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Abstract: Wildfires represent an increasing threat to ecosystems and communities, driven by climate change, 
ecological dynamics, and human activities. In Ambato, Ecuador, a city in the Andean highlands, these risks are 
exacerbated by prolonged droughts, urban expansion into fire-prone areas, and socio-economic vulnerabilities. 
This study integrates climatic, ecological, and socio-economic data to assess wildfire risks, employing advanced 
geospatial tools, thematic mapping, and machine learning models, including Multinomial Logistic Regression, Ran-
dom Forest, and XGBoost. By segmenting the study area into 1 km² grid cells, micro-scale risk variations were 
captured, enabling classification into five categories: ’Very Low’, ’Low’, ’Moderate’, ’High’, and ’Very High.’ Re-
sults indicate that temperature anomalies, vegetation desiccation, and human-induced factors such as waste burn-
ing and land-use changes significantly influence fire susceptibility. Predictive models achieved accuracies above 
76%, effectively identifying high-risk zones and informing targeted interventions. Findings emphasize the urgent 
need for enhanced land-use regulations, improved firefighting infrastructure, and community-driven prevention 
strategies. This research provides a replicable framework for wildfire risk assessment, applicable to other Andean 
regions and beyond. By integrating data-driven methodologies with policy recommendations, this study contrib-
utes to evidence-based wildfire mitigation and resilience planning in climate-sensitive environments. 

Keywords: wildfire risk; machine learning; geospatial analysis; climate variability; land-use planning; Ambato 
 

1. Introduction 
Wildfires represent a significant environmental challenge in the 21st century, characterized by a 

notable increase in both frequency and intensity in recent decades. In this context, climate change is 
considered the primary source of global temperatures and prolonged droughts, which facilitate the 
ignition and swift propagation of fires. Climatic changes have altered natural fire regimes, leading to 
extended fire seasons and increased impacts on ecosystems and communities globally [1–3]. Wild-
fires result in both immediate casualties and property damage, while also emitting significant 
amounts of carbon dioxide, thereby intensifying climate change. Long-term ecological consequences, 
such as biodiversity loss, soil degradation, and water contamination, disrupt ecosystems and affect 
livelihoods [4–8]. In addition, the rising economic costs associated with firefighting, infrastructure 
repair, and adaptation underline the necessity for comprehensive wildfire management strategies 
that include prevention, mitigation, and the cumulative impacts of urban development and climate 
change [9–14]. The expansion of urban areas into natural landscapes has increased the risks of wild-
fires, particularly in the wildland-urban interface (WUI), where human activities overlap with fire-
prone vegetation. Accelerated urbanisation has increased human-induced ignitions and heightened 
the vulnerability of individuals and infrastructure to fire hazards [7,14–16]. Unregulated construction 
and inadequate land-use planning have also led to community encroachment into high-risk areas, 
thereby perpetuating a cycle of vulnerability. This pattern is particularly concerning in developing 
regions, where limited resources often constrain mitigation and response strategies. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
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The Andean region, characterised by intricate topography and climate, is witnessing an increase 
in wildfire risks attributed to the interplay of environmental and anthropogenic factors. Ambato, lo-
cated in the central highlands of Ecuador, illustrates these challenges. This city in the Andes Moun-
tains serves as a relevant case study for examining the impact of regional factors on fire safety. The 
growth of urban regions into natural landscapes has heightened the risks of wildfires, especially in 
the wildland-urban interface (WUI), where human activities intersect with fire-prone vegetation [17–
20]. Accelerated urbanisation in Andean cities has raised the probability of human-induced ignitions 
and increased the susceptibility of populations and infrastructure to fire hazards [17–19,21,22]. Un-
regulated construction and inadequate land use planning, driven by socioeconomic demands, dis-
rupt ecosystems through practices such as slash-and-burn agriculture, deforestation, and uncon-
trolled grazing [7,14–16,23,24]. Moreover, deficiencies in policy enforcement and constrained re-
sources for mitigation strategies intensify vulnerability in a cyclical fashion [13,25–27]. The increasing 
complexity of wildfire risks in Ambato necessitates the integration of advanced tools such as spatial 
analysis and machine learning to provide critical insights for mitigation efforts. 

The wildfire risk in Ambato arises from a complex interplay of biological, meteorological, and 
topographic factors. The grasslands, shrublands, and dry forests of the region exhibit considerable 
combustibility during extended dry seasons, a condition exacerbated by climate-related temperature 
anomalies and inconsistent precipitation patterns [17,19,20]. Human activities such as agricultural de-
forestation and unregulated grazing destabilize ecosystems and increase fuel loads. Furthermore, pro-
longed droughts reduce vegetation moisture, disrupt hydrological cycles, and strain water resources 
critical for fire management. Seasonal winds, amplified by the steep slopes of the Andes, facilitate the 
spread of fire, while temperature extremes condition fuels, thereby increasing the potential for ignition. 
In addition, global climate change has intensified conditions in Ambato, resulting in prolonged 
droughts and irregular rainfall that extend fire seasons and decrease the effectiveness of conventional 
mitigation strategies [17,19,20]. The expansion of urban areas into the wildland-urban interface has 
markedly increased human susceptibility to fire hazards. Informal settlements, agricultural encroach-
ment, and the proliferation of flammable vegetation in residential landscaping practices elevate fuel 
loads near populated areas [14,24,28]. Moreover, inadequate financial resources hinder access to essen-
tial firefighting infrastructure, including water sources, equipment, and trained personnel. 

This research evaluates wildfire risk in Ambato, emphasising the interaction of environmental, 
meteorological, and socio-economic factors. The primary objective is to identify high-risk zones in 
the Wildland-Urban Interface (WUI) where human activities intersect with natural landscapes, 
thereby increasing susceptibility to fire. This research utilises a multidisciplinary framework, incor-
porating geospatial analysis, climatic data, and socio-economic metrics. Spatial variables, including 
vegetation cover, altitude, land use patterns, and population density, were analysed alongside cli-
matic data, such as temperature anomalies and precipitation deficits, to categorise risks into five tiers: 
very low, moderate, high, and very high. Multinomial logistic regression identified high-risk areas 
within the wildland-urban interface, where human activity intersects with fire-prone landscapes. 
Wildfire management policies in Ecuador often lack sufficient specificity and enforcement mecha-
nisms, hindering effective responses. National initiatives focused on reforestation and community 
education frequently neglect the distinct challenges presented by the wildland–urban interface, a 
critical factor in wildfire risk in Ambato [17,19]. The inadequate enforcement of land-use planning 
restrictions to restrict urban expansion into high-risk zones facilitates the encroachment of settle-
ments in fire-prone areas. Furthermore, regulations governing agricultural practices, such as the ban 
on slash-and-burn techniques, are often inadequate, resulting in the possibility of fire hazards. 

International case studies offer significant insights for mitigating wildfire risks in areas such as 
Ambato. Studies conducted in Spain indicate that unregulated urban growth in fire-prone regions 
markedly heightens vulnerability at the wildland-urban interface (WUI). Policies that prioritise im-
proved urban planning, enforce stricter land use regulations, and promote active community engage-
ment have demonstrated effectiveness in minimising ignition sources and controlling fire spread 
[3,29–33]. Research conducted in the United States has led the development of geospatial tools and 
predictive models to identify high-risk areas and optimise the allocation of firefighting resources. 
Initiatives such as Firewise USA underscore the significance of community preparedness, demon-
strating how local efforts can strengthen wider policy frameworks for wildfire resilience [8,34–36]. 
The Andean region, encompassing Ambato, poses specific challenges attributable to its unique cli-
matic and topographical characteristics. Andean regions like Ambato, akin to Mediterranean areas, 
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undergo prolonged droughts that increase vegetation flammability. Furthermore, steep slopes and 
seasonal winds, similar to those found in the western United States, promote rapid fire spread and 
hinder containment efforts. The identified parallels highlight the necessity of customising global 
strategies, including fuel management programs, predictive mapping, and machine learning integra-
tion, to specific local contexts. The socioeconomic conditions of the Andes require cost-effective strat-
egies, such as modernising infrastructure, investing in water storage systems, acquiring firefighting 
equipment, and implementing satellite-based early detection technologies [17,18,21,22]. In addition, 
community resilience programs, such as public education campaigns designed to mitigate anthropo-
genic ignition (e.g., waste burning) and training residents in fire response protocols, could provide 
culturally and economically sustainable solutions for Ambato and comparable areas [17–19]. 

The wildfire risks in Ambato exemplify the broader challenges faced in the Andean regions, 
marked by the interaction of climate change, ecological degradation, and socio-economic disparities. 
This study introduces a scalable framework for detecting vulnerabilities and prioritizing mitigation 
through data-driven, context-specific approaches. Aligning local actions with global best practices, 
such as predictive modelling, community-centric preparedness, and adaptive land use policies, en-
hances resilience in Ambato and offers a replicable model for neighbouring regions. Furthermore, 
future research should focus on the integration of traditional ecological knowledge, particularly in-
digenous fire management practices, with machine learning algorithms to enhance risk prediction 
and optimize resource allocation. Innovations are essential in the context of escalating climatic un-
certainty, requiring comprehensive, interdisciplinary approaches to safeguard ecosystems and vul-
nerable human populations. 

2. Materials and Methods 
2.1. Data sources 

This study analyses historical wildfire data from Ambato to provide insights into the location, 
frequency, causes, and effects of previous events. This information was compiled from the Ambato 
Fire Department (Cuerpo de Bomberos Ambato) using public records available on their official web-
site [37]. These records enabled the identification of high-risk areas, ignition points, and burnt area 
extents. Key causes, such as waste burning, agricultural practices, and electrical malfunctions, were 
mapped to understand temporal and spatial wildfire trends. Additionally, seasonal patterns and the 
influence of extreme climatic conditions on ignition rates were assessed. Socioeconomic variables—
including population density, land-use changes, and infrastructure proximity—were incorporated to 
analyse anthropogenic influences on wildfire occurrence. The combined use of historical datasets 
provides a foundational understanding of wildfire behaviour at the urban–wildland interface (WUI) 
in Ambato, supporting risk assessments and the development of targeted mitigation strategies [37]. 

Climatic data were obtained from the Government of Tungurahua’s meteorological stations, ac-
cessible through their official website [38]. This dataset includes temperature, precipitation, humid-
ity, and wind speed, which are crucial parameters for assessing wildfire risks. The data were analysed 
to identify prolonged drought periods, temperature anomalies, and irregular precipitation patterns, 
which increase vegetation desiccation and fire susceptibility. 

Table 1 presents the key climatic variables recorded by meteorological stations in Ambato, in-
cluding relative humidity, daily precipitation, wind speed, and temperature. These variables are es-
sential for understanding the role of climatic conditions in wildfire risk assessment, as they influence 
fuel moisture, fire spread potential, and ignition probability. The data allow for the detection of mi-
croclimatic variations across different areas of the city, providing valuable insights into localised 
wildfire hazards. 

Another critical parameter for wildfire risk assessment is vegetation cover. High-resolution sat-
ellite imagery and land cover classifications were acquired from the Municipality of Ambato’s geo-
portal [39]. These datasets provided essential information about vegetation composition, fuel density, 
and spatial distribution. To quantify vegetation health, the Normalised Difference Vegetation Index 
(NDVI) was used, enabling the identification of areas experiencing stress or degradation, which are 
particularly susceptible to ignition. Additionally, spatial datasets allowed for the identification of ar-
eas with increased fuel availability, enhancing the understanding of wildfire dynamics. 
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Table 1. Climatic Variables Recorded by Meteorological Stations in Ambato. 

Station X 
(UTM) 

Y 
(UTM) 

Parish 
Relative 

Humidity  
(%) 

Daily 
Precipitation 

(mm) 

Wind 
Speed 
(m/s) 

Temperature 
(°C) 

Aeropuerto 769929 9865679 Izamba 80.1 1.7 2.0 13.9 
Calamaca 742705 9858860 San Fernando 80.9 2.4 2.6 8.4 

Chiquihurcu 743787 9866064 San Fernando 85.6 3.3 2.6 6.6 
Quisapincha 753559 9865921 Quisapincha 84.6 2.9 2.0 7.1 
Mula Corral 741602 9867738 San Fernando 82.0 2.6 2.1 6.2 
Tamboloma 747919 9855365 Pilahuin 87.6 1.9 N/D 7.3 

Pilahuin 752358 9856011 Pilahuin N/D 1.8 N/D N/D 
Hacienda Cunchibamba 767300 9874583 Cunchibamba 76.4 1.2 2.6 13.1 

Hacienda Guadalupe 778853 9849321 Patate 69.1 1.8 2.3 16.4 
Unidad Educativa Cevallos 765641 9849972 Cevallos 77.9 1.5 1.7 12.7 

Unidad Educativa Jorge Alvarez 772342 9870622 Pillaro 84.2 1.5 2.0 12.0 

Land-use data were sourced from the Municipality of Ambato’s cadastral geoportal cartographic 
databases [39]. These geospatial datasets classify land into agricultural zones, urban developments, 
and natural landscapes, which were validated through local surveys and field observations. Unreg-
ulated land-use changes—such as urban expansion into fire-prone areas and agricultural encroach-
ment—were identified as significant contributors to wildfire vulnerability. Furthermore, the proxim-
ity of urban areas to combustible vegetation within the WUI was assessed to determine high-risk 
zones. The integration of land-use data into wildfire risk assessments enhances the understanding of 
how human activities alter natural landscapes, exacerbating wildfire hazards. The methodology fol-
lowed a structured process, as illustrated in Figure 1. 

Population density was incorporated as a key variable in wildfire risk evaluation, as human 
activities directly influence ignition probabilities. Demographic datasets were obtained from the Mu-
nicipality of Ambato’s geoportal [39]. These data were overlaid onto land-use and vegetation maps 
to analyse the correlation between high-density settlements and proximity to fire-prone areas. Infor-
mal settlements within the WUI, often lacking fire prevention infrastructure, were classified as high-
vulnerability zones. Integrating these demographic variables with environmental factors strength-
ened risk assessments and facilitated targeted mitigation strategies. 

Datasets on vegetation cover, land use, and population density were unified into a geospatial 
framework to analyse the interplay between natural and anthropogenic factors. This integration al-
lowed the identification of overlapping vulnerabilities, such as high-density populations adjacent to 
degraded vegetation or urban expansion into fire-prone areas. Geospatial analysis tools, including 
heat maps and risk overlays, were employed to visualise these interactions and generate actionable 
insights for targeted interventions [37–39]. 

The spatial distribution of roads and potential fire ignition points, which are critical for both 
accessibility and wildfire prevention, is displayed in Figure 2. Road infrastructure plays a crucial role 
in fire response times and evacuation planning. The analysis considered major roads, rural pathways, 
and their proximity to high-risk fire zones, ensuring that fire response strategies are optimised based 
on accessibility constraints. 

2.2. Spatial and Climatic Data Processing 
This study employs Geographic Information Systems (GIS) to integrate and visualise multiple 

data layers, including vegetation cover, land use, population density, and historical wildfire occurrences. 
Advanced spatial analysis techniques, such as hotspot mapping and buffer analysis, enable the identifi-
cation of high-risk wildfire zones, particularly within the wildland-urban interface (WUI) [16,33,40,41]. 
The study applies geospatial interpolation techniques to model the interaction between climatic, environ-
mental, and socioeconomic factors, allowing for a more precise assessment of wildfire risks and support-
ing targeted mitigation efforts (reference). The application of GIS ensures spatial accuracy in wildfire risk 
evaluation, improving planning processes and resource allocation strategies [42–44]. 
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Figure 1. Methodological Process for Wildfire Risk Assessment. 

To enhance the precision of risk assessments, the study segments Ambato into polygons of 1 
km², capturing micro-scale variations in environmental, climatic, and socio-economic conditions. 
This spatial division facilitates the integration of multiple geospatial data sources, including altitude, 
proximity to rivers, and land-use classifications. Each polygon is characterized by attributes such as 
average temperature, precipitation, wind speed, vegetation cover, and population density, derived 
from official data sources, including meteorological records from the Government of Tungurahua, 
and demographic and cadastral data from the Municipality of Ambato [38,39]. The processed GIS 
data allows for the generation of thematic maps that highlight areas with increased fire susceptibility, 
revealing spatial correlations between climatic conditions, land-use changes, and socio-economic var-
iables [41–44]. 

The segmentation approach also supports the integration of additional socio-economic factors, 
such as cadastral land value and infrastructure accessibility, enriching the predictive capacity of the 
analysis. The unified geospatial framework enhances the understanding of wildfire risk across Am-
bato by identifying high-vulnerability zones, particularly in informal settlements within the WUI. 
These areas often lack fire prevention infrastructure and are more exposed to human-driven ignition 
sources, reinforcing the importance of integrating demographic and environmental data in wildfire 
risk assessments. The combination of natural and anthropogenic variables offers a comprehensive 
understanding of wildfire behaviour, providing essential information for improving urban planning, 
emergency preparedness, and fire mitigation strategies [14,45,46]. 

 
Figure 2. Road Network and Fire Ignition Points in Ambato. 
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2.3. Predictive Modelling and Risk Analysis with Machine Learning 
This study employs machine learning models to enhance predictive accuracy and spatial delin-

eation of wildfire risks. Algorithms such as Multinomial Logistic Regression (MLR), Random Forest 
(RF), and XGBoost were applied to large datasets encompassing climatic, vegetation, land-use, and 
socio-economic variables, identifying the most influential factors driving wildfire occurrences. These 
models generated risk maps that highlight vulnerable regions based on historical wildfire data and 
projected scenarios. Supervised learning techniques, including clustering, were utilised to detect 
emerging patterns in wildfire frequency and severity, improving upon traditional risk assessment 
methods by offering high-resolution spatial classifications. This analytical framework enhances both 
immediate response strategies and long-term wildfire mitigation planning [43,47–51]. 

To classify risk levels, Multinomial Logistic Regression (MLR) (Equation 1) was employed, esti-
mating the probability of an area belonging to a specific risk category based on key predictive varia-
bles, including humidity, temperature, precipitation, wind speed, and terrain attributes. The logistic 
regression function is defined as follows: 

𝑃𝑃(𝑦𝑦 = 1|𝑋𝑋) = �1 + 𝑒𝑒(𝛽𝛽0+𝛽𝛽1𝑋𝑋1+𝛽𝛽2𝑋𝑋2+⋯+𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛)�
−1

   (1) 

where P(y=1|X) represents the probability of an observation belonging to a wildfire risk category, 
given the predictor variables 𝑋𝑋𝑛𝑛 , and 𝛽𝛽𝑛𝑛  are the regression coefficients estimated during model 
training. While MLR allows for clear interpretation of individual variable contributions, its perfor-
mance is limited in capturing non-linear relationships between wildfire determinants. 

To improve predictive accuracy and account for complex variable interactions, ensemble models 
were introduced. Random Forest (RF) was employed due to its robustness in reducing overfitting by 
aggregating multiple decision trees trained on random samples. This approach was particularly ef-
fective in modelling the interaction between topographic features and proximity to ignition sources 
(roads, electrical infrastructure). In contrast, XGBoost, an optimised gradient boosting algorithm, im-
proved predictive power by iteratively correcting model errors and applying regularisation tech-
niques to enhance generalisation. 

A multi-layered modelling approach integrating climatic, spatial, and socio-economic data was 
implemented for comprehensive wildfire risk assessment. GIS-enabled overlays facilitated the spatial 
correlation of vegetation indices (NDVI), land-use classifications, and demographic factors with wild-
fire occurrences, enhancing risk map generation. Machine learning models identified significant non-
linear interactions between climatic, anthropogenic, and environmental variables, refining the classi-
fication of wildfire-prone regions. 

The study area was segmented into 1 km² grid cells, enabling micro-scale analysis of wildfire 
risk. Each cell was classified into one of five risk levels—‘Very Low,’ ‘Low,’ ‘Moderate,’ ‘High,’ and 
‘Very High’—based on predictive variables, including humidity, temperature, wind speed, altitude, 
proximity to roads, land use, and cadastral land value. This spatial segmentation ensures a high level 
of granularity and precision in the identification of critical wildfire zones, improving the effectiveness 
of risk mitigation strategies and resource allocation for fire prevention in Ambato. 

2.4. Validation and Analysis 
Machine learning models and simulation outputs are evaluated using historical wildfire data, 

comparing predicted fire occurrences with recorded events to assess model performance [47–49]. Ma-
chine learning algorithms use metrics such as accuracy, precision, and recall evaluating their predic-
tive capabilities, while sensitivity analyses assess the robustness of simulation models under different 
conditions. 

Outputs from GIS, machine learning, and simulation models are integrated to generate compre-
hensive risk maps and scenario analyses. The results highlight the spatial distribution of risks, iden-
tifying regions where climatic, environmental, and socio-economic factors intersect, leading to in-
creased vulnerabilities. The study also evaluates the effectiveness of proposed mitigation strategies, 
such as controlled burns and urban planning policies, through simulation models to predict their 
impact across various scenarios. 
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3. Results 
3.1. Identification of High-Risk Areas 

The thematic risk maps generated from the integration of climatic and socio-economic data iden-
tified significant high-risk zones within the urban–wildland interface of Ambato. These zones, char-
acterised by dense vegetation cover, proximity to human settlements, and climatic conditions condu-
cive to ignition, were predominantly located in areas with high population density and active land-
use changes. By segmenting the study area into 1 km² grid cells, micro-scale variations in risk levels 
were visualized. The analysis classified these cells into five categories: ’Very Low’, ’Low’, ’Moderate’, 
’High’, and ’Very High’. Results revealed that areas with ’Very High’ risk were concentrated near 
agropastoral lands and unregulated urban expansions, often correlating with zones of low precipita-
tion and high temperature anomalies. These insights provide a detailed spatial understanding of 
wildfire susceptibility, enabling targeted mitigation efforts in particularly vulnerable areas. 

By superimposing socio-economic data onto these risk maps, a deeper understanding of how 
human activities increase wildfire hazards was achieved. This geospatial analysis not only identifies 
high-risk locations but also stablishes direct correlations between environmental conditions and an-
thropogenic factors. Figure 3 displays the spatial distribution of burned areas in Ambato. 

Table 2 presents the total burned area (in hectares) per parish in Ambato between 2017 and 2023. 
Izamba parish was the most affected parish, with a total of 884.9 hectares burned, with 2020 being 
the most critical year (609 hectares burned). Similarly, the parishes of Pasa and San Fernando rec-
orded a total of 598.2 hectares burned. In Pasa parish, the peak wildfire occurrence was in 2023, with 
156.5 hectares affected, whereas in San Fernando parish, the most severe impact occurred in 2020, 
with 150.8 hectares burned. To evaluate potential correlations between human activities and wildfire 
occurrence, an additional variable was incorporated into the analysis: the number of households en-
gaged in open waste burning. This spatial overlap suggests a plausible link between informal waste 
disposal and wildfire ignition, particularly in years with prolonged droughts (e.g., 2020). 

Figure 4a illustrates the annual trend in burned area, highlighting 2020 as the most severe year, 
with a total of 1,500 hectares burned, coinciding with the COVID-19 pandemic. This is followed by 
2023, with 791 hectares affected. Meanwhile, Figure 4b details the monthly distribution of burned 
areas and the number of recorded wildfires. November emerges as the most critical month, with 1,008 
hectares burned and 187 wildfires reported, coinciding with the peak solar radiation period. October 
also shows high wildfire incidence, with 572 hectares affected and 338 wildfires recorded, indicating 
a clear seasonal pattern in wildfire occurrence. 

Table 2. Burned Areas in hectares in Ambato Parishes (2017-2023). 

Parish 2017 2018 2019 2020 2021 2022 2023 Total  
(ha) 

Households  
Involved in Open  

Waste Burning 
Ambatillo 0.2 22.8 0.1 3.2 2.1 27.9 3.8 60 238 
Ambato 2.3 7.5 17 8.5 10.7 4.8 39.8 90.6 302 

Atahualpa 0.4 1 8.6 0.8 0 0.3 1.1 12.3 66 
Augusto N. Martínez 0.1 15.6 1.6 5.3 0 30.4 15.3 68.2 346 

Constantino Fernández 53 0.6 3.3 6 0 10.4 18.4 91.7 250 
Cunchibamba 0 2.5 7 3 0 0.1 2.3 15 143 

Huachi Grande 0.4 0.6 0.1 0.8 0 1.5 1 4.5 185 
Izamba 1.4 22.7 10.6 609 0.1 28.2 212.9 884.9 122 

Juan Benigno Vela 10.1 9.3 1.1 17.8 0 5.5 44.3 88.2 346 
Montalvo 0.1 0.1 1.2 0.3 0.1 0 2.1 3.9 110 

Pasa 22.1 93.1 6.1 26.7 0.6 31.8 156.5 337 701 
Picaihua 1.3 5.2 1.5 6.5 0 3.2 10.3 27.9 251 
Pilahuín 1.2 50 15 15.8 0 40.9 94.7 217.6 1565 

Quisapincha 8 93.9 8.4 23.2 10 41.9 10.1 195.4 295 
San Bartolomé de Pinllo 151.6 1.9 3.3 1.7 1.1 5.8 50.6 216 243 

San Fernando 0.1 18.1 3 150.8 0 58.1 31.1 261.2 332 
Santa rosa 0.2 3.4 2.1 13 13.3 0.2 4.8 37 1024 

Totoras 0.9 0.9 0.5 0.5 0.2 4.2 1.4 8.5 234 
Unamuncho 1.3 2.4 0.7 8.4 0 0.5 5.6 18.9 91 
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Outside the city 10.1 320.5 116.6 598.8 0 10 85.4 1141.3 N/D 
Total 264.7 672.1 207.7 1500.1 38.2 305.7 791.4 3780 6844 

 

 
Figure 3. Spatial distribution of burned areas in Ambato. 

Additional thematic maps were generated to illustrate the increased wildfire risk in rapidly ur-
banising regions. The expansion of residential developments into natural areas disrupts ecological 
balance, increasing the availability of combustible materials such as organic waste and dry vegetation 
[10,15]. These maps serve as a critical tool for policymakers, allowing them to prioritise mitigation 
strategies in the most vulnerable areas and allocate resources effectively. Wind speed distribution 
was analysed to identify areas where fire spread could be accelerated. Strong winds significantly 
influence wildfire behaviour by intensifying flame propagation and increasing ember transport over 
long distances. Figure 5 highlights wind speed variations across the city, emphasising areas particu-
larly susceptible to rapid fire expansion. 

Prolonged droughts significantly impact fuel availability and moisture retention, increasing 
wildfire risk in Ambato. Climatic records indicate that dry periods are becoming more frequent and 
extended, reducing vegetation moisture content and intensifying flammability, particularly in grass-
lands and shrublands. Figure 6 illustrates vegetation cover and its relationship to high-risk zones, 
highlighting areas with reduced moisture and increased fuel accumulation. Additionally, Figure 7 
presents the altitudinal distribution across the study area, demonstrating how elevation influences 
fire susceptibility by shaping local climatic conditions and fuel dynamics. 
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Figure 4. Annual and Monthly Distribution of Burned Areas and Wildfire Occurrences in Ambato. 

 
Figure 5. Wind Speed Distribution in Ambato (m/s). 
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Figure 6. Vegetation Cover Classification in Ambato. 

3.2. Climatic Factors 
Climatic variability plays a pivotal role in shaping wildfire dynamics in Ambato, with tempera-

ture anomalies emerging as a key driver of vegetation desiccation and increased flammability. Anal-
ysis of historical temperature records reveals a persistent upward trend, with extreme heat events 
accelerating moisture loss in grasslands and shrublands. These conditions create highly combustible 
environments, particularly in regions experiencing prolonged dry spells. Figure 8 illustrates the spatial 
distribution of average temperatures across the canton, highlighting the correlation between heat-in-
tensified fuel desiccation and wildfire-prone areas. Additionally, precipitation deficits exacerbate fire 
susceptibility by reducing soil moisture and delaying vegetation recovery after fire events. Figure 9 
presents the temporal distribution of rainfall patterns, demonstrating how irregular precipitation cycles 
contribute to fuel accumulation and prolonged drought stress, ultimately elevating wildfire risks. 

 
Figure 7. Altitude Map of Ambato (x1000 metres). 
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Figure 8. Annual Average Temperature Map of Ambato (°C). 

Relative humidity further influences wildfire behaviour by affecting the rate of fuel ignition and 
combustion. Areas exhibiting consistently low humidity levels, as depicted in Figure 10, correspond 
with zones of heightened vegetation flammability, particularly within the wildland-urban interface 
(WUI), where human activities increase ignition potential. Steep terrains with slopes exceeding 25° 
present additional challenges, as seasonal winds accelerate fire spread by preheating upslope fuels. 
These winds, combined with drought-driven vegetation stress, create volatile conditions that com-
plicate fire suppression efforts. The integration of climatic and spatial data enables the identification 
of priority intervention zones where targeted mitigation strategies—such as controlled clearing of 
flammable vegetation and the restoration of drought-resistant native species—can enhance ecological 
resilience and inform broader wildfire management frameworks, particularly for climate-sensitive 
mountainous regions like the Andes [17,18,21,22]. 

 
Figure 9. Daily Precipitation Distribution in Ambato (mm). 
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Figure 10. Average Relative Humidity Map of Ambato (%). 

3.3. Human Factors 
Wildfire frequency in Ambato exhibits strong correlations with population density and high-

risk human activities. The wildland-urban interface (WUI), particularly informal settlements, experi-
ences elevated fire incidence due to waste burning, agricultural land-clearing fires, and the unregu-
lated use of fire for land management. Spatial analysis reveals that ignition hotspots are concentrated 
in densely populated areas, where flammable materials such as agricultural debris and household 
waste accumulate near residential zones. Figure 11 illustrates the population density distribution, 
highlighting the spatial overlaps between high-density settlements and frequent ignition points. 

These communities, often lacking adequate fire suppression infrastructure, are disproportionately 
affected during wildfire events. Figure 11 also helps us emphasize the critical intersections between land-
use practices, population density, and fire ignition sources, underscoring the urgent need for stricter reg-
ulations on open burning in the WUI. Additionally, targeted interventions such as community-led fire 
prevention programs, stricter land-use policies, and infrastructure improvements in informal settlements 
are essential to reducing human-induced wildfire risks [7,14,24,28]. Understanding these socio-environ-
mental dynamics is crucial for developing data-driven prevention strategies, strengthening fire safety reg-
ulations, and mitigating the impact of human activities on wildfire occurrence. 

3.4. Socioeconomic Vulnerabilities and Fire Risk 
The integration of socioeconomic data with environmental and spatial datasets highlights the 

compounded vulnerabilities affecting Ambato’s population. Figure 12 presents the cadastral land 
value distribution, illustrating economic disparities that directly influence resource allocation for 
wildfire prevention and mitigation. Marginalized communities in low-value cadastral zones often 
receive fewer resources, limiting their capacity to implement fire-resistant measures and prepared-
ness initiatives. Additionally, Figure 13 depicts the prevalence of household waste burning, a major 
ignition source in high-risk areas. The widespread use of open burning for waste disposal, particu-
larly in lower-income neighbourhoods, exacerbates fire hazards in the wildland-urban interface 
(WUI) [24,33,40,41]. 

Public awareness also emerged as a significant challenge. Surveys reveal that residents in fire-
prone areas often lack knowledge of fire safety protocols, with existing educational initiatives failing 
to address gaps among marginalized groups. Socioeconomic inequalities further amplify these issues, 
as low-income households are less likely to adopt fire-safe practices such as maintaining defensible 
spaces or using non-flammable building materials. These findings emphasize the necessity for tar-
geted interventions that ensure equitable resource allocation, prioritize high-risk communities in fire-
fighting investments, and expand multilingual outreach programs to improve fire safety awareness 
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[10,12,27]. Moreover, strengthening land-use policies to limit urban encroachment into fire-prone 
ecosystems is essential in mitigating fire risks, particularly in the WUI. 

3.5. Data Correlation Analysis 
The correlation analysis was conducted to examine the relationships between wildfire occur-

rences and key environmental and socio-economic variables, offering insights into the factors influ-
encing fire dynamics. Pearson and Spearman correlation coefficients were employed to assess both 
linear dependencies and monotonic associations between variables. Figure 14 presents a Pearson cor-
relation heatmap, visually illustrating the strength and direction of these relationships. In this repre-
sentation, values approaching 1 indicate a strong positive correlation, while values near -1 suggest a 
strong inverse relationship. 

The analysis reveals that land value per square meter (0.51) correlates positively with wildfire 
frequency, suggesting that areas with higher land costs, likely due to greater urbanisation and human 
activity, experience more fire incidents. Mean altitude (-0.52) exhibits a negative correlation with 
wildfire occurrence, indicating that fires are less frequent at higher elevations, possibly due to differ-
ences in vegetation type and climatic conditions. Additional significant correlations include mean 
temperature (0.40), proximity to roads (0.33), and mean humidity (-0.33), underscoring their impact 
on wildfire risk. These findings highlight the complex interplay between socio-economic and envi-
ronmental factors in shaping wildfire behaviour in Ambato. 

 
Figure 11. Population Density in Ambato. 

 
Figure 12. Cadastral Land Value per Square Meter in Ambato ($ per sqm). 
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3.6. Model Predictions 
3.6.1. Multinomial Logistic Regression (MLR) 

The predictive modelling using Multinomial Logistic Regression (MLR) provided a probabilistic 
classification of wildfire risk across the study area. The model achieved an accuracy of 76.04%, 
demonstrating its reliability in predicting “Moderate,” “High,” and “Very High” risk areas. The re-
gression coefficients revealed significant predictors, including temperature anomalies, which were 
positively correlated with higher risk levels, and altitude, which was negatively associated with 
“Very High” risk areas. Simulated scenarios under variable climatic conditions highlighted that in-
creased wind speeds and reduced precipitation significantly shifted risk distribution toward higher 
categories. These predictive insights enable the identification of priority areas for immediate inter-
vention and long-term planning [32,43,45,48,52,53]. According to the model, fire spreads rapidly 
through grasslands and shrublands under severe drought and strong wind conditions, making con-
tainment extremely difficult. The surrounding geography of Ambato, with steep slopes, exacerbates 
fire dynamics by facilitating rapid uphill spread and increasing the fire’s area of influence. Con-
versely, scenarios with moderate wind speeds and higher vegetation moisture levels show reduced 
fire spread, emphasizing the importance of proactive fuel management techniques, such as controlled 
burns, to mitigate risks. 

The MLR model allowed for a detailed analysis of each variable’s influence on wildfire risk clas-
sification. Figure 15 depicts the regression coefficients, demonstrating how different environmental 
and socio-economic factors contribute to the probability of wildfire occurrence. Notably, the “Very 
High” risk category exhibits a direct relationship with altitude, reinforcing the role of topography in 
wildfire susceptibility. Following the application of the Multinomial Logistic Regression (MLR) algo-
rithm, a wildfire risk map was generated, as shown in Figure 16. The results indicate that areas with 
a “High” probability of wildfire are primarily located in the urban zone, characterized by lower alti-
tude, situated on the right side of the map. In contrast, zones classified as “Very High” risk are con-
centrated along the main inter-parish connection road between Pasa and San Fernando, suggesting 
higher exposure to wildfire hazards in this strategic area. Additionally, the highest-altitude zones of 
Ambato exhibit a “Very Low” wildfire risk, highlighting the role of altitude and climatic factors in 
reducing fire susceptibility. 

 
Figure 13. Household Waste Burning in Ambato. 
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Figure 14. Correlation Heatmap of Environmental and Socioeconomic Factors Influencing Wildfire Occurrence 
in Ambato. 

 
Figure 15. Regression Coefficients of the Multinomial Logistic Regression (MLR) Model. 

 
Figure 16. Wildfire Risk Map of Ambato Based on Multinomial Logistic Regression (MLR). 

Humidity Temperature Precipitation Wind Riv er Way s Altitude Value m2 Agricultural land

Very  High
High
Moderate
Low
Very  Low

1.5

1.0

0.5

0.0

-0.5

-1.0

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 February 2025 doi:10.20944/preprints202502.1689.v1

https://doi.org/10.20944/preprints202502.1689.v1


16 of 6 

3.6.2. Random Forest 
The Random Forest model was applied to assess the significance of various environmental and 

socio-economic variables in wildfire prediction. As illustrated in Figure 17, mean altitude and mean 
temperature emerged as the most influential factors, reinforcing the role of topography and climatic 
conditions in fire risk dynamics. The model achieved an accuracy of 0.776, enabling the generation of 
a detailed wildfire risk map for Ambato. The spatial distribution of wildfire susceptibility, shown in 
Figure 18, highlights that “Very Low” risk areas are predominantly located in high-altitude páramo 
ecosystems with sparse vegetation and minimal human activity. Meanwhile, “Low” to “Moderate” 
risk zones extend toward the urban periphery, correlating with transitional land-use areas. The high-
est risk levels, classified as “Very High,” are concentrated in the wildland-urban interface (WUI), 
where urban expansion, increased population density, and rising temperatures significantly amplify 
wildfire hazards. 

The Receiver Operating Characteristic (ROC) curve analysis, presented in Figure 19, was con-
ducted to evaluate the classification performance of the Random Forest model across different wild-
fire risk levels (Very Low, Low, Moderate, High, and Very High). The Area Under the Curve (AUC) 
values indicate strong classification capability, with all categories achieving an AUC score above 0.7. 
The best-performing classes include Very Low (0.93), High (0.88), and Very High (0.88), demonstrat-
ing the model’s accuracy in distinguishing these risk levels. Conversely, the “Low” risk class had the 
lowest AUC value (0.72), suggesting a degree of misclassification and potential confusion with adja-
cent risk categories. Refining the model—through improved feature selection, resampling tech-
niques, or hyperparameter tuning—could enhance the distinction between risk classes and further 
improve overall predictive performance [50,51,53,54]. 

3.6.3. XGBoost 
The XGBoost model achieved an accuracy of 0.765, demonstrating strong capabilities in wildfire 

risk classification. The generated risk distribution closely aligns with the results obtained from the 
Random Forest model. “Very Low” risk areas dominate most of Ambato’s landscape, particularly in 
high-altitude regions with sparse vegetation and minimal human influence. Conversely, “Very High” 
risk zones are concentrated near the city center, where urban expansion and proximity to combustible 
materials significantly increase wildfire vulnerability. Figure 20 presents the wildfire risk map gen-
erated using the XGBoost model, highlighting critical areas requiring targeted mitigation strategies. 

The ROC curve analysis further evaluates the performance of the XGBoost model across differ-
ent wildfire risk categories. The results indicate that “Very Low,” “High,” and “Very High” risk clas-
ses exhibit strong discrimination capabilities, with AUC values above 0.85. The “Moderate” category 
achieves an AUC of 0.88, demonstrating acceptable predictive performance. However, the “Low” 
category records the lowest precision (AUC = 0.75), suggesting greater difficulty in distinguishing 
low-risk wildfire occurrences from other classes. Figure 21 illustrates the ROC curve analysis, high-
lighting areas for potential model refinement. To improve classification accuracy, adjustments in fea-
ture selection and classification thresholds are recommended, particularly for enhancing the differ-
entiation of low-risk wildfire zones and reducing misclassification errors [43,48,50,53,54]. 

 
Figure 17. Variable Importance in the Random Forest Wildfire Prediction Model. 
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Figure 18. Wildfire Risk Map of Ambato Based on Random Forest Classification. 

 
Figure 19. ROC Curve Analysis for the Random Forest Model. 

4. Discussion 
The results illustrate the complex interplay between climatic, ecological, and human factors that 

drive wildfire risk in Ambato. It was demonstrated that climatic variables, such as temperature anom-
alies, prolonged droughts, and wind dynamics, exacerbate fuel desiccation and ignition susceptibil-
ity, while ecological factors, such as vegetation cover and altitude, further influence fire behaviour. 
Human activities, including waste burning and urban expansion, amplify these risks by introducing 
ignition sources into high-risk areas. The segmentation of the city into 1 km² polygons provides gran-
ular information, allowing for the identification of micro-scale risk patterns that align with other sim-
ilar studies [6,25,55]. 
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Figure 20. Wildfire Risk Map of Ambato Based on XGBoost Classification. 

 
Figure 21. ROC Curve Analysis for the XGBoost Model. 

The practical implications of this study highlight the need for targeted interventions at both local 
and regional levels. Moreover, thematic maps provide practical information for urban planning, par-
ticularly in regulating land use to prevent urban expansion into fire-prone zones. The integration of 
socioeconomic variables into risk assessments further underscores the importance of community-
based strategies, such as public awareness campaigns and training programs, to mitigate anthropo-
genic ignition sources. These findings align with international best practices and demonstrate the 
value of combining data-driven approaches with local knowledge to effectively address wildfire risks 
[6,56,57]. 

The findings from Ambato contribute to broader discussions on wildfire management in cli-
mate-vulnerable regions. The study employs a multi-layered methodology that integrates ecological, 
socioeconomic, and climatic assessments, offering a reproducible framework adaptable to other re-
gions facing similar hazards. This research highlights the need for proactive, data-driven interven-
tions by identifying the interconnected vulnerabilities of high-altitude ecosystems and urban-
wildland interfaces. The findings indicate the benefits of integrating local strategies, such as commu-
nity-based fire management and reforestation efforts, with international best practices, including con-
trolled burns and predictive modelling [5,6,11,58]. 
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The integration of thematic maps, predictive models, and socioeconomic data provides a solid 
framework for policy development. For example, land-use regulations based on spatial risk assess-
ments can limit urban expansion into high-risk areas, reducing the exposure of vulnerable popula-
tions. Community education and engagement strategies must complement these policies, fostering a 
culture of fire prevention and preparedness. The segmentation approach used in this study offers a 
scalable methodology that can be adapted to other Andean regions, supporting broader initiatives in 
wildfire management and climate resilience. The use of machine learning in this context further en-
hances the predictive capacity of risk models, providing policymakers with a dynamic tool to priori-
tize interventions and optimize resource allocation [5,6,11,17,18,58]. 

Three classification models were used in this research: Multinomial Logistic Regression (MLR), 
Random Forest, and XGBoost. MLR relies on the linear relationship between variables to determine 
the probability of belonging to a specific category, leveraging global patterns in the data. Random 
Forest and XGBoost employ decision trees that iteratively divide the dataset based on the most rele-
vant features, optimizing predictions by combining multiple trees and reducing overfitting. These 
approaches have been widely used in previous studies due to their ability to model complex relation-
ships and enhance classification accuracy [41,43,47–51,53,54]. 

The maps generated by these models show significant differences in the spatial distribution of 
wildfire risk. The MLR model indicates a higher prevalence of “High” risk areas on the right side of 
the map, with “Very Low” risk areas concentrated on the left. It identifies Ambatillo, Pasa, and San 
Fernando parishes as the highest-risk zones. Conversely, Random Forest and XGBoost classify “Very 
High” risk areas primarily in urban zones, where wildfires occur frequently but have lower spread 
potential. These models assign “Very Low” risk to most of the territory, reflecting a wider distribu-
tion of low-risk zones. 

Authorities responsible for territorial management must select the most suitable model based 
on their specific needs. The MLR-based map is particularly useful for analysing fire frequency in 
specific areas, as it provides a direct estimate of fire probability per polygon. Meanwhile, the Random 
Forest and XGBoost models may be more appropriate for strategic decision-making, offering a more 
detailed and conservative risk assessment that is crucial for policy formulation. Since all three models 
exhibit similar accuracy scores—76.04% (MLR), 77.6% (Random Forest), and 76.5% (XGBoost)—the 
choice of model should align with the specific objectives of wildfire risk assessment and mitigation 
strategies [13,25–27,59–61]. 

4.1. Mitigation Strategies and Policy Recommendations 
Investments in firefighting resources, including modern fire trucks, protective equipment, and 

strategically placed water reservoirs, are essential for improving emergency response capacity in ru-
ral and high-risk areas. Enhancing fire station networks in underserved regions would significantly 
reduce response times. Additionally, establishing a centralized command centre equipped with GIS 
tools and simulation software would improve strategic planning and resource allocation for wildfire 
management [5,8,29,62–65]. 

In addition, cooperation between national agencies and neighbouring municipalities can 
strengthen wildfire mitigation efforts. Shared resources, such as predictive modelling platforms and 
satellite monitoring systems, enhance data accuracy and provide a broader perspective on fire 
threats. Establishing regional training programs for emergency response teams and firefighters en-
sures uniform preparedness standards. Moreover, promoting ecological and economic sustainability 
through land management policies, such as buffer zone development and agroforestry initiatives, 
can further reduce wildfire risk [45,66,67]. 

The findings emphasize the necessity of stringent land-use regulations to mitigate wildfire risks 
in Ambato. Enhanced zoning policies should limit urban expansion into high-risk peripheral zones 
where combustible vegetation poses significant threats to residential areas. Key regulatory measures 
include the establishment of fire-resistant buffer zones and firebreaks between natural landscapes 
and urban developments, as well as strict agricultural restrictions that prohibit slash-and-burn prac-
tices near urban peripheries. Rigorous enforcement mechanisms should be implemented to ensure 
compliance, particularly in informal settlements experiencing rapid and unregulated growth 
[13,17,19,25,26,59–61]. The proposed mitigation strategies are summarized in Table 3, outlining key 
interventions in infrastructure, policy enforcement, community engagement, and resource allocation. 
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Public awareness campaigns must prioritize culturally accessible and demographically inclusive 
programs to reduce fire risks. These initiatives should focus on educating high-risk communities 
about safe waste disposal and fire prevention measures, integrating fire safety education into school 
curricula, and training local community leaders through workshops to foster shared responsibility in 
wildfire management. 

Table 3. Proposed Wildfire Mitigation Strategies and Implementation Measures. 

Public Policy Objective Specific Actions Expected Impact 

Enhance wildfire monitoring 
systems 

Strengthen early detection 
and response capacity. 

• Implement technological tools 
such as Geographic Information 

Systems (GIS). 
• Train communities in the use 

of technologies for incident 
reporting. 

Enhance wildfire monitoring 
systems 

Regulate solid waste 
management 

Reduce fuel accumulation in 
forested areas. 

• Establish accessible waste 
collection and recycling points. 
• Enforce penalties for 

uncontrolled waste burning. 

Regulate solid waste 
management 

Control invasive species Prevent rapid fire spread. 

• Implement reforestation 
programs with native species. 

• Promote grassland restoration 
with indigenous vegetation. 

Control invasive species 

Promote environmental 
education 

Encourage responsible 
practices to prevent 

wildfires. 

• Develop educational 
campaigns in vulnerable 

communities. 
• Integrate wildfire 

management topics into school 
curricula. 

Promote environmental 
education 

Regulate land use in the 
wildland-urban interface 

Minimize risks in areas near 
residential zones. 

• Establish firebreak zones free 
of combustible materials around 

urban areas. 

Reduced property losses in 
wildfires near urban 

communities. 
Foster interinstitutional 

cooperation 
Coordinate efforts among 

key stakeholders. 
• Create local risk management 

committees. 
Foster interinstitutional 

cooperation 

Strengthening emergency response capabilities requires structured training programs, includ-
ing controlled burns, evacuation drills, and specialized equipment handling for both firefighters and 
volunteers. The development of community fire brigades, supported by government initiatives, can 
help address infrastructure gaps in rural and underserved areas. Additionally, incorporating tradi-
tional land management practices into modern fire mitigation strategies ensures cultural relevance 
and enhances local engagement in wildfire risk reduction [17–19]. 

A holistic strategy combining regulatory, educational, and capacity-building initiatives is essen-
tial for sustainable wildfire management. Local governments must collaborate with national and in-
ternational agencies to develop frameworks that address both immediate threats and long-term re-
silience. Prioritizing ecosystem restoration and community participation establishes a sustainable 
model for wildfire management in the Andes. Furthermore, strengthening intersectoral collaboration 
ensures that wildfire mitigation strategies are scalable and adaptable, addressing both local vulnera-
bilities and regional challenges [17–19]. 

4.2. Study Limitations and Future Directions 
Despite the robustness of the analytical framework, certain limitations were identified through-

out the study. Data constraints, such as temporal and spatial inconsistencies in historical wildfire and 
climate records, restricted the ability to conduct high-resolution dynamic analyses at the local scale. 
Additionally, outdated vegetation maps may fail to capture recent land-use changes driven by urban 
expansion or agricultural activities, potentially affecting the accuracy of fuel load assessments. 

Methodologically, the accuracy of GIS-based spatial analyses and machine learning models 
heavily depends on the quality of input data and computational resources. While these models pro-
vide valuable predictive insights, they may not fully account for real-world complexities, such as 
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abrupt climatic shifts or unpredictable human behaviours. Furthermore, socioeconomic data ob-
tained from surveys and local reports may introduce bias, as self-reported information can un-
derrepresent the true vulnerabilities of certain communities. 

To address these challenges, future research should integrate high-resolution, real-time satellite 
and ground sensor data to improve spatial and temporal accuracy in wildfire risk assessments. Longi-
tudinal studies should be conducted to evaluate the long-term efficacy of mitigation strategies, partic-
ularly in high-risk zones. Additionally, expanding the range of socioeconomic indicators—such as 
household resilience capacity, access to emergency resources, and social adaptation strategies—will 
help reduce biases and enhance the understanding of human factors influencing wildfire susceptibility. 

5. Conclusions 
This study underscores the intricate interplay of climatic, ecological, and human factors exacer-

bating wildfire risks in Ambato. By segmenting the canton into 1 km² grid cells, micro-scale risk var-
iations were identified, emphasizing the critical role of localized drivers. Key findings reveal that 
prolonged droughts, elevated temperatures, and wind dynamics significantly increase vegetation 
desiccation and ignition susceptibility. Additionally, roads and unregulated land-use changes am-
plify risks, particularly in urbanizing peripheries where the wildland-urban interface (WUI) is ex-
panding. The integration of thematic maps, predictive models, and socio-economic data provides a 
robust framework for pinpointing high-risk zones and designing targeted interventions. These in-
sights enhance the understanding of wildfire dynamics in the Andean context while offering scalable 
solutions for fire-prone regions globally. 

This research contributes to wildfire management by integrating geospatial tools, machine learning 
models (Multinomial Logistic Regression, Random Forest, and XGBoost), and socio-economic assess-
ments. The classification of risk into actionable tiers (Very Low to Very High) enables precise resource 
allocation and evidence-based policy-making. Thematic maps visually delineate risk hotspots, guiding 
land-use planning to mitigate urban encroachment into fire-prone ecosystems. The methodological ap-
proach presents a scalable template adaptable to regions facing similar socio-environmental challenges, 
marking a significant advancement in data-driven wildfire mitigation strategies. 

Critically, this study highlights the necessity of embedding socio-economic factors—such as 
population density, community awareness, and cultural practices—into risk assessments. This holis-
tic approach aligns technical recommendations with local realities, ensuring that proposed strategies 
are both effective and contextually appropriate. Machine learning models and simulation tools fur-
ther enhance predictive accuracy, empowering policymakers to evaluate long-term intervention im-
pacts. These contributions bridge science, policy, and practice, establishing a sustainable wildfire 
management model for the Andes and beyond. 

Future research should expand the scope of analysis across the Andean corridor to account for 
diverse climatic, ecological, and socio-economic conditions. This regional approach would facilitate 
the identification of common vulnerabilities and coordinated, scalable strategies. Real-time monitor-
ing through satellite imagery, ground-based sensors, and IoT networks should be prioritized to track 
vegetation moisture, temperature anomalies, and ignition points, enabling proactive decision-mak-
ing and adaptive response protocols. Additionally, community-centred approaches must be strength-
ened by prioritizing local empowerment through education, training, and participatory governance, 
integrating traditional land management practices with scientific knowledge to ensure culturally rel-
evant risk reduction. Finally, intersectoral collaboration should be reinforced, fostering partnerships 
between local governments, national agencies, and international organizations to align local needs 
with global best practices. Addressing these priorities will establish a comprehensive and adaptive 
wildfire management framework in the Andes—one that balances ecological sustainability with so-
cio-economic resilience. 
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