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Abstract: The yeast Saccharomyces cerevisiae is widely used in food and nonfood industries. During
industrial fermentations yeast strains are exposed to fluctuations in oxygen concentration, osmotic
pressure, pH, ethanol concentration, nutrient availability and temperature. Fermentation perfor-
mance depends on the ability of the yeast strains to adapt to these changes. Suboptimal conditions
trigger responses to the external stimuli to allow homeostasis to be maintained. Stress-specific sig-
naling pathways are activated to coordinate changes in transcription, translation, protein function,
and metabolic fluxes while a transient arrest of growth and cell cycle progression occur. cAMP-
PKA, HOG-MAPK and CWI signalling pathways are signal transduction pathways turned on dur-
ing stress response. Comprehension of the mechanisms involved in the responses and in the adap-
tation to these stresses during fermentation is key to improving this industrial process. The scope
of this review is to outline the advancement of knowledge about the cAMP-PKA signalling and the
crosstalk of this pathway with the CWI and HOG-MAPK cascades in response to the environmental
challenges heat and hyperosmotic stress.
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1. INTRODUCTION

Microorganisms have evolved responses that allow them to survive stressful chal-
lenges in constantly fluctuating external environment. Cellular responses to external
stress are rapid, highly dynamic, plastic, complex, and involve the coordinated stimula-
tion of many different pathways for the regulation of the gene expression at different lev-
els [1]. The readjustments allow equilibrate the effects of stress with the physiological re-
quirements of the cell, guarantee that critical cell parameters are fine tuned to ensure cell
survival.

The yeast Saccharomyces cerevisiae, a single-celled microorganism used to produce al-
coholic drinks and bread, has also been widely used as genetic model system [2]. Yeast
cells suffer the exposure to several types of stress as environmental conditions change,
both in natural situations and during industrial processes. Both the damage caused by
stress and the yeast response depend on the type and degree of stress and the develop-
mental stage of the yeast at the time of the stimulus [3,4]. Regardless of the type of stress
exerted on the cells, a general stress response is induced. Therefore, when yeast cells are
exposed to a mild stress, an increased tolerance to other stresses is achieved and restora-
tion of cellular homeostasis is facilitated [5,6]. When the buffering capacity fails to recover
cellular homeostasis, cell death programs are stimulated to eliminate irreversibly dam-
aged cells [7,8].

S. cerevisiae has evolved mechanisms to sense, respond and adapt to these environ-
mental changes. These mechanisms include several signal transduction pathways. Yeasts
are one of the pioneer organisms used to study in detail the feedback mechanisms, the
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structure, organization and cellular responses through several signalling pathways to dif-
ferent stresses. The signalling pathways, usually conformed by kinase cascades, allow a
tight control of the response to a specific signal [9-11]. The compartmentalization of intra-
cellular effectors, via adaptors or anchor proteins, is critical to the temporal and spatial
control of signal transduction. Although several types of stress have been studied in yeast,
the complete stress-activated network and the principles that control signal integration
remain incomplete [12].

When S. cerevisiae grows in optimum environmental and nutrient conditions, expres-
sion of growth-related genes is high and expression genes involved in stress defense is
low. One of the transduction pathaws involved in the regulation of this balance is that of
cAMP-protein kinase A (PKA) [4,13,14]. Unfavourable conditions turn off this pathway
and, at the same time, stress-specific signalling networks are activated and allow coordi-
nated changes at the level of transcription, translation, post-translational modifications,
and metabolic fluxes. This results in an appropriate response to each stress situation.

The well-known cAMP-PKA pathway responds to external stimuli through the mod-
ulation of the second messenger cAMP, which activates the PKA [15,16]. S. cerevisine PKA
is a tetrameric holoenzyme consisting of a regulatory subunit (Bcy1) dimer and two cata-
lytic subunits (Tpk1, Tpk2 and Tpk3). A single gene BCY1 encode the regulatory subunit,
while there are three genes, TPK1, TPK2 and TPK3, encoding the catalytic subunits [17].
When PKA is in its inactive state, the Bcyl dimer is bound to two catalytic subunits (Tpk).
In response to different stimuli, CAMP increases, and the Bcyl dimer undergoes confor-
mational changes that promotes the catalytic subunits release, which phosphorylate their
target substrates [18-20]. The output is a wide variety of specific responses. The cAMP-
PKA signalling pathway in S. cerevisine has also been associated with the regulation of
ageing, budding, actin repolarization, glycogen accumulation, stress resistance, sporula-
tion, pseudohyphal differentiation, fermentative growth, stationary phase entry, and tran-
scriptional regulation in response to different stimuli [21-25].

This article reviews the current state of knowledge of the cAMP-PKA pathway in-
volvement and the crosstalk with the CWI and MAPK signallig pathways in the response
to environmental challenges focusing in heat and hyperosmotic stress in S. cerevisiae.

2-. ROLE OF cAMP-PKA PATHWAY IN THE CELLULAR RESPONSE TO STRESS

Under stressful growth conditions, S. cerevisiae activates both transcriptional and
physiological protective mechanisms. The stressed yeast cells activate specific transcrip-
tion changes; thus, the expression of specialized genes is modulated to address the partic-
ular stress condition [26,27].

Genomic expression and global phosphoproteome studies shed light on the modula-
tion of genes and protein phosphorylation involved in carbohydrate metabolism, protein
folding degradation and processing [28-30]. The expression patterns of these genes during
the adaptation to diverse stressful environments were termed as “Environmental Stress
Response” (ESR) [3,31,32]. Actively growing cells are more sensitive to stress than quies-
cent cells [33].

In S. cerevisiae, one of the central controls of the ESR is the cAMP-PKA signalling,
which transduces the changes in environmental conditions. The cAMP-PKA pathway is
repressed in response to stress, and signalling pathways are activated to coordinate the
transcriptional and translational modifications as well as the changes in the metabolic flux
along with cell cycle arrest. The importance of this pathway in the adaptive response to
stress is evident in mutants with hyperactive cAMP-PKA pathway. These mutants show
very low tolerance to stress, decreased viability in stationary phase, and no trehalose and
glycogen accumulation. On the other hand, mutations that decrease the PKA result in
phenotypes with high tolerance to stress, increased accumulation of glycogen and treha-
lose, even in actively proliferating cells [34]. Furthermore, under many conditions, cAMP
levels are high, resulting in the activation of PKA and accordingly the fermentative growth
is promoted. However, in stationary phase, cCAMP levels are low [35]. On the other hand,
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under stressful conditions, the cAMP levels decrease and, thus, the low PKA activity re-
sults in the inhibition of programs of genes that regulate growth and, at the same time, in
the upregulation of stress responsive genes [14]

The promoters of most genes induced by the ESR contain the STRE element, the bind-
ing site for the non-redundant Msn2 and Msn4 transcription factors. Regulation by one or
the other of these transcriptional factors depends on the promoter context and the type of
stress. PKA regulates the nuclear localization and therefore the activity of Msn2/4. High
PKA activity induces Msn2/4 phosphorylation, which maintains their cytoplasmic locali-
zation and thus suppresses their activity. On the contrary, when the PKA activity is low,
Msn2 localization is predominantly nuclear and it is active [36-39]. The subcellular local-
ization of Msn2 in yeast is dynamic occurring in bursts in response to rapid pulses of PKA
activity [40-42]. Later results indicate that the phosphorylation of Msn2 by Tpk1 and Tpk3
isoforms leads to the inhibition of its activity, while Tpk2 seems to function as a partial
activator of Msn2 [43]

2.1-. Osmotic Stress and PKA

An increased extracellular osmolarity generates hyperosmotic stress. The addition of
high concentrations of salts as NaCl or KCl to S. cerevisiae cell cultures generates osmotic
stress and ionic stress [44]. During the response to this stress, the concentration gradient
promotes ion movement into the cell and the diffusion of water out of the cell to balance
the osmotic pressure across the plasma membrane. The result is the sudden reduction in
cellular volume and the cell cycle arrest. The cell responds rapidly by increasing the intra-
cellular glycerol concentration, which causes water re-entering the cell. So, the original
cell volume and turgor are restored [45].

S. cerevisiae responds to osmotic stress through two main mechanisms. One of them
involves the osmolyte exporter Fpsl. This channel remains closed upon hyperosmotic
conditions preventing glycerol from exiting the cell [46,47]. The other mechanism involves
the bona fide sensors, SInlp and Sholp, that control the HOG-MAPK (High Osmolarity
Glycerol-Mitogen Activated Protein Kinase) pathway [48,49]. The MAPK of this pathway,
Hog]l, acts on cytoplasmic and nuclear targets to modify cellular metabolism to increase
glycerol synthesis [50-52]. The HOG pathway includes a three sequentially acting protein
kinases named MAPK, MAPK kinase (MAPKK, MAP2K), and MAPKK kinase (MAPKKK,
MAP3K) [45,52]. There are two sensors that conform two signalling branches, SHO1 and
SLN, which detect osmostress independently and activate MAP3Ks. Both SInl and Shol
activate Pbs2 MAP2K by phosphorylation [53-56][57]. The activated Pbs2 can phosphor-
ylate Hogl, and phosphorylated Hogl translocates to the nucleus [58]. Hogl allows the
adaptive responses to osmostress of yeast cells, inducing the modulation of intracellular
glycerol levels, metabolism, ion transporters, and translation. In addition, Hog1 regulates
gene expression of osmostress-responsive genes [52,54,59]. The severity of the stress mod-
ulates Hog1 activation, which is negatively regulated by protein phosphatases [52].

The transcriptional regulation of Hogl target genes occurs through diverse mecha-
nisms, involving physical interaction with transcription factors as Msn2/4, Hotl, Tup1-
Ssnb6 and other transcriptional regulatory proteins [60,61]. Hogl can also bind to the cod-
ing regions of stress-responsive genes and activates by phosphorylation the transcription
elongation factors, Spt4 and Spt5 [62]. Recently, it has been proposed another mechanism
by which Hogl regulates the expression of genes by modulating the activity of the 5'-3'
exoribonuclease Xrn1 [63]. Finally, it has been described the association of Hogl to pro-
moter regions of stress-responsive genes to facilitate the recruitment of RNA Pol II and
the chromatin remodeling complexes SWI/SNF or INOS80, allowing gene activation or re-
pressing respectively [64-66].

PKA also regulates gene expression under osmotic stress in addition to doing so
through the HOG pathway. It was demonstrated that PKA activity levels affect osmotol-
erance and modulate the expression of osmo-responsive genes in S. cerevisiae [67]. How-
ever, Hohmann et al proposed that PKA mediates ESR not only upon osmostress but also
under several other stress conditions as high ethanol levels, thermal stress, oxidative
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stress, or nutrient starvation. Therefore, regulation by PKA is likely not specific to osmotic
changes [68]. However, other results indicate that the regulation of ESR genes depends on
the modulation of Msn2/4 activity by nuclear translocation [39,42,69,70], phosphorylation
and degradation [38,71,72]. At some of these regulation levels, the signalling pathways
cAMP/ PKA and HOG-MAPK have important roles [39,41,73-76].

In stress conditions, several protein kinases regulate gene expression through the
binding to chromatin in either promoters or coding regions and through phosphorylation
of histones, transcription factors, chromatin remodeler complexes and transcription ma-
chinery. PKA [77] and Hog1 [64,78] have been described as chromatin associated kinases.
Baccarini et al demonstrated the importance of PKA chromatin association in the regula-
tion of osmo-stress responsive genes. During osmotic stress Tpkl accumulates in the nu-
cleus, while Tpk2 and Bcyl maintain the nuclear-cytoplasmic localization. The authors
also demonstrated that in response to osmotic stress, PKA subunits bind to different gene
regions of osmo-inducible genes. Both Tpk1l and Tpk2 subunits are recruited to the coding
regions, and Tpk?2 is also bound to the promoters of ribosomal protein genes. Tpk1l and
Tpk2 mutant versions without catalytic activity do not bind the genes analysed so far. A
mutant strain containing a deletion of BCY1 gene which has a deregulated PKA activity,
shows an increased Tpkl but not Tpk2 recruitment. Furthermore, this mutant strain,
shows a higher binding rate of the remodeler complexes SWI/SNF and INO80, and also,
an upregulated gene expression under hyperosmotic conditions [79].

2.2-. Crosstalk between cAMP-PKA and HOG MAPK pathway during osmostress

On several occasions, the same stimulus can be processed by different signaling path-
ways in the cells. Likewise, there are diverse stimuli that lead to interaction and cross-
activation between different signalling pathways. In this way, a specific response will be
successful according to stress intensity, and modularity and hierarchical organization of
the signalling pathways. The signalling pathways may interact through crosstalk or coop-
erative processes in response to a single stimulus [80]. In S. cerevisiae there are several
examples in which multiple signalling pathways function in a coordinated manner to re-
spond to stimuli.

The specific response to a signal of the different MAPK pathways described
[70,81,82], which share several components, requires both insulation mechanisms and the
coordinated communication among them. For instance, high osmolarity glycerol (HOG
MAPK) pathways, mating programs (pMAPK) and filamentous growth (fgMAPK) can
maintain the fidelity of the responses by restricting signalling complexes to discrete sub-
cellular compartments and by switching on mechanisms to avoid crosstalk between
MAPK cascades. In fact, in hoglA cells subjected to high osmolarity conditions, the
PMAPK pathway is activated in contrast to wild-type cells. This way, the activation of the
mating pathway is inhibited by Hog1 activity [83,84]. In response to osmotic stress, Hogl
also prevents the activation of the fgMAPK pathway by inhibiting the MAPKKK Stell of
the SHOI1 branch [52,84].

Among the MAPK pathways present in S. cerevisiae, the Cell Wall Integrity (CWI)
pathway is key to overcoming cell wall damage caused by stressful conditions as chemical
agents affecting cell wall biogenesis [85]. Several other stressors as heat stress, ethanol,
hypo- and hyperosmotic shock, oxidative stress, among others that affect secondary the
cell wall structure also activate CWI signalling [85,86]. A more detailed description of this
signaling cascade is developed in the following section. Another example of crosstalk oc-
curs during polarised growth in mating and in pseudohyphal development, where the
activity of fMAPK and pMAPK pathways in coordination with the CWI to allow cell wall
remodelling are required [87-89].

The relationship between the HOG and cAMP-PKA pathways in S. cerevisiae has also
been described. The negative regulation of the HOG pathway mediated by PKA is re-
quired by yeast with defects in sphingolipid synthesis [90]. In addition, our own un-
published results indicate that the HOG MAPK and cAMP-PKA pathways interact during
osmotic stress [91,92].
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PKA catalytic isoforms, Tpk1 and Tpk2, show different roles in the adaptive response
to osmotic stress. The lack of TPK2 gene improves the defective cell growth of HOGI-
deficient strains under osmotic stress. Also, there is a negative correlation between TPK2
expression and processes such as growth rate during the exponential phase, glucose con-
sumption, and trehalose accumulation in osmotic stress condition in mutant yeast strains
with a deletion in the HOGI gene. In contrast to TPK2, TPK1 expression has a smaller
effect on restoring the defective cellular response under osmotic stress in cells with an
inactive HOG MAPK pathway. In addition, the phosphorylation of Hogl induced by os-
motic stress and Hog1 nuclear accumulation were unaffected by TPK1 or TPK2 deletions.
Thus, the cAMP-PKA signalling is controlling the effectors that are downstream targets
of the HOG-MAPK pathway [91] (Figure 1).

Pheromone stimulation initiates yeast mating, which triggers a MAPK cascade made
up of Stell, Ste7, and finally the MAPKs Fus3 and Kss1. During mating, cell cycle is ar-
rested by high concentrations of pheromone,and polarized cell growth is induced to form
cellular projections called “shmoos” morphology [93-95]. Yeast cells lacking HOG1 gene
show a "shmoo-like" morphology in response to osmotic stress due to the crosstalk be-
tween the HOG-MAPK and pMAPK pathways [84,96]. Our findings showed that the PKA
catalytic subunits Tpk2 and, to a lesser extent, Tpkl, can reduce the crosstalk between the
pheromone MAPK pathway and HOG-MAPK in a hog1A strain [91,92] (Figure 1).

In S. cerevisiae, filamentous growth is regulated by nutrient availability and the con-
served filamentous MAPK the pathway (fgMAPK) [97]. However, the cAMP-PKA path-
way activation is also required for this type of growth. Invasive growth is positively reg-
ulated by the cAMP-PKA pathway in response to glucose sensing and by the fgMAPK
pathway in response to nitrogen-free medium [98,99]. Deletion of TPK2, but not TPK1,
prevents filamentous growth. In addition, deletion of TPK3 produces hyperfilamentous
growth, indicating that Tpk3 is an inhibitor of this growth [99,100]. In hyperosmotic con-
ditions, a hog1A strain exhibits invasive growth which is regulated by a crosstalk between
the HOG1-MAPK and fgMAPK pathways [84].

The role of Tpk2 subunit on the crosstalk between the fgMAPK and HOG MAPK
pathways was analyzed in a strain with deficiencies in the expression of FLOS8 gene. This
strain is prevented from pseudohyphal growth [97]. In a hoglA mutant and under high
osmolarity, the Tpk1 isoform is a positive regulator, but the Tpk2 isoform is a negative
regulator of crosstalk between the fgMAPK and HOG MAPK pathways (Figure 1).

Hogl and PKA can be chromatin-associated kinases (Pokholok et al., 2006). It was
shown that Tpks and Bcy1 bind both coding regions and promoters of the osmoresponsive
genes upon stress. The recruitment of Tpkl and Tpk2 is completely prevented in yeast
mutant strains carrying catalytic inactive versions [79]. The expression of TPK2 and HOG1
has a reciprocal impact on the binding kinetics of Tpk2 and Hog1 to the chromatin in re-
sponse to osmotic stress. In addition, Tpk2 and Hogl affect the association of Snf2
(SWI/SNF complex) and Mns2 to the promoters of osmostress responsive genes [91,92].

Overall, we suggest that when the cells fail to activate the HOG MAPK pathway, they
might downregulate the cAMP-PKA pathway to produce a better adaptive response to
osmostress. The lack of the HOG1 gene leads to the inactivation of Tpk2, resulting in the
insulation between MAPK pathways. Furthermore, this adaptive mechanism would in-
volve changes in the dynamics of Tpk2 association to chromatin and, consequently, in the
regulation of gene expression in response to osmotic stress [91,92] (Figure 1).
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Figure 1. Model of the crosstalk between cAMP-PKA and HOG pathways in response to osmotic
stress.

Two independent osmosensing mechanisms, the SInl and Shol branches, lead to the
activation of specific kinases Ssk2/22 and Stell (MAPKKK) that converge on the common
MAPKK Pbs2 which activates the Hogl MAPK. HOG1 deletion (red cross with dashed
lines) promotes a reduction in cellular upon osmotic stress (NaCl). Deletion of TPK2 re-
stores the defective response of the hoglA strain. Hogl inhibits the crosstalk with the
fgMAPK pathway in response to osmotic stress by inhibiting MAPKKK Stell of the Sho
branch. In a hog1A background, Tpk2 negatively regulates the crosstalk between the HOG-
MAPK and fgMAPK pathways in response to osmostress. However, Tpkl1 positively reg-
ulates the crosstalk between the HOG-MAPK and fgMAPK pathways in response to os-
motic stress. In strains with the genetic background BY474, the transcription factor Flo8 is
not expressed. In this strain, the invasive growth signalling by the cAMP-PKA pathway is
impaired in the presence of glucose. The deletion of HOGI in the BY4741 strain promotes
the crosstalk with the fgMAPK pathway upon osmotic stress. Tpkl and Tpk2 catalytic
subunits of PKA induce or inhibit the crosstalk between HOG and fMAPK pathways, re-
spectively. Black arrows represent positive regulation, T symbols represent inhibition, the
red cross with dashed lines indicates HOGI deletion, green arrows show activated path-
ways and grey dashed arrows represent off state.

2.3-. Thermal Stress and PKA

At suboptimal temperatures, different protective mechanisms are activated in S. cere-
visiae, including a transcriptional gene expression program known as the Heat Shock Re-
sponse (HSR) [27,101]. During this response the expression of genes involved in protein
biosynthesis pathways are downregulated and heat-shock proteins genes are upregulated
[102]. The HSR is also activated by other stresses such as heavy metals exposure, oxidative
and alterations in protein conformation [103]. In addition, yeast cells modify the mem-
brane composition and their metabolism [104]. The upregulation of heat-shock genes is
driven by the transcription factor Hsfl (Heat Shock Factor) [103]. This factor is inactive
under non-stress conditions but active when misfolded proteins are accumulated in the
cell. All these changes induced by thermal stress ensure the maintenance of proteostasis
and metabolism in the cell [105]. In S. cerevisiae, the above mentioned Msn2/4 is a second
kind of transcription factors that regulate the heat-shock gene expression. The expression
regulation by Msn2/4 transcription factors is much extensive than transcripts induced by
heat shock, since includes genes induced by other stresses in the general Environmental
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Stress Response. The shifts in the transcription levels of the HSR genes are the result of
transcriptional changes and also differences in mRNA stability [106].

As it was mentioned before, PKA inhibits the Msn2/4 function, but in addition, other
signal transduction pathways also regulate their activity in response to different environ-
mental conditions, through factors as Mck1, Rim15, Yak1, Snfl, and Hog1 [43]. PKA activ-
ity is dispensable in the double deletion mutant strain of MSN2 and MSN4 genes. There-
fore, the targets regulated by Msn2 and Msn4 stimulate genes that inhibit growth antago-
nizing the PKA dependent growth [36]. There are evidences that suggest that Yak1 kinase
would fulfill this role [36,74].

In response to heat shock, Msn2/4, like Hsf1, is hyperphosphorylated; however, this
modification is inhibited by cAMP. Therefore, the hyperphosphorylation might not be
mediated by PKA [72]. However, heat shock slightly decreases cAMP levels through Ras
activator, Cdc25, destabilization. Thus, cAMP/PKA could be the nexus between stimulus
and response in HSR signalling although additional phosphorylation events may also act
as regulating this response [107].

The assembling of the ribonucleoprotein (mRNP) composed of mRNAs and RNA-
binding proteins (RBPs) is critical in the mRNA fate. During stress conditions, some
mRNPs aggregate into larger complexes assembling membraneless organelles named
RNP granules. There are many different types of cytoplasmic RNP granules; Stress Gran-
ules (SG) and Processing Bodies (PB) are two examples of them. Both types of granules
participate in several aspects of mRNA metabolism as storage, localization, translation
and decay [108-110].

However, how different types of stress impact in the formation of RNP granules is
an unresolved question. PBs and SGs contain several groups of proteins as well as
mRNAs, and these proteins participate in the biological activities definition of the gran-
ules. Among these proteins different protein kinases and phosphatases, have also been
found associated to P-bodies [111-115]. PKA has a key role in the regulation of PBs and
SGs assembling in response to glucose deprivation and stationary phase entry [114,116].
In addition, PKA regulates the assembly of PBs and SGs and protein translation upon heat
stress in S. cerevisiae. It was shown that Tpk2, Tpk3 and Tpk1 isoforms have different roles
in the assembling of SGs and PBs induced by thermal stress [117]. In conditions of mod-
erate heat stress, Tpk3 aggregates and induces the assembly of proteins implicated in
translation as elF4G, Pabl and elF4E. However, these Tpk3 granules are neither PB nor
SG. By contrast, upon severe heat stress the assembling of PBs and SGs containing both
Tpk2 and Tpk3 and the 48S translation initiation complex are induced. The deletion of
TPK?2 elicits a strong translational arrest and an increment in the number and size of SGs
and PBs. On the contrary, the deletion of TPK3 inhibits the assembling of SGs and PBs as
well as the general protein translation.

Finally, TPK1 has no effect on the SGs and PBs evoked by heat shock. The localiza-
tion of Tpk2 is dependent on its kinase activity, but Tpk3 kinase activity is not necessary
for its aggregation, indicating that each catalytic subunit isoform would play different
roles in granule assembly in response to severe heat stress. Therefore, Tpk2 and Tpk3 have
opposite roles on the general protein translation in response to heat stress showing that
the same signalling pathway can generate different physiological responses [117].

2.4-. Crosstalk between cAMP-PKA and CWI pathways during heat stress

As mentioned before, high temperatures induce to the activation of the HSR and the
CWI pathways in yeast cells. HSR response is regulated by the action of the transcription
factors Hsfl and Msn2/4. It was demonstrated that TPK1 expression in response to heat
shock depends on Msn2/4 but not on Hsf1 [118].

Heat-shock activates CWI pathway [119]. The first environmental condition related
to the MAPK SIt2 activation was growth under thermal stress conditions [85,120]. Alt-
hough the molecular mechanisms involved are not fully understood, changes in plasma
membrane composition could participate to CWI activation by thermal stress [86]. There
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are different CWI sensors described, namely Wscl-3, Mid2 and Mtl1 [121,122]. The par-
ticipation of the CWI receptors in the sensing of this stimulus is not fully undestood. Yeast
strains carrying single deletion mutations, wsc1A, wsc2A, or wsc34, are thermo-tolerant,
while the double mutants are thermosensitive [123]. The overexpression of Mid2 partially
overcome the lack of WSC1 [124]. Therefore, the sensors have overlapping functions alt-
hough they are also specific. Subsequently, it was stablished that upon heat shock the Wsc
receptors have an additive effect [125]. Downstream of the membrane sensors (Wscl-3,
Mid2 and Mtl), the signal is amplified by a MAPK cascade [121,122]. Through Rom1/
Rom?2 and the small G-protein Rhol, these sensors stimulate the downstream kinase Pkcl,
which activates the MAPK cascade conformed by Bckl and Mkk1/2. Finally, Mkk1/2 ki-
nases activate the MAPK Slt2, and this kinase regulates the activity of RlIm1 and Swi4/6
transcription factors. The final result is the regulation of genes involved in cell wall bio-
genesis [85,102] (Figure 2).

CWI pathway is usually activated as a hierarchic top-down cascade; however, some
stress stimuli can regulate this pathway at different steps of the cascade downstream
Rhol. Some reports show that the activation of Slt2, the last kinase of the cascade, may
come from another step in this MAPK cascade. Indeed, upon thermal stress, Slt2 is phos-
phorylated in a CWI sensor independent manner [126-128]. Thus, heat shock can activate
the CWI signalling at the Mkk1/2 and/or Stl2 cascade steps [127] (Figure 2).

The crosstalk between the CWI and PKA signalling pathways was also studied. Yeast
cells deficient in IRA2 are not thermotolerant; however, the deletion of Wsc1 reverses this
phenotype. The authors proposed that Wscl negatively regulates targets of RAS. Indeed,
the deletion of Ras2 rescues the heat shock sensitivity of a wsc1A strain. Thus, Ras and
Wscl have opposing effects on any downstream target [123]. Later, it was demonstrated
that the Wscl sensor also contributes to the crosstalk between CWI with the cAMP-PKA
pathway at the level of SIt2. It was described that Sdp1, a phosphatase that regulates neg-
atively Slt2, is transcriptionally regulated by the transcription factors Msn2/Msn4 [129].

CWI signalling also plays a role in the regulation of TPK1 expression during heat
shock [130]. Previously, it was described that Tpk1 protein levels remain unchanged upon
heat shock although TPKI mRNA is upregulated and the half-life of TPKI mRNA in-
creases. This mRNA is localized in cytoplasmic foci that are not disassembled after cyclo-
heximide treatment. The fact that these foci are resistant cycloheximide and results from
the polysome profiling analysis indicate that TPKI mRNA is impaired for entry into trans-
lation. Therefore, in response to heat shock, Tpk1 levels are regulated by a post-transcrip-
tional mechanism that involves the assembling of TPK1 mRNA granules that are transla-
tionally silent. In this regulation the CWI components Wsc3 sensor and Mkk1 are neces-
sary for TPK1 expression upon heat-shock. However, the participation of StI2 is not abso-
lutely defined. The TPK1 mRNA foci evoked upon thermal stress depends on Wsc3 but
not on the other sensors. The levels of Tpk1 protein are lower in a wsc3A mutant than in a
wild-type strain, and consequently PKA levels are also lower, as was demonstrated by
phenotypes analysis. Regarding the participation of the transcription factors Swi4 and
Swib, it was published that apparently only Swi4 seems to be necessary for the regulation
of TPK1 expression [130]. It has been reported very little overlapping between the gene
profiles of mutant strains swi4A and slt2A upon heat shock. Genes dependent on Swi4 but
independent on both Swi6 and SIt2, such as TPK1 [130], were described [127]. Therefore,
the expression of Tpk1 subunit isoform in response to heat stress requires a crosstalk be-
tween CWI and cAMP-PKA signalling pathways (Figure 2).
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Figure 2. Crosstalk between cAMP-PKA and CWI pathway in response to heat stress.

A- Canonical CWI pathway. Damage in cell wall is sensed via wscl-3, Mtll and Mid2
sensors that trigger the MAPK cascade conformed by Bck1, Mkk1/Mkk?2, and Slt2 through
Rhol and the activation of Pkcl the. B- CWI pathway and heat shock. The signalling path-
way is activated by a different mechanism, regulating the kinases Mkk1,2 and Stl2 rather
than Rhol or Pkcl. Heat stress would be acting as a lateral input rather than operating in
a linear “top-down” manner. C- Tpk1 expression regulation during heat shock. Tpk1 up-
regulation depends on the Wsc3 membrane sensor Mkkl and the transcription factor
Swi4.

3-. EFFECT OF STRESS ON THE SPECIFICITY REGULATION OF cAMP-PKA
PATHWAY

Different external signals trigger the production of cAMP as the only second messen-
ger in the cAMP-PKA signalling. Considering the multiple functions of this pathway in S.
cerevisiae, an important question is how this kinase achieves specificity, that is, how the
cell accomplishes the accurate substrate phosphorylation in response to different stimuli.
The three Tpk isoforms are functionally redundant for cell viability despite each one per-
forms specific functions [99,100,131-134].

The specificity of PKA signalling in S. cerevisiae is regulated by several mechanisms.
We will describe these mechanisms highlighting those related to thermal and osmotic
stress.

3.1-. PKA anchoring through Beyl interacting proteins

Yeast PKA localization appears to be different from that described for mammals.
Bcey1 localization is variable and responsive to environmental and nutritional conditions
[114,135]. Bcy1 N-terminus structure is similar to the canonical mammal RIla domain (DD
domain) as it has a helix-turn-helix motif and the critical amino acids for dimerization
[136,137]. However, the binding domain of proteins described as Bcyl interactors in S.
cerevisiae displays different molecular features than the canonical domain of their mam-
malian counterparts, AKAPs (A-Kinase Anchoring Proteins, DD-AKAP), which contain
essential hydrophobic residues [138-140].

The N-terminal domain of Beyl and two clusters of serine residues which are phos-
phorylated located at this domain have been reported to be critical for Beyl cytoplasmic
localization in cells deprived of glucose [141]. Several Bcy1 interacting proteins have been
described. Zdsl, the first one, participates in the cytoplasmic localization of Beyl [141].
Other Bceyl-interacting proteins as Hsp60 (mitochondrial chaperonin), Eno2 (enolase II),
and Ira2 (RAS GTPase-activating protein) were identified [142]. However, no interacting
proteins were described in thermal or osmotic stress conditions.
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3.2-. Subcellular localization of Tpk1, Tpk2 and Tpk3 catalytic isoforms

In S. cerevisiae, the localization of each PKA subunit in different subcellular compart-
ments and structures is affected by several environmental conditions, as glucose depriva-
tion, thermal and osmostress or quiescent arrest [135,143]. When the yeast cells were
grown in the presence of glucose, both Bcyl and Tpk2 are localized in the nucleus; how-
ever, Tpkl and Tpk3 subunits are equally distributed in nucleus and cytoplasm [114]. On
the other hand, when yeast cells were grown in the presence of glycerol or when enter in
stationary phase, both Tpks and Bcy1 subunits are localized mainly in cytoplasm [114].

As mentioned above, Tpkl accumulates in the nucleus, whereas the localization of
Tpk2 and Bcyl does not change in response to osmostress [79]. On the other hand, upon
heat stress, during glucose starvation or in quiescent cells, Tpk1 and Bcy1 display a diffuse
cytoplasmic localization. However, Tpk2 and Tpk3 subunits are assembled in PBs and SGs
[111,143,144]. The severity of the heat stress also regulates the localization of PKA subu-
nits. In response to a mild heat stress, Tpk2 localization is cytoplasmic instead nuclear,
and Tpk3 condensates in cytoplasmic foci which are different to classical SGs or PBs. On
the other hand, both Tpk2 and Tpk3 subunits are assembled in SGs under severe heat
stress [117]. When the cells are treated with cycloheximide and then subject to heat stress
the foci containing Tpk2 and Tpk3 are not detected, indicating that these foci are depend-

ent on the translation initiation repression [117]. The granular localization of Tpk?2,

but not that of Tpk3, depends on its catalytic activity. All these results suggest
that different mechanisms are involved in the assembling of each catalytic subunit in re-
sponse to severe heat stress [117]. A breakthrough in this topic is the demonstration that
the N-terminus of Tpk2 subunit has a prion like domain necessary to localise this catalytic
isoform to PBs and SGs upon heat stress, under glucose depletion and after quiescent ar-
rest [145].

Therefore, there is a correlation between isoform specificity, subcellular localization
and stress response. The differential subcellular localization of each catalytic isoform of
PKA contribute to the specificity control of cAMP-PKA pathway as each isoform may in-
teract with different proteins and potential substrates.

3.3-. Transcriptional requlation of PKA subunits

Pioneer high-throughput transcriptomic studies indicate that, in response to heat
shock and saline stress, TPK1, TPK2, TPK3 and BCY1 gene expression is upregulated
[26,146-150].

However, later published evidence demonstrated that the expression of each PKA
subunit is differentially regulated under different growth conditions such as carbon
source availability or growth phase [143,151]. In addition, PKA activity regulates the tran-
scription of the three catalytic isoforms and Bcyl subunits that compose the holoenzyme
[118].

Tpk2 catalytic subunit is the isoform with the highest inhibitory effect on the activity
of TPK1 and TPK3 promoters but fails to inhibit its own promoter [118]. Of all the subunits
that compose PKA, only the expression of catalytic isoform Tpk1 is modulated during heat
shock and osmostress. Under these conditions, both mRNA levels and half-life increase.
In response to heat shock, the upregulation of TPK1 depends on the transcription factors
Msn2/4, Gisl, Sok2, and the kinase Rim15. During the TPK1 promoter activation three
positioned nucleosomes are evicted [118,152]. The chromatin remodeling involves the ac-
tivity of the remodelers RSC and INO80 to maintain the repression of TPK1 promoter un-
der normal growth conditions, and the complex SWI/SNF to allow the activation after
thermal stress [152]. Msn2/4 is necessary for the recruitment of the SWI/SNF complex.
Strikingly, the catalytic subunits Tpk1 and Tpk2 are both recruited to the TPK1 promoter
upon heat shock but with opposite temporal patterns [152]. Furthermore, Tpkl and Tpk2
catalytic activities have opposite effects on the chromatin remodeling of this promoter
[152]. Therefore, a complex regulation mechanism involves the activity of Tpk subunits
on the TPK1 promoter. Finally, after thermal stress, the increased level of Tpk1 allows the
conformation of PKA holoenzymes containing a higher proportion of the catalytic Tpkl
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isoform. This holoenzyme might phosphorylate Tpk1 specific substrates improving the
overall cellular fitness when normal environmental conditions are restored [130].

These results uncover a special mechanism involved in the regulation of the Tpkl
subunit expression by thermal stress that contributes to define the specificity of cAMP-
PKA.

4-. CONCLUDING REMARKS

To respond adequately to stressors, S. cerevisize employs different signalling path-
ways. Each pathway is fine-tuned through mechanisms that allow the specificity of the
response. The complexity of the inputs to which the yeast may be exposed suggests that
several pathways should be interconnected to process environmental signals and to
achieve a specific response. Two important crosstalk interactions couple the signalling
cAMP-PKA and CWI pathways in response to heat shock, and HOG-MAPK and cAMP-
PKA pathways upon osmotic stress.

The regulation of the expression of each PKA subunit is one of the important mech-
anisms that allows signal transduction specificity. In response to heat shock and saline
stress, TPK1 is the only catalytic subunit of PKA upregulated, and the cAMP-PKA/CWI
crosstalk coordinates Tpk1 expression.

The interaction of HOG-MAPK and cAMP-PKA pathways highlights the differential
roles of the catalytic isoforms of PKA, Tpkl and Tpk2, in the adaptive response to osmotic
stress. The deletion of TPK2 gene, but not TPK1, improves the defective cell growth of
HOGT1 deficient strains under osmotic stress. PKA catalytic subunits Tpk2 and, to a lesser
extent, Tpkl, can reduce the crosstalk between the pMAPK and the HOG-MAPK path-
ways in a deficient HOGI strain. The cAMP-PKA pathway activation is required for fila-
mentous growth and each catalytic isoform has a different role in this process. The inva-
sive growth of a hoglA strain under hyperosmotic conditions is regulated by a crosstalk
between the HOG1-MAPK and fgMAPK pathways. Tpkl is a positive regulator, while
Tpk2 is a negative one in this crosstalk. Finally, there is also an interaction between PKA
and HOGTI at the level of transcriptional regulation of osmostress responsive genes. TPK2
and HOGI have a reciprocal impact on the chromatin-binding kinetics of Tpk2 and Hog1.
Also, both kinases regulate the binding of SWI/SNF complex and Mns2 to the promoters
of osmostress-responsive genes.

In conclusion, intricated regulatory networks that include the crosstalk between dif-
ferent signalling pathways take place in response to stress. The complementation of sig-
nalling pathways, the fine tuning of the signals, and the specificity in the response to dif-
ferent stressors are key to produce a precise and timely gene expression output to over-
come the stressful conditions.
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