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Abstract: In this paper, we study an extension of the classical compound Poisson risk model with a
dependence structure among the inter-claim time and the subsequent claim size. Under the underlying
dependence structure proposed in [1], asymptotic tail moments for the aggregate claims are presented
when the claim amounts are heavy tail distributed. Numerical examples are performed to validate the
results we obtained.
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1. Introduction
The classical compound Poisson risk model has been extensively analyzed in the actuarial litera-

ture. One of the key assumptions of this model is that the inter-claim times and the claim amounts are
independent. This assumption can be rather restrictive in applications. For example, in the case of
earthquake damages, it is usually believed that the longer the period between earthquakes, the greater
the damages expected.

In this paper, we consider a compound Poisson risk model in which the inter-claim time and
the subsequent claim size are statistically dependent. Specifically, we assume that the claim sizes Xi,
i = 1, 2, . . . are non-negative independent and identically distributed (i.i.d.) random variables (rv’s)
with common distribution function (df) FX . The claim arrival process {N(t), t ≥ 0} is modelled as a
homogeneous Poisson process with intensity λ > 0. Let Wi, i = 1, 2, . . . denotes the ith inter-claim
waiting time. Then they following i.i.d. exponential distribution with rate λ. Crucially, we assume
that the bivariate random vectors (Wi, Xi) are mutually independent but that the r.v.’s Wi and Xi are
no longer independent. As usual, the aggregate claim process S(t) over a finite time horizon (0, t] is
defined as

S(t) =
N(t)

∑
i=1

Xi . (1)

Risk models that consider the dependence between the waiting time Wi and the claim size Xi have
been studied extensively in the literature. For example, Boudreault et al. [2] introduced a dependence
structure where the conditional density of Xi|Wi is defined through a mixture of functions. They
provided explicit expressions for quantities of interest, such as the ruin probability and the Gerber-Shiu
function for a large class of claim size distributions. Asimit and Badescu [1] proposed a general
dependence structure for (Xi, Wi) via the conditional tail probability of Xi|Wi. As stated in [3], this
dependence structure is satisfied by several commonly used bivariate copulas and allows for both
positive and negative dependencies. It is also very useful for analyzing the tail behavior of the sum or
product of two dependent random variables. Under this dependence structure and assuming that the
distribution of the claim amounts has a heavy tail, Asimit and Badescu [1] derived the asymptotic finite-
time ruin probabilities and asymptotic results for Value at Risk (VaR) and Tail Conditional Expectation
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(TCE) of the aggregate losses. For other applications of this dependence structure in risk analysis and
probability theory, one may refer to, for example, [3–5], among others. Bargès et al. [6] studied the
moments of the compound Poisson sums when the dependence between the inter-claim time and
the subsequent claim size is modelled by a Farlie-Gumbel-Morgenstern copula. Zhang and Chen [7]
provided closed-form formulas for the densities of the discounted aggregate claims by assuming that
the dependence is through mixing.

The moment (size-biased) transform of distributions, studied in [8], is a useful statistical
tool, which has been exploited in many research areas. In risk management, for example,
Furman and Landsman [9] applied moment transforms to compute the TCE. Further, Furman and
Landsman [10] showed that the Tail Variance (TV) and other weighted risk measures can also be
determined by moment transforms. More recently, Denuit [11] obtained the size-biased transform
of compound sums and illustrated their applications in determining the TCE. Ren [12] studied the
moment transform of both univariate and multivariate compound sums, and derived formulas to
efficiently compute TCE, TV and higher tail moments.

In this paper, as detailed in Section 2, we assume that the dependence between the waiting time
Wi and the claim size Xi is as proposed in [1]. We apply moment transforms to analyze TCE and TV of
the risk process with dependence. Our approach generalizes that proposed in [1], which is based on
extreme value theory. It allows us to derive the asymptotic results for the TCE, TV, and even higher
tail moments. In addition, our numerical examples show that our asymptotic results provide more
accurate values of TCE than those computed using the method in Asimit and Badescu [1].

The remainder of this paper is organized as follows. Section 2 provides some preliminary results
and definitions needed. Section 3 presents asymptotic results for the first two tail moments of the
aggregate claims with heavy-tailed claim amounts. Section 4 provides numerical examples with
detailed computations to illustrate the results we obtained and compares with the existing results.
Section 5 concludes.

2. Preliminaries
2.1. Model and Definitions

This section introduces the aggregate risk process, provides definitions, and reviews some well-
known results that will be used to derive the main results.

2.1.1. The Dependent Compound Poisson Risk Process

Consider a Poisson process N(t) with rate λ that represents the arrival of claims. Let Wi,
i = 1, · · · , n be the waiting time for the ith claim. Then Wi’s are i.i.d. and follow an exponen-
tial distribution with rate λ. For i = 1, · · · , n, let Ti = ∑i

k=1 Wk denote the arrival time of the ith
claim. Then conditional on N(t) = n, the joint distribution of the claim arrival times random vector
T = (T1, . . . , Tn) is identical to that of the order statistics of a sample of uniform random variables on
(0, t) of size n. That is,

fT1,...,Tn |N(t)=n(t1, . . . , tn) =
n!
tn , 0 < t1 < . . . < tn .

Equivalently, given N(t) = n, the joint p.d.f. of the waiting times random vector W = (W1, · · · , Wn) is
given by

fW1,...,Wn |N(t)=n(w1, . . . , wn) =
n!
tn (2)

defined on D = {(w1, . . . , wn) : 0 ≤ w1 ≤ t, . . . , 0 ≤ wn ≤ t − w1 − . . . − wn−1}.
This implies that for any i = 1, . . . , n, (see for example, Boudreault et al. [2])

fWi |N(t)=n(wi) =
n(t − wi)

n−1

tn , 0 < wi < t.
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For i, j, k = 1, . . . , n, i ̸= j ̸= k, let 0 < wi < t, 0 < wj ≤ t − wi and 0 < wk ≤ t − wi − wj. Taking
integrals of (2) leads to

fWi ,Wj |N(t)=n(wi, wj) =
n(n − 1)(t − wi − wj)

n−2

tn

and

fWi ,Wj ,Wk |N(t)=n(wi, wj, wk) =
n(n − 1)(n − 2)(t − wi − wj − wk)

n−3

tn .

Now, consider the risk model in which the size of the ith claim Xi depends on Wi and the pairs
(Wi, Xi) are i.i.d.. Boudreault et al. [2] showed that

E[S(t)] = λ
∫ t

0
E[X1|W1 = w]e−λw(1 + λ(t − w))dw , (3)

and

E[S(t)2] = λ
∫ t

0
E[X2

1 |W1 = w]e−λw(1 + λ(t − w))dw (4)

+ λ2
∫ t

0

∫ t−w

0
E[X1|W1 = w]E[X1|W1 = y]e−λ(w+y)(2 + 4λ(t − w − y) + (λ(t − w − y))2)dydw .

2.1.2. The Dependence Between Claim Waiting Time and Claim Size

In this paper, as in [1], we assume that the claim waiting time and claim severity satisfy the
following assumption.

Assumption 1. The bivariate random vectors (Xi, Wi), i = 1, 2, . . . are mutually independent and have the
same joint p.d.f. as a generic random vector (X, W). Moreover, there exists a positive and locally bounded
function g(·) such that the relation

lim
x→∞

Pr(X > x|W = w) = lim
x→∞

Pr(X > x)g(w)

holds uniformly for all w ∈ (0, t]. In other words,

lim
x→∞

sup
w∈(0,t]

∣∣∣∣Pr(X > x|W = w)

Pr(X > x)g(w)
− 1
∣∣∣∣ = 0 .

As mentioned in [1], a wide class joint distributions defined in terms of copulas satisfy
Assumption 1.

Specifically, let FX,W be a joint distribution function of (X, W) with continuous margins FX and
FW , by Sklar’s Theorem (see [13]), there exists a unique copula C(u, v) such that

FX,W(x, w) = Pr(X ≤ x, W ≤ w) = C(FX(x), FW(w)) .

Similarly,
FX,W(x, y) = Pr(X > x, W > w) = Ĉ(FX(x), FW(w)) ,

where Ĉ is the survival copula satisfying

Ĉ(u, v) = u + v − 1 + C(1 − u, 1 − v) , (u, v) ∈ [0, 1]2 ,

For more details about copulas, one can refer to [14].

As mentioned in Asimit and Badescu [1], if Ĉ2(u, v) = ∂Ĉ(u,v)
∂v exists, Assumption 1 can be

rewritten as

lim
u↓0

sup
v∈[e−λt ,1)

∣∣∣∣∣ Ĉ2(u, v)
ug(− log v/λ)

− 1

∣∣∣∣∣ = 0 . (5)
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Some examples of copulas that satisfy equation (5) are given below.

Example 1. The Farlie-Gumbel-Morgenstern (FGM) copula

C(u, v) = uv + θuv(1 − u)(1 − v), θ ∈ [−1, 1] ,

with g(w) = 1 + θ(1 − 2e−λw).

Example 2. The Ali-Mikhail-Haq (AMH) copula

C(u, v) =
uv

1 − θ(1 − u)(1 − v)
, θ ∈ [−1, 1] ,

with g(w) = 1 + θ(1 − 2e−λw).

Example 3. The Frank copula

C(u, v) = −1
θ

ln
(

1 +
(e−θu − 1)(e−θv − 1)

e−θ − 1

)
, θ ̸= 0 ,

with g(w) = θeθ(1−e−λw)/(eθ − 1).

For the detailed verification of Equation (5) as well as the examination of the three copula examples
above, one can refer to Section 3 of [3].

Please note that parameter θ in Examples 1-3 controls the strength and direction of the dependence
between variables. Specifically, θ < (>)0 indicates negative (positive) dependence. The strength of the
dependence increases when θ moves away from zero.

2.1.3. The assumptions for the distribution of claim sizes

In this paper, we assume that the distribution of the claim sizes belongs to the sub-exponential
family, for which we give definitions and provide preliminary properties below. For details about the
sub-exponential distributions, one is referred to [15].

Definition 1. A random variable (r.v.) X with df F belongs to the sub-exponential family S (F ∈ S) if

lim
x→∞

F∗2(x)
F(x)

= 2 ,

where F = 1 − F, F∗n is the n-fold convolution of F.

Examples of sub-exponential distributions include the Weibull, Pareto, and Lognormal distribu-
tions, among others.

According to Theorem 2.7 in [16] and Theorem 1 in [17], we have the following lemma.

Lemma 1. Assume F ∈ S , if the limit ki = limx→∞
Gi(x)
F(x)

exists and is finite for i = 1, 2, then

lim
x→∞

G1 ∗ G2(x)
F(x)

= k1 + k2 .

In addition, if ki > 0, then Gi ∈ S , i = 1, 2.

Another useful property for sub-exponential distribution is given in Lemma 1.3.5 of [18]. It is
stated below.
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Lemma 2. If F ∈ S , then given ϵ > 0, there exists a finite constant K such that for all n ≥ 2,

F∗n(x)
F(x)

≤ K(1 + ϵ)n, x > 0 .

A well-known subclass of S is the set of regularly varying df’s, RV−α, whose definition is provided
below (Bingham et al. [19]).

Definition 2. A r.v. X with df F belongs to the set of regularly varying df’s RV−α (F ∈ RV−α) if

lim
x→∞

F(xy)
F(x)

= y−α, α > 0 . (6)

Examples of regularly varying distribution include Pareto, Burr, and log-gamma, among others.
One can refer to [19] for more details about heavy-tailed distributions.

2.1.4. Previous results on the risk measures of the dependent compound Poisson risk model.

We first introduce definitions of some important risk measures that would be used in this paper.

Definition 3. The Value-at-Risk (VaR) of a random variable X at the 100q% confidence level is defined as

VaRq(X) = in f {xq : F(xq) ≥ q} .

Definition 4. The Tail Conditional Expectation (TCE) at level q of a continuous random variable X is given by

TCEq(X) = E[X|X > xq] .

Definition 5. The Tail Variance (TV) at level q of X is defined by [20]

TVq(X) = Var(X|X > xq) = E[(X − TCEq(X))2|X > xq] .

The following lemma, obtained in Theorem 3.1 of Asimit and Badescu [1], provides the asymptotic
result of the tail probability of aggregate claims.

Lemma 3. Consider the time dependent aggregate risk model with FX ∈ S . If Assumption 1 is satisfied, then

Pr(S(t) > x) ∼ K0Pr(X1 > x), x → ∞ ,

where

K0 = λ
∫ t

0
g(w)e−λw[λ(t − w) + 1]dw .

The value-at-risk at confidence level 100q% is then obtained as

VaRq(S(t)) = VaR1−(1−q)/K0
(X1), q ↑ 1 .

Asimit and Badescu [1] derived the tail conditional expectation through Extreme Value Theory,
for which some background is now given. For more details, one may refer to [18] and [21].

Definition 6. A r.v. X (the df F of X, or the distribution of X) belongs to the maximum domain of attraction
(MDA) of the extreme value distribution H if there exist constants cn > 0, dn ∈ R such that

lim
n→∞

Fn(cnx + dn) = H(x)

holds. We write X ∈ MDA(H) (F ∈ MDA(H)).
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Given existence, H belongs to one of the following three df’s:

Gumble type: Λ(x) = exp(−exp(−x)), x ∈ R .

Fréchet type: Φα(x) = exp((−x)−α) , x > 0 , α > 0 ,

Weibull type: Ψα(x) = exp(−(−x)α) , x < 0 , α > 0 ,

As mentioned in [1], sub-exponential df’s maximal domain of attraction can be only the Gumble
type or Fréchet type. For example, Weibull distribution belongs to Gumbel type, whereas Pareto
distribution belongs to Fréchet type. The next lemma was obtained in [1]. It presents the asymptotic
result of the tail conditional distribution of aggregate claims S(t).

Lemma 4. If FX ∈ MDA(Φα), then the TCE at level q is

TCEq(S(t)) ∼
α

α − 1
VaRq(S(t)), q ↑ 1, α > 1 .

If FX ∈ MDA(Λ), then
TCEq(S(t)) ∼ VaRq(S(t)), q ↑ 1 .

2.2. Moment Transforms

In this subsection, we introduce some basic definitions and preliminary results related to moment
transforms. More details can be found in Patil and Ord [8].

Definition 7. Consider a non-negative r.v. X with distribution function FX and moments E[Xα] < ∞ for some
positive integer α. A random variable X̃α is said to be a copy of the αth moment transform of X if its cumulative
distribution function is given by

FX̃α
(x) =

E[Xα I(X ≤ x)]
E[Xα]

=

∫ x
0 tαdFX(t)
E[Xα]

, x > 0 .

The first moment transform of X is commonly referred to as the size-biased transform. It is simply
denoted by X̃.

The relationship between risk measures and the moment transform of random variables has
been studied extensively in the literature. See, for example, [9], [20], [11], and the references therein.
Specifically, we have

E[Xα|X > x] = E[Xα]
Pr(X̃α > x)
Pr(X > x)

.

Let

Sn =
n

∑
i=1

Xi

be the summation of n i.i.d. random variables. Then as discussed in [11], one has

Lemma 5. For α ≥ 1 and i ∈ {1, . . . , n},

E[Xα
i I(Sn > s)] = E[Xα

i ]Pr(Sn − Xi + X̃i,α > s) ,

where X̃i,α is a copy of the αth moment transform of Xi. The random variables X̃i,α and Xi are mutually
independent.

Lemma 6. For α, β ≥ 1, i, j ∈ {1, . . . , n} and i ̸= j,

E[Xα
i Xβ

j I(Sn > s)] = E[Xα
i Xβ

j ]Pr(Sn − Xi − Xj + X̃i,α + X̃j,β > s) ,
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where X̃i,α is a copy of the αth moment transform of Xi, and X̃j,β is that of the βth moment transform of Xj. The
random variables X̃i,α, X̃j,β and Xi are mutually independent.

3. Main Results
In this section, we derive asymptotic results for the tail moments of the aggregate loss S(t) defined

in Equation (1).

3.1. The First Tail Moment

We start with the result for the first tail moment of S(t).

Theorem 1. Consider the compound Poisson model with FX ∈ S . If Assumption 1 is satisfied, then when
x → ∞, we have

E[S(t)I(S(t) > x)] ∼ Pr(X1 > x)
{

λ
∫ t

0
E[X1|X1 > x, W1 = w]g(w)e−λw[λ(t − w) + 1]dw

+ λ2
∫ t

0

∫ t−w

0
E[X1|W1 = w]g(y)e−λ(w+y)([λ(t − w − y)]2 + 4λ(t − w − y) + 2)dydw

}
.

Proof. According to Lemma 5, given W = w and N(t) = n, for i = 1, . . . , n, we have

E[Xi I(S(t) > s)|W = w, N(t) = n] = E[Xi|Wi = wi]Pr(S(t)− Xi + X̃i > s|W = w, N(t) = n) .

Therefore,

E[S(t)I(S(t) > x)|W = w, N(t) = n]

=
n

∑
i=1

E[Xi|Wi = wi]Pr(S(t)− Xi + X̃i > x|W = w, N(t) = n) ,

then

E[S(t)I(S(t) > x)|N(t) = n]

=
∫

D
E[S(t)I(S(t) > x)|W = w, N(t) = n] fW|N(t)=n(w)dw

=
n

∑
i=1

∫
D
E[Xi|Wi = wi]Pr(S(t)− Xi + X̃i > x|W = w, N(t) = n)

n!
tn dw ,

and

E[S(t)I(S(t) > x)] = E[E[S(t)I(S(t) > x)|N(t)]]

=
∞

∑
n=1

e−λt(λt)n

n!

n

∑
i=1

∫
D
E[Xi|Wi = wi]Pr(S(t)− Xi + X̃i > x|W = w, N(t) = n)

n!
tn dw .

According to Assumption 1, we have

lim
x→∞

Pr(Xi > x|Wi = wi)

Pr(Xi > x)
= g(wi) , i = 1, . . . , n

which is finite.
Since

Pr(X̃i > x|Wi = wi) =
E[Xi|Xi > x, Wi = wi]

E[Xi|Wi = wi]
Pr(Xi > x|Wi = wi) ,

we have

lim
x→∞

Pr(X̃i > x|Wi = wi)

Pr(Xi > x)
=

E[Xi|Xi > x, Wi = wi]

E[Xi|Wi = wi]
g(wi) , (7)

which is finite for i = 1, . . . , n. Thus, according to Lemma 1, Xi|Wi = wi ∈ S and X̃i|Wi = wi ∈ S .

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 March 2025 doi:10.20944/preprints202503.1167.v1

https://doi.org/10.20944/preprints202503.1167.v1


8 of 17

Equation (7) indicates that Pr(X̃i > x|Wi = wi)/Pr(X1 > x) is finite for all x > 0. That is, there
exists a constant M such that for all x > 0 and wi ∈ (0, t],

Pr(X̃i > x|Wi = wi) ≤ MPr(X1 > x) .

Let {Y1, Y2, . . .} be a sequence of non-negative i.i.d. rv’s having the same p.d.f. as a generic
random variable Y satisfying Pr(Y ≤ x) = max{0, 1 − MPr(X1 > x)}. Then

Pr(Y > x) =

MPr(X1 > x) , MPr(X1 > x) ≤ 1

1 , MPr(X1 > x) > 1
.

It is clear that for any x > 0,

Pr(Xi > x|Wi = wi) ≤ Pr(X̃i > x|Wi = wi) ≤ Pr(Y > x) ≤ MPr(X1 > x) ,

which indicates that

Pr(S(t)− Xi + X̃i > x|W = w, N(t) = n) ≤ Pr(
n

∑
i=1

Yi > x).

Because X is sub-exponential and

Pr(Y > x)
Pr(X1 > x)

≤ M ,

by Lemma 1, the df of Y is sub-exponential.
Applying Lemma 2, we obtain that given ϵ > 0, there exists a finite constant K such that

Pr(∑n
i=1 Yi > x)

Pr(Y > x)
≤ K(1 + ϵ)n , x > 0 .

Then, there exists a finite constant A such that

Pr(∑n
i=1 Yi > x)

Pr(X1 > x)
≤ Pr(∑n

i=1 Yi > x)
Pr(Y > x)/M

≤ A(1 + ϵ)n , x > 0 .

Consequently,

E[S(t)I(S(t) > x)]
Pr(X1 > x)

=
∞

∑
n=1

e−λtλn
n

∑
i=1

∫
D
E[Xi|Wi = wi]

Pr(S(t)− Xi + X̃i > x|W = w, N(t) = n)
Pr(X1 > x)

dw

≤
∞

∑
n=1

e−λtλn
n

∑
i=1

∫
D
E[Xi|Wi = wi]

Pr(∑n
i=1 Yi > x)

Pr(X1 > x)
dw

≤
∞

∑
n=1

e−λtλn
n

∑
i=1

∫
D
E[Xi|Wi = wi]A(1 + ϵ)ndw

=
∞

∑
n=1

e−λtλnn
∫ t

0
E[X|W = w]A(1 + ϵ)n (t − w)n−1

(n − 1)!
dw

=
∫ t

0
E[X|W = w]

∞

∑
n=0

e−λtλn+1(n + 1)A(1 + ϵ)n+1 (t − w)n

n!
dw

=Aλ(1 + ϵ)eλ(1+ϵ)(t−w)−λt
∫ t

0
E[X|W = w]

∞

∑
n=0

e−λ(1+ϵ)(t−w)(n + 1)
[λ(1 + ϵ)(t − w)]n

n!
dw

=Aλ(1 + ϵ)eλ(1+ϵ)(t−w)−λt
∫ t

0
E[X|W = w]dw < ∞ .
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Therefore, S(t)I(S(t) > x)/Pr(X1 > x) is integrable (thus bounded), which allows us to apply
the Dominated Convergence Theorem. By applying Assumption 1, Lemma 1 and Fubini’s theorem,
we have

lim
x→∞

E[S(t)I(S(t) > x)]
Pr(X1 > x)

= lim
x→∞

∞

∑
n=1

e−λtλn
n

∑
i=1

∫
D
E[Xi|Wi = wi]

Pr(S(t)− Xi + X̃i > x|W = w, N(t) = n)
Pr(X1 > x)

dw

=
∞

∑
n=1

e−λtλn
n

∑
i=1

∫
D
E[Xi|Wi = wi] lim

x→∞

Pr(S(t)− Xi + X̃i > x|W = w, N(t) = n)
Pr(X1 > x)

dw

=
∞

∑
n=1

e−λtλn
n

∑
i=1

∫
D

{
E[Xi|Wi = wi]

n

∑
j=1,j ̸=i

g(wj) +E[Xi|Xi > x, Wi = wi]g(wi)

}
dw

=
∫

D

∞

∑
n=1

e−λtλn
n

∑
i=1

{
E[Xi|Wi = wi]

n

∑
j=1,j ̸=i

g(wj) +E[Xi|Xi > x, Wi = wi]g(wi)

}
dw

=
∫

D

∞

∑
n=1

e−λtλn{n(n − 1)E[X1|W1 = w1]g(w2) + nE[X1|X1 > x, W1 = w1]g(w1)}dw2dw1

=
∫ t

0

∫ t−w

0
E[X1|W1 = w]g(y)

∞

∑
n=2

e−λtλnn(n − 1)
(t − w − y)n−2

(n − 2)!
dydw

+
∫ t

0
E[X1|X1 > x, W1 = w]g(w)

∞

∑
n=1

e−λtλnn
(t − w)n−1

(n − 1)!
dw

=
∫ t

0

∫ t−w

0
E[X1|W1 = w]g(y)λ2e−λ(w+y)

∞

∑
n=0

e−λ(t−w−y)(n2 + 3n + 2)
[λ(t − w − y)]n

n!
dydw

+
∫ t

0
E[X1|X1 > x, W1 = w]g(w)λe−λw

∞

∑
n=0

e−λ(t−w)(n + 1)
[λ(t − w)]n

n!
dw

= λ2
∫ t

0

∫ t−w

0
E[X1|W1 = w]g(y)e−λ(w+y)([λ(t − w − y)]2 + 4λ(t − w − y) + 2)dydw

+ λ
∫ t

0
E[X1|X1 > x, W1 = w]g(w)e−λw[λ(t − w) + 1]dw .

Therefore, we have

E[S(t)I(S(t) > x)] ∼ Pr(X1 > x)
{

λ
∫ t

0
E[X1|X1 > x, W1 = w]g(w)e−λw[λ(t − w) + 1]dw

+ λ2
∫ t

0

∫ t−w

0
E[X1|W1 = w]g(y)e−λ(w+y)([λ(t − w − y)]2 + 4λ(t − w − y) + 2)dydw

}
.

Remark 1. Note that, when x is large enough, the term E[X1|W1 = w] is negligible compared with E[X1|X1 >

x, W1 = w]. Therefore, the result in Theorem 1 can be reduced to

lim
x→∞

E[S(t)I(S(t) > x)]
Pr(X1 > x)

∼ λ
∫ t

0
E[X1|X1 > x, W1 = w]g(w)e−λw[λ(t − w) + 1]dw .

Considering Lemma 3, we then have

lim
x→∞

E[S(t)I(S(t) > x)]
Pr(S(t) > x)

∼
∫ t

0 E[X1|X1 > x, W1 = w]g(w)e−λw[λ(t − w) + 1]dw∫ t
0 g(w)e−λw[λ(t − w) + 1]dw

.

Remark 2. As a special case, if the claim amounts and the inter-claim times are independent, a direct extension
to Proposition 1 in Section 3.3 of [11] can be applied, which results in
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E[S(t)I(S(t) > s)] = E[N(t)]E[X1]Pr

Ñ(t)−1

∑
i=1

Xi + X̃1 > s

 ,

where Ñ(t) =d N(t) + 1. Similar results can also be found in Lemma 3 from [12]. Thus, we obtain

E[S(t)I(S(t) > s)] = λtE[X1]Pr(S(t) + X̃1 > s) .

In other words,
S̃(t) =d S(t) + X̃1 .

3.2. The Second Tail Moment

The second tail moment of S(t) is given in the following theorem.

Theorem 2. Consider the compound Poisson model with FX ∈ S . If Assumption 1 is satisfied, then when
x → ∞, we have the following asymptotic relationship

E[S(t)2 I(S(t) > x)] ∼ Pr(X1 > x)
{

λ
∫ t

0
E[X2

1 |X1 ≥ x, W1 = w]g(w)e−λw[λ(t − w) + 1]dw

+ λ2
∫ t

0

∫ t−w

0
(2E[X1|W1 = w]E[X1|X1 ≥ x, W1 = y] +E[X2

1 |W1 = w])g(y)e−λ(w+y)(
[λ(t − w − y)]2 + 4λ(t − w − y) + 2

)
dydw

+ λ3
∫ t

0

∫ t−w

0

∫ t−w−y

0
E[X1|W1 = w]E[X1|W1 = y]g(z)e−λ(w+y+z)

(
[λ(t − w − y − z)]3 + 9[λ(t − w − y − z)]2 + 18λ(t − w − y − z) + 6

)
dzdydw

}
.

Proof. According to Lemmas 5 and 6, given W = w and N(t) = n, for i, j ∈ {1, . . . , n} and i ̸= j,
we have

E[X2
i I(S(t) > s)|W = w, N(t) = n] = E[X2

i |Wi = wi]Pr(S(t)− Xi + X̃i,2 > s|W = w, N(t) = n) ,

and

E[XiXj I(S(t) > s)|W = w, N(t) = n]

= E[Xi|Wi = wi]E[Xj|Wj = wj]Pr(S(t)− Xi − Xj + X̃i + X̃j > s|W = w, N(t) = n) .

Therefore,

E[S(t)2 I(S(t) > x)|W = w, N(t) = n]

=
n

∑
i=1

n

∑
j=1,j ̸=i

E[Xi|Wi = wi]E[Xj|Wj = wj]Pr(S(t)− Xi − Xj + X̃i + X̃j > x|W = w, N(t) = n)

+
n

∑
i=1

E[X2
i |Wi = wi]Pr(S(t)− Xi + X̃i,2 > x|W = w, N(t) = n) ,

then

E[S(t)2 I(S(t) > x)|N(t) = n] =
∫

D
E[S(t)2 I(S(t) > x)|W = w, N(t) = n]

n!
tn dw ,

and

E[S(t)2 I(S(t) > x)] =
∞

∑
n=1

∫
D
E[S(t)2 I(S(t) > x)|W = w, N(t) = n]e−λtλndw .

Since

Pr(X̃i,2 > x|Wi = wi) =
E[X2

i |Xi > x, Wi = wi]

E[Xi|Wi = wi]
Pr(Xi > x|Wi = wi) ,
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together with Assumption 1, we have

lim
x→∞

Pr(X̃i,2 > x|Wi = wi)

Pr(X1 > x)
=

E[X2
i |Xi > x, Wi = wi]

E[Xi|Wi = wi]
g(wi) ,

exists finite for i = 1, . . . , n.
For a Poisson distribution with p.d.f. h(x) = e−λλk/k!, it is easy to obtain its first three moments

E[Z] = λ, E[Z2] = λ + λ2, E[Z3] = λ + 3λ2 + λ3 ,

which will be used in the following steps.
The finiteness of E[S(t)2 I(S(t) > x)]/Pr(X1 > x) can be obtained by following the same proce-

dure as in the proof of Theorem 1. We omit it here to avoid redundancy. Applying the Dominated
Convergence Theorem, together with Assumption 1, Lemma 1 and Fubini’s theorem yields

lim
x→∞

E[S(t)2 I(S(t) > x)]
Pr(X1 > x)

=
∞

∑
n=1

e−λtλn
∫

D

 n

∑
i=1

n

∑
j=1,j ̸=i

E[Xi|Wi = wi]E[Xj|Wj = wj] ∞

∑
k=1,k ̸=i,k ̸=j

g(wk) +
E[Xi|Xi > x, Wi = wi]

E[Xi|Wi = wi]
g(wi) +

E[Xj|Xj > x, Wj = wj]

E[Xj|Wj = wj]
g(wj)


+

n

∑
i=1

E[X2
i |Wi = wi]

 ∞

∑
j=1,j ̸=i

g(wj) +
E[X2

i |Xi > x, Wi = wi]

E[Xi|Wi = wi]
g(wi)

dw

=
∫ t

0

∫ t−w

0

∫ t−w−y

0
E[X1|W1 = w]E[X1|W1 = y]g(z)

∞

∑
n=3

e−λtλnn(n − 1)(n − 2)
(t − w − y − z)n−3

(n − 3)!
dzdydw

+
∫ t

0

∫ t−w

0
2E[X1|W1 = w]E[X1|X1 > x, W1 = w]g(y)

∞

∑
n=2

e−λtλnn(n − 1)
(t − w − y)n−2

(n − 2)!
dydw

+
∫ t

0

∫ t−w

0
E[X2

1 |W1 = w]g(y)
∞

∑
n=2

e−λtλnn(n − 1)
(t − w − y)n−2

(n − 2)!
dydw

+
∫ t

0
E[X2

1 |X1 > x, W1 = w]g(w)
∞

∑
n=1

e−λtλnn
(t − w)n−1

(n − 1)!
dw

=
∫ t

0

∫ t−w

0

∫ t−w−y

0
E[X1|W1 = w]E[X1|W1 = y]g(z)λ3e−λ(w+y+z)

∞

∑
n=0

(n3 + 6n2 + 11n + 6)e−λ(t−w−y−z)

λn (t − w − y − z)n

n!
dzdydw +

∫ t

0

∫ t−w

0
(2E[X1|W1 = w]E[X1|X1 > x, W1 = w] +E[X2

1 |W1 = w])

g(y)λ2e−λ(w+y)
∞

∑
n=0

e−λ(t−w−y)λn(n2 + 3n + 2)
(t − w − y)n

n!
dydw

+
∫ t

0
E[X2

1 |X1 > x, W1 = w]g(w)λe−λw
∞

∑
n=0

e−λ(t−w)λn(n + 1)
(t − w)n

n!
dw

= λ3
∫ t

0

∫ t−w

0

∫ t−w−y

0
E[X1|W1 = w]E[X1|W1 = y]g(z)e−λ(w+y+z)(

[λ(t − w − y − z)]3 + 9[λ(t − w − y − z)]2 + 18λ(t − w − y − z) + 6
)

dzdydw

+ λ2
∫ t

0

∫ t−w

0
(2E[X1|W1 = w]E[X1|X1 ≥ x, W1 = y] +E[X2

1 |W1 = w])g(y)e−λ(w+y)(
[λ(t − w − y)]2 + 4λ(t − w − y) + 2

)
dydw

+ λ
∫ t

0
E[X2

1 |X1 ≥ x, W1 = w]g(w)e−λw[λ(t − w) + 1]dw .
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Remark 3. Again, when x is large enough, the terms E[X1|W1 = w] and E[X1|X1 ≥ x, W1 = y] are negligible
compared with E[X2

1 |X1 ≥ x, W1 = w]. Therefore, the result in Theorem 2 can be reduced to

lim
x→∞

E[S(t)2 I(S(t) > x)]
Pr(X1 > x)

∼ λ
∫ t

0
E[X2

1 |X1 ≥ x, W1 = w]g(w)e−λw[λ(t − w) + 1]dw .

Remark 4. When the claim amounts and the inter-claim times are independent, we apply Theorem 2 in [12]
and obtain

E[S(t)2 I(S(t) > s)] = E[N(t)(N(t)− 1)](E[X1])
2Pr

Ñ(t)−2

∑
i=1

Xi + X̃1 + X̃2 > s


+E[N(t)]E[X2

1 ]Pr

Ñ(t)−1

∑
i=1

Xi + X̃1,2 > s

 .

Since N(t) follows a Poisson distribution, we further have

E[S(t)2 I(S(t) > s)] = λ2t2(E[X1])
2Pr

(
N(t)−1

∑
i=1

Xi + X̃1 + X̃2 > s

)
+ λtE[X2

1 ]Pr
(

S(t) + X̃1,2 > s
)

.

Remark 5. The methodology adopted in this paper is applicable to derive asymptotic results for the higher
tail moments as well. They represent a generalization of [1], which obtained the first tail moment of the
aggregate claims.

4. Numerical Results
In this section, we present some numerical examples to examine the accuracy of the asymptotic

results obtained in Section 3.
Asimit and Badescu [1] obtained results for TCEq(S(t)) when distribution of claim sizes belong-

ing to the maximum domain of attraction of Gumbel and Fréchet types, respectively. To facilitate
comparison with their results, we next present one example for each scenario.

4.1. Weibull Distributed Claim Size

Assume that X follows the Weibull distribution with df FX(x) = 1 − exp(−x1/τ) for x ≥ 0 and
τ > 1. As indicated in [18], this distribution is sub-exponential with a non-regularly varying tail,
which is in the maximum domain of attraction of Gumbel type, i.e., FX ∈ MDA(Λ).

In this example, we select τ = 6, the Poisson intensity λ = 3, time horizon t = 100. We assume
that the inter-claim times and claim sizes are dependent through an FGM copula, with the parameter
θ equal to −0.5, 0, 0.5 respectively, representing negative dependence, independence, and positive
dependence between the claim waiting time and claim sizes.

For VaRq(S(t)), we apply Theorem 1 in [1]. For TCEq(S(t)) and TVq(S(t)), we utilize formulas
derived in Theorem 1 and Theorem 2 in Section 3, respectively. Due to the complexity of obtaining
exact expressions for these asymptotic results, we use R software to compute the numerical results.

Table 1 presents the asymptotic results of VaRq(S(t)), TCEq(S(t)) and TVq(S(t)) under different
choices of q and θ.

We next present simulation studies to validate our asymptotic results. For each scenario, 107

rounds of simulations of the risk process are used.
To calculate the tail moment E[S(t)I(S(t) > x)], we simulated E[S(t)I(S(t) ≤ x)] and use

the relationship
E[S(t)I(S(t) > x)] = E[S(t)]−E[S(t)I(S(t) ≤ x)] ,
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where the expression of E[S(t)] is provided in Equation (3) in Section 2.1. A similar approach was
applied when simulating TVq(S(t)).

Table 1. Asymptotic results of VaRq(S(t)), TCEq(S(t)) and TVq(S(t)) (Weibull, τ = 6).

q θ = −0.5 θ = 0 θ = 0.5

99.00% 1.2009 × 106 1.2003 × 106 1.1997 × 106

VaRq(S(t)) 99.50% 1.7744 × 106 1.7736 × 106 1.7728 × 106

99.90% 4.0251 × 106 4.0235 × 106 4.0219 × 106

99.00% 2.6331 × 106 2.6316 × 106 2.6300 × 106

TCEq(S(t)) 99.50% 3.6103 × 106 3.6084 × 106 3.6065 × 106

99.90% 7.2235 × 106 7.2205 × 106 7.2174 × 106

99.00% 5.3370 × 1012 5.3145 × 1012 5.3038 × 1012

TVq(S(t)) 99.50% 8.5383 × 1012 8.5022 × 1012 8.4665 × 1012

99.90% 2.2898 × 1013 2.1999 × 1013 2.1084 × 1013

The simulated results for VaRq(S(t)), TCEq(S(t)) and TVq(S(t)) are shown in Table 2.

Table 2. Simulated results of VaRq(S(t)), TCEq(S(t)), TVq(S(t)).

q θ = −0.5 θ = 0 θ = 0.5

99.00% 1.4172 × 106 1.4169 × 106 1.4153 × 106

VaRq(S(t)) 99.50% 1.9997 × 106 1.9983 × 106 1.9981 × 106

99.90% 4.2536 × 106 4.2445 × 106 4.2338 × 106

99.00% 2.6317 × 106 2.5994 × 106 2.5868 × 106

TCEq(S(t)) 99.50% 3.5970 × 106 3.5900 × 106 3.5772 × 106

99.90% 7.2199 × 106 7.2147 × 106 7.2073 × 106

99.00% 5.0706 × 1012 4.9663 × 1012 4.8954 × 1012

TVq(S(t)) 99.50% 8.1521 × 1012 8.0531 × 1012 7.9265 × 1012

99.90% 2.2556 × 1013 2.1545 × 1013 2.0229 × 1013

Remark 6. The results in Tables 1 and 2 indicate that When the parameter θ in the FGM copula changes from
negative to positive values (the correlation between inter-claim waiting time and subsequent claim size shifts
from negative to positive), the tail risk measures VaRq(S(t)), TCEq(S(t)), and TVq(S(t)) slightly decrease.
Intuitively, this may be because a negative dependence between claim waiting time and claim size leads to more
chance of large claims occurring within a short period of time.

To evaluate the accuracy of the asymptotic results, we report in Table 3 and 4 their relative errors
with respect to the simulation results, which is defined as the absolute value of the ratio of asymptotic
and simulated results minus 1.

Table 3. Relative errors of asymptotic and simulated results of TCEq(S(t)).

q θ = −0.5 θ = 0 θ = 0.5

99.00% 0.0108 0.0124 0.0167
99.50% 0.0037 0.0051 0.0082
99.90% 0.0005 0.0008 0.0014

As a comparison, we calculate the relative errors of the asymptotic results of TCEq(S(t)) in [1],
which states that when FX ∈ MDA(Λ),

TCEq(S(t)) ∼ VaRq(S(t)) , q ↑ 1 .
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I.e., asymptotically, the values of TCEq(S(t)) and VaRq(S(t)) are the same. The relative error
values are reported in Table 5.

Table 4. Relative errors of asymptotic and simulated results of TVq(S(t)).

q θ = −0.5 θ = 0 θ = 0.5

99.00% 0.0525 0.0701 0.0834
99.50% 0.0474 0.0558 0.0681
99.90% 0.0152 0.0210 0.0423

Table 5. Relative errors of TCEq(S(t)) obtained using formulas in [1] and simulation.

q θ = −0.5 θ = 0 θ = 0.5

99.00% 0.5437 0.5382 0.5362
99.50% 0.5067 0.5060 0.5005
99.90% 0.4425 0.4423 0.4419

It is evident from Tables 3 and 4 that our asymptotic results for TCEq(S(t)) and TVq(S(t)) obtained
using Theorems 1 and 2 are fairly accurate. Furthermore, the accuracy of the asymptotic results for
TCEq(S(t)) improves gradually when the confidence level q is high. In addition, by comparing Tables
3 and 5, we see that the accuracy of our results is notably better than that obtained using the formulas
in [1] for every level of q.

To facilitate a clearer comparison, we present the asymptotic results obtained in our study (“This
paper”), the asymptotic results calculated through [1] (“Asimit and Badescu [1]”), and simulated
results (“Simulation”) of VaRq(S(t)), TCEq(S(t)) and TVq(S(t)) in Table 6. Specifically, we choose
q = 99.50%, θ = 0.5, and consider τ = 3, 6 and 9.

Table 6. Summary of asymptotic and simulated results (Weibull).

Method VaRq(S(t)) TCEq(S(t)) TVq(S(t))

τ =3
This Paper 1.0958 × 103 3.5714 × 103 3.9154 × 105

Asimit and Badescu [1] 1.0958 × 103 1.0958 × 103 -
Simulation 3.4871 × 103 3.8987 × 103 5.0900 × 105

τ =6
This Paper 1.7728 × 106 3.6065 × 106 8.4665 × 1012

Asimit and Badescu [1] 1.7728 × 106 1.7728 × 106 -
Simulation 1.9981 × 106 3.5772 × 106 7.9265 × 1012

τ =9
This Paper 2.3636 × 109 7.5122 × 109 2.7537 × 1020

Asimit and Badescu [1] 2.3636 × 109 2.3636 × 109 -
Simulation 2.4283 × 109 7.4970 × 109 2.6981 × 1020

From Table 6, it can be seen that accuracy of the asymptotic results for all quantities of interests
VaRq(S(t)), TCEq(S(t)) and TVq(S(t)) improve as the parameter τ increases. This is because the tail
of a Weibull distribution becomes heavier as the parameter τ increases and the asymptotic formulas
work better for heavier-tailed distributions. For smaller values of τ, our results are more accurate than
those obtained using [1].

4.2. Pareto Distributed Claim Size

Assume that X follows the Pareto (Type 1) distribution with df FX(x) = 1 − x−α for x ≥ 1
and α > 0. As mentioned in [18], this distribution is sub-exponential with a regularly varying tail,
i.e., FX ∈ RV−α. It belongs to the maximum domain of attraction of Fréchet type, i.e., FX ∈ MDA(Φα).

In this example, we set α = 1.1. The Poisson parameter and the dependence structure between
the inter-claim times and claim sizes are set to the same values as in Section 4.1. Exact expressions and
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numerical evaluation of the asymptotic results of TCEq(S(t)) and TVq(S(t)) in Theorems 1 and 2 can
be efficiently carried out using software Mathematica.

Table 7 presents the asymptotic results of VaRq(S(t)) and TCEq(S(t)) under different choices of q
and θ. Please note that the variance and TVq(S(t)) are infinite for a Pareto distribution with parameter
α = 1.1. Thus, the values of TVq(S(t)) are not reported for this case.

Similar to Table 1, Table 7 shows that a transition from negative to positive dependence between
inter-claim waiting time and subsequent claim size leads to slightly smaller values of risk measures.

Table 7. Asymptotic results of VaRq(S(t)) and TCEq(S(t)) (Pareto, α = 1.1).

q θ = −0.5 θ = 0 θ = 0.5

99.00% 1.1760 × 104 1.1751 × 104 1.1742 × 104

VaRq(S(t)) 99.50% 2.2085 × 104 2.2068 × 104 2.2051 × 104

99.90% 9.5396 × 104 9.5323 × 104 9.5251 × 104

99.00% 1.3267 × 105 1.3256 × 105 1.3246 × 105

TCEq(S(t)) 99.50% 2.4624 × 105 2.4605 × 105 2.4585 × 105

99.90% 1.0527 × 106 1.0519 × 106 1.0511 × 106

We simulated the values of VaRq(S(t)) and TCEq(S(t)) based on a sample size of 107. Their
values under different choices of q and θ are shown in Table 8.

Table 8. Simulated results of VaRq(S(t)) and TCEq(S(t)) (Pareto, α = 1.1).

q θ = −0.5 θ = 0 θ = 0.5

99.00% 1.3800 × 104 1.3761 × 104 1.3737 × 104

VaRq(S(t)) 99.50% 2.4280 × 104 2.4177 × 104 2.3962 × 104

99.90% 9.8901 × 104 9.7199 × 104 9.6345 × 104

99.00% 1.3158 × 105 1.3153 × 105 1.3143 × 105

TCEq(S(t)) 99.50% 2.4523 × 105 2.4521 × 105 2.4509 × 105

99.90% 1.0525 × 106 1.0519 × 106 1.0512 × 106

In Table 9, we report the relative errors of the asymptotic results of TCEq(S(t)) presented in
Table 7 with respect to the simulated results in Table 8.

Table 9. Relative errors of asymptotic and simulated results of TCEq(S(t)) (Pareto, α = 1.1).

q θ = −0.5 θ = 0 θ = 0.5

99.00% 0.0083 0.0079 0.0078
99.50% 0.0041 0.0034 0.0031
99.90% 0.0002 0.0000 0.0001

Next, we compare our asymptotic results for TCEq(S(t)) with those in [1]. As mentioned in
Lemma 4, when FX ∈ MDA(Φα),

TCEq(S(t)) ∼
α

α − 1
VaRp(S(t)) , p ↑ 1 . (8)

The calculated values of TCEq(S(t)) using Equation (8) are presented in Table 10.

Table 10. Asymptotic results of TCEq(S(t)) calculated using [1] (Pareto, α = 1.1).

q θ = −0.5 θ = 0 θ = 0.5

99.00% 1.2936 × 105 1.2926 × 105 1.2916 × 105

99.50% 2.4294 × 105 2.4275 × 105 2.4257 × 105

99.90% 1.0494 × 106 1.0486 × 106 1.0478 × 106
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Table 11 reports the relative errors of the asymptotic results of TCEq(S(t)) in Table 10 with respect
to the simulated results in Table 8.

Table 11. Relative errors of asymptotic and simulated results of TCEq(S(t)) by [1] (Pareto, α = 1.1).

q θ = −0.5 θ = 0 θ = 0.5

99.00% 0.0168 0.0172 0.0172
99.50% 0.0094 0.0100 0.0103
99.90% 0.0029 0.0031 0.0032

Tables 9 and 11 demonstrate that both our approach and the one presented in [1] yield rather
accurate asymptotic results for TCEq(S(t)). However, our approach results in smaller relative errors.

We next provide a summary of the asymptotic results obtained in our study, those calculated
using [1], and simulated results of VaRq(S(t)), TCEq(S(t)) and TVq(S(t)) (if applicable) in Table 12.
Specifically, we select q = 99.50%, θ = 0.5, and consider α = 1.1 , 1.6 , and2.1.

Table 12. Summary of asymptotic and simulated results (Pareto).

Method VaRq(S(t)) TCEq(S(t)) TVq(S(t))

α =1.1
This Paper 2.2051 × 104 2.4585 × 105 -

Asimit and Badescu [1] 2.2051 × 104 2.4257 × 105 -
Simulation 2.3962 × 105 2.4509 × 105 -

α =1.6
This Paper 9.6754 × 102 3.3582 × 103 -

Asimit and Badescu [1] 9.6754 × 102 2.5801 × 103 -
Simulation 1.7740 × 103 3.3983 × 103 -

α =2.1
This Paper 1.8742 × 102 9.2976 × 102 3.8215 × 105

Asimit and Badescu [1] 1.8742 × 102 3.5780 × 102 -
Simulation 4.7258 × 102 9.5955 × 102 4.8334 × 105

Table 12 shows that the asymptotic results in both this paper and those in [1] are more accurate
when the tail of the claim size distribution becomes heavier. For larger values of α (lighter tail cases),
the results in this paper provide more accurate values of TCEq(S(t)).

Remark 7. Combining the results from the two numerical examples we conducted, we claim that the moment
transform technique serves as an efficient method for calculating the asymptotic tail moments for aggregate
losses. Our approach extends the existing results presented in [1] in two key aspects. Firstly, it enables the
derivation of asymptotic results for not only the first tail moment but also the second and higher tail moments of
the aggregate claims. Secondly, our methodology enhances the accuracy of existing results.

5. Conclusions
This paper studies the classical compound Poisson risk model in which the claim size distributions

depend on the waiting time for the claims. We apply the concept of moment transform of distributions
to derive asymptotic results for the TCE and TV of the aggregate claims. The accuracy of our results
was verified through numerical examples.

For future research, we plan to develop mathematical formulas and computational methods for
risk measures for compound risk models under more flexible dependence structures between claim
frequencies and claim severities.
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