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Wave-Like Behavior in the Source-Detector Resonance
Ioannis Contopoulos

Research Center for Astronomy and Applied Mathematics, Academy of Athens, GR 11527 Athens, Greece;
icontop@academyofathens.gr

Abstract: We consider a particular model of a ‘Source’ of independent particles and a macroscopic
‘Detector’ that are both tuned to the same resonance frequency ν0 ≡ 1/P. Particles are emitted by the
Source at exact multiples of the resonance period P, and the Detector absorbs them with a certain
probability at any one of its points. The Detector may also ‘announce’ the detection of the absorbed
particle. Any particle that is not absorbed at a certain point passes through to a deeper layer in the
interior of the Detector. Eventually, all particles will be absorbed (i.e., detected). We calculate the
probability of detection of two time-series of particles generated by the same Source that reach the
Detector with a time delay δt between themselves, and show that it manifests the illusion of collective
(wave-like) interference with particle number conservation.

Keywords: computer simulation; wave mechanics interpretations

1. The Source-Detector Resonance
We would like to ask the question: ‘is it possible to manifest wave interference characteristics

with independent non-interacting elementary particles?’, where by ‘elementary’ we mean classical
particles with no internal degrees of freedom (i.e., no ‘hidden variables’). Feynman famously quoted
that wave-like characteristics are ‘impossible, absolutely impossible to explain in any classical way’
(Feynman Lectures on Physics [1]). We will challenge this statement with our model of the ‘Source-
Detector Resonance’ (hereafter SDR) that we will now present below. Let us begin by considering a
mass M attached to a macroscopic oscillator which follows the equation

Mẍ = −k(x − L0) . (1)

Here, (x − L0) is the particle displacement around the equilibrium position x = L0. We do not define
the particular physical form of the oscillator. The resonance frequency of the system is

ν0 =
1

2π

√
k
M

. (2)

Let us now assume that this oscillator is at the heart of a classical system that releases one elementary
particle of mass m ≪ M every period

P ≡ 1
ν0

. (3)

This consistent periodic release of particles does not have any effect on this large classical system. In
particular, its eigenfrequency ν0 remains unchanged, and its supply of elementary particles is unphased
and practically unlimited. We call such a system a ‘Source’ (see Figure 1).
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Figure 1. A ‘Source’ contains a macroscopic oscillator of resonance frequency ν0 that releases elementary particles
every resonance period P = 1/ν0 with the same velocity v.

The time series of particles emitted by the Source may be represented as in figure ??a if particles
are emitted every period P, or as in Figure 2b–d if they are emitted randomly 80%, 50%, 20% of the
time of the full time-series respectively, at random integer multiples of the period P. In both cases, the
Fourier Power Spectrum Density (hereafter PSD) of the time series has strong peaks around ν = 0
and ν = ν0, plus some extra noise at all frequencies. If the signal becomes too weak (i.e., if too many
particles are missing from the continuous time-series of Figure 2a), the peak at ν = ν0 will disappear
inside the noise, and there will remain no information of periodicity in the signal. The PSD is rescaled
so that the value PSD(ν = 0) = 1 corresponds to the power of the full time series of Figure 2a.

Figure 2. Top/Bottom rows of panels: Time-series and corresponding spectra of particles emitted continu-
ously/intermittently 80%, 50%, 20% with fixed period P by the Source.

Let us now consider a ‘Resonant Oscillator’ that may absorb these particles only if the particle time
series it receives has the same eigenfrequency ν0. In other words, the periodic sequence of particles
can stimulate this Resonant Oscillator only at its resonance frequency. The Resonant Oscillator then
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responds and announces the detection of (i.e., detects) a particle with a finite probability. In particular
if the stream of particles reaches a Resonant Oscillator with a frequency different from its resonance
frequency, these particles will not be fully absorbed (i.e., detected). Some fraction of them will be
absorbed, and some fraction of them will continue their motion unimpeded behind the Resonant
Oscillator (see Figure 3). We will further assume that

The probability of detecting a particle in a time-series by a Resonant Oscillator is proportional to
the square of the ratio of the time-series PSD at its resonance frequency ν0 over the time-series PSD
at zero frequency.

Mathematically, we express the probability of absorption of a particle in the time series as

Probabs =

(
PSD(ν = ν0)

PSD(ν = 0)

)2

. (4)

When the Resonant Oscillator announces a particle absorption, this will result in a ‘Detection’. Particles
that are not absorbed/detected by the Resonant Oscillator pass through it unimpeded.

Figure 3. The ‘Resonant Oscillator’ is tuned to the same resonance frequency ν0 as the Source. A stream of
elementary particles reaches it, but the Resonant Oscillator absorbs them only if they reach it at its resonance
frequency. The Resonant Oscillator absorbs particles with a certain probability given by Equation (4). If a particle
is not absorbed, it continues its motion unimpeded downstream from the Resonant Oscillator.

2. Interference between Two Particle Streams
Let us assume that the Source emits random particle sequences (i.e., with particles emitted at

random integer multiples of the resonance period P) that travel either through path 1, either through
path 2. Both particle time sequences reach a Resonant Oscillator at a certain position in which the
particles going through path 2 have a certain time delay δt with respect to those going through path 1.
Let us start with no time-delay, or a time delay equal to an integer multiple of the period P. In that case,
the Resonant Oscillator receives the time sequence and corresponding spectrum of Figure 5a. For a time
delay equal to 10%, 20%, 30%, 40% of P plus an integer multiple of the period P, the Resonant Oscillator
receives the time sequences and corresponding spectra of Figure 5b-e. Finally, for a time delay equal to
50% of P plus an integer multiple of the period P, the Resonant Oscillator receives the time sequence
and corresponding spectrum of Figure 5f. In that particular case, the power of the spectrum at the
resonance frequency ν = ν0 disappears! The reason is that, because of the superposition, the shortest
periodic time interval between particles that reach the Resonant Oscillator is P/2, not P as in the
original time series, thus the fundamental frequency of the combined series is 2ν0, not ν0. In Figure 7a
we performed multiple numerical experiments for multiple values of the time delay δt and plotted the
probability of absoprtion of a particle in the combined time series according Equation (4). This is the
distribution of the square of the ratio of the combined stream’s PSD at resonance over the PSD of the
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combined stream at zero frequency (the total power of the combined stream) as a function of the time
delay δt. We also plot the function cos2(πδt/P) obtained from Equation (5) below for α = β = 0.8. The
fit to the numerical experiments is almost perfect, except around δ ≈ P/2 where the PSD at resonance
reaches the noise level.

We see that when the two streams of particles have the same power and are in phase (i.e., δt = 0
or some integer multiple of P), the Resonant Oscillator detects the same number of particles as the
combined two particle time-series, i.e., the same number of particles as those emitted by the Source.
No more, no less. In the other limit when the two streams of particles have the same power and are out
of phase (i.e., δt = P/2 plus some integer multiple of P), the combined stream’s spectrum power at
resonance vanishes. In general, in the case of a superposition of two intermittently periodic time-series
with magnituted α and β respectively, the probability of detection at the Resonant Oscillator/Detector
as defined by Equation (4) is found numerically to be equal to

Probabs =

(
PSD(ν0)

PSD(0)

)2

=
α2 + β2

(α + β)2

(
1 +

2αβ

α2 + β2 cos
(

2π
δt
P

))
(5)

(see Figure 7b-d). Once again, particles from both particle streams that are not absorbed/detected by
the Resonant Oscillator pass through it unimpeded, and reach a deeper point inside the Detector.
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Figure 4. Top/Bottom rows of panels: The superposition of two equal power time-series of particles emitted
intermittently by the Source with fixed period P and a time delay between them equal to δt = 0, 0.1, 0.2, 0.3, 0.4, 0.5
times the period P (plus an integer multiple of P). These time-series of particles are collected by the Resonant
Oscillator/Detector. Shown also the corresponding spectra. We see very clearly that when δt = 0.5P, the spectrum
power at resonance vanishes.
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Figure 5. Top/Bottom rows of panels: The superposition of two unequal time-series of particles emitted inter-
mittently by the Source with fixed period P and a time delay between them equal to δt = 0, 0.1, 0.2, 0.3, 0.4, 0.5
times the period P (plus an integer multiple of P). The first time-series contains only 20% of the particles of the
continuous time-series of figure ??a, and the second only 50%. These time-series of particles are collected by the
Resonant Oscillator/Detector. Shown also the corresponding spectra. We see very clearly that when δt = 0.5P,
the spectrum power at resonance does not vanish. The ratio of the number of particles ar resonance over the total
number of particles emitted by the Source is given by Equation (5).
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Figure 6. Sketch of interference between two different streams of particles that originate at the same Source
and have a time delay of δt = (L1 − L2)/v between themselves. Such superposition manifests intereference
characteristics at the Detector.

Figure 7. Distribution of the square of the ratio of the PSD at resonance over the PSD at zero frequency as
a function of the time delay δt. We consider here the combination of two power time-series with (α, β) =

(0.8, 0.8)/(0.8, 0.6)/(0.8, 0.4)/(0.8, 0.2/(0.8, 0.1)/(0.8, 0.05)) from top left to bottom right respectively. Shown also
the fits to the expression of Equation (5) for the correponding values of α and β. Except for the case of zero time
delay δt, this distribution leaves a fraction (1 − Probabs) of particles undetected. Clearly, when either one of α or β

is equal to zero (i.e., if we have only one and not two combined particle time-series), the detection probability
Probabs is equal to unity (not shown).
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3. A Double-Slit Experiment with Particles
Now imagine a large (infinite) collection of Resonant Oscillators. We will call such a system

a macroscopic ‘Detector’. It is important that the Detector has enough thickness to absorb (thus
also detect) all particles from the combined time-series that reach it. The interference setup that we
propose is the one from a typical double-slit experiment. Particle series reach points of the Detector
coming from both slits, and the time-difference δt between the two time-series is proportional to
the difference in the particle trajectory lengths over the particle speed. Particles are absorbed by the
Resonant Oscillators/Detectors at each layer of the Detector according to the probability distribution
of Equation (5). The particles that are not absorbed continue to travel along the same line that they
followed after emerging from their respective slit and are combined with the stream of non-absorbed
particles that emerged from the other slit. Some of them will be absorbed/detected in that second
layer of the Detector, and so on and so forth. Eventually, all particles emerging from both slits will be
absorbed, and the interference pattern shown schematicallyt in Figure 8 will emerge in the interior of
the Detector. No particle will be left undetected. What is important though is that, in order for the
Detector to absorb/detect all particles, it needs a certain finite thickness.

It is interesting that the same distribution as that of Equation (5) is obtained when we super-
pose two delayed periodic signals of amplitudes α and β respectively, expressed mathematically as
α exp(i2πt/P) + β exp(i2π(t + δt)/P). This sum may represent for example the addition of the
electric field of two interfering electromagnetic waves. Classically, the power of the combined
signal is proportional to the square of the amplitude of the electric field superposition, namely
(α + β cos(2πδt/P))2 + β2 sin2(2πδt/P) = (α2 + β2)(1 + 2αβ cos(2πδt/P)/(α2 + β2)). If we further
divide this expression by (α + β)2, we obtain the result of Equation (5). In our picture of periodic
sequences of elementary particles, the power is proportional to the number of detected particles per
unit of time at the Detector. Figure 7 is telling us that when two independent periodic signals from
our Source reach a certain point in the resonant Detector with a time delay of δt between them, the
Resonant Oscillator at that position collects the sum of the two particle streams, i.e., a power that
is double the power of each particle stream, but absorbs (detects, announces) a number of particles
proportional to Equation (5) times the power of the Source particle stream. This result applies on
average even if the periodic sequences of particles are not complete and certain particles are randomly
missing. As long as particles of each stream are emitted and collected at integer multiples of the
resonance period P, the same illusion of interference is obtained.

It should be obvious to the reader that the number of particles that reach the Detector per unit
of time is equal to the sum of the number of particles per unit of time in the two particle streams,
irrespective of the time delay δt between the two streams. In the case of destructive interference at
a certain position (δt = P/2), the Detector announces zero particles at that position. As a result of
this ‘non-detection’, the two particle streams continue their travel unimpeded, and eventually all of
them are detected deeper inside the Detector (see figure 8). In the case of constructive interference
(δt = 0) the Detector absorbs the two streams of particles, but if we also count the particles also absorbed
behind that point of constructive interference, the Detector announces on average double the number of
particles detected at the first surface point of constructive interference. Thus, the Detector conserves
the number of particles, provided we are willing to account for all detections, even those in the interior
of the Detector.

If we collect all detections along the various angles of the experiment, we obtain the result of a
double-slit experiment. The new result of our present numerical experiment is that the same illusion
of interference is obtained only if we are willing to consider a Detector with a finite width. Had we
considered only the surface layers of the Detector, we would have obtained the same intereference
pattern with one-half the number of particles that reach the Detector.
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Figure 8. Sketch of a double-slit experiment. Two particle streams from the two slits that reach the surface of the
‘Detector’ with δt = 0 (plus an integer multiple of the period P) are directly absorbed. Double particle streams
with δt = P/2 plus an integer multiple of P are not immediately absorbed and their individual particle streams
continue unimpeded in the interior of the Detector. It is clear that all such particles will be gradually absorbed
within a certain depth inside the Detector as they reach positions with 0 ≤ δt < P/2 (plus an integer multiple of
the period P). The Detector thus announces the same number of particles as those that reached it throught the two
slits.

4. Conclusions
We have shown that interference patterns may arise from the superposition of two particle streams

generated by the same classical Resonant Oscillator that reach a second classical Resonant Oscillator
tuned to the same resonance frequency. These two Resonant Oscillators are

• The Source that emits a series of particles at integer multiples of its resonance period,
• The Detector that receives these particle streams at each point and announces detections at

that point with a probability proportional to the square of the PSD of the particle time-series at
the Source-Detector Resonance (SDR) frequency. The particles that are not detected at that point
continue their motion unimpeded deeper inside the Detector.

What we have shown essentially is that two such streams of independent non-interacting particles
emitted with the same velocity at times that are integer multiples of P manifest on average the
characteristics of a continuous wave, provided the detector operates only at the resonance frequency
ν0 = 1/P. We have shown this result with a simple numerical experiment of interference when there
is a time delay δt between two such streams of particles. Our numerical result is valid even when the
two streams carry unequal numbers of particles per unit time (on average). The resulting interference
pattern is the same as that of continuous sinusoidal waves with equal or unequal amplitudes.

When we applied the above result to reproduce a double-slit experiment with particles, only
one half of the particles were detected when they first reached the surface layer of the Detector. The
other one half of the particles continued their respective motions in deeper layers of the Detector and
were eventually absorbed/detected by it. The interference pattern integrated over the thickness of the
Detector, creates the same effect as the interference pattern resulting from two interfering sinusoidal
waves. This result is currently only qualitative, and we plan to provide a rigorous proof in the future.

Several researchers have tried in the past to generate similar interference patterns with particles
that carry some type of internal ‘hidden variables’ in the form of an internal clock (e.g., [2,3]). The
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detector collects and processes that information before it announces a detection, similarly to our present
model. The problem with such approaches is that they do not work for photons which cannot carry any
internal clock. In our present model, the necessary information of the time delay is carried collectively
by the two streams of particles, not by each individual particle as in the previous approaches quoted
above.

Our current model applies only to free particles. Up to now we have said nothing about the
particle velocity v which is important for the manifestation of the time delay δt between the two
different paths of lengths L1 and L2 (δt = (L1 − L2)/v). In the Appendix, we offer a tentative physical
model of how these particles may have obtained their velocity v and their kinetic energy.

In summary, if there exist macroscopic sources and detectors that operate as proposed, wave-like
interference phenomena may be explained if the detectors absorb and announce particles with a
particular probability distribution that at each point is described by Equation (5). If all macroscopic
detectors in nature operate as proposed in this paper, wave-like phenomena may consist an illusion of
the detectors, not a fundamental property of nature.
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Appendix A. The Particle Kinetic Energy
We will now discuss how particles of mass m emitted by the Source may have obtained their

velocity v. We will tentatively argue that particles are emitted with a particular kinetic energy

ϵkinetic =
1
2

mv2 = hν0 , (A1)

where h is a constant with dimensions of angular momentum. It is clear that what is physically
fundamental in our model is not the particle energy, but the Source resonance frequency. Let us now
see how Equation (1) may be modified to account for the emission of particles with the energy of
Equation (A1). It is easy to see that, in order to introduce the parameter h and keep the dimensions of
Equation (1), one may add an extra dissipation term as

Mẍ = −k(x − L0)−
h

2π2
ẋ
L2

0
. (A2)

One sees directly in figure A1 below that, starting from an initial displacement x(t = 0) = 2L0,
x(t) ≈ L0(1 + cos(2πν0t)) and ẋ(t) ≈ −2πν0L0 sin(2πν0t) for small h, thus every period the Source
oscillator loses a small amount of energy equal to

ϵ =
h

2π2

∫ P

t=0

ẋ2

L2
0

dt ≈ h
2π2

(2πν0L0)
2

L2
0

∫ P

t=0
sin2(2πν0t)dt = hν0 , (A3)

provided the energy ϵ lost per period is much smaller than the energy stored in the Source oscillator,
namely, hν0 ≪ 1

2 M(2πν0L0)
2.
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Figure A1. Upper plot: x = x(t) for the Source oscillator described by Equation (A2). x(0) = 2L0. ẋ(0) = 0. Initial
oscillator energy ≫ hν0. Time in units of the oscillator period P. Lower plot: Evolution of the oscillator energy
(blue/orange/green lines: kinetic/potential/total energy respectively).

We thus propose the following model for the emission of elementary particles of mass m by the
Source. Every oscillation period, the Source loses energy ϵ according to Equation (A3). Let’s assume
that right next to the Source oscillator exists a reservoir of elementary particles that, every period P,
absorbs this energy ϵ and leaves the system. Thus, at every period of oscillation, a particle is emitted
with kinetic energy

ϵkinetic =
1
2

mv2 = ϵ = hν0 . (A4)

This approach offers a different view of how particles obtain their kinetic energy. It is the macroscopic
Source oscillator that loses parcels of energy hν0 every period P, and these parcels of energy are
somehow transferred to the particles.

The model proposed in this short paper considers only streams of particles with the same kinetic
energy ϵkin and velocity v. These particles do not change their kinetic energy as they travel from
the Source to the Detector. If we were to expand our model to a theory of particle dynamics, we
must assume that, in order for a particle to change (increase or decrease) its kinetic energy, it must be
absorbed by a macroscopic system which resonates at the frequency that corresponds to its current
kinetic energy, and it must then be re-emitted at a different energy that correponds to a different
resonance frequency of the macroscopic system. Such a tentative model would require a special type
of interaction between elementary particles and force fields.
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