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Abstract 

Virtual Reality (VR) offers unique opportunities to personalize learning by adapting instructions to 
individual learning styles. This study explores the relationships between learning styles, cognitive 
load, and learning outcomes in a VR environment designed for engineering education. Drawing on 
Kolb’s experiential learning theory, the research investigates how immersion and flow, in relation to 
learning styles, influence learning outcomes within the Submarine Simulator, a VR-based educational 
tool for underwater engineering. To enhance VR-based instructional design, this study proposes 
aggregating existing and validated models, such as Kolb’s framework, to develop new models 
tailored specifically for VR learning environments. The research aims to highlight the interplay of 
these variables in a learning process focused on acquiring knowledge in the STEM field, specifically 
hydrodynamics, through designing and operating a simulated submarine model in VR. A cohort of 
26 students from MINES Paris - PSL participated in a three-phase testing process to evaluate the 
educational effectiveness of an original VR software designed to support learning in underwater 
engineering. The findings contribute to understanding how learning styles impact learner 
engagement and performance, and how VR environments can be optimized through adaptive 
instructional design informed by these novel VR-specific models. 

Keywords: learning styles; virtual reality; VR simulation; underwater engineering; immersive 
learning; cognitive load; flow state; STEM education; learning outcomes 
 

1. Introduction 

Virtual Reality (VR) has become a powerful learning environment, enhancing engagement, 
comprehension, and retention, in engineering higher education. [1–4] It offers a transformative 
opportunity to enhance educational experiences through personalized approaches tailored to 
individual learning styles. As educators adapt instructional methods to accommodate diverse 
cognitive preferences, understanding the complex interplay between learning styles, cognitive load, 
and outcomes becomes paramount. Researchers highlight that internal learner factors, such as the 
ability to absorb and process information, significantly influence knowledge acquisition in VR 
environments [5]. 

Research on learning styles and VR shows mixed results. Some studies find that learning styles 
may affect the sense of presence and cognitive load in VR environments [6] and highlight benefits for 
concrete or sensing-type learners [7,8]. Other research suggests learning styles do not significantly 
influence VR learning outcomes [9,10]. In relation with the learning factors, studies indicate that VR 
has a strong potential to induce flow, which is positively associated with continued use of VR [11]. 
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Flow experience mediates the impact of VR immersion on learning outcomes, enhancing motivation, 
curiosity, and cognitive benefits [12]. 

While the educational community continues to debate the prescriptive value of learning style 
models and on the learning, factors influencing VR efficiency, this study approaches learning 
preferences not as rigid labels, but as flexible cognitive tendencies. We argue that the highly 
sensorimotor and immersive nature of VR creates a unique context where these underlying 
preferences in perceiving and processing information become more pronounced, influencing 
engagement and flow. Thus, our research explores these relationships to inform more adaptive VR 
learning design, rather than to validate the learning style models themselves. 

The custom-built VR environment, namely Submarine Simulator software, has been developed 
to support and enhance the process of learning underwater engineering by enabling users to create 
3D models of small-scale submarines and rigorously test them in a realistic simulated underwater 
setting. 

This interdisciplinary approach aims to bring contributions to understanding the underlying 
factors for learning efficiency, but also to developing new educational VR tools, by answering the 
following research questions: 

1. To what extent do immersive engagement and flow state mediate the relationship between 
learning styles and learning outcomes in a VR-based Submarine Simulator? 

2. How does the quality of the VR software influence students' performance across different 
learning styles in a VR-based learning environment? 

2. Learning Styles in VR 

Learning styles refer to the observable strategies and preferences learners use in educational 
contexts [13]. Comprehensive reviews have analysed various learning style models and their 
implications for learning process [14–16]. Recognizing and understanding diverse learning styles 
enables learners to customize their study techniques and empowers educators to adapt their teaching 
methods, fostering greater engagement and deeper comprehension. 

Personalized learning in virtual reality (VR) demonstrates considerable potential, particularly 
when adapted to individual learners’ preferences and cognitive characteristics, as it supports 
individual variability and contributes to improved educational outcomes [9,17]. 

Investigating the effects of a virtual reality (VR)-based learning environment on learners with 
different learning styles, specialists found that there was no significant difference in the cognitive and 
affective learning outcomes for students with different learning styles in a VR-based learning 
environment [9,10,18]. This demonstrates that VR-based learning environments hold significant 
potential for accommodating diverse learning styles and individual differences. 

The application of Kolb's experiential learning cycle (1984) in designing VR activities has been 
proposed to align experiences with learner profiles [8] and to enhance student learning outcomes 
[19,20]. Different studies have integrated Kolb's experiential learning model with VR to investigate 
factors affecting students' intention to use VR in learning [8] and to design personalized VR 
workspaces [21]. In Kolb-based designs, concrete experience appears to drive behavioural intention 
and adoption, as in combined Kolb’s model with the Unified Theory of Acceptance and Use of 
Technology (UTAUT) to investigate students’ intention to use VR [8]. Overall, research suggests that 
Kolb-based learning in VR improves motivation, intention to use, and even test performance 
[8,19,21]. 

Kolb’s experiential learning theory outlines a four-stage cycle: Concrete Experience, Reflective 
Observation, Abstract Conceptualization, and Active Experimentation. While Kolb's original 
experiential learning model defined four primary learning styles—Diverging, Assimilating, 
Converging, and Accommodating—these stem from earlier iterations of his theory. In more recent 
updates, particularly with the Kolb Learning Style Inventory (KLSI) 4.0, Kolb has refined and 
expanded this framework into nine styles to provide greater granularity across the learning 
quadrants: Experiencing, Imagining, Reflecting, Analysing, Thinking, Deciding, Acting, Initiating, 
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and Balancing. Each learning style represents an individual’s preference for a distinct phase of Kolb’s 
learning cycle, shaped by how they engage with, reflect on, conceptualize, and experiment with new 
information. Some research suggests that VR may benefit certain learning styles, such as concrete 
experiential learners [8] and sensing-type learners [7]. 

While learning styles may not directly impact outcomes, they can affect students' sense of 
presence and cognitive load in VR [6]. Overall, VR appears to offer potential benefits for learners 
across different styles, and new research will contribute to fully understand its impact on diverse 
learning preferences [22]. 

3. VR as a Learning Environment: Flow and Personalization 

A key aspect related to learning styles is the flow state, which plays a critical role in optimizing 
the learning process. Flow in VR is characterized by deep absorption, loss of time perception, and 
improved performance [23]. VR provides immersive, interactive experiences that enhance learners’ 
engagement and motivation. Studies show that VR strongly supports the flow experience, which is 
associated with improved motivation and performance [11,12]. Immersion is a prerequisite for 
achieving flow, significantly impacting user satisfaction and the intention to continue engaging with 
VR environments. [11,24]. 

The experience of flow in VR can explain the relationship between VR visualization technology 
and learning outcomes [25]. Incorporating flow theory principles in VR design may optimize the 
learning state and the leaning performance, through cognitive absorption [17]. These findings 
highlight the importance of considering individual cognitive differences in VR design and research. 

At the same time, spatial design in VR environments can influence cognitive load, although 
evidence suggests minimal impact on spatial reasoning tasks [26]. However, the design can still play 
a role in enhancing learning efficacy by providing immersive and engaging experiences [26]. 
Adaptive VR learning systems that align with individual learning styles can enhance motivation and 
improve learning outcomes by minimizing extraneous cognitive load while optimizing relevant 
cognitive engagement [27]. 

Other individual cognitive-personal factors, such as spatial thinking and field dependence, can 
affect task performance in VR, with spatial cognitive load playing a significant role in learning success 
[28]. The use of eye-tracking and physiological data in VR can help tailor cognitive workload to the 
learner's ability, ensuring the task is neither too challenging nor too easy, which is crucial for learners 
with varying intelligence levels [29]. 

In engineering education, VR systems are designed to cater to individual learning preferences, 
enhancing student engagement and performance [30]. Research indicates that while learning styles 
do not significantly affect learning performance in VR, they do influence attention levels, with visual 
learners showing higher attention than verbal learners [31]. 

Starting by these premises and by applying Kolb's experiential learning principles, we seek to 
explore how customized VR experiences can enhance personalization, increase engagement, and 
improve educational outcomes, ultimately fostering more adaptive and effective instructional 
strategies in engineering higher education. 

4. Research Methodology 

4.1. Research Aim 

In this study, we leverage Kolb's experiential learning framework to assess the instructional 
effectiveness of VR software applications within the field of underwater engineering. Specifically, we 
employ Kolb's model to examine how diverse learning styles interact with immersive environments, 
influencing knowledge acquisition and skill development. Drawing on the framework's evolution, 
including its refined nine-style granularity (Experiencing, Imagining, Reflecting, Analysing, 
Thinking, Deciding, Acting, Initiating, and Balancing), our investigation evaluates these styles in 
relation to flow states, satisfaction in VR use and learning outcomes among engineering students. 
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The Submarine Simulator VR software was custom-developed for this study to provide a 
dedicated pedagogical platform that integrates three key elements: a realistic underwater physics 
engine for authentic hydrodynamic feedback, an in-VR 3D modeling toolkit that allows for direct 
hands-on design and iteration, and a gamified competitive framework featuring head-to-head racing 
challenges. 

4.2. Hypothesis 

We tested the following hypothesis: 
H1. The perceived quality of the VR learning environment, in conjunction with students' 

learning styles, significantly predict the level of immersive engagement and the overall satisfaction 
of the learning experience. 

H2 Learning styles significantly influence students’ performance in the VR-based Submarine 
Simulator. 

H3. Immersive engagement and the flow state in VR mediates the relationship between learning 
styles and learning outcomes. 

H4. Learning styles significantly influence students perceived immersion and flow state in the 
VR-based Submarine Simulator. 

H5. Students’ performance in VR conditions are influenced by the perceived quality of VR 
software. 

4.3. Target Group 

The research protocol was tested on a group of 26 students, in their 4th year at MINES Paris - 
PSL, during the underwater engineering course. The course was conducted on a full-time basis over 
a 10-week on-campus period, during which students were not enrolled in any other courses. Each 
student completed all three phases described in the research protocol (subchapter 4.5). Following 
each phase, the facilitator conducted a brief 10-minute interview to ensure the experience was well-
received, confirming that students enjoyed the session and felt comfortable, without experiencing 
nausea or discomfort. 

All students signed an agreement to participate in research protocol and were informed that 
during the research and their dissemination the anonymity of the participants will be respected. For 
the reference purposes, during the phase of data processing stage, only randomly assigned numerical 
codes have been used. The characteristics of the group, from the point of view of the learning styles, 
flow, immersion, satisfaction and performance. are presented in Appendix 2. 

4.4. Methods 

To highlight the research variables, the following instruments and tests were used: 

1. The Kolb Experiential Learning Profile (KELP) is a practical self-assessment instrument that can 
help us assess our unique learning styles and has the advantage of only taking 15-25 minutes to 
complete [32]. Based on the results of the test, students have received a scored on the following 
four quadrants, describing how they process and transform experiences into knowledge: 

1) Concrete Experience (CE) - Learners immerse themselves fully, openly, and without 
preconceived biases in novel experiences, emphasizing direct involvement and sensory engagement. 

2) Reflective Observation (RO) - They contemplate and examine these experiences from diverse 
viewpoints, fostering introspection and nuanced understanding. 

3) Abstract Conceptualisation (AC) - They synthesize observations into coherent concepts, forming 
logically robust theories that explain patterns and relationships. 

4) Active Experimentation (AE) - They apply these theories practically to inform decision-making 
and address real-world problems, testing ideas through action. 

Drawing from these quadrants, Kolb's refined framework identifies nine distinct learning styles, 
each offering greater granularity and reflecting unique preferences in how individuals navigate the 
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learning cycle: experiencing; imagining; reflecting; analyzing; thinking; deciding; acting; initiating; 
balancing (Appendix 1). The analysis of the questionnaire involved characterizing the group in terms 
of learning dimensions, learning styles, and flex learning styles. 

Learning styles are determined by an individual's preferences along two key bipolar 
dimensions, which are calculated as difference scores from questionnaire responses. These 
dimensions capture how people balance opposing approaches to perceiving (grasping information) 
and processing (transforming information): ACCE (Abstract Conceptualization minus Concrete 
Experience) and AERO (Active Experimentation minus Reflective Observation) (Appendix 1). 

In Kolb’s experiential learning theory, a student’s primary learning style reflects their preferred 
approach to the learning cycle. This primary style is a preference, not a rigid limitation, indicating 
where a learner naturally feels most comfortable. Alongside this, students exhibit flex styles where 
they also perform effectively, showcasing their adaptability. Non-flex styles, or developing styles, are 
areas where learners are less proficient but can improve through practice and self-awareness, leading 
to a more complete and balanced learning profile. 

2. The Flow State Scale (FSS), developed by Jackson and Marsh (1996), is a 36-item psychometric tool 
designed to measure the nine dimensions of flow as outlined by Csikszentmihalyi, capturing the 
optimal psychological state of complete immersion and engagement in an activity [33]. These 
dimensions include: 

• Challenge-Skill Balance: Perceiving that personal skills match the task’s demands. 
• Action-Awareness Merging: Experiencing seamless integration of actions and awareness. 
• Clear Goals: Having a clear understanding of objectives. 
• Unambiguous Feedback: Receiving immediate, clear feedback on performance. 
• Concentration on the Task: Maintaining deep focus without distractions. 
• Sense of Control: Feeling in command of the activity. 
• Loss of Self-Consciousness: Becoming less aware of self and external judgments. 
• Transformation of Time: Perceiving time as altered, either speeding up or slowing down. 
• Autotelic Experience: Finding the activity intrinsically rewarding. 

Each dimension is assessed through four items, rated on a 5-point Likert scale (1 = strongly 
disagree, 5 = strongly agree), enabling precise measurement of flow intensity. The FSS’s use in this 
study was approved by Mind Garden, Inc., on March 6, 2024, ensuring ethical compliance. 

For each dimension, the four item scores are summed and divided by four to calculate an 
average score. This method quantifies flow experiences, facilitating analysis of their relationship with 
learning styles and performance outcomes in immersive VR settings like the Submarine Simulator, 
where engagement is key to learning. 

3. Immersive Tendencies Questionnaire (ITQ) was developed by Bob G. Witmer and Michael J. Singer 
(1998) and it was designed to assess an individual's inherent propensity or tendency to become 
immersed in everyday activities, media, and environmental situations, particularly as a 
predictor of how readily they might experience presence in virtual environments (VEs) [34]. 
Presence, in this context, refers to the psychological state of feeling "there" in a mediated or 
simulated environment, and the ITQ aims to capture individual differences that could influence 
immersion levels. It is typically administered prior to VE exposure to stratify participants, 
predict performance, or identify factors contributing to immersion, such as involvement in 
activities like reading, watching movies, or playing games. The questionnaire is supported by 
correlations with related measures like the Tellegen Absorption Scale (r ≈ .40-.60). Factor analysis 
in follow-up research confirms loadings on immersion-related constructs. Higher ITQ scores 
have been linked to better VE performance and higher presence ratings in some studies.
 Each item is rated on a 7-point Likert-type, higher scores indicate stronger immersive 
tendencies. 

4. The Basic Needs in Games (BANG) scale is an open-access, free-to-use questionnaire developed to 
evaluate the satisfaction and frustration of basic psychological needs—autonomy, competence, 
and relatedness—experienced by players during video game play, rooted in Self-Determination 
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Theory (SDT) [35]. The BANG scale includes six subscales—three assessing satisfaction 
(autonomy, competence, relatedness) and three measuring frustration—allowing researchers to 
compute mean scores for each need separately, offering detailed and interpretable insights into 
how well a game supports these psychological needs. 

The "Satisfaction" dimension of the BANG results measures the fulfilment of three core needs—
autonomy, competence, and relatedness—which significantly enhance player enjoyment, 
engagement, and psychological well-being. Autonomy satisfaction arises from players' control over 
meaningful choices, competence satisfaction from mastering challenges and achieving goals, and 
relatedness satisfaction from forming social connections with others, including players and non-
player characters. Fulfilling these needs fosters motivation, immersion, and sustained engagement, 
contributing to a rewarding gaming experience. 

The scale has been statistically validated through rigorous psychometric testing, with initial 
studies demonstrating good internal consistency (Cronbach’s alpha values typically exceeding 0.80 
for the satisfaction subscales) and construct validity, confirmed through factor analysis that aligns 
with SDT constructs. Furthermore, its reliability and applicability have been supported across diverse 
gaming contexts and populations, with ongoing research continuing to refine its sensitivity and 
predictive power. 

This validation ensures that the BANG scale provides a robust tool for researchers and designers 
to assess and enhance the psychological impact of games, making the "Satisfaction" dimension a 
critical metric for optimizing player-centered design in virtual environments. 
5. Scoring on the Performance - to examine the interplay between learning styles, immersion and 

flow states, and learning outcomes in the Submarine Simulator VR environment, a tailored 
scoring system was established. This system draws on the distinct tasks across the three phases 
of software interaction, assigning scores that capture objective performance in each phase: 

• Phase 1 (Basic Submarine Construction and Testing, scored on a 0–20 Scale): This structured phase 
emphasizes foundational building and initial testing. 

• Phase 2 (Designing Tight and Loose Spiral Models, scored on a 0–2 Scale): Focused on strategic 
planning and iterative refinement, the binary scoring reflects a pass/fail mechanism for the two 
required models: 2 points for successfully completing both, 1 point for one, and 0 points for 
none. 

• Phase 3 (Competitive Racing on Tracks, scored on a 0–20 Scale): This dynamic phase demands real-
time adaptation and quick decision-making. The scoring system was designed to be simple yet 
engaging. Points were awarded in accordance with finishing the race on each track, with 1 point 
for Track 1, 2 points for Track 2, and 3 points for the more complex Track 3. Additional points 
would be awarded after winning the race against an opponent. 

Statistical methods. A Partial Least Squares Structural Equation Model (PLS-SEM) [36] was 
employed to examine whether virtual reality (VR) experience—including Flow, Immersion, 
Satisfaction and Mindset—mediates the relationship between learning styles and learning 
performance across three instructional phases (Points1, Points2, Points3). As a valuable for 
understanding causal processes and testing mediation effects, SEM analysis combines aspects of 
factor analysis – learning styles components, cognitive, affective and mindset aspects, and path 
analysis to test and to assess the relationships among variables. 

4.5. Research Protocol 

To investigate the interplay between learning styles, flow state, and learning outcomes within 
the immersive VR environment of the Submarine Simulator software application—a custom tool 
designed for underwater engineering education—we developed a structured research protocol. This 
protocol comprises sequential phases meticulously aligned with Kolb's experiential learning cycle 
(Concrete Experience, Reflective Observation, Abstract Conceptualization, and Active 
Experimentation), ensuring a holistic approach that accommodates diverse learner preferences and 
promotes deeper engagement. (Figure 1) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 August 2025 doi:10.20944/preprints202508.0503.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.0503.v1
http://creativecommons.org/licenses/by/4.0/


 7 of 25 

 

 

Figure 1. How the VR application maps with Kolb’s learning cycle. 

The VR simulation replicates authentic hydrodynamics and intricate underwater physics, 
posing challenges that are hard to envision or grasp without immersive tools. This cutting-edge and 
novel VR environment presents a unique challenge for participants, most of whom have little to no 
prior experience with VR technology or advanced underwater simulations. It demands a seamless 
blend of creative problem-solving and precise interaction, pushing the boundaries of realistic 3D 
modelling and navigation tasks. By mirroring Kolb's framework, the protocol not only facilitates 
hands-on interaction but also encourages reflection, theoretical integration, and practical application, 
ultimately aiming to quantify how these elements influence knowledge acquisition, skill retention, 
and motivational flow in a simulated submarine modelling and testing scenario. The protocol unfolds 
in four primary phases, as detailed in Table 1. 

Table 1. Research protocol based on Kolb learning cycle. 

Kolb learning 
stage Methodological correlation 

Concrete 
Experience (CE) 

• Participants dive into the Submarine Simulator VR environment, actively
building and testing their custom-designed 3D submarine models. They
observe critical hydrodynamic characteristics, such as movement, stability, and
response to simulated underwater forces, fostering an initial sensory
connection and practical engagement with engineering concepts. 

• This hands-on interaction in a realistic virtual setting bridges theoretical
knowledge with tangible application, sparking curiosity and laying the
groundwork for deeper learning in subsequent phases. 

Reflective 
Observation (RO) 

• Participants carefully review the outcomes of their VR simulations, analysing
successes and failures—such as why a submarine model sank, exhibited
instability, or performed inefficiently—to derive meaningful insights. 

• This introspective process encourages learners to document personal
reflections, emotional responses, and emerging patterns, transforming raw
experiences into thoughtful observations that inform future iterations. 
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• By fostering this deliberate pause for contemplation, the phase aligns with
Kolb’s cycle, enhancing awareness and bridging practical encounters with
conceptual understanding, particularly valuable in an unfamiliar VR context
where initial challenges can spark profound learning breakthroughs. 

Abstract 
conception (AC) 

• Participants synthesize their observations to formulate conclusions about
essential hydrodynamic principles, such as buoyancy, drag, and propulsion,
while weaving in relevant theoretical concepts. 

• This phase encourages learners to connect their hands-on VR experiences with 
foundational engineering theories, fostering a deeper understanding of how
design choices impact performance in simulated underwater environments. By
integrating practical insights with academic frameworks, participants build a
robust conceptual foundation, paving the way for informed experimentation
in subsequent phases of Kolb’s learning cycle. 

• This reflective synthesis is particularly impactful in the novel VR context,
where complex phenomena become tangible, enhancing learners’ ability to
grasp relatively abstract principles. 

Active 
experimentation 
(AE) 

• Participants refine their approach by iteratively redesigning or adjusting their
3D submarine models—tweaking elements such as shape, materials, or
component placement—and prepare for subsequent testing in the VR
environment. 

• This hands-on iteration allows learners to apply insights gained from prior
learning cycles, actively experimenting to optimize their designs and enhance
performance.  

The learning outcomes are assessed through repeated VR sessions, enabling the evaluation of 
improvements in engineering competencies, such as problem-solving and technical precision. This 
dynamic process, rooted in Kolb’s learning cycle, fosters adaptive learning in the novel VR context, 
where participants can test hypotheses and refine skills in a realistic, immersive setting, ultimately 
strengthening their ability to tackle complex engineering challenges. 

4.6. Research Design 

This study adopted a multi-phase experimental design, carefully structured to align with Kolb’s 
experiential learning cycle, ensuring a scaffolded progression that fosters both practical engagement 
and theoretical understanding. Each phase was tailored to build upon the previous one, creating a 
cohesive framework that supports iterative learning, accommodates diverse learning styles, and 
captures nuanced data on participant performance and psychological states. This methodical design 
enhances the study’s ability to generate reliable, actionable insights into the efficacy of VR-based 
instruction in STEM education. All figures presented in this section are screenshots captured directly 
from the original Submarine Simulator VR software. 

Phase 1: Introduction and Foundational Training 

In the initial phase of the protocol, participants were gradually introduced to the virtual reality 
(VR) platform, with the main goal of helping them feel comfortable and confident in using it. This 
introductory session focused on familiarizing them with the system’s interactive features, including 
user-friendly navigation controls and tools for building models. 

Through guided, hands-on tutorials led by a facilitator, learners actively engaged in practical 
exercises, learning to create submarine prototypes (Figure 2) and conducting initial tests of navigation 
dynamics in the virtual underwater environment (Figure 3). 
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Figure 2. Student in the process of building a submarine model and attaching motors. 

 

Figure 3. Student in the process of conrolling the motors placed on a submarine model. Each motor attached to 
the model being color-coded. 

The primary focus was on cultivating a core understanding of hydrodynamic principles, 
buoyancy, and propulsion mechanisms relevant to submarine design. This study does not evaluate 
performance metrics during this phase; instead, it functions as a preparatory stage to ensure all 
participants achieve a consistent baseline proficiency. Phase 1 allocated a strict 45-minute duration 
for each participant to complete, ensuring uniform timing across all sessions. 

During phase 1, the following steps describe the instructions received. (Table 2) 

Table 2. Instructions given to all participants. 

Ch
ap

te
r 1

 - 
Bu

ild
in

g 
M

od
e 

 

• Create a new submarine model 
• Add a cube to the scene and move it to the center of the table. 
• Scale the cube proportionally. 
• Change the material of the cube to ABS. 
• Make sure the weight of the cube is between 7 and 10 kilograms. 
• Add a cylinder to the scene. 
• Snap the cylinder on top of the cube exactly in the middle using the “Face Snap”

function. 
• Attach two motors to the cube, one motor on the left side of the cube, and one motor

on the right side of the cube. 
• Save your model 
• Move to simulation mode with the current model. 

Ch
ap

te
r 2

 - 
Fl

oa
ta

bi
lit

y 
Te

st
in

g 
&

 U
nd

er
w

at
er

 
na

vi
ga

tio
n 

• In front of you - on the virtual table you have two handles - use the left one to rotate 
around the object and the right one to zoom in and zoom out. 

• Below, under the table - you have two handles. Each one has the same color as the
motor it controls. 

• Use the motors individually or together to move the ensemble underwater. 
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• Experiment with navigating with the model underwater - rotate it/move 
forward/backwards. 

• Press “A” to change into a first-person view and use the joysticks to move
underwater. 

• Press “A” to come back again to the initial 3rd person view. 
• Restart the simulation using the green button on the console. 
• Exit the simulation using the red button on the console. 
• Open Q&A 
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• Create a model made of 4 shapes and 2 motors that sinks into the water between 1000
and 2000 meters. The model needs to be as controllable as possible (can move
forward, backwards, left and right in a controlled manner) 

• Participants were informed that they had complete creative freedom to design their
3D submarine models. 

Phase 2: Sketching and VR Design for Spiral Trajectories 

Building upon the foundational skills developed in Phase 1, Phase 2 prioritizes independent 
design and iterative refinement within the Submarine Simulator VR environment. Participants 
commenced with a low-tech activity, sketching preliminary submarine designs on paper to promote 
conceptual planning and creative visualization unconstrained by digital tools. This approach 
cultivates deliberate ideation, enabling learners to freely explore concepts prior to immersing 
themselves in the VR platform. The underlying intention of this protocol was to examine whether VR 
tends to suppress creativity. 

In the VR environment, the primary task during the phase involved designing submarines 
capable of navigating two distinct spiral trajectories in the simulated underwater setting (Figure 4): 

• Tight spirals: Requiring high precision and small radius, challenging participants to optimize 
control and maneuverability. 

• Loose spirals: Emphasizing stability over larger radius, testing the model’s structural integrity 
under varying conditions. 

 
 

Figure 4. Submarine model going in a: a. tight spiral trajectory; b. a loose spiral. 

Real-time feedback during testing provides data on trajectory accuracy, speed, and stability, 
enabling participants to refine their designs iteratively. This phase aimed to enhance problem-
solving, adaptive design thinking, and practical application of hydrodynamic principles. Each 
participants had 35 minutes in VR during this phase. 

Following Phase 2, a brief 10-minute interview was conducted to assess the students' planning 
approaches for the submarine design task. Based on these interviews, participants were divided into 
three categories: (1) those who started with an initial plan but adapted it iteratively, based on intuition 
and observations (75%); (2) those who proceeded without a predefined plan, adapting dynamically 
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along the way (20%); and (3) those who entered VR with a well-defined plan and followed it 
consistently throughout the phase (5%). 

Phase 3: Paired Competition in Underwater Race Tracks 

In the final phase of the study, a competitive twist was added by pairing participants into 13 
teams, encouraging teamwork within each pair and friendly rivalry between groups. Each team 
collaborated to brainstorm ideas, then worked individually to design submarine models optimized 
for three increasingly challenging virtual underwater race tracks. These tracks were designed to 
reflect real-world engineering challenges, testing navigation, performance, and design skills in a 
dynamic, engaging and gamified way. 

Track 1 - Straight-Line Navigation: Teams engineered submarine prototypes optimized for 
seamless straight-line propulsion, emphasizing robust propulsion mechanisms and consistent 
directional stability to prevent any unintended deviations from the intended path (Figure 5). 

Track 2 - Horizontal Maneuverability: This race track challenged teams to design submarine 
models capable of executing precise left and right maneuvers, integrating effective buoyancy 
adjustments, depth regulation, and thrust management to navigate the course successfully (Figure 
6). 

 
Figure 5. The straight-line race track. 

 

Figure 6. The race track testing horizontal maneouverability. 

Track 3 - Multi-Directional Agility: The most challenging track demanded complete 
maneuverability, requiring submarine models to execute fluid up, down, left, and right movements 
while maintaining precise control within a highly complex virtual underwater environment (Figure 
7). 

In the concluding phase, participants put their submarine designs to the test through timed 
virtual simulations, where evaluations centered on key factors like whether the model fully 
completed the course. 

Scoring was straightforward and motivating: for each track, points were allocated based on 
achievement—Track 1, which involved straightforward linear paths, offered 1 point if completed; 
Track 2 granted 2 points; and the more intricate Track 3 provided 3 points. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 August 2025 doi:10.20944/preprints202508.0503.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.0503.v1
http://creativecommons.org/licenses/by/4.0/


 12 of 25 

 

To heighten the excitement and competitive spirit, an additional layer was added: individuals 
could gain 1 bonus point by outperforming a rival in a direct race, with the opponent's performance 
visualized as a "shadow" submarine (Figure 8). 

 
Figure 7. The race track testing both vertical and horizontal maneuverability. 

 
Figure 8. Showcasing a race against another student’s model (represented as a shadow). 

For clarity, this shadow wasn't a live competitor, but a digital replay drawn from a prior 
participant's successful run on the same track, enabling the current user to race alongside this ghostly 
echo in real-time within the immersive VR world, fostering a sense of head-to-head rivalry while 
building on collective progress. 

If the current student finished the race ahead of this shadow opponent based on time, they 
would secure the additional point, adding a layer of competitive incentive to the exercise. 

This phase emphasized interpersonal dynamics, such as competition and contentiousness, 
within a paired setting. Phase 3 spanned about 45 minutes, including team brainstorming, design 
collaboration, individual building, and racing. It is important to note that students could attempt the 
same track until successful or could change the track. 

To conclude, the research design included three evaluation phases, each with its own set of 
instructions and a specific system for assessing the level of learning. (Figure 9) 
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Figure 9. Research design for VR experiential learning. 

5. Results 

This section outlines the findings from the empirical analyses, exploring the connections 
between learning styles, the immersive VR experience, and learning outcomes. 

5.1. Path Analyses 

The model demonstrated good explanatory power, with R² = 0.247 for the VR latent variable and 
R² = 0.494 for Performance, indicating moderate to substantial effect sizes (Figure 10). 
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Figure 10. Path Analysis on the relation between Learning styles and learning outcomes. 

The path coefficient from Learning Styles to VR was statistically meaningful (β = 0.497), 
suggesting that individual cognitive preferences (especially Active Experimentation and Concrete 
Experience, with loadings of 0.552 and 0.691, respectively) strongly influence the degree of VR 
engagement. Additionally, the path from VR to Performance was strong (β = 0.703), indicating that 
perceived experiential quality within the VR environment is a critical determinant of learner success 
(Figure 10). H1 is confirmed. 

The direct effect of Learning Styles on Performance was comparatively weaker (β = 0.290), but 
still statistically relevant, indicating that learning preferences have an independent albeit smaller 
impact on outcomes. However, the indirect effect—estimated as the product of the Learning Styles 
→ VR and VR → Performance paths (0.497 × 0.703 ≈ 0.349)—was stronger than the direct path, 
supporting a partial mediation model (Figure 10). H2 is partially confirmed, meaning that there are 
also additional factors that influence student’s performance. 

These findings align with recent research emphasizing the role of immersive engagement (Flow 
and Presence) in VR-based learning (Hassan et al., 2020; Rutrecht et al., 2021). The observed 
mediation effect supports the hypothesis that adaptive instructional design in VR should not merely 
align with learner preferences, but should also optimize experiential features that facilitate cognitive 
absorption and sustained motivation. 

5.2. Covariance Analysis of Latent Constructs 

The covariance matrix for the latent variables provides additional insight into the structural 
relationships within the model. As shown in Table 3, the strongest covariance emerged between the 
VR experience construct and Performance (Cov = 0.703), indicating a substantial shared variance 
between learners’ immersive engagement (Flow, Immersion, and Mindset) and their performance 
outcomes across the VR learning phases, confirming H3. 

Table 3. Latent Variable Covariances. 

  Learning stylesPerformance VR 
Learning styles1.000 0.290 0.497
Performance 0.290 1.000 0.703
VR 0.497 0.703 1.000

A moderate covariance was observed between Learning Styles and VR (Cov = 0.497), suggesting 
that individual cognitive preferences are meaningfully aligned with how learners perceive and 
engage with the VR environment. In contrast, the Learning Styles–Performance covariance was 
weaker (Cov = 0.290), reinforcing the interpretation that learning styles alone are not sufficient 
predictors of learning performance in immersive environments. The H4 hypothesis is partially 
confirmed, meaning that students have been able to adapt to the VR environment despite any 
learning style preference. 

These results align with prior work highlighting the mediating role of engagement and flow in 
technology-enhanced learning [11,25] and suggest that instructional designers should prioritize 
experiential elements that activate learner motivation and presence over static alignment with 
predefined learning style categories. 

The model's explanatory power was assessed using R² and f² values for the endogenous 
constructs. The results indicated that the VR latent construct (comprising Flow, Immersion, and 
Mindset) was explained by Learning Styles with an R² value of 0.247, suggesting that approximately 
24.7% of the variance in VR experience could be attributed to individual learning preferences. So, H4 
was partially confirmed and the relation between learning styles, flow and immersion, but also 
satisfaction, needs more studies in this direction. 
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In turn, Performance (aggregated across three instructional phases) showed a higher R² of 0.494, 
meaning nearly half of the variance in student outcomes was accounted for by the model’s 
predictors—primarily the VR construct (Table 4). 

Table 4. Quality indicators. 

Variables f Square R Square 

 VR Learning 
Styles 

PerformanceR SquareR Square Adjusted 

VR  0.329  0.247 0.216  
Learning Styles      

Performance 0.977   0.494 0.473 

Effect size estimates using Cohen's f² revealed that Learning Styles had a moderate effect on VR 
(f² = 0.329), while VR had a very large effect on Performance (f² = 0.977), far exceeding the threshold 
for a large effect. [36] These findings reinforce the mediating role of the VR experience, suggesting 
that its quality is a far stronger predictor of learning outcomes than learning styles alone. H5 is 
confirmed. The high f² for VR on Performance underscores the central importance of immersive and 
engaging instructional design in achieving measurable academic gains in VR-based learning 
environments (Table 4). 

5.3. Construct Reliability and Validity 

To assess the internal consistency and convergent validity of the latent variables, multiple 
reliability indices were examined, including Cronbach’s alpha, rho_A, composite reliability, and 
average variance extracted (AVE). The Learning Styles and VR constructs exhibited excellent internal 
consistency, each achieving perfect reliability across all indices (Cronbach’s α = 1.000, rho_A = 1.000, 
and composite reliability = 1.000). This reflects high inter-item correlation among the indicators used 
for these latent variables (Table 5). 

Table 5. Construct Reliability and Validity. 

  Cronbach's Alpha rho_AComposite
Reliability 

Average Variance 
Extracted (AVE) 

Learning styles   1     
Performance 0.741 0.831 0.738 0.513 

VR   1     

The Performance construct showed acceptable reliability, with Cronbach’s alpha of 0.741 and 
composite reliability of 0.738, both exceeding the standard minimum threshold of 0.70. [37] 
Furthermore, its AVE value of 0.513 surpassed the 0.50 benchmark, confirming adequate convergent 
validity—indicating that more than half of the variance in observed indicators was captured by the 
construct. Collectively, these metrics support the robustness and psychometric adequacy of the 
measurement model (Table 5). 

5.4. Discriminant Validity 

Discriminant validity among the latent constructs was assessed using the Fornell-Larcker 
criterion, which compares the square root of the Average Variance Extracted (AVE) for each construct 
with its correlations with other constructs. As shown in Table 6, the square root of the AVE for 
Performance was 0.716, which exceeded its correlations with Learning Styles (r = 0.290) and VR (r = 
0.703). Similarly, the square root of the AVE for VR (0.703) was higher than its correlation with 
Learning Styles (r = 0.497). These results confirm that each latent variable shares more variance with 
its indicators than with any other construct, thereby satisfying the criterion for adequate discriminant 
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validity. [39] This supports the distinctiveness of the latent dimensions measured in the model, 
ensuring that Learning Styles, VR experience, and Performance are empirically separable constructs 
(Table 6). 

Table 6. Fornell-Larcker Criterion. 

  Learning stylesPerformance 
Learning styles  -  - 

Performance 0.289629 0.716043 
VR 0.49748 0.702998 

Multicollinearity diagnostics were assessed using the Variance Inflation Factor (VIF). All 
indicator VIF values ranged between 1.017 and 3.036, which are well below the conservative 
threshold of 3.3 [39]. This confirms that multicollinearity is not a concern in the measurement model. 

The highest VIF was observed for Active Experimentation (3.036), yet it remained within 
acceptable limits. These results affirm the stability of the model estimation process and the robustness 
of path coefficient calculations (Table 7). 

Table 7. Collinearity Statistics (VIF). 

Variables VIF 
AbstractionConceptualization 2.644784 

ActiveExperimentation 3.273493 
ConcreteExperience 2.00095 

ReflectiveObservation 2.122368 
Style 1.127902 
Flow 1.201899 

Immersive 1.173842 
Mindset 1.314606 

Satisfaction 1.07815 
Points1 1.684684 
Points2 1.450584 
Points3 1.416396 

5.5. Model Fit 

The overall model fit was evaluated using several common indices within the Partial Least 
Squares Structural Equation Modeling (PLS-SEM) framework. The Standardized Root Mean Square 
Residual (SRMR) was 0.096 for the saturated model and 0.097 for the estimated model—both values 
falling below the conservative threshold of 0.10, indicating an acceptable model fit [37]. 

The discrepancy measures d_ULS (0.724–0.730) and d_G (0.449–0.454) were low, further 
supporting the structural integrity of the model. The Chi-square values (44.431 and 44.725) provide 
additional support for a moderate-to-adequate fit, although chi-square statistics in PLS-SEM are 
typically interpreted with caution due to distributional assumptions [40]. (Table 8) 

Table 8. Model fit. 

 Satured Estimated
SRMR 0.096 0.096
d_ULS 0.724 0.730

d_G 0.449 0.454
Chi-Square 44.431 44.725
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5.6. Bootstrapping Path Coefficients 

The significance of the structural model paths was assessed using a bootstrapping procedure 
with 5,000 subsamples. The path from Learning Styles to VR experience was statistically significant, 
with a standardized coefficient of β = 0.497, t(df) = 2.723, p = .007. [39] This indicates that learners’ 
cognitive preferences (e.g., Concrete Experience, Active Experimentation) positively and significantly 
influence their perceived engagement and flow within the VR environment. The strength of this 
relationship underscores the importance of tailoring immersive environments to accommodate 
cognitive variability (Table 9). 

Table 9. Bootstrapping Path Coefficients. 

  Original Sample (O) Sample Mean (M) STDEV 
T Statistics 
|O/STDEV|) P Values 

Learning styles -> VR 0.497 0.708 0.183 2.723 0.007
VR -> Performance 0.703  

In turn, the path from VR experience to Performance was also strong, with a standardized 
coefficient of β = 0.703, suggesting a substantial impact of experiential quality on learning outcomes. 
While no p-value is listed in the table for this path, the high coefficient aligns with previous model 
outputs (e.g., R² = 0.494 for Performance), reinforcing the mediating role of VR in translating cognitive 
predispositions into successful performance. These results lend empirical support to the conceptual 
model in which VR acts as a critical conduit through which learning styles exert their effect on 
performance (Table 9). 

6. Disscusions 

A central finding of this study is the strong mediating role of the VR experience, encompassing 
flow, immersion, and satisfaction, between learning styles and performance. This shows that while 
learning preferences influence how students engage with the virtual environment, the quality of the 
immersive experience itself is the more potent predictor of success. The actual experience acts as a 
strong mediator because it leverages multisensory and interactive elements that can adapt to various 
learning styles, creating a unified engagement pathway that transcends individual preferences and 
directly enhances cognitive processing and retention. 

By inducing states of flow and immersion, the learning environment minimizes distractions and 
boosts intrinsic motivation, allowing all learning styles to yield learning performance through 
emotional satisfaction and sustained focus. Ultimately, while learning styles shape initial 
engagement, the immersive VR experience's ability to deliver universal psychological benefits, such 
as heightened focus and motivation, establishes it as the primary driver of learning outcomes. 

It is possible that a well-designed VR environment acts as a cognitive 'levelling field,' providing 
multiple, simultaneous pathways for understanding (kinesthetic, visual, and analytical) that cater to 
a wide range of learners. In such an environment, the user's ability to achieve a state of flow may 
override their initial cognitive predispositions, becoming the primary driver of learning outcomes. 

So, the results support the proposed mediation effect: flow and immersive presence partially 
bridge the relationship between learning styles and performance outcomes. This aligns with prior 
work on VR personalization and supports the notion that cognitive adaptation—both by learners and 
systems—enhances digital learning outcomes [17]. 

Our results indicate that VR can effectively support experiential learning, confirming the 
literature data [19,20]. Nevertheless, the effectiveness of VR hinges greatly on its ability to facilitate 
the full cyclical learning process. Experiential learning does not involve confining the learner to their 
main learning style throughout the entire experience; instead, it entails granting entry into the 
learning cycle via their preferred style and guiding them through the complete cycle, thereby 
fostering growth in both their flexible styles and emerging styles. 
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In engineering education research, the Assimilating and Converging styles, referred to as 
Analyzing and Deciding in Kolb’s latest framework used in this paper, demonstrate greater task 
effectiveness in model-building simulations. In contrast, the Accommodating style, termed Initiating 
in the same framework, shows a negative correlation with non-personalized descriptive tasks, 
indicating underperformance in non-hands-on phases unless adapted [21]. Our study's findings 
suggest that while learning styles play a role, other factors more strongly influence performance, as 
evidenced by a weaker correlation with learning styles alone. 

The results from another study indicate that learners derive the greatest benefits from the VR 
guided exploration mode, regardless of their individual learning styles, highlighting the potential of 
VR-based environments to effectively accommodate diverse learning preferences [9]. This finding 
resonates with our own research process, as it partially confirms Hypothesis 2, demonstrating that 
all students, irrespective of their learning style, were able to adapt and perform successfully to some 
extent across all three phases of our study. 

Interestingly, learners identified as “balanced” (with near-zero AERO and ACCE scores) 
maintained consistent flow across all task types, reinforcing the value of flexibility in learning 
approaches, which is crucial for student development as it enables them to adapt to circumstances 
by flexing into all learning styles. This group’s performance suggests that versatile cognitive 
strategies can help navigate the diverse demands of VR environments. 

7. Conclusions 

Learning environments built in virtual reality, like the Submarine Simulator, are powerful tools 
for nurturing these developing styles. By engaging students in immersive tasks—such as designing 
and testing submarine models, VR encourages experimentation, reflection, and refinement, helping 
learners strengthen unfamiliar learning styles. However, achieving full-cycle learning, where 
students adeptly navigate all stages, relies on a supportive learning environment. A well-crafted VR 
platform, combined with guided instruction and reflective opportunities, creates an ideal setting to 
enhance engagement and foster growth across all learning styles, enabling students to become 
versatile, well-rounded learners. 

Adaptive instructional design, grounded in theoretical frameworks like Kolb’s experiential 
learning cycle, is essential to create inclusive and effective VR-based learning environments by 
tailoring content and interactions to accommodate diverse learner preferences, such as reflective 
observation, abstract conceptualization, concrete experience, and active experimentation. This 
approach not only enhances individual learner engagement and retention but also addresses 
potential disparities in cognitive load, ensuring that VR tools are accessible and beneficial across a 
wide range of educational contexts, from technical training to creative skill development. 

Moreover, the modality effect highlights the importance of thoughtfully designing how 
information is presented in VR, as it can variably affect cognitive load. Although VR provides notable 
benefits for improving cognitive functions, it is critical to address potential issues like cognitive 
overload and prioritize effective instructional design to optimize learning results. 

By creating feedback loops between students, educators, and developers, we can cultivate an 
ecosystem that continuously evolves, ensuring that VR tools remain relevant and impactful in 
addressing the complexities of modern education. In addition to the importance of user feedback, it 
is crucial to explore the role of interdisciplinary collaboration in enhancing VR learning 
environments. 

Our findings translate into actionable guidance for instructional designers. To better support 
learners with a preference for reflective observation (negative AERO scores), VR platforms should 
include features that allow for replaying and analyzing their performance from multiple 
perspectives. Conversely, for learners with a high preference for abstract conceptualization (positive 
ACCE scores), embedding access to theoretical principles and real-time data visualizations directly 
within the VR environment could be crucial for bridging the gap between theory and application. 
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Thus, continued research and innovative practices are essential to fully harness the 
transformative power of VR in education, enabling the development of tailored learning experiences 
that cater to diverse student needs and learning styles. This ongoing exploration should focus on 
refining VR technologies and pedagogical strategies to maximize engagement, enhance skill 
acquisition, and foster critical thinking, thereby preparing students for a future where technology is 
an integral and dynamic component of their learning journeys across various disciplines and 
contexts. 

7.1. Limitations 

This holistic approach, which includes comprehensive teacher training and the incorporation of 
user feedback, will be vital in maximizing the potential of VR technologies in fostering inclusive and 
engaging learning environments. The study involved a single group of students enrolled in the 
underwater engineering course and was relatively homogeneous, which may be considered a 
limitation as it could restrict the generalizability of the findings across more diverse populations. A 
notable limitation is that the experiment was heavily dependent on a facilitator to guide participants. 
While this ensured a baseline proficiency, it also suggests that complex, open-ended educational VR 
tools like the Submarine Simulator may not yet be suitable for fully independent learning. This can be 
viewed as an interesting finding for practical implementation: the role of the educator evolves from 
a knowledge dispenser to a 'VR facilitator,' who is very important for scaffolding the experience, 
managing cognitive load, and ensuring pedagogical goals are met. 

The time interval between phases was strictly capped at a maximum of 7 days, allowing for some 
degree of individual variation among students, though additional constraints could potentially be 
applied in future studies to refine this aspect. 

Future research should investigate the incorporation of real-time monitoring, including metrics 
like Heart-Rate Variability, Heart Rare and other physiological sensors, to dynamically adapt and 
personalize VR experiences based on learners' immediate states. Gaining a deeper understanding of 
this intricate interplay between physiological responses and virtual learning environments will be 
crucial, particularly in engineering education, where optimizing performance and sustaining high 
levels of engagement are paramount for success. Thus, continued research and innovative practices 
are necessary to fully harness the transformative power of VR in education, preparing students for a 
future where technology plays an integral role in their learning journeys. 
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Appendix 1 

The Kolb Experiential Learning Profile (KELP) is based on the experiential theory and model of 
learning developed by David Kolb (1984) and on the seminal contributions of John Dewey, Kurt 
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Lewin & Jean Piaget. Based on the results of the test, students have received a scored on the following 
four quadrants, describing how they process and transform experiences into knowledge: 

1) Concrete Experience (CE) - Learners immerse themselves fully, openly, and without 
preconceived biases in novel experiences, emphasizing direct involvement and sensory engagement. 

2) Reflective Observation (RO) - They contemplate and examine these experiences from diverse 
viewpoints, fostering introspection and nuanced understanding. 

3) Abstract Conceptualisation (AC) - They synthesize observations into coherent concepts, forming 
logically robust theories that explain patterns and relationships. 

4) Active Experimentation (AE) - They apply these theories practically to inform decision-making 
and address real-world problems, testing ideas through action. 

Drawing from these four quadrants, Kolb's refined framework identifies nine distinct learning 
styles, each offering greater granularity and reflecting preferences in how individuals navigate the 
learning cycle: 

• Experiencing: Thrives on hands-on engagement, relying on intuition and emotional connection 
to immerse fully in new experiences. 

• Imagining: Combines creativity and reflection, brainstorming innovative ideas by exploring 
diverse perspectives with empathy. 

• Reflecting: Focuses on deep observation, analyzing experiences from multiple angles to uncover 
patterns and insights. 

• Analyzing: Excels at systematic analysis, organizing observations into structured, logical 
frameworks. 

• Thinking: Prioritizes logical reasoning, developing precise, theory-driven solutions through 
objective analysis. 

• Deciding: Focuses on practical problem-solving, using theories to make informed decisions and 
achieve measurable outcomes. 

• Acting: Thrives in dynamic settings, implementing ideas and adapting quickly to achieve 
tangible results. 

• Initiating: Proactively embraces new challenges, combining risk-taking with enthusiasm to 
explore innovative solutions. 

• Balancing: Adapts flexibly across all learning cycle stages, seamlessly integrating experiencing, 
reflecting, theorizing, and acting. 

These dimensions capture how people balance opposing approaches to perceiving (grasping 
information) and processing (transforming information): 

• ACCE (Abstract Conceptualization minus Concrete Experience): This represents the "perceiving" 
dimension, measuring an individual's preference for abstract thinking versus concrete feeling 
when grasping new information. A positive ACCE score indicates a stronger inclination toward 
AC—favoring logical analysis, theoretical models, and objective reasoning (e.g. conceptualizing 
principles like buoyancy in a submarine simulation). A negative score leans toward CE, 
emphasizing tangible, hands-on experiences and intuitive, relational approaches (e.g., 
immersing in sensory feedback from the VR environment). This dimension highlights how 
learners prefer to initially encounter and internalize experiences, with balanced scores 
suggesting flexibility between the two. 

• AERO (Active Experimentation minus Reflective Observation): This is the "processing" dimension, 
assessing the preference for active doing versus reflective watching when transforming 
experiences into knowledge. A positive AERO score points to a bias toward AE—prioritizing 
practical application, experimentation, and risk-taking to test ideas (e.g., iteratively redesigning 
a submarine model and running tests). A negative score favors RO, focusing on careful 
observation, contemplation, and diverse viewpoints before acting (e.g., reviewing simulation 
outcomes to understand failures). Like ACCE, this dimension underscores processing strategies, 
and neutral scores indicate adaptability. 
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Appendix 2 

Descriptive Statistics of Learning Styles and Dimensions Within Target Group 

Below are the key descriptive statistics for the core Kolb dimensions (CE, RO, AC, AE) and their 
differences (ACCE, AERO). (Table 2.1) These provide an overview of central tendencies and 
variability. The group shows a clear preference for Abstract Conceptualization (higher mean AC vs. 
CE, positive ACCE), aligning with analytical and logical thinking in Kolb's model. The near-zero 
mean AERO indicates balance between reflection and action overall, with moderate variability 
suggesting individual differences. (Table 2.1.) 

Table 2.1. Learning styles of the target group members. 

Dimension Mean Std Dev Min 25% Median 75% Max 
CE (Concrete Experience) 20.0 6.7 11 16.0 17.0 22.0 37 
RO (Reflective Observation) 26.6 5.5 16 22.3 26.5 29.5 39 
AC (Abstract Conceptualization) 35.1 5.9 24 30.3 36.0 39.0 44 
AE (Active Experimentation) 27.3 5.9 14 25.0 27.0 29.0 41 
ACCE (AC - CE) 15.1 8.5 -9 11.0 16.5 20.0 27 
AERO (AE - RO) 0.7 8.8 -15 -5.8 0.0 8.3 15 

In table 2.2, we represent the distribution of the main learning style. Analysing dominates 
(38.5%), followed by Thinking, indicating a sample skewed toward assimilative (high AC/RO) and 
convergent (high AC/AE) styles in Kolb's framework. 

Table 2.2. Distribution of Main Learning Styles. 

Main Style Count Percentage 
Analyzing 10 38.5% 
Thinking 6 23.1% 

Acting 3 11.5% 
Reflecting 2 7.7% 
Balancing 2 7.7% 
Initiating 2 7.7% 
Deciding 1 3.8% 

The target group was also characterized through their flex learning style (in Kolb model). Flex 
styles were split and counted across all participants (total mentions=101, average ~3.9 per person). 
The counts are taken from the analysis: Balancing (20), Reflecting (19), Thinking (13), Analyzing (11), 
Imagining (11), Deciding (10), Experiencing (7), Acting (7), Initiating (3), totaling 101 mentions across 
26 participants (average ~3.9 flexes per person). (Table 2.3) 

Table 2.3. Distribution of flex (secondary) learning style. 

Flex Count Percentage of Total Mentions 
Balancing 20 19.8% 
Reflecting 19 18.8% 
Thinking 13 12.9% 

Analyzing 11 10.9% 
Imagining 11 10.9% 
Deciding 10 9.9% 

Experiencing 7 6.9% 
Acting 7 6.9% 
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Balancing and Reflecting are most common, appearing in 77% and 73% of profiles, respectively. 
84.6% (22/26) of participants include "Balancing" in main style or flexes. High prevalence of Balancing 
implies versatility, allowing adaptation across Kolb's cycle (experiencing, reflecting, thinking, acting). 
This could indicate a mature or trained group, as Kolb emphasizes balanced styles for effective 
learning. 

The results obtained by the participants to the other tests are presented below. (Table 2.4.) 

Table 2.4. Performance scores and questionnaire results for each participant. 

UserID
Main 

Learning 
Style 

Flow 
Result 
(FSS) 

Immersive 
Result (IQT) 

BANG Result 
(Satisfaction) 

Learning 
Outcome 
Phase 1 

Learning 
Outcome 
Phase 2 

Learning 
Outcome 
Phase 3 

290 Thinking 3.778 4.071 15 20 2 12 
709 Acting 4.028 3.429 17 19 2 11 
227 Analyzing 4.528 4.286 14.5 20 2 10 
512 Initiating 4.222 3.857 17 19 2 8 
177 Balancing 4.389 3.893 16 17 2 4 
443 Balancing 4.194 3.929 18.5 18 2 3 
187 Initiating 3.972 4.214 15.5 17 2 2 
159 Thinking 4.333 4.179 12 17 2 2 
830 Analyzing 4.194 3.571 17.5 17 2 0 
670 Thinking 3.778 4.464 17.5 20 2 0 
590 Analyzing 3.556 4.071 17.5 18 2 0 
595 Analyzing 3.361 4.036 16 19 1 5 
682 Deciding 3.972 4.071 15.5 16 1 3 
341 Reflecting 4.361 4.536 15.5 19 1 2 
411 Thinking 3.861 3.893 15 18 1 2 
840 Analyzing 3.194 3.679 16.5 15 1 2 
388 Analyzing 3.972 3.857 16 18 1 1 
723 Analyzing 4.111 4.143 14.5 17 1 0 
985 Reflecting 2.528 3.786 18.5 17 1 0 
779 Thinking 3.361 4.179 20 18 1 0 
298 Acting 3.333 4.286 13 18 1 0 
484 Acting 4.528 3.679 16.5 16 1 0 
770 Analyzing 3.222 4.036 15.5 16 1 0 
955 Thinking 3.722 4.179 15.5 15 1 0 
642 Analyzing 2.500 3.750 13 14 1 0 
256 Analyzing 3.778 3.500 17 15 0 4 
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