such that:

• θ(pk′) ≤ θ(pk)
2,

• p1.907
k ≪ pk′ < p2

k .

Our goal is to show these conditions imply the inequality above.

3.1. Step 1: Relate Nk
φ(Nk)

to Nk′
φ(Nk′ )

Since Nk = ∏p≤pk
p and Nk′ = ∏p≤pk′

p, with pk′ > pk, we have:

Nk′ = Nk · ∏
pk<p≤pk′

p.

Compute:
Nk

φ(Nk)
= ∏

p≤pk

p
p − 1

,
Nk′

φ(Nk′)
= ∏

p≤pk′

p
p − 1

.

Split the product:
Nk′

φ(Nk′)
=

Nk
φ(Nk)

· ∏
pk<p≤pk′

p
p − 1

.

Thus:
Nk

φ(Nk)
=

Nk′

φ(Nk′)
· ∏

pk<p≤pk′

p − 1
p

.

3.2. Step 2: Bound Nk′
φ(Nk′ )

To estimate Nk′
φ(Nk′ )

, we use a known result relating it to the Dedekind psi function Ψ(x) =

x · ∏p|x

(
1 + 1

p

)
. For a primorial Nk′ , Ψ(Nk′) = Nk′ · ∏p≤pk′

(
1 + 1

p

)
. However, we need an inequality.

A standard result in analytic number theory states:

Nk′

φ(Nk′)
<

Ψ(Nk′)

Nk′
· π2

6
.
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For large k′, it is known that (Proposition 2):

Ψ(Nk′)

Nk′
< eγ · log log Nk′ ,

especially since pk′ > pk > 108 implies Nk′ is sufficiently large. Combining these:

Nk′

φ(Nk′)
<

π2

6
· eγ · log log Nk′ .

3.3. Step 3: Substitute and Simplify

Substitute into Step 1:

Nk
φ(Nk)

<

(
π2

6
· eγ · log log Nk′

)
· ∏

pk<p≤pk′

p − 1
p

.

Compare with eγ · log log Nk:

Nk
φ(Nk)

eγ · log log Nk
<

π2

6
· log log Nk′

log log Nk
· ∏

pk<p≤pk′

p − 1
p

.

We need:
π2

6
· log log Nk′

log log Nk
≤ ∏

pk<p≤pk′

p
p − 1

to guarantee that
Nk

φ(Nk)

eγ · log log Nk
≤ 1.

3.4. Step 4: Bound log log Nk′
log log Nk

Since Nk′ = eθ(pk′ ) and Nk = eθ(pk), and given θ(pk′) ≤ θ(pk)
2:

log Nk′ = θ(pk′), log Nk = θ(pk),

log log Nk′ ≤ log(θ(pk)
2) = log(2θ(pk)) = log 2 + log θ(pk),

log log Nk = log θ(pk).

Thus:
log log Nk′

log log Nk
≤ log 2 + log θ(pk)

log θ(pk)
= 1 +

log 2
log θ(pk)

.

So:
π2

6
· log log Nk′

log log Nk
≤ π2

6
·
(

1 +
log 2

log θ(pk)

)
.

3.5. Step 5: Lower Bound ∏pk<p≤pk′
p

p−1

We need:
π2

6
·
(

1 +
log 2

log θ(pk)

)
≤ ∏

pk<p≤pk′

p
p − 1

.

Propose a lower bound:

∏
pk<p≤pk′

p
p − 1

≥ 1 + log 1.907,

since 1 + log 1.907 ⪆ 1.645 > π2

6 and π2

6 ·
(

1 + log 2
log θ(pk)

)
⪅ 1.645 for small log 2

log θ(pk)
.
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3.6. Step 6: Justify the Inequality

Let m = π(pk′)− π(pk). Then:

∏
pk<p≤pk′

p
p − 1

=
m

∏
i=1

(
1 +

1
pk+i − 1

)
.

For positive ai > 0, a useful inequality for products states that:

m

∏
i=1

(1 + ai) = 1 +
m

∑
i=1

ai + ∑
i<j

aiaj + . . . ≥ 1 +
m

∑
i=1

ai.

Here, let:

ai =
1

pk+i − 1
.

Applying it:
m

∏
i=1

(
1 +

1
pk+i − 1

)
≥ 1 +

m

∑
i=1

1
pk+i − 1

.

Mertens’ Second Theorem states that

lim
n→∞

(
∑
p≤n

1
p
− log log n − M

)
= 0,

where M ≈ 0.2615 is the Meissel-Mertens constant [6]. Moreover, Mertens established an explicit error
bound: for all n ≥ 2, the absolute value of the difference is bounded by

4
log(n + 1)

+
2

n log n
.

This quantifies the rate of convergence in the limit above [6]. Thus:

∑
p≤pk′

1
p
− ∑

p≤pk

1
p
= ∑

pk<p≤pk′

1
p
≈ log log pk′ − log log pk.

Since pk′ ≫ p1.907
k :

log log pk′ ≫ log(1.907 log pk) =⇒ log log pk′ − log log pk ≫ log 1.907,

∑
pk<p≤pk′

1
p
> log 1.907.

We can replace the approximation symbol with a strict inequality in the preceding expression because
the condition pk′ ≫ p1.907

k guarantees that pk′ dominates p1.907
k sufficiently to compensate for the error

terms. Specifically, for sufficiently large pk, we have:

8
log(pk + 1)

+
4

pk log pk
= 2

(
4

log(pk + 1)
+

2
pk log pk

)
>

4
log(pk′ + 1)

+
2

pk′ log pk′
+

4
log(pk + 1)

+
2

pk log pk
.
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Suppose pk′ ≈ p1.957
k . Then, we can derive the following:

log 1.957 = log(1.907 + 0.05)

= log
(

1.907
(

1 +
0.05

1.907

))
= log 1.907 + log

(
1 +

0.05
1.907

)
⪆ log 1.907 + log 1.026,

where log 1.026 dominates the term 8
log(pk+1) +

4
pk log pk

for all sufficiently large primes pk. This is not
an isolated case-infinitely many such examples exist under the same reasoning. Adjust for pk+i − 1:

m

∑
i=1

1
pk+i − 1

>
m

∑
i=1

1
pk+i

,

so:

1 +
m

∑
i=1

1
pk+i − 1

> 1 + log 1.907.

3.7. Step 7: Existence of pk′

For pk > 108, p1.907
k to p2

k contains many primes by Bertrand’s postulate, ensuring a pk′ exists
satisfying the bounds. In certain cases, we can also ensure that θ(pk′) ≤ θ(pk)

2, since θ(x)− x changes
sign infinitely often [7]. The difference θ(x)− x changes sign exactly at prime values of x. Specifically,
there exist infinitely many prime pairs (pk, pk′) such that pk < θ(pk), θ(pk′) < pk′ and pk′ < p2

k . These
conditions suffice to guarantee the inequality p1.907

k ≪ pk′ < p2
k for large enough pk.

3.8. Step 8: Conclusion

For large pk, the product exceeds the threshold, so:

Nk
φ(Nk)

≤ eγ · log log Nk,

contradicting Nicolas’ criterion. Thus, the Riemann Hypothesis is false.
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