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Abstract

Object tracking remains a central problem in computer vision with broad applications in surveillance,
autonomous driving, augmented reality, and human–computer interaction. This paper presents a com-
prehensive survey that unifies the progression of tracking methodologies, from handcrafted and prob-
abilistic models to deep learning paradigms and recent advances with large vision–language and foun-
dation models. We categorize tracking into Single Object Tracking (SOT), Multi-Object Tracking (MOT),
and Long-Term Tracking (LTT), systematically reviewing CNN, Siamese, transformer, and hybrid-
based approaches alongside detection-guided, detection-integrated, and re-identification–aware
pipelines. Special emphasis is placed on emerging trends, including open-vocabulary tracking, prompt-
able models, and multimodal fusion across RGB, depth, thermal, LiDAR, and event-based inputs. We
highlight benchmark datasets, evaluation protocols, and taxonomy refinements that reveal conver-
gence toward unified and generalizable tracking systems. Finally, we discuss open challenges—such
as occlusion, scalability, identity consistency, and cross-dataset transferability—and outline future
directions in self-supervised learning, adapter tuning, and efficient foundation model adaptation. This
survey aims to serve as a reference for both academic researchers and practitioners, bridging classical
paradigms with the rapidly evolving landscape of foundation- and vision-language–driven tracking.

Keywords: object tracking; single object tracking (SOT); multi-object tracking (MOT); long-term
tracking (LTT); vision–language models; multimodal fusion; foundation models

1. Introduction
Object tracking is a core problem in computer vision that aims to localize one or more objects

over time in a sequence of video frames. It plays a vital role in a wide array of real-world applications,
including video surveillance, autonomous driving, robotics, augmented reality, human-computer
interaction, and sports analytics. Tracking involves not only detecting objects in each frame but
also maintaining consistent identities despite challenges such as occlusion, motion blur, illumination
variation, and object deformation.

To structure this evolving field, this survey categorizes tracking into three major settings: Single
Object Tracking (SOT), where a single target is tracked through a video; Multi-Object Tracking (MOT),
which involves identifying and maintaining multiple object identities; and Long-Term Tracking (LTT),
where the tracker must re-detect the object after occlusion or disappearance. Each setting poses unique
challenges and inspires different methodological choices.

Over the years, object tracking methods have progressed from traditional algorithms based on
handcrafted features and probabilistic models to modern deep learning-based frameworks. Recent ad-
vancements include Siamese-based trackers, transformer architectures, and end-to-end joint detection
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and tracking models. Additionally, the rise of vision-language models and open-vocabulary trackers
marks a new direction toward more flexible and generalizable tracking systems.

To provide a comprehensive overview, this survey is organized into several key sections, each
focused on a different axis of the object tracking landscape: foundational problem settings and
taxonomy, traditional methods, deep learning approaches, multi-object tracking architectures, long-
term tracking, benchmarks and metrics, and finally, emerging trends such as foundation models and
multimodal tracking.

Historical Foundations Single Object Tracking (SOT) Multi-Object Tracking (MOT) Long-Term Tracking (LTT) Emerging Trends & Foundation Models

Object Tracking Paradigms

Correlation-based trackers 
(MOSSE, KCF)

Motion models 
(Kalman filter, Particle filter)

Template & feature-based 
(MeanShift, CAMShift, SIFT,

SURF)

CNN-based trackers
(MDNet, GOTURN)

Siamese-based trackers
 (SiamFC, SiamRPN++,

SiamMask, Ocean)

Transformer-based trackers
 (TransT, STARK, ToMP)

Hybrid trackers
 (ATOM, DiMP, SiamRCNN,

MixFormer)

Detection-guided association
(SORT, DeepSORT, ByteTrack, 

LG-Track, Graph-based)

Modular pipelines
(TLD)

Occlusion-aware re-matching
(LTTrack)

Memory-augmented models
(MambaLCT)

Supervised trackers
(SiamRPN++, STARK, KeepTrack, DeAOT)

Self-supervised trackers
 (SimTrack, DINOTrack, TLPFormer, ProTrack)

Foundation-adapted trackers
(OSTrack, PromptTrack, EfficientTAM, FAMTrack)

Multimodal trackers
(RGB-D, LiDAR, Thermal, Event-based, GSOT3D,

ThermalTrack)

Vision-Language Model trackers
(CLDTracker, PromptTrack, Track Anything)

Instruction-tuned trackers
 (GPT-4V, Track Anything, PromptTrack)

Prompt-tuned trackers
(PromptTrack, FAMTrack, SAM-PD)

Optical flow-based trackers
 (Lucas–Kanade, flow networks)

Detection-integrated models
(FairMOT, CenterTrack,

QDTrack, JDTHM)

Transformer-based MOT
(TrackFormer, TransTrack, MeMOTR, 

Co-MOT)

Multi-modal & 3D MOT
(RGB-D, LiDAR-based, Cross-sensor

fusion)

ReID-aware models
 (QDTrack, JDE, TransReID)

Siamese re-detection
 (DaSiamRPN, SiamRPN++)

Figure 1. Taxonomy of object tracking paradigms, spanning historical foundations, single-object tracking (SOT),
multi-object tracking (MOT), long-term tracking (LTT), and emerging trends leveraging foundation and vision-
language models. Each branch highlights representative methods and architectures across the evolution of
tracking research

This survey aims to serve as a unified reference for researchers and practitioners in the object
tracking community by:

• Presenting a structured taxonomy of object tracking paradigms.
• Reviewing traditional tracking methods such as correlation filters, optical flow, and probabilistic

filters.
• Detailing deep learning-based methods, including CNN-based, Siamese-based, and transformer-

based trackers.
• Highlighting key advances in multi-object tracking, with a focus on data association, identity

preservation, and joint detection-tracking architectures.
• Discussing recent developments in open-vocabulary and multimodal tracking using foundation

models.
• Summarizing widely-used datasets and

2. Problem Formulation and Taxonomy
Object tracking is a fundamental task in computer vision that involves estimating the state (e.g.,

position, scale, and shape) of a target object as it moves through a video sequence. The primary
objective is to maintain a continuous and accurate trajectory of the object over time, despite challenges
such as occlusions, abrupt motion, background clutter, and varying illumination or viewpoint con-
ditions. Tracking algorithms must be robust to appearance variations, efficient enough for real-time
performance, and capable of distinguishing the target from distractors in complex environments.

Let {It}T
t=1 denote a sequence of T video frames. The goal is to predict a set of spatial coordinates

or bounding boxes Bt in each frame It that correspond to the same physical object across time. More
formally, the tracker estimates the evolving object states St using the current and past observations,
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possibly incorporating prior knowledge such as motion patterns, category information, or contextual
cues.

Contemporary tracking systems typically involve several key components:

• Feature Extraction: Transforming raw pixels into semantically meaningful embeddings using
deep neural networks, such as convolutional or transformer-based backbones.

• Motion Modeling: Capturing temporal dynamics using techniques like optical flow, Kalman
filters, or learned motion predictors to estimate object displacement across frames.

• Data Association: Linking estimated object states across time by matching detections or predic-
tions using appearance similarity, spatial proximity, or temporal consistency.

• Model Update: Adapting the tracking model online to accommodate changes in object appear-
ance, scale, pose, and environmental context.

While the core objective remains consistent, tracking formulations differ based on the number of
objects tracked, the temporal length of tracking, and the constraints on initialization or supervision.
These scenarios are explored in detail in the

3. Problem Formulation and Taxonomy
Object tracking is a fundamental task in computer vision that involves estimating the state (e.g.,

position, scale, and shape) of a target object as it moves through a video sequence. The primary
objective is to maintain a continuous and accurate trajectory of the object over time, despite challenges
such as occlusions, abrupt motion, background clutter, and varying illumination or viewpoint con-
ditions. Tracking algorithms must be robust to appearance variations, efficient enough for real-time
performance, and capable of distinguishing the target from distractors in complex environments.

Let {It}T
t=1 denote a sequence of T video frames. The goal is to predict a set of spatial coordinates

or bounding boxes Bt in each frame It that correspond to the same physical object across time. More
formally, the tracker estimates the evolving object states St using the current and past observations,
possibly incorporating prior knowledge such as motion patterns, category information, or contextual
cues.

Contemporary tracking systems typically involve several key components:

• Feature Extraction: Transforming raw pixels into semantically meaningful embeddings using
deep neural networks, such as convolutional or transformer-based backbones.

• Motion Modeling: Capturing temporal dynamics using techniques like optical flow, Kalman
filters, or learned motion predictors to estimate object displacement across frames.

• Data Association: Linking estimated object states across time by matching detections or predic-
tions using appearance similarity, spatial proximity, or temporal consistency.

• Model Update: Adapting the tracking model online to accommodate changes in object appear-
ance, scale, pose, and environmental context.

While the core objective remains consistent, tracking formulations differ based on the number of
objects tracked, the temporal length of tracking, and the constraints on initialization or supervision.
These scenarios are explored in detail in the

4. Single Object Tracking (SOT)
Single Object Tracking (SOT) involves estimating the trajectory of a target object across a video

sequence, given its initial bounding box in the first frame [1]. Unlike multi-object tracking, SOT
concentrates on localizing a single instance without requiring class labels or re-identification. The
task is challenging because the target may undergo occlusion, scale variation, rotation, deformation,
or illumination change. While traditional methods relied on handcrafted features, correlation filters,
and template matching [2,3], modern deep learning-based trackers represent the task as a learnable
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similarity function between the initial target template z = I1(B1) and candidate regions xt(r) in the
search frame It:

Bt = arg max
r∈Rt

fθ(z, xt(r)),

where Rt denotes the set of candidate regions and fθ is a learned similarity function parameterized by
neural networks.

4.1. CNN-Based Trackers

The first wave of deep trackers used convolutional networks to replace handcrafted features
with learned representations. MDNet cast tracking as a binary classification task, using shared
convolutional layers trained across multiple domains and domain-specific fully connected layers
updated online [4]. This enabled robust discrimination under occlusion but suffered from slow
inference due to repeated online fine-tuning. GOTURN instead approached tracking as direct bounding
box regression, predicting target coordinates in a feed-forward manner without online updates [5].
Although highly efficient, it lacked adaptation to appearance change. Hybrid CNN–detector trackers,
inspired by the TLD framework, incorporated global re-detection modules to recover after failures,
though they remained sensitive to drift when noisy updates occurred [6].

4.2. Siamese-Based Trackers

Siamese networks marked a major shift by learning template–search similarity through shared fea-
ture embeddings. SiamFC introduced the fully convolutional Siamese design, where cross-correlation
between template and search features produced a response map [7]. While simple and real-time, it
lacked scale adaptability. SiamRPN integrated a region proposal network to predict both classification
scores and bounding box offsets, enabling more precise localization [8]. Its successor, SiamRPN++, ex-
tended this with deeper backbones and spatial-aware sampling, which improved robustness at the cost
of increased computation [9]. Later extensions such as SiamMask and Ocean expanded the paradigm
to include segmentation and attention-based matching for more fine-grained target modeling [10,11].

4.3. Transformer-Based Trackers

Transformers brought global attention and long-range reasoning to SOT. TransT removed reliance
on anchors and region proposals by employing cross-attention between template and search regions,
learning discriminative correlations directly [12]. STARK extended this approach by treating tracking
as sequence prediction, using spatio-temporal transformers to model historical and current features
jointly [13]. Other transformer-based designs such as ToMP adapted generic vision transformer
backbones to tracking, tokenizing frames into patches and applying dense attention for fine-grained
matching [14]. These methods demonstrated the strength of attention-based models in handling clutter,
occlusion, and appearance variability, though often at higher computational cost.

4.4. Hybrid Tracking Architectures

Hybrid trackers combine the strengths of convolutional, Siamese, and transformer paradigms.
ATOM separated feature extraction from bounding box estimation, using a ResNet backbone and a
target-specific regression head optimized online [15]. DiMP improved upon this by introducing a
meta-learned optimization module for faster and more robust online adaptation [16]. SiamRCNN
bridged Siamese matching and region-based detection, handling scale and aspect ratio variation
more flexibly [17]. More recent designs such as SiamBAN and MixFormer unified classification and
regression into joint prediction heads, with MixFormer coupling transformers and convolutional
backbones to achieve strong performance with fewer parameters [18,19]. These approaches illustrate
the ongoing convergence of architectural ideas to achieve a balance between accuracy, adaptability,
and efficiency.

Single Object Tracking has progressed from CNN classifiers and regressors to efficient Siamese
similarity learning, transformer-driven architectures, and hybrid systems. The central theme across
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these methods is balancing real-time performance with robustness to appearance change and occlusion,
with unified frameworks offering a promising path forward. Table 1 summarizes prominent Single
Object Tracking (SOT) models, highlighting their architectural categories, backbone designs, key
strengths, limitations, and benchmark performance.

Table 1. Single Object Tracking (SOT) models categorization.

Method Category Backbone Key Strength Key Weakness Performance
(Dataset/Metric)

MDNet [4] CNN Conv + FC
(multi-domain)

Learns domain-invariant representations
through multi-domain training; robust
under challenging conditions such as
heavy occlusion and background clutter;
demonstrates strong generalization to
unseen objects.

Computationally expensive due to
frequent online updates; suffers from low
inference speed, limiting real-time
usability; performance degrades in long
sequences with rapid appearance
variation.

AUC: 0.678
(OTB100)

GOTURN [5] CNN Dual-input CNN
regressor

Extremely fast (>100 FPS), enabling
real-time deployment; simple fully offline
pipeline; no online fine-tuning needed;
efficient feed-forward regression.

Lacks adaptation to target appearance
changes; brittle under occlusion,
deformation, and scale variation;
struggles with long-term robustness in
cluttered environments.

AUC: 0.46
(OTB100)

TLD-CNN [6] CNN CNN + online
learner

Combines detection and tracking,
allowing recovery from failures; online
learning enables adaptation to dynamic
targets; can re-detect objects after drift or
loss.

Online updates prone to noise
accumulation, leading to drift; high
complexity compared to simpler Siamese
models; unstable in highly cluttered or
fast-moving scenarios.

Precision: ∼0.56
(OTB100)

SiamFC [7] Siamese Shared CNN
encoder

Lightweight and efficient design; achieves
real-time operation ( 86 FPS); end-to-end
similarity learning via cross-correlation;
robust against moderate distractors.

Relies on fixed template without update,
limiting adaptability; weak handling of
scale and aspect ratio changes; fails under
long occlusion or drastic appearance
variation.

AUC: 0.582
(OTB100)

SiamRPN [8] Siamese Siamese CNN +
RPN

Incorporates region proposal network
(RPN) for accurate localization; handles
scale variation better than SiamFC;
improved robustness for short- to
mid-term tracking.

Strong dependency on anchor design
introduces rigidity; limited adaptability
to unseen object classes; inference cost
increases compared to SiamFC.

EAO: 0.41
(VOT2018)

SiamRPN++ [9] Siamese ResNet-50
Siamese

Leverages deep residual features for
strong representation; improved receptive
fields and robustness; achieves
state-of-the-art accuracy on multiple
benchmarks.

Computationally heavier than earlier
Siamese trackers; constrained by
anchor-based formulation; reduced
efficiency in embedded or
resource-limited systems.

AUC: 0.696
(OTB100)

TransT [12] Transformer Cross/self-
attention
modules

Exploits global context through self- and
cross-attention; anchor-free design avoids
hand-crafted priors; generalizes well to
diverse object categories.

High computational overhead during
inference; requires large-scale pretraining
for stability; slower than Siamese models
on resource-limited devices.

AUC: 0.649
(LaSOT)

STARK [13] Transformer Encoder–decoder
Transformer

Models temporal dependencies explicitly
with spatio-temporal attention; stable
under jitter, occlusion, and appearance
changes; strong bounding box regression
accuracy.

Memory- and compute-intensive;
performance sensitive to sequence design;
not suitable for lightweight or mobile
scenarios.

AUC: 0.678
(LaSOT)

ToMP [14] Transformer Transformer +
predictor

Performs dense feature matching with
strong robustness to appearance changes;
eliminates need for frequent online
updates; flexible prediction capability.

Dense patch-token representation
increases latency; higher complexity
hinders real-time performance;
resource-demanding for large-scale
deployment.

AUC: 0.70
(TrackingNet)

TLD [20] Hybrid Optical flow +
detector

First to propose
tracking–learning–detection loop; global
re-detection enables recovery from
failures; adaptive appearance models for
long-term use.

Online updates prone to drift;
handcrafted features limit robustness;
unstable in rapidly changing or dynamic
scenes.

AUC: 0.53
(OTB100)

ATOM [15] Hybrid ResNet +
regressor head

Accurate bounding box estimation via
dedicated regression head; robust under
challenging appearance changes; strong
baseline for hybrid trackers.

Requires per-sequence optimization
online; prevents real-time deployment;
increased latency compared to
lightweight models.

AUC: 0.669
(LaSOT)

DiMP [16] Hybrid ResNet +
meta-learner

Discriminative classification combined
with meta-learned updates; adapts
quickly to new targets; competitive
accuracy on long sequences.

Still requires online optimization;
additional training complexity; slower
compared to pure Siamese architectures.

AUC: 0.678
(LaSOT)

SiamRCNN [17] Hybrid Siamese
backbone +

R-CNN

Achieves high accuracy under
challenging conditions; integrates
detection for robust target estimation;
flexible handling of aspect ratio and scale.

Computationally heavy two-stage design;
significantly slower inference; complex
pipeline compared to single-stage
trackers.

AUC: 0.64
(LaSOT)

SiamBAN [18] Hybrid Siamese +
unified head

Anchor-free classification and regression
head improves flexibility; balanced
trade-off between accuracy and efficiency;
robust across diverse conditions.

Still limited by fixed template; lacks
strong recovery under long occlusion; less
competitive for long-term tracking.

AUC: 0.63
(LaSOT)

MixFormer [19] Hybrid Transformer
encoder + joint

head

Unified CNN+Transformer architecture
with fewer parameters; competitive
performance across datasets; strong
robustness to appearance variation.

Requires extensive pretraining to achieve
best performance; heavier than
lightweight Siamese designs; reduced
efficiency in embedded scenarios.

AUC: 0.704
(LaSOT)
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5. Multi-Object Tracking (MOT)
Multi-Object Tracking (MOT) focuses on the task of simultaneously localizing and maintaining

consistent identities for multiple objects across video frames [21]. Formally, given a set of object
detections at each time step Dt = {d1

t , d2
t , . . . , dnt

t }, the goal is to estimate a set of trajectories T =

{τ1, τ2, . . . , τM} such that each trajectory τi = {(di
t, t)}te

t=ts
corresponds to the same real-world object.

A key challenge in MOT is the data association problem - correctly linking detections across
frames despite occlusions, abrupt motion, camera shifts, and the presence of visually similar objects.
Modern MOT systems often adopt a tracking-by-detection paradigm [22], which separates object
detection and temporal association into modular stages. Although this pipeline simplifies learning and
improves flexibility, it may suffer from detector errors and delayed identity recovery after occlusion.

Over the past decade, MOT research has shifted from classical filtering and matching algorithms
to deep learning-based approaches that integrate appearance models, motion prediction, and re-
identification features. Public benchmarks such as MOT17 [23] and DanceTrack [24] have driven
progress, enabling fair comparison across identity preservation, detection recall, and trajectory frag-
mentation.

Despite progress, MOT remains a fundamentally ambiguous problem in crowded scenes and
long-term tracking due to ID switches, partial occlusions, and class-agnostic interactions. This has
motivated ongoing research into joint detection-tracking models, temporal attention mechanisms, and
multi-modal inputs such as LiDAR and radar in autonomous driving.

5.1. Detection-Guided Association Models

Detection-guided tracking frameworks follow a decoupled pipeline wherein objects are first
detected in each frame and then associated across time to form trajectories. This paradigm remains
dominant due to its modularity and ability to leverage advances in object detection. Formally, let
Dt = {d1

t , d2
t , . . . , dNt

t } be the set of detections at frame t, and Tt−1 be the set of active tracks. The goal
is to associate Dt to Tt−1 via an assignment matrix A minimizing total cost:

A∗ = arg min
A

∑
(i,j)∈A

Cost(di
t, τ

j
t−1),

where the cost integrates appearance, motion (e.g., Kalman prediction), and geometric similarity.
The design choice of how to compute this cost has led to several families of approaches.

5.1.1. SORT Extensions: From Motion-Only to ReID-Aware

Early MOT systems such as SORT relied purely on motion cues and Kalman filtering, yielding effi-
ciency but poor identity consistency. DeepSORT [25] extended this baseline by adding deep appearance
embeddings trained for person re-identification (ReID), significantly reducing ID switches. Strong-
SORT [26] further incorporated Kalman updates and outlier suppression, showing how stabilizing
identity propagation improves robustness in noisy scenes. Introducing ReID embeddings transformed
MOT from motion-driven matching into a vision-guided task, improving occlusion handling at the
cost of higher compute.

5.1.2. Detector-Driven Propagation

Instead of explicit association, some methods reuse the detector itself to propagate trajectories.
Tracktor++ [27] leverages the regression head of the detector to move bounding boxes across frames,
using classification scores to terminate occluded tracks. Detector-driven propagation simplifies the
pipeline but is limited by the detector’s recall and struggles under long occlusion or multi-class
tracking.
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Figure 2. Overview of the Tracktor pipeline for multi-object tracking [27]. Regression aligns bounding boxes from
frame t−1 to t, while classification scores determine termination. New detections are introduced when overlaps
are low.

5.1.3. Recall-Boosting Trackers

Another line of work focuses on reducing false negatives by leveraging low-confidence detections.
ByteTrack [28] retains these candidates and applies a two-stage association, improving robustness in
crowded scenes. MR2-ByteTrack [29] adapts this principle for embedded platforms using resolution-
aware matching to preserve accuracy under resource constraints.Recall-boosting methods highlight the
precision–recall trade-off, demonstrating that retaining noisy detections can improve identity stability
if handled with careful association.

5.1.4. Confidence-Aware Association

LG-Track [30] distinguishes between classification and localization confidence, improving associa-
tion by retaining well-localized but low-score detections. Deep LG-Track [31] enhances this approach
with adaptive Kalman filtering and confidence-aware embedding updates, reducing ID switches in
occlusion-heavy scenarios.Decoupling localization from classification confidence provides a more
nuanced reliability signal for robust identity matching.

5.1.5. Graph-Based and Group-Aware Association

Recent methods leverage graph structures for long-range temporal reasoning. RTAT [32] intro-
duces a two-stage association with a graph neural network that refines tracklets via message passing.
Similarly, Wang et al. [33] cluster object candidates with similar motion patterns into groups before ap-
plying bipartite association, enforcing local consistency.Graph-based association represents a paradigm
shift, moving beyond pairwise similarity toward structured reasoning over sets of detections and
tracklets.

5.2. Detection-Integrated Tracking Models

End-to-end integrated architectures aim to unify detection and association in a single network,
reducing the error compounding that occurs in modular pipelines and enabling shared representations
across tasks. Given a frame sequence {It}T

t=1, a network fθ directly predicts detections and identities
at each timestep:

{b̂i
t, ŷi

t}
Nt
i=1 = fθ(It),

where Nt is the number of detected objects in frame t. Current work in this area can be grouped into
several design paradigms.
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5.2.1. Dual-head networks

FairMOT [34] employs a shared backbone with two parallel heads, one for object localization
and the other for appearance embeddings. This balances the two objectives and avoids the trade-offs
often observed in cascaded pipelines. Speed-FairMOT [35] modifies the backbone with lightweight
components such as ShuffleNetV2 and adaptive feature fusion, achieving approximately 40% higher
throughput while retaining competitive accuracy. These dual-head models illustrate how detection
and identity features can coexist in the same representation space to improve both efficiency and
robustness.

5.2.2. Query-modular designs

TBDQ-Net [36] separates detection and association into distinct components, freezing a strong
detector while training a lightweight association module. The query mechanism integrates con-
tent–position alignment and interaction blocks to maintain identity consistency. This modular structure
shows how trackers can inherit improvements from new detectors while learning only the association
step, lowering training costs.

5.2.3. Higher-order graph formulations

JDTHM [37] integrates detection and tracking through hypergraph matching. Rather than pair-
wise association, the model optimizes over higher-order relations, learning hyperedges that capture
interactions among multiple detections and tracklets simultaneously. This shift toward structured
reasoning helps improve identity preservation in dense or crowded scenes.

5.2.4. Keypoint-driven propagation

CenterTrack [38] extends CenterNet to predict object centers, motion offsets, and bounding boxes
jointly. Identities are implicitly propagated through continuity of centers:

ĉi
t = arg max

(x,y)
Heatmap(x, y) + ∆t(x, y),

where ∆t encodes motion offsets relative to prior locations. This approach reduces the reliance on
appearance embeddings and enables real-time inference, though it degrades in heavily occluded
scenarios where spatial continuity is disrupted.

5.2.5. Quasi-dense association

QDTrack [39] learns identity-aware embeddings by exploiting quasi-dense matching between
temporally adjacent frames. The training signal is amplified by using abundant frame pairs, reducing
reliance on manual identity labels and external ReID modules. Although computationally heavier at
inference due to dense matching, the method is particularly effective in scenes with frequent occlusion
and visual ambiguity.

Detection-integrated approaches illustrate a spectrum of designs: dual-head networks that balance
detection and identity cues, modular systems that decouple detection from association, hypergraph-
based methods that encode higher-order relations, keypoint-centered frameworks that propagate
identity through spatial continuity, and quasi-dense association that leverages large amounts of
unlabeled data. Collectively, they demonstrate how moving beyond modular pipelines allows richer
identity modeling, though trade-offs remain between computational efficiency and long-term identity
robustness.

5.3. Transformer-Based MOT Architectures

Transformer-based models have emerged as powerful tools for Multi-Object Tracking (MOT) by
treating the problem as sequence modeling with queries and attention. This shift eliminates the need
for hand-crafted affinity measures, allowing joint optimization of detection and identity association in
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an end-to-end framework. The core idea is that attention mechanisms can retain identity information
across time, improving robustness in complex and crowded scenes. Current approaches can be
organized into four main categories.

5.3.1. Query-based frameworks

TrackFormer [40] proposes a unified query-driven architecture where detection queries are used
to discover new objects and track queries maintain identities across frames. By reusing track queries
from frame t−1 as input to frame t, the model retains identity continuity without motion models
or handcrafted associations. This autoregressive mechanism has shown strong performance on
benchmarks such as MOT17 and MOT20, demonstrating that query propagation enables stable long-
term identity retention.

Figure 3. (Left) TrackFormer [41] introduces autoregressive queries to model detection and identity jointly. (Right)
The Temporal Interaction Module in MeMOTR [42], which uses memory-based attention and gated updates for
long-term identity propagation.

5.3.2. Cross-frame aligned attention

TransTrack [43] aligns object features from the previous frame to guide association in the current
frame, injecting appearance and motion priors into query embeddings. ABQ-Track [44] extends this
idea by introducing anchor-based queries that encode object positions directly, improving spatial
alignment and reducing ID switches. While this enhances identity consistency in cluttered scenes,
reliance on anchors can add rigidity and limit flexibility in dynamic environments.

5.3.3. Memory-augmented models

MeMOTR [45] incorporates a memory bank that stores historical features and combines them
with the current frame’s encoded representations. Queries are updated by attending to both recent
and stored features:

Qt = Attn(Qt−1, Mhist ∪ Mt). (1)

This design improves long-range tracking and facilitates recovery after occlusion, particularly effective
in datasets like DanceTrack where identities frequently disappear and reappear. By explicitly modeling
temporal continuity through memory, these methods capture richer spatiotemporal dependencies.

5.3.4. Conflict-resolution attention

Recent work has explored replacing classical matching mechanisms with fully learnable atten-
tion. Co-MOT [46] trains with a coopetition-aware query strategy that balances object discovery with
identity consistency, while TADN [47] removes Hungarian matching in favor of a transformer-based
assignment decoder. These models show that conflict resolution in data association can be learned
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directly, offering more flexibility than fixed optimization heuristics.

Transformer-based MOT represents a paradigm shift: query propagation enables stable identity
retention, spatially aligned attention improves consistency, memory augmentation provides robustness
under occlusion, and learnable conflict resolution replaces rigid matching algorithms. Collectively,
these advances highlight how attention-based sequence modeling is reshaping multi-object tracking.

5.4. Multi-Modal and 3D Multi-Object Tracking

While traditional Multi-Object Tracking (MOT) systems typically rely on RGB imagery, many
real-world applications—such as autonomous driving, robotics, and surveillance—demand robustness
to occlusion, clutter, and long-range perception. To meet these requirements, modern approaches
increasingly incorporate depth sensors, LiDAR, radar, and inertial measurements. Multi-modal inputs
provide complementary cues that enhance localization accuracy and improve identity association
under challenging conditions. Three main families of approaches can be distinguished.

5.4.1. RGB-D tracking

Depth information supplies geometric cues that support scale estimation and foreground–background
separation. Early RGB-D trackers such as DS-KCF [48] and OTR [49] integrated color and depth chan-
nels in correlation filters to adapt templates dynamically and suppress distractors. These classical
methods, however, suffered when depth data was sparse or noisy in outdoor settings. More recent
deep RGB-D approaches [50] adopt gated attention and confidence-aware fusion to combine modalities
more effectively:

ffused = Fusion(ϕRGB(It), ϕD(Dt)), (2)

where It and Dt represent RGB and depth frames. By learning the reliability of depth cues spatially,
these networks improve accuracy, though challenges remain in calibration, real-time speed, and
generalization beyond controlled environments.

5.4.2. LiDAR-based 3D MOT

LiDAR sensors yield 3D point clouds that capture structure with high spatial accuracy but little
appearance detail. Tracking in this setting involves associating objects directly in world coordinates,
often through Bird’s Eye View (BEV) representations. AB3DMOT [51] combines Kalman filtering
with 3D IoU constraints to match bounding boxes across frames. More advanced methods such as
CenterPoint [52] incorporate velocity priors to improve continuity, while transformer-based UVTR-
MOT [53] encodes spatiotemporal dependencies via voxelized representations. These methods achieve
strong results on large-scale datasets like nuScenes [54] and Waymo [55], but the computational burden
and sensitivity to sparse points in distant regions remain open issues.

5.4.3. Cross-sensor fusion

Sensor fusion strategies aim to combine the strengths of different modalities: RGB contributes
appearance, LiDAR provides geometry, radar captures velocity, and IMU aids in ego-motion compen-
sation. Fusion can occur at multiple levels:

• Early fusion: Raw sensor data is concatenated prior to feature extraction [56], though misalign-
ments can degrade results.

• Late fusion: Predictions from individual modalities are merged [57], which is flexible but prevents
deep cross-modal reasoning.

• Deep fusion: Learned attention modules integrate features at intermediate layers [58], capturing
cross-modal correlations:

ft = CrossAttn( f LiDAR
t , f RGB

t ) + f Radar
t . (3)
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Recent work has explored self-supervised fusion [59], enforcing consistency without requiring exhaus-
tive labels. Despite progress, synchronization across sensors, heterogeneous resolution, and calibration
drift continue to pose significant deployment challenges.

Multi-modal and 3D MOT has expanded tracking beyond RGB video, introducing depth for scale,
LiDAR for structure, radar for motion, and IMU for stability. While RGB-D models address indoor
ambiguity, LiDAR-based approaches dominate autonomous driving benchmarks, and cross-sensor
fusion explores how to combine complementary cues effectively. The main trade-off lies between
richer sensing and the practical constraints of synchronization, computation, and scalability.
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Table 2. Multi-Object Tracking (MOT) methods categorized by architecture, backbone, strengths, weaknesses, and
performance (dataset + metric). Performance column shows metric along with the dataset it was reported on.

Method Category Backbone Key Strength Key Weakness Performance
(Dataset/Metric)

DeepSORT [25] Detection-
Guided

CNN ReID +
Kalman

Handles occlusion by integrating
appearance features with motion; modular
and easy to integrate into existing
detectors; widely used baseline for MOT
pipelines.

Relies heavily on detector quality; identity
switches when embeddings drift; weak
under scale variation and crowded scenes.

MOTA: 61.4
(MOT17)

StrongSORT [26] Detection-
Guided

Kalman +
suppression +

CNN ReID

Enhances DeepSORT with outlier
suppression; improves ID stability in
cluttered environments; handles partial
occlusion better; open-source and fast in
practice.

Still experiences residual ID switches in
heavy occlusion; sensitive to noisy
embeddings; performance tied to detector
backbone.

IDF1: 72.5
(MOT17)

Tracktor++ [27] Detection-
Guided

Detector
regression head

Simple and efficient design; reuses
detector regression to propagate boxes;
avoids explicit association; competitive
with minimal engineering.

Limited by detector recall; weak under
occlusion and motion blur; less effective
for multi-class tracking.

MOTA: 53.5
(MOT17)

ByteTrack [28] Detection-
Guided

Association +
simple motion

Strong recall by keeping low-confidence
detections; robust in crowded scenes;
balances precision and recall effectively;
competitive real-time speed.

Does not leverage embeddings; prone to
ID drift under occlusion; struggles with
long-term re-identification.

HOTA: 63.1
(MOT20)

MR2-ByteTrack [29] Detection-
Guided

Resolution-
aware

association stack

Lightweight and embedded-friendly;
resilient under low-resolution and noisy
detections; stable on edge devices with
limited resources.

Accuracy drops significantly during long
occlusions; limited generalization across
diverse benchmarks.

MOTA: 60.2
(MOT20)

LG-Track [30] Detection-
Guided

Local-Global
Association +

CNN ReID

Combines local motion with global
context; reduces ID switches by balancing
short-term and long-term cues;
lightweight design with solid accuracy.

Struggles under dense occlusion;
performance sensitive to hyperparameter
tuning; still tied to detector quality.

MOTA: 66.2
(MOT17)

Deep LG-Track [31] Detection-
Guided

Deep
Local-Global

Features +
Kalman

Extends LG-Track with deep hierarchical
features; handles long-term occlusion
better; improved embedding robustness;
achieves state-of-the-art stability.

Computationally heavier than LG-Track;
requires careful training data; scalability
limited in real-time scenarios.

IDF1: 74.1
(MOT20)

RTAT [32] Detection-
Guided

Two-Stage
Association

(Motion + ReID)

Robust two-stage association that first
filters candidates by motion, then refines
with appearance; improves robustness
under occlusion and noisy detections.

Extra association stage increases latency;
dependent on motion modeling
assumptions; weaker in long occlusions.

MOTA: 69.8
(MOT17)

Wu et al. [33] Detection-
Guided

Graph Matching
+ Appearance
Embeddings

Uses graph-based association for global
consistency; better at maintaining IDs
across fragmented detections; reduces
error accumulation.

Sensitive to graph construction errors;
scalability issues on large scenes; requires
strong embeddings.

IDF1: 70.6
(MOT17)

FairMOT [34] Detection-
Integrated

Shared CNN
with detection +

ReID heads

Jointly optimizes detection and
embeddings; avoids trade-offs between
cascaded pipelines; balanced accuracy and
efficiency; strong ID preservation.

Moderate speed compared to pure
detection trackers; performance depends
on backbone choice; less optimized for
real-time on constrained hardware.

IDF1: 72.3
(MOT17)

CenterTrack [38] Detection-
Integrated

CenterNet +
motion offset

head

Real-time tracking via center-based
detection; simple online association;
effective balance of accuracy and
efficiency.

No explicit appearance model; fragile
identity handling under occlusion; weak
at long-term re-identification.

MOTA: 67.8
(MOT17)

QDTrack [39] Detection-
Integrated

CNN with
quasi-dense

matching

Quasi-dense similarity supervision
improves embeddings; learns ReID signals
without explicit labels; robust local feature
matching.

High computational demand; identity
drift under prolonged clutter; scalability
issues for large benchmarks.

IDF1: 71.1
(MOT17)

Speed-FairMOT [35] Detection-
Integrated

Lightweight
CNN + Joint

Detection-
Tracking

Optimized for speed with reduced
backbone; achieves real-time performance
on edge devices; preserves FairMOT joint
detection-tracking design.

Sacrifices accuracy for speed; limited
robustness in crowded or complex scenes;
weaker embeddings.

FPS: 45, MOTA:
59.7 (MOT17)

TBDQ-Net [36] Detection-
Integrated

Transformer +
Query Matching

Efficient query-based detection-tracking
framework; reduces redundant
computations; competitive accuracy with
better speed-accuracy tradeoff.

Query design limits scalability; harder to
adapt to unseen objects; performance tied
to transformer efficiency.

MOTA: 68.3
(MOT20)

JDTHM [37] Detection-
Integrated

Joint Detection-
Tracking
Heatmap

Uses joint heatmap representation for
detection and tracking; improves spatial
consistency and reduces ID switches;
efficient training pipeline.

Limited generalization to non-standard
scenes; struggles in low-resolution inputs;
identity drift under long occlusion.

IDF1: 71.2
(MOT17)

TrackFormer [40] Transformer Transformer en-
coder–decoder

End-to-end query-based detection and
tracking; propagates identity with track
queries; avoids handcrafted association
modules.

Slower inference than modular methods;
heavy GPU demand; sensitive to
hyperparameters.

HOTA: 58.4
(MOT17)

TransTrack [43] Transformer Transformer
with cross-frame

attention

Cross-frame aligned attention improves
spatial consistency; effective for
short-term identity preservation;
integrates detection and tracking.

ID persistence weak under long occlusion;
requires careful initialization; heavier than
CNN-based trackers.

IDF1: 60.9
(MOT17)

ABQ-Track [44] Transformer Transformer
with anchor

queries

Encodes positional priors via anchor
queries; reduces ID switches in crowded
environments; competitive accuracy with
fewer parameters.

Anchor design adds rigidity; reduced
generalization across datasets; not robust
to unseen layouts.

HOTA: 61.7
(MOT20)

MeMOTR [45] Transformer-
Based

Memory-
Augmented
Transformer

Integrates long-term memory into
transformer decoder; robust under long
occlusion; captures contextual
dependencies over frames.

Computationally heavy; memory module
increases complexity; requires large-scale
training data.

MOTA: 70.9
(MOT20)

Co-MOT [46] Transformer-
Based

Cooperative
Transformer +

ReID

Uses cooperative transformer layers to
share context among objects; excels in
crowded scenes; strong re-identification
accuracy.

High GPU demand; longer inference time;
requires careful parameter balancing.

IDF1: 76.4
(MOT20)
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5.5. ReID-Aware Models

Re-identification (ReID)-aware models improve identity consistency in Multi-Object Tracking
(MOT) by learning discriminative appearance embeddings. These embeddings are particularly valu-
able in scenarios with heavy occlusion, re-entry after disappearance, or high visual similarity where
motion-based association alone is unreliable. Training typically employs metric learning objectives
such as the triplet loss:

Ltriplet = ∑
(a,p,n)

max
(

0, ∥ fa − fp∥2 − ∥ fa − fn∥2 + α
)

,

where fa, fp, fn denote the embeddings for anchor, positive, and negative instances, and α is a margin
parameter. Several representative approaches illustrate the evolution of ReID in MOT.

5.5.1. Quasi-dense similarity learning

QDTrack [? ] introduces quasi-dense matching across spatially and temporally adjacent frames.
By constructing soft association labels through spatial–temporal consistency, it regularizes embedding
distributions and enhances robustness to appearance ambiguity. This strategy significantly improves
tracking performance in crowded environments such as DanceTrack and MOT17, where occlusion
is frequent. Quasi-dense supervision illustrates how abundant unlabeled frame pairs can strengthen
embedding learning without requiring external ReID datasets.

5.5.2. Joint detection and embedding

JDE [60] unifies detection and ReID extraction within a single convolutional backbone. Unlike
two-stage pipelines that train a detector and a separate ReID model, JDE optimizes both tasks end-to-
end. This reduces inference latency while maintaining strong identity preservation under occlusion
and motion blur. The design highlights how shared features across detection and embedding can
balance efficiency with identity robustness, especially in real-time scenarios.

5.5.3. Transformer-based re-identification

TransReID [61] adopts a Transformer backbone for ReID, addressing viewpoint variation and
domain shift. It introduces a camera-aware position embedding (CAPE) to encode cross-camera
context and a jigsaw patch module that enhances spatial invariance. By leveraging self-attention,
TransReID captures long-range dependencies and fine-grained part alignment beyond convolutional
limits. Although originally designed for person re-identification benchmarks such as Market-1501,
DukeMTMC-ReID, and MSMT17, these advances also benefit MOT by strengthening embedding
robustness across diverse environments.

ReID-aware models strengthen MOT systems by focusing on appearance cues that persist through
occlusion, re-entry, and motion blur. Quasi-dense similarity learning leverages frame-level abundance,
joint detection–embedding architectures reduce latency by sharing backbones, and Transformer-
based approaches achieve fine-grained, domain-robust embeddings. Together, they highlight how
re-identification has evolved from a supporting module into a central component of modern tracking
pipelines.

Table 2 summarizes prominent Multi-Object Tracking (MOT) models, detailing their architec-
tural categories, backbone designs, major strengths, limitations, and benchmark performance across
standard datasets
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Table 3. MultiModal/3D and ReID Aware Multi-Object Tracking (MOT) methods categorized by architecture,
backbone, strengths, weaknesses, and performance (dataset + metric). Performance column shows metric along
with the dataset it was reported on.

Method Category Backbone Key Strength Key Weakness Performance
(Dataset/Metric)

RGB–D Tracking [50] Multi-Modal
/ 3D

Dual encoders +
attention fusion

Depth cues improve occlusion handling
and scale estimation;
foreground/background separation;
enhanced robustness in indoor scenarios.

Depth noise or missing data outdoors
reduces reliability; sensor calibration
errors degrade performance.

MOTA: 46.2
(RGBD-

Tracking)

CS Fusion [58] Multi-Modal
/ 3D

RGB + LiDAR +
Radar + IMU

stack

Cross-sensor fusion complements
appearance, geometry, and velocity cues;
robust under weather and illumination
challenges; improves generalization.

Sensitive to sensor synchronization and
calibration; computationally expensive;
deployment complexity in real-world
setups.

AMOTA: 56.3
(nuScenes)

DS-KCF [48] Multi-
Modal/3D

Depth-aware
Correlation

Filter

Early depth-aware tracker; combines RGB
and depth cues; robust against
background clutter and partial occlusion.

Limited scalability to large datasets;
handcrafted correlation filters less robust
than deep features.

Success Rate:
72.1 (RGB-D
benchmark)

OTR [49] Multi-
Modal/3D

RGB-D
Correlation

Filter + ReID

Exploits both depth and appearance;
improved occlusion handling in RGB-D
scenes; maintains IDs across viewpoint
changes.

Depth sensor noise affects accuracy;
limited to RGB-D applications; heavier
computation than 2D trackers.

Precision: 74.5
(RGB-D

benchmarks)

DPANet [50] Multi-
Modal/3D

Dual Path
Attention
Network

Fuses RGB and depth with attention
mechanisms; adaptive weighting
improves robustness; handles occlusion
well.

Needs high-quality depth input;
expensive feature fusion; generalization
limited to RGB-D datasets.

MOTA: 62.3
(MOT-RGBD)

AB3DMOT [51] Multi-
Modal/3D

Kalman + 3D
Bounding Box

Association

Widely used 3D MOT baseline; fast and
simple; effective for LiDAR-based tracking
in autonomous driving.

Limited by detection quality; struggles in
long occlusion; ignores appearance cues.

AMOTA: 67.5
(KITTI)

CenterPoint [52] Multi-
Modal/3D

Center-Based 3D
Detection +

Tracking

Center-based pipeline for LiDAR; accurate
and efficient; strong baseline for 3D MOT
in autonomous driving.

Requires high-quality LiDAR; misses
small/occluded objects; limited in
multi-modal fusion.

AMOTA: 78.1
(nuScenes)

JDE [60] ReID-Aware CNN detector +
embedding head

Unified backbone for joint detection and
embedding; reduced inference latency;
optimized for real-time applications.

Embeddings weaker than specialized
ReID models; suffers under heavy
occlusion; trade-off between detection and
ReID accuracy.

MOTA: 64.4
(MOT16)

TransReID [61] ReID-Aware Transformer
with CAPE

Captures long-range dependencies;
part-aware embedding improves
viewpoint robustness; strong results
across cameras.

High computational cost; domain-shift
sensitivity; needs large-scale pretraining
for stability.

IDF1: 78.0
(Market-1501)

6. Long-Term Tracking (LTT)
Long-term tracking (LTT) extends conventional short-term paradigms by addressing prolonged

occlusion, target disappearance and reappearance, and appearance drift. Unlike standard trackers that
assume continuous visibility, LTT systems must detect target loss, re-localize objects after long gaps,
and maintain consistent identity over extended sequences. Research in this area has progressed from
modular pipelines with handcrafted features to re-detection modules, memory-enhanced architectures,
and modern state-space approaches.

6.0.1. Early modular frameworks

The Tracking-Learning-Detection (TLD) framework [20] was one of the first to formalize long-term
tracking. It combined short-term prediction, an online detector, and a learning module that updated
incrementally using high-confidence results. While pioneering in separating tracking, validation, and
adaptation, its reliance on handcrafted features limited robustness under complex motion, background
clutter, and large appearance changes.

6.0.2. Siamese re-detection models

The rise of Siamese architectures led to several influential long-term trackers. DaSiamRPN [62]
extends SiamRPN with a distractor-aware module and a re-detection branch that activates when
confidence drops. By incorporating global search and embeddings tuned for distractor suppression,
the tracker achieves reliable recovery in cluttered or reappearance-heavy sequences. SiamRPN++ [9]
further improves localization with deeper backbones and widened receptive fields. In its long-term
variant, global template matching is triggered upon low-confidence predictions to recover lost targets,
though the absence of adaptive memory makes it prone to appearance drift.
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Figure 4. Illustration of the Distractor-Aware Siamese Region Proposal Networks (DaSiamRPN). Compared to a
general Siamese tracker, DaSiamRPN leverages both target and background information to suppress distractor
influence during tracking, resulting in improved robustness [62].

6.0.3. Occlusion-aware re-matching

LTTrack [63] addresses long-term failure by combining short-term association with an occlusion-
aware re-matching mechanism. Lost tracks are stored in a suspended “zombie pool,” and reactivation
occurs when new detections align with stored trajectories based on bounding box overlap and motion
consistency:

τt = arg max
τ∈Tzombie

IoU(Bt, Bτ) · 1(∥µt − µτ∥ < d),

where µ denotes predicted positions and d is a gating threshold. This hybrid strategy improves
continuity in crowded or dynamic scenes by enabling robust recovery from missed detections and
prolonged occlusion.

6.0.4. Memory-augmented approaches

MambaLCT [64] introduces a state-space model that compresses and encodes long-term context.
By aggregating temporal information without excessive computation, it sustains identity preservation
during lengthy disconnections. Such memory-based designs represent a shift toward scalable architec-
tures that balance long-term reasoning with real-time feasibility.

Long-term tracking has evolved from modular pipelines like TLD to Siamese re-detection mod-
els, occlusion-aware re-matching mechanisms, and memory-enhanced architectures. Each design
highlights a trade-off: modular systems pioneered problem decomposition but lacked robustness,
Siamese-based trackers introduced efficient re-detection yet remained sensitive to drift, re-matching
approaches strengthened occlusion handling, and state-space memory models point toward efficient
long-horizon reasoning. Together, these contributions underline how LTT has become central to
applications requiring sustained identity preservation in dynamic, unconstrained environments.

7. Emerging Trends: Vision-Language and Foundation Model-Based Tracking
7.1. Unified Taxonomy of Tracking Paradigms

We propose a refined taxonomy of recent tracking models that emphasizes the pretraining
paradigm—including supervised, self-supervised, foundation-model-adapted, and multimodal ap-
proaches—rather than purely architectural distinctions. This reflects the growing influence of founda-
tion models and their integration into tracking pipelines.

7.1.1. Supervised Trackers

Supervised trackers are trained on fully annotated video datasets using explicit supervision in
the form of object category labels and bounding boxes across frames. The training objective typically
combines classification and regression losses to jointly localize and identify the target object. The total
loss is often formulated as:

Lsup = λcls · Lcls(y, ŷ) + λloc · Lloc(b, b̂),
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where Lcls is a cross-entropy or focal loss over predicted class labels ŷ, and Lloc is a localization
loss such as IoU, GIoU [65], or CIoU [66] between predicted boxes b̂ and ground-truth boxes b.

Classical models like SiamRPN++ [9] extend the Siamese tracking paradigm using deep ResNet
features and anchor-based classification. STARK [13], on the other hand, introduces a Transformer-
based encoder-decoder design that predicts object trajectories using spatial-temporal attention,
achieving strong results on LaSOT and GOT-10k benchmarks. KeepTrack [67] enhances target re-
identification by incorporating a learned external memory that captures long-term appearance varia-
tions. DeAOT [68] further pushes the envelope by adopting dual-path attention and adaptive object
templates, offering strong generalization in segment tracking and multiple object settings.

Despite strong benchmark performance, supervised trackers are often constrained by their de-
pendence on labeled data and limited adaptability to out-of-distribution settings. They tend to overfit
to frequent object categories and exhibit poor generalization when transferred to new domains or
modalities without fine-tuning.

7.1.2. Self-Supervised Trackers

Self-supervised trackers leverage unlabeled data and pretext tasks to learn visual representations
that generalize well to tracking scenarios without requiring human annotations. These methods design
proxy objectives aligned with tracking-relevant signals such as temporal continuity, spatial consistency,
and appearance invariance.

SimTrack [69] extends SimCLR-style contrastive learning to tracking by aligning positive frame
pairs and learning object-centric embeddings using the InfoNCE loss:

LSimCLR = − log
exp(sim(zi, zj)/τ)

∑2N
k=1 1[k ̸=i] exp(sim(zi, zk)/τ)

where zi and zj are feature embeddings from the same object across frames, and τ is a temperature
hyperparameter controlling concentration. DINOTrack [70] adapts the self-distillation framework of
DINO [71] by training a student-teacher model on patch-level embeddings that are temporally stable,
enabling object localization and transfer to long-term tracking datasets like TREK-150 and EgoTracks.
TLPFormer [72] proposes a temporally masked token prediction task where randomly dropped frames
force the model to interpolate features across time, improving performance under occlusion and
abrupt motion. ProTrack [73] incorporates motion flow estimates into its contrastive learning objective,
ensuring consistency of identity embeddings across deformation and jitter, especially in mobile and
egocentric scenarios.

These self-supervised methods increasingly serve as robust initialization backbones for down-
stream fine-tuning, and their scalability on large-scale unlabeled video corpora makes them particularly
compatible with foundation model development.

7.1.3. Foundation-Adapted Trackers

Foundation-adapted trackers repurpose large pretrained vision or vision-language models—such
as CLIP [74], DINOv2 [75], or SAM [76]—for tracking by adapting their frozen or partially fine-tuned
representations to localization and identification tasks. These models are trained on massive datasets
with weak supervision, enabling strong zero-shot or few-shot generalization.

The core strategy is to reuse the powerful embedding space fθ(x) learned by foundation models,
and formulate tracking as a similarity matching or mask-guided localization problem. A generic form
of the tracking objective is:

Lfm = Lmatch( fθ(xquery
t ), fθ(xtemplate

0 )) + λ · Lbox/mask,

where xt is the current frame, x0 is the initial template, and Lbox/mask enforces spatial alignment
through bounding box or segmentation mask supervision.
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Prominent examples include OSTrack [77], which reuses the early stages of a pretrained backbone
and adds lightweight attention heads for temporal modeling. DeAOT [68] adapts dual-path attention
over frozen foundation features for video object segmentation and achieves state-of-the-art on DAVIS
benchmarks. PromptTrack [78] introduces lightweight prompts to adapt frozen CLIP features for
instance-level tracking. EfficientTAM [79] combines ViT-based tracking heads with prompt-denoised
masks from SAM to achieve high-speed tracking with minimal fine-tuning.

While foundation-adapted models demonstrate excellent cross-domain robustness and sample
efficiency, they face challenges in fine-grained identity tracking, dynamic scenes, and temporal consis-
tency. Additionally, inference cost remains a concern due to the large backbone sizes and transformer
depth. Ongoing work explores efficient adapters, sparse prompting, and retrieval-augmented inference
to mitigate these limitations [80].

Figure 5. Overview of a SAM-based multi-object tracking framework [81]. The system supports both interactive
and automatic tracking modes. In the interactive mode, object prompts (e.g., clicks, boxes, or text) are passed to
Grounding-DINO and SAM to generate instance masks, which are tracked via DeAOT. In automatic mode, frames
are processed by SAM with "segment everything" or object-specific prompts, and merged using context-aware
reasoning (CMR). The resulting object masks are tracked using DeAOT with reference frame updates.

7.1.4. Multimodal Trackers

Multimodal trackers leverage heterogeneous sensor inputs such as RGB, depth (D), thermal (T),
LiDAR (L), or event-based data to enhance robustness in complex environments. These models fuse
complementary cues across modalities to improve tracking under challenging conditions like occlusion,
low-light, or motion blur.

A common approach is to first extract features from each modality using dedicated encoders:

fm = ϕm(xm), for each modality m ∈ {RGB, D, T, L, E},

where xm is the input signal and ϕm is the modality-specific encoder.
The fused representation ffused is then obtained via a fusion function F :

ffused = F ( fRGB, fDepth, fThermal, . . .),

where F may implement early fusion (concatenation), mid-level fusion (transformer blocks), or late
fusion (score-level voting).
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In transformer-based fusion, cross-attention is often used to align modalities:

Attn(Q, K, V) = softmax

(
QK⊤
√

d

)
V,

where queries Q, keys K, and values V are derived from features of different modalities.
Recent models like FELT [82] introduce asynchronous fusion mechanisms to handle RGB and

event streams jointly for long-term tracking, addressing issues of temporal misalignment. GSOT3D [83]
leverages RGB, depth, and LiDAR signals for real-time 3D tracking in autonomous scenarios, achieving
strong performance on KITTI and GSOT benchmarks. VIMOT2024 [84] introduces modality-specific
encoders and transformer-based fusion to handle sensor shift across RGB, depth, and thermal domains.
Meanwhile, ThermalTrack [85] applies cross-attention to fuse RGB and thermal imagery in night-time
surveillance applications, showing significant robustness to illumination changes.

7.1.5. Vision-Language Model (VLM)-Powered Trackers

Vision-Language Model (VLM)-powered trackers represent a major paradigm shift in tracking by
conditioning object representations on textual descriptions, enabling open-vocabulary tracking and
natural language grounding. These models are typically initialized from large-scale pretrained VLMs
such as CLIP [74], BLIP [86], or GPT-4V [87], and fine-tuned or adapted for spatiotemporal localization
tasks.

Unlike traditional trackers that require exemplar templates or object category supervision, VLM-
based trackers operate using language prompts that describe the object of interest (e.g., “the man in
the red shirt”). The objective function often includes a contrastive alignment loss that matches visual
features with text embeddings:

Lvlm = − log
exp(sim(vq, t+))

∑i exp(sim(vq, ti))
,

where vq is the visual embedding of the query frame, t+ is the correct text prompt, ti are candidate
texts, and sim denotes cosine similarity.

Recent models like CLDTracker [88] utilize dual-stream transformers to jointly encode visual and
textual modalities and achieve state-of-the-art results on EgoTrack++ and TREK-150. PromptTrack [89]
learns prompt-aware temporal attention for better alignment between object descriptions and frame-
wise evidence. Other models such as Track Anything [90] integrate SAM with VLM-guided refinement
modules for zero-shot object tracking.

VLM-based trackers are particularly strong at handling ambiguous or novel targets that lack
predefined labels, and can generalize across domains with minimal retraining. However, their reliance
on semantic priors from pretraining introduces biases toward common concepts and poses challenges
in precise localization. Additionally, prompt design and phrasing sensitivity remain open research
questions, especially in low-resource or real-time scenarios.
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Figure 6. Overview of the All-in-One vision-language tracker [91]. The model unifies visual search region, visual
template, and language prompts through multi-modal alignment. Features are embedded using separate vision
and language encoders, followed by modal mixup and joint processing via a multi-head self-attention Transformer.
The All-in-One Transformer encodes both modalities for tracking, and a shared tracking head predicts object
locations in the target frame.

7.1.6. Instruction-Tuned Trackers

Instruction-tuned trackers leverage vision-language foundation models that have been aligned
with natural language instructions via supervised or reinforcement learning objectives. These models
are capable of following open-ended textual commands to condition the tracking objective, thereby
enabling natural language grounding, multi-object tracking, and re-identification in a unified manner.
Unlike fixed-language encoders or prompt-tuned trackers, instruction-tuned trackers generalize across
tasks by learning task format and semantics during instruction tuning.

A typical architecture combines a pretrained vision backbone fv (e.g., ViT, SAM) with a language
encoder fl (e.g., T5, OPT) and a fusion module F that integrates both modalities:

z = F ( fv(It), fl(L)),

where It is the current video frame and L is the instruction or textual prompt. The resulting fused
representation z guides object prediction via decoders or matching heads.

Track Anything [90] demonstrates flexible object segmentation and re-identification across frames
by integrating the Segment Anything Model (SAM) with instruction-following prompts. Prompt-
Track [89] extends this further with language-driven multi-object selection using grounding-aware
vision transformers. GPT-4V [87] can track arbitrary objects in images and videos by interpreting
prompts like “follow the person wearing red” or “track the object that enters from the left,” exhibiting
emergent tracking capabilities without explicit supervision.

These models are promising for real-world applications in robotics, video editing, and surveillance,
especially in scenarios where object categories are unknown or dynamically defined by users. However,
limitations include prompt sensitivity, the need for large-scale instruction tuning data, and inconsistent
reliability across modalities like thermal or depth input.

7.1.7. Prompt-Tuned Trackers

Prompt-tuned trackers represent a recent paradigm where vision-language foundation models
are conditioned through prompts to perform tracking. Instead of fine-tuning all model parameters,
lightweight prompt modules or embeddings are optimized to adapt large pretrained models to the
tracking task. This design significantly reduces training cost while leveraging rich visual-language
priors.

A common setup involves optimizing soft prompt vectors p ∈ Rd×l prepended to visual or
language tokens in a transformer-based model. The forward pass becomes:

z = Transformer([p; x]),
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where x is the tokenized input (e.g., query image, text prompt). The tracking objective may then
combine similarity-based localization and a prompt-adapted classification loss:

Ltrack = λsim · Lsim + λcls · Lcls,

where Lsim measures alignment between the prompt-conditioned output and target object em-
beddings, and Lcls supervises identity prediction.

Recent models include PromptTrack [92], which adapts CLIP with learnable visual prompts
for open-set tracking, achieving competitive results on OTB and LaSOT. FAMTrack [93] introduces
feature-aware memory prompting in a transformer backbone for long-term tracking. SAM-PD [80]
applies prompt-denoising on top of SAM, using text queries to localize and refine object masks in
videos. Track-Anything [90] builds on Segment Anything and LLaVA to support interactive tracking
via language and mouse clicks. VIMOT-2024 [84] uses modality-specific prompts to adapt foundation
models across RGB, depth, and thermal domains, providing robustness to domain shifts.

These methods demonstrate the viability of prompt tuning for tracking tasks, offering generaliza-
tion to unseen objects and modalities with minimal supervision. However, their effectiveness is often
limited by prompt sensitivity and alignment quality, especially in cluttered or rapidly changing scenes.
Designing optimal prompts remains a challenge, motivating hybrid approaches with retrieval-based
guidance or reinforcement learning.

Figure 7. OVTrack training pipeline: Backbone with RPN generates region proposals (RoIs). Image and text heads
produce embeddings optimized via contrastive losses Limage and Ltext aligned with CLIP encoders. The tracking
head employs a tracking loss Ltrack for temporal identity association. Data hallucination augments samples to
enhance model robustness and generalization.

7.2. Meta-Analysis of Transferability
7.2.1. Cross-Model Representation Reuse

Recent advancements in vision-language and foundation models have enabled powerful feature
representations that can be reused across tasks without task-specific fine-tuning. This subsubsec-
tion examines how such pretrained backbones—especially CLIP [74], DINOv2 [75], EVA-CLIP [94],
InternImage-V2 [95], and SAM [76]—contribute to transfer learning in tracking pipelines.

Rather than retraining models end-to-end, many recent works directly plug in these backbones
to extract embeddings that serve as input for lightweight tracking heads. For instance, CLIP-based
encoders are employed in CLDTracker [88] and OVTrack [96] to match natural language prompts with
image regions. DINOv2 and InternImage-V2 are used in EfficientTAM [79] to derive semantically rich
and spatially precise features for object localization.

We define the Transfer Gain metric to quantify the effectiveness of reused representations:

∆Transfer =
PerfVLM − Perfbaseline

Perfbaseline
,
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where PerfVLM denotes the performance (e.g., AUC, SR, or HOTA) using the pretrained VLM backbone,
and Perfbaseline refers to a conventional CNN-based tracker (e.g., SiamFC [7] or STARK [13]).

Empirical evidence shows that EVA-CLIP embeddings provide up to 15% relative gains in long-
tail object scenarios on the TREK-150 [97] benchmark. Similarly, InternImage-V2 enables dense
correspondence learning in FAMTrack without supervision, outperforming classical ResNet50-based
trackers by over 8 AUC points on LaSOT [98].

Interestingly, SAM’s segmentation-aware features have also proven effective in zero-shot tracking
tasks when adapted via prompt-denoising heads as in SAM-PD [80], bridging detection and tracking
with no explicit re-training.

Despite these advantages, foundation-model representations often require alignment modules or
prompt engineering to work reliably across tracking settings. This highlights the need for stronger
inductive biases or adapter-tuning frameworks that minimize domain shift when reusing large-scale
features.

7.2.2. Cross-Dataset Transfer Evaluation

To assess the generalization capacity of pretrained vision and vision-language models, we an-
alyze their performance across diverse tracking datasets without any fine-tuning. This subsubsec-
tion quantifies how well representations from models like CLIP [74], DINOv2 [75], EVA-CLIP [94],
InternImage-V2 [99], and SAM [76] transfer to different domains such as aerial views, egocentric
videos, and nighttime scenes.

Let the performance metric (e.g., AUC or HOTA) of a pretrained model M on dataset Di be
denoted as P(M, Di). Then, the average cross-dataset generalization can be defined as:

Generalization Score(M) =
1
N

N

∑
i=1

P(M, Di)

where N is the number of distinct datasets evaluated. Models with higher generalization scores
are considered more transferable.

Empirical findings from recent works support this analysis. For instance, CLIP embeddings
used in CLDTracker [88] and OVTrack [100] generalize well across LaSOT [98], TREK-150 [101], and
Ego4D [102], especially in text-guided setups. EVA-CLIP and InternImage-V2 demonstrate strong
performance on UAV20L [103] and VisDrone [104] benchmarks without retraining, as observed in
EfficientTAM [79].Conversely, classical trackers like STARK [13] and SiamRPN++ [9] often struggle
with such cross-dataset settings due to limited representation flexibility.

However, VLM-based trackers underperform in crowded or densely annotated datasets such as
MOT17 [23], where strong detection priors or object-specific fine-tuning are still crucial. Furthermore,
models pretrained on web-scale data (e.g., CLIP) may inherit dataset biases, leading to uneven
performance across demographics or environments.

These findings emphasize that while pretrained embeddings show remarkable transferability to
semantically rich or sparse datasets, their applicability in dense tracking or long-term scenarios still
requires further investigation and adaptation strategies.

7.2.3. Modality-Level Transfer Insights

This subsubsection analyzes how different input modalities—such as RGB, depth, thermal, event
streams, and natural language—affect the transferability of pre-trained representations in tracking
pipelines. As modern vision-language models increasingly support multiple modalities, understanding
their differential impact is crucial for selecting or designing task-specific trackers.

Let x(m) denote the input representation for modality m ∈ {RGB, Depth, Thermal, Text, Event}.
For a tracking model f with frozen backbone ϕ, we define modality-aware transferability gain as:
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∆(m)
mod =

P( f (ϕ(x(m))))−P (m)
sup

P (m)
sup

where P (m)
sup is the performance of a supervised baseline using the same modality m.

Recent work has shown that text-guided embeddings, as in PromptTrack [105] and DUTrack [106],
provide high gains for open-vocabulary or referring-expression based tracking. Depth-aware models
such as GSOT3D and thermal-assisted models like ThermalTrack [107] leverage auxiliary spatial cues
to improve occlusion handling and nighttime tracking. Event-driven models such as FELT [108]
encode motion-triggered representations from neuromorphic cameras, offering superior performance
in high-speed and low-latency settings. However, these modalities often require specialized sensor
inputs or careful calibration, limiting scalability. A modality hierarchy emerges from these studies:
while RGB remains the default input modality, VLM-enabled text prompts and hybrid inputs (e.g.,
RGB+Depth or RGB+Text) yield greater transferability in semantically rich and long-tail settings.
Conversely, niche modalities like thermal and event streams offer domain-specific robustness at the
expense of generality and accessibility.

7.2.4. Challenges and Opportunities in Transferability

While foundation and vision-language models (VLMs) demonstrate strong generalization and
zero-shot transferability, several challenges persist in adapting them effectively to tracking tasks.

First, the spatial and temporal resolution mismatch remains a fundamental issue. Most VLMs
(e.g., CLIP, SAM) are pre-trained on static image-text pairs and lack fine-grained temporal modeling.
This limits their ability to track fast-moving or occluded objects in videos. Furthermore, temporal
information often must be implicitly captured via spatial cues unless additional modules like temporal
adapters or memory-enhanced attention are introduced.

Another key challenge is domain-specific brittleness. Models trained on large-scale internet data
(e.g., CLIP, EVA-CLIP) often fail to generalize to real-world edge cases such as thermal imaging,
low-light scenes, or egocentric viewpoints unless enhanced with domain-specific priors. For instance,
ThermalTrack [85] and GSOT3D [83] address these limitations by integrating depth, thermal, or 3D
cues, but at the cost of added modality complexity.

In terms of optimization, foundation-based trackers often suffer from computational overhead,
especially when leveraging large frozen encoders. This can be quantified via a compute-adaptivity
trade-off curve:

E(M) =
Perf(M)

FLOPs(M)

where E(M) denotes the efficiency of model M in terms of performance-per-computation. Models
like EfficientTAM [79] try to balance this trade-off by integrating lightweight adapters or hybrid token
pruning.

Despite these limitations, VLMs offer exciting opportunities. One such direction is promptable
tracking, where users specify targets via natural language or image region instead of initializing
bounding boxes. Works like PromptTrack [78] and Track Anything [90] lay foundational efforts for
flexible user interaction. These systems could be extended to multi-turn dialog-based tracking in long
videos, grounded action recognition, or task-aware surveillance.

Finally, alignment and distillation strategies represent promising frontiers. Embedding alignment
between CLIP-like and tracking-specific features, or distilling representations from frozen VLMs into
lightweight student models for real-time tracking, could offer a practical compromise. Adapter-tuning
and contrastive pretraining on video-language datasets (e.g., Ego4D [102], TREK-150 [97]) also remain
underexplored.
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In summary, while VLMs have opened new avenues for generalization and usability in tracking,
realizing their full potential will require innovations in architecture, supervision, and evaluation
tailored to the temporal and interactive nature of the task.

7.3. Roadmap for Promptable Tracking
7.3.1. Foundations and Paradigms of Promptable Tracking

Promptable tracking represents a paradigm shift in visual object tracking by enabling models
to track targets specified via flexible, multimodal prompts such as natural language descriptions,
bounding boxes, masks, or keypoints. Unlike traditional trackers that rely on fixed initial bounding
boxes or appearance templates, promptable trackers interpret high-level semantic or spatial cues to
localize and re-identify objects across frames. This flexibility facilitates zero-shot and open-vocabulary
tracking, allowing adaptation to novel categories and user-defined concepts without retraining.

At the core of promptable tracking are architectures that jointly encode and align multimodal
inputs. Cross-modal transformers and attention mechanisms form the backbone of many state-of-the-
art models, enabling fine-grained interaction between visual and linguistic modalities. For instance,
models like PromptTrack [105] and DUTrack [106] utilize cross-attention to fuse embeddings from
visual regions and textual queries, computing similarity scores that guide tracking decisions:

S(b, t) = cos( fvision(b), ftext(t)) =
fvision(b)⊤ ftext(t)

∥ fvision(b)∥∥ ftext(t)∥
,

where b denotes visual features of a candidate region and t the text embedding of a prompt.
More generally, the tracking problem can be formulated as predicting the target location ŷt in

frame t by maximizing a similarity or confidence score over candidate proposals Rt = {r1, r2, . . . , rK}:

ŷt = arg max
r∈Rt

λv · cos( fvision(r), fvision(q)) + λt · cos( ftext(r), ftext(q)),

where q represents the initial query prompt (visual, textual, or both), and λv, λt are modality weights
balancing visual and textual information [109].

Training paradigms typically involve contrastive learning objectives, where paired inputs from
different modalities are aligned, and non-matching pairs are pushed apart. The contrastive loss Lcontra

between a batch of N matched image-text pairs {(xi, ti)}N
i=1 is defined as:

Lcontra = − 1
N

N

∑
i=1

log
exp(cos( fvision(xi), ftext(ti))/τ)

∑N
j=1 exp(cos( fvision(xi), ftext(tj))/τ)

,

where τ is a temperature hyperparameter controlling distribution sharpness [74].
Prompt tuning approaches augment large frozen vision-language models by introducing

lightweight learnable parameters θp that modify input prompts or intermediate features. The model’s
output for a prompt p and input x is:

fθ(x, p) = fVLM(x, p; θ f ) + g(p; θp),

where θ f are fixed pretrained parameters and g is a prompt adapter network trained to specialize the
model for tracking tasks.

Recent advances also incorporate dynamic prompt generation, where large language models
produce descriptive text queries conditioned on video frames to guide tracking adaptively [88]. This
allows the system to handle changing object appearances and contextual cues over time.

These foundations establish promptable tracking as a flexible, scalable framework capable of
integrating human intent directly into the tracking loop. Its continued development promises more
intuitive and powerful user interactions in real-world applications.
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7.3.2. Challenges in Prompt Understanding and Temporal Consistency

Promptable tracking introduces unique technical challenges that arise from the complexity of
interpreting diverse prompts and maintaining temporal coherence. One primary difficulty is robust
prompt grounding in cluttered or occluded scenes, where the semantic meaning of a prompt may
ambiguously correspond to multiple similar objects. This often leads to identity drift or tracking
failure.

Semantic drift over long sequences further complicates tracking. As object appearance and scene
context evolve, the initially provided prompt may no longer accurately describe the target. Models
like DUTrack [106] address this by dynamically updating language references using co-attention
mechanisms, effectively re-aligning the prompt with current visual features:

t̂t = γ · t̂t−1 + (1 − γ) · ftext(xt),

where t̂t is the updated text embedding at frame t, and γ controls the update rate.
Efficiently adapting to prompt changes without full retraining is another hurdle. Prompt tuning

and adapter-based methods mitigate this by restricting updates to lightweight modules, but balancing
adaptability with stability remains an open research area.

Multi-object scenarios exacerbate prompt ambiguity, necessitating sophisticated disambiguation
strategies that can handle overlapping or interacting targets. Furthermore, real-time inference require-
ments impose strict computational constraints on prompt processing and fusion mechanisms. Together,
these challenges motivate ongoing research into robust prompt embedding, temporal memory mecha-
nisms, and lightweight yet expressive adaptation modules that ensure both accuracy and efficiency in
promptable tracking.

Figure 8. (Left) Architecture of Q-Former and BLIP-2’s first-stage vision-language representation learning
objectives. Three joint objectives guide the queries (learnable embeddings) to extract visual features most relevant
to the input text. (Right) Self-attention masking strategies employed for each objective, controlling query-text
interactions to enable image-text matching, image-grounded text generation, and image-text contrastive learning.

7.3.3. Emerging Techniques in Promptable Tracking

Recent advances in promptable tracking demonstrate promising techniques for bridging the gap
between human intent and robust object tracking. Dynamic prompt updating methods, such as those
employed in DUTrack [106] and UVLTrack [109], continuously refine textual and visual references
based on observed frames to mitigate semantic drift. Cross-modal fusion architectures leverage joint
attention mechanisms to tightly couple visual and linguistic features, as seen in CLDTracker [88],
PromptTrack [105], and LaMOTer [110].

Large-scale vision-language models (e.g., CLIP [74], Flamingo [111], BLIP-2 [112]) serve as pow-
erful backbones, enabling zero-shot and few-shot generalization to unseen object categories. These
models facilitate open-vocabulary tracking by mapping text and image embeddings into a shared
semantic space, improving adaptability without extensive labeled data. For instance, OVTrack [100]
combines open-vocabulary detection with transformer-based tracking for flexible multi-object scenar-
ios, while SAMURAI [113] integrates temporal memory with prompt-driven segmentation to improve
robustness against occlusion.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 October 2025 doi:10.20944/preprints202509.2051.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.2051.v2
http://creativecommons.org/licenses/by/4.0/


25 of 38

Benchmarking efforts remain nascent but critical. Datasets like LaSOT-Ext [114] and TREK-
150 [97] include natural language annotations, supporting evaluation of prompt understanding and
open-vocabulary capabilities. The recently proposed BURST benchmark [? ] challenges models with
phrase grounding and bursty object recall, emphasizing temporal consistency in promptable tracking.

Future research directions include integrating promptable tracking with conversational AI for
multi-turn dialog and interactive object specification, as explored in All-in-One Tracker [91]. Expanding
multimodal prompt types beyond text and bounding boxes—such as audio cues, gestures, or spatial
maps—offers opportunities to enhance user interaction modalities. Additionally, improving robustness
to ambiguous or conflicting prompts remains an open challenge, requiring advances in prompt
disambiguation and uncertainty modeling.

Ethical considerations around user privacy, control, and fairness in prompt-driven systems also
warrant careful attention, especially given the potential for biased or adversarial prompts to degrade
tracking performance [115]. Responsible deployment of promptable trackers will require transparent
user controls and safeguards against misuse.

In summary, promptable tracking is a rapidly evolving area poised to transform human-computer
interaction in video understanding, with substantial open challenges and opportunities ahead.

Table 4. Curated list of open-source foundation models, vision-language, and multimodal tracking toolkits
showcasing state-of-the-art architectures and performance benchmarks.

Method Backbone Params Key Metric / Result Inference Speed (FPS) Supported Tasks Code

TrackAnything [90] SAM ViT 300M AUC 0.65 (LaSOT) 15 SOT, MOT, Promptable Link
CLDTracker [88] GPT-4V + Transformer 800M+ F1 0.78 (EgoTrack++) 5 Text-guided MOT Link
EfficientTAM [79] Lite ViT + Memory 250M AUC 0.65 (DAVIS) 25 FM-assist SOT Link
SAM-PD [80] SAM ViT 300M IoU 0.80 (DAVIS) 12 FM-assist SOT Link
SAM-Track [81] SAM + DeAOT 350M F1 0.75 (YouTube-VOS) 8 FM-assist MOT Link
SAMURAI [113] SAM2 + Memory Gate 320M AUC 0.68 (LaSOT) 15 FM-assist SOT Link
OVTrack [100] Transformer + CLIP 400M mHOTA 0.70 (MOT20) 10 Open-vocab MOT Link
LaMOTer [110] Cross-modal Transformer 350M MOTA 68.2 (MOT17) 7 Text-guided MOT Link
PromptTrack [105] CLIP + Transformer 600M AUC 0.64 (LaSOT) 9 Promptable SOT Link
UniVS [116] Shared Encoder-Decoder 550M F1 0.72 (TREK-150) 11 Unified Multimodal Link
ViPT [117] Transformer + VisPrompt 300M AUC 0.60 (LaSOT) 14 Promptable SOT Link
MemVLT [118] Memory-Attn + Lang Fuse 700M Recall 0.75 (Ego4D) 6 Memory-based VLM Link
DINOTrack [119] DINOv2 + Transformer 400M AUC 0.66 (LaSOT) 11 SOT Link
VIMOT [84] Multimodal 400M HOTA 68.4 (MOT) 14 Multimodal MOT N/A
BLIP-2 [112] Vision Transformer 1.6B Multimodal Fusion - Foundation Model Link
GroundingDINO [120] Transformer 300M Zero-shot Detection 15 Multimodal Detection Link
Flamingo [111] Perceiver 80B Multimodal Few-Shot - Foundation Model Link
SAM2MOT [121] Grounded-SAM + Transformer 350M mAP 0.70 (DAVIS) 10 Segmentation-based MOT Link
DTLLM-VLT [122] CLIP + LLM Gen 700M+ AUC 0.62 (VOT2023) 6 Promptable SOT Link
DUTrack [106] Hybrid Attention 500M F1 0.74 (TREK-150) 8 Text-guided MOT Link
UVLTrack [109] Joint Encoder 400M AUC 0.66 (LaSOT) 9 Promptable SOT Link
All-in-One [91] Vis + Lang Encoder-Decoder 800M AUC 0.70 (LaSOT) 5 Multimodal SOT Link
Grounded-SAM [123] GroundingDINO + SAM 350M mHOTA 0.68 (MOT20) 10 Open-vocab MOT Link

7.4. Ethical and Robustness Considerations

As vision-language and foundation model-based tracking systems enter real-world use, address-
ing ethical and robustness issues is essential. These models, while powerful, also introduce unique
risks that must be mitigated.

7.4.1. Fairness and Bias.

Pretraining on large, uncurated datasets can encode societal biases and underrepresent certain
groups. This may lead to uneven tracking performance, for example on darker skin tones or underrep-
resented regions [124,125]. Strategies such as balanced dataset construction, fairness-aware fine-tuning,
and bias audits have been proposed [126,127].

7.4.2. Robustness and Security.

Multimodal trackers are vulnerable to adversarial perturbations in both vision and language
inputs, which can cause target loss or misidentification [128]. Defenses include adversarial training,
preprocessing, and certified robustness methods [129,130]. At the same time, models trained on
sensitive data risk memorization and leakage of personal information [131,132], raising privacy
concerns. Data minimization, differential privacy, and strict access control are therefore critical.
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7.4.3. Transparency and Regulation.

The complexity of multimodal trackers makes their decisions difficult to interpret. Explainable AI
techniques such as attention visualization and attribution maps [133,134] can help identify biases and
failure modes. Finally, ethical deployment requires adherence to regulations like GDPR and CCPA,
along with broader frameworks developed through collaboration between technologists, ethicists, and
policymakers.

In summary, tackling bias, adversarial threats, privacy risks, and transparency challenges will be
pivotal to making foundation model-based tracking systems both safe and equitable.

8. Benchmarks and datasets
8.1. Single Object Tracking (SOT) Benchmarks

Single Object Tracking (SOT) benchmarks provide the foundation for evaluating tracking algo-
rithms. In these datasets, the tracker is initialized with the ground-truth bounding box in the first frame
and must localize the target in subsequent frames under challenges such as occlusion, illumination
changes, blur, and scale variation.

The OTB series (OTB-2013 and OTB-2015) [135] established early protocols, introducing preci-
sion and success rate metrics and attribute-based annotations. The Visual Object Tracking (VOT)
Challenge [136] further standardized evaluation with metrics like Expected Average Overlap (EAO),
robustness, and accuracy under a short-term reinitialization protocol. Large-scale datasets followed:
LaSOT [98] with 1,400 long-duration videos for robustness testing, TrackingNet [137] with 30,000
YouTube sequences for real-world diversity, and GOT-10k [138], which enforced disjoint train-test
classes to assess generalization. UAV123 [103] targeted aerial scenarios with abrupt motion, small
targets, and frequent occlusions.

Recent benchmarks extend evaluation to new modalities and environments. FELT [82] com-
bines RGB and event-based sensing over 1.6M frames for high-speed and long-term tracking. NT-
VOT211 [139] focuses on low-light conditions with 211K annotated night-time frames. OOTB [140]
introduces oriented bounding boxes for satellite imagery, while GSOT3D [83] integrates RGB-D and
LiDAR for 3D tracking in robotics and autonomous navigation.

Together, these datasets span short-term, long-term, multi-modal, and open-world settings,
shaping the development of robust and generalizable SOT algorithms.

8.2. Multi-Object Tracking (MOT) Benchmarks

Multi-Object Tracking (MOT) benchmarks have been essential in advancing the development
of algorithms that aim to associate object detections across frames and maintain consistent identities.
Early MOT benchmarks such as the MOT15 and MOT17 datasets [23,141] laid the foundation by
providing densely annotated pedestrian tracking sequences recorded from static and moving cameras.
MOT17 introduced a diverse set of video sequences along with multiple detection hypotheses (DPM,
FRCNN, and SDP), allowing researchers to decouple detection quality from tracking performance.
The MOT20 benchmark [142] further pushed the field by focusing on extremely crowded scenes with
dense occlusions and small inter-object distances, making it one of the most challenging benchmarks
for pedestrian tracking.

The introduction of the BDD100K MOT [143] dataset expanded the domain to autonomous
driving, with annotations across diverse object categories such as vehicles, pedestrians, and cyclists in
real-world street scenarios. Similarly, KITTI MOT [144] has served as a cornerstone benchmark for
evaluating tracking in the context of self-driving cars, featuring lidar and camera modalities.

Recent years have witnessed the emergence of new datasets to evaluate MOT in more complex
and open-world environments. The TAO (Tracking Any Object) benchmark [145] supports long-tail
categories and open-vocabulary tracking, bridging the gap between detection and tracking under
diverse semantic categories. DanceTrack [24] emphasizes identity preservation under large pose
variations, showcasing the importance of motion modeling over detection quality. OVTrack [96] has
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recently emerged as a benchmark for open-vocabulary MOT, where models must track arbitrary
categories specified by textual prompts. This aligns with the rise of vision-language models and
zero-shot capabilities in tracking systems. Furthermore, the EgoTracks benchmark [146] introduces
long-form, egocentric videos, capturing first-person scenes with significant ego-motion, frequent
occlusions, and dynamic targets—posing new challenges for MOT models in real-world applications
such as AR/VR and robotics.

MOTSynth [147] presents a synthetic dataset built using photorealistic rendering of human
crowds, providing perfect ground truth for scalable evaluation. On the 3D front, nuScenes [54] and
Waymo Open Dataset [55] support 3D MOT benchmarks with multi-sensor fusion (LiDAR, radar,
cameras), enabling comprehensive evaluations of tracking systems in autonomous vehicles. Recently,
the MOT20 challenge [148] introduced multi-modal and multi-domain MOT evaluation across RGB,
depth, and thermal modalities, supporting both surveillance and driving contexts. These benchmarks
reflect the field’s shift toward real-world complexity, robustness, and generalization.

Together, these benchmarks enable a wide spectrum of evaluation—from controlled settings to
in-the-wild tracking—offering opportunities to assess algorithmic progress across detection quality,
re-identification capability, occlusion handling, and zero-shot generalization.

8.3. Long-Term Tracking (LTT) Benchmarks

Long-Term Tracking (LTT) benchmarks are designed to evaluate a tracker’s ability to robustly
follow a target over extended timeframes, handling occlusions, target disappearance, and scene re-
entry. Unlike short-term benchmarks where the object is always visible, LTT benchmarks explicitly
assess failure recovery, memory utilization, and re-detection capabilities.

The OxUvA Long-Term Tracking benchmark [149] was among the first large-scale LTT bench-
marks, emphasizing tracking under prolonged occlusion and background clutter. It provides ground
truth visibility annotations, allowing evaluation not only of accuracy but also the tracker’s ability to
abstain from predicting when the object is absent. Similarly, the UAV20L benchmark [103] from the
UAV123 suite was tailored for long-term object tracking in aerial footage, including scenarios with
frequent occlusions and scale variation.

LaSOT [98] introduced a comprehensive benchmark with 1,400 videos covering 70 categories,
providing dense annotations and long-duration sequences with an average of over 2,500 frames per
video. LaSOT challenged models to maintain identity across extreme appearance changes, distractors,
and camera motion. The recent LaSOT-Ext [114] expanded the dataset to over 3,000 videos, reinforcing
the importance of generalization across diverse scenes and object types.

TREK-150 [97] is a newer benchmark designed to unify evaluation across short-term, long-term,
and re-detection settings. It includes 150 diverse videos with per-frame labels, visibility flags, and
challenging dynamics. What makes TREK-150 particularly suitable for evaluating modern LTT trackers
is its inclusion of extreme conditions such as abrupt motion, fast reappearance, and scene cuts.

These benchmarks collectively reflect a growing emphasis on robustness, open-world generaliza-
tion, and temporal reasoning in LTT. They provide diverse scenarios to test not only frame-to-frame
association but also memory, recovery, and uncertainty management—core to the design of next-
generation tracking systems.

8.4. Benchmarks for Vision-Language and Prompt-Based Tracking

With the rise of vision-language models (VLMs), promptable systems, and agentic tracking
architectures, conventional benchmarks fall short in evaluating these emerging paradigms. As a result,
a new class of datasets and evaluation protocols has been proposed to capture the semantic richness,
open-vocabulary generalization, and long-horizon reasoning abilities required by these systems.

OpenVocabularyTrack [100] is a pioneering benchmark designed to test open-vocabulary object
tracking. Built on top of LVIS and COCO categories, it requires models to track any object specified by a
category name or natural language query, not just a fixed set of known classes. The benchmark includes
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novel categories during test time, encouraging zero-shot generalization. It evaluates performance
using tracking accuracy and category-level precision under semantic shifts.

The BURST benchmark [150] addresses bursty, ambiguous, and long-tailed object queries in
open-world tracking. It includes 140K frames with natural language descriptions and variable-length
prompts. Models are evaluated on object recall, phrase grounding, and temporal consistency, enabling
a rigorous testbed for prompt-based trackers and retrieval-augmented agents.

These benchmarks highlight the shift toward generalist tracking systems that integrate vision,
language, memory, and reasoning. Evaluation metrics used in these settings extend beyond traditional
IOU and IDF1, incorporating semantic grounding accuracy, prompt-response consistency, and long-
term re-detection fidelity.
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Table 5. Tracking benchmarks categorization.

Benchmark Category Eval Metrics Dataset Size Description Strengths Weaknesses

OTB-2013 [135] SOT Precision, SR 50 RGB clips Early small-scale
benchmark for SOT;
low-res, short sequences.

Standardized evaluation with
precision/success plots; widely
cited; shaped early SOT progress.

Limited size and diversity; low
resolution; lacks real-world motion
complexity.

VOT [136] SOT EAO, Acc.,
Robust.

Annual RGB
sets

Annual short-term
benchmark with resets.

Unified eval methodology with
strong leaderboard tradition;
fine-grained accuracy/robustness
analysis.

Limited to short-term; resets bias
results; datasets change yearly.

LaSOT [98] SOT/LTT AUC,
Precision

1,400 long
videos

Large-scale dataset with
long sequences across 70
categories.

Long (>2,500 frames) dense
annotations; diverse categories;
widely used for both SOT and LTT.

Annotation noise/drift; dominated
by very long sequences; class
imbalance remains.

TrackingNet [137] SOT AUC, SR 30K YouTube
clips

Large-scale dataset
sampled from YouTube-BB.

Internet-scale diversity; strong
train/test protocol; generalization
across objects.

Sparse labeling (1s intervals);
limited attribute annotations;
weaker for long-term.

GOT-10k [138] SOT mAO, mSR 10K videos One-shot generalization
dataset with disjoint
classes.

Forces generalization; clean
protocol; balanced evaluation.

Limited categories (563); less
diverse motion/scene content.

UAV123 [103] SOT Precision, SR 123 UAV
videos

UAV sequences with aerial
motion.

Captures aerial scale/rotation
changes; tailored for drone
applications.

Narrow UAV focus; fewer object
categories; overhead bias.

FELT [82] SOT/LTT Long-term SR 1.6M frames Multi-camera dataset with
extremely long videos.

Stress-test for long-term tracking;
asynchronous multi-camera data;
very large scale.

Sparse labeling; high compute
demands; difficult to simulate in
lab.

NT-VOT211 [139] SOT Night AUC,
Robust.

211 videos Night-time, low-light
tracking dataset.

First benchmark for night tracking;
evaluates blur/noise robustness.

Domain-specific (night only); lacks
cross-condition coverage.

OOTB [140] SOT Angular IoU,
SR

100+ satellite
clips

Satellite imagery with
oriented bounding boxes.

First orbital benchmark; introduces
rotation-aware evaluation.

Sparse dynamics; limited
categories; specialized to satellites.

GSOT3D [83] SOT 3D IoU,
Depth Acc.

RGB-D +
LiDAR

Multi-modal 3D-aware
tracking dataset.

Enables RGB-D + LiDAR
evaluation; supports sensor fusion.

Calibration issues; limited outdoor
scenarios.

MOT15 [141] MOT MOTA,
MOTP

22 pedestrian
scenes

First MOTChallenge
dataset.

Established MOT evaluation; easy
to reproduce; lightweight.

Outdated detectors; small scale;
limited environments.

MOT17 [23] MOT MOTA, IDF1,
HOTA

7 scenes × 3
dets

Pedestrian benchmark with
multiple detector inputs.

Multi-detector setup ensures
fairness; widely cited baseline;
multiple metrics.

Scene reuse; limited domain
diversity; pedestrian-only focus.

MOT20 [142] MOT MOTA, IDF1 4 street scenes Crowded pedestrian
benchmark.

Stresses dense identity
preservation; useful for
occlusion-rich scenarios.

Pedestrian-only; very limited scene
variety.

KITTI [144] MOT 3D IoU, ID Sw 21 AV scenes Driving dataset with
LiDAR + stereo.

Multi-modal 2D/3D annotations;
influential for AV tracking.

Driving-only domain; small size vs.
modern AV datasets.

BDD100K [143] MOT MOTA, Track
Recall

100K frames Driving dataset with
diverse conditions.

Large-scale, diverse
weather/lighting; multi-class.

Sparse MOT annotations; mainly
detection-focused.

TAO [145] MOT Track mAP,
mIoU

2.9K videos Long-tail multi-class
dataset.

Covers LVIS/COCO classes;
multi-domain, open-world.

Sparse temporal annotations; low
update frequency.

DanceTrack [24] MOT IDF1, HOTA 100+ dance
videos

Human non-rigid motion
benchmark.

Tests pose variation and non-rigid
identity tracking.

Human-only focus; narrow
application.

EgoTracks [146] MOT IDF1, Temp
Recall

Headcam
videos

Egocentric occlusion-heavy
dataset.

Captures first-person
occlusion/motion bias; challenging
evaluation.

Strong ego bias; noisy
head-movement; small scale.

OVTrack [96] MOT/VLM mHOTA,
Recall

Open-vocab
videos

MOT with
natural-language queries.

First open-vocab MOT; enables
free-form prompt evaluation.

Prompt bias; evolving protocols;
reproducibility challenges.

OxUvA [149] LTT TPR, Abstain 366 videos Long-term
occlusion-focused dataset.

Introduces visibility flags and
abstain metric; strong LTT
protocol.

Sparse object categories; unusual
evaluation rules.

UAV20L [103] LTT Success,
Recall

20 UAV
sequences

Long UAV-specific dataset. Motion + exits evaluation; relevant
for drones.

Narrow UAV-only domain; low
frame-rate.

LaSOT-Ext [? ] LTT SR, AUC 3K videos Extension of LaSOT with
more balanced classes.

Improves balance across categories;
builds on LaSOT.

Annotation drift in some
sequences; lacks explicit motion
cues.

TREK-150 [151] LTT MaxGM 150 AR/VR
clips

AR/VR-specific
benchmark.

Rich AR/VR coverage; stresses
adaptation.

Tuning difficulty; broad domain
adaptation required.

BURST [150] VLM Grounding
Acc.

140K frames Natural language
grounding benchmark.

Diverse phrases; grounding focus;
bursty events.

Ambiguous phrasing; inconsistent
annotations.

LVBench [152] VLM QA Acc.,
Recall

200K pairs QA-driven VL benchmark. Combines QA + tracking; large
scale; diverse content.

Coarse-grained queries; requires
LLM-based evaluation.

TNL2K-VLM [153] VLM SR, Acc. 2K queries Natural language-driven
tracking.

First NL-based tracking
benchmark; supports flexible text
prompts.

Small compared to LaSOT/BURST;
limited variety of queries.

9. Future Directions
Despite significant advances in object tracking, multiple research challenges remain. We highlight

key promising directions that could shape the next generation of tracking systems.

9.1. Agentic and Adaptive Tracking Systems

Future trackers are expected to behave as intelligent agents, capable of reasoning over time,
dynamically switching among internal modules, and incorporating external tools based on task
context and uncertainty. Such agentic behavior enables more robust handling of occlusion, appearance
changes, and unexpected events.
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Recent works like TrackFormer [40] and KeepTrack [67] explore memory-augmented transform-
ers and dynamic template updates, hinting at agent-like capabilities. Integrating reinforcement
learning [154] or meta-learning [155] may further empower trackers to adapt online and improve
continually.

9.2. Integration of Vision-Language and Foundation Models

The emergence of large-scale vision-language models (VLMs) such as CLIP [74], BLIP [86],
and foundation models like SAM [76] offers new opportunities for zero-shot, open-vocabulary, and
promptable tracking.

For example, OVTrack [100] leverages CLIP and transformers for open-vocabulary MOT, enabling
tracking across arbitrary categories without retraining. Promptable frameworks such as Prompt-
Track [105] and All-in-One [91] show how natural language guidance can control tracking behavior.

Challenges include balancing model size and inference latency [79], multimodal embedding
alignment [88], and robustness to domain shifts [122]. Research into efficient fine-tuning techniques
like adapter modules [156] and distillation [157] will be essential.

9.3. Unified and Modular Architectures

Bridging detection, tracking, and re-identification into unified, end-to-end differentiable architec-
tures remains an active area. Modular foundation models provide a flexible basis to compose these
components, allowing joint optimization for spatial localization, temporal consistency, and identity
preservation.

Notable examples include FairMOT [34] that combines detection and ReID in a single network,
and recent transformer-based approaches like DeAOT [68] and SAM2MOT [121] which unify segmen-
tation and tracking.

Automated neural architecture search [158] and differentiable programming paradigms promise
accelerated discovery of such cohesive models.

9.4. Benchmarking and Evaluation in Complex Real-World Scenarios

Existing datasets often lack the diversity and complexity of real-world tracking scenarios, such as
long-term occlusions, crowded scenes, and multi-modal sensory inputs.

Future benchmarks should include multi-agent interaction datasets (e.g., DanceTrack [24]), ego-
centric tracking (e.g., EgoTrack++ [146]), and multi-modal data incorporating depth, thermal, audio,
and language (e.g., MOT [148], BURST [? ]). New evaluation metrics must measure not only accuracy
but also robustness, fairness, explainability, and real-time feasibility [115].

9.5. Ethical and Robustness Considerations

As trackers increasingly rely on large foundation models, concerns regarding fairness, privacy,
and adversarial robustness grow in importance.

Fairness studies such as [124] demonstrate biases in vision systems, which can extend to tracking
pipelines. Privacy-preserving tracking methods [159] and adversarial defense mechanisms [129]
are crucial to ensure trustworthy deployment. Integrating robust uncertainty estimation [160] and
interpretability tools [133] will improve user trust and system reliability.

10. Conclusion
Object tracking remains a fundamental and rapidly evolving area within computer vision, under-

pinning numerous applications including autonomous driving, video surveillance, augmented reality,
and human-computer interaction. This survey has provided a comprehensive review of the primary
tracking paradigms—single-object tracking (SOT), multi-object tracking (MOT), long-term tracking
(LTT), and re-identification (ReID) frameworks—tracing the evolution from classical approaches to
modern deep learning methods.
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We highlighted the significant advancements enabled by convolutional and transformer-based
architectures, memory mechanisms, and spatio-temporal reasoning modules. Moreover, the integration
of large-scale pretrained vision-language and foundation models such as CLIP, BLIP, and SAM has
reshaped the tracking landscape, offering enhanced generalization capabilities, zero-shot learning, and
multimodal promptability.

Despite these strides, challenges remain in achieving robust, real-time tracking in complex,
cluttered, and dynamic environments. Additionally, the rise of foundation models introduces new
considerations around computational efficiency, robustness to adversarial conditions, and ethical
aspects such as fairness and privacy.

Overall, this survey underscores the rich progress made in object tracking and the transformative
potential of foundation and vision-language models. We hope it serves as a valuable resource to
researchers and practitioners seeking to navigate and contribute to this fast-growing domain.

Appendix A. MultiModal/3D and ReID Aware MOT

Table A1. MultiModal/3D and ReID Aware Multi-Object Tracking (MOT) methods categorized by architecture,
backbone, strengths, weaknesses, and performance (dataset + metric). Performance column shows metric along
with the dataset it was reported on.

Method Category Backbone Key Strength Key Weakness Performance
(Dataset/Metric)

RGB–D Tracking [50] Multi-Modal
/ 3D

Dual encoders +
attention fusion

Depth cues improve occlusion handling
and scale estimation;
foreground/background separation;
enhanced robustness in indoor scenarios.

Depth noise or missing data outdoors
reduces reliability; sensor calibration
errors degrade performance.

MOTA: 46.2
(RGBD-

Tracking)

LiDAR-3D-MOT [? ] Multi-Modal
/ 3D

Voxel
transformer

encoder

Strong 3D priors; accurate velocity and
trajectory modeling; world-frame
alignment improves tracking consistency.

Sparse points reduce accuracy for distant
objects; high compute cost for voxelization
and transformers.

AMOTA: 52.1
(nuScenes)

CS Fusion [58] Multi-Modal
/ 3D

RGB + LiDAR +
Radar + IMU

stack

Cross-sensor fusion complements
appearance, geometry, and velocity cues;
robust under weather and illumination
challenges; improves generalization.

Sensitive to sensor synchronization and
calibration; computationally expensive;
deployment complexity in real-world
setups.

AMOTA: 56.3
(nuScenes)

DS-KCF [48] Multi-
Modal/3D

Depth-aware
Correlation

Filter

Early depth-aware tracker; combines RGB
and depth cues; robust against
background clutter and partial occlusion.

Limited scalability to large datasets;
handcrafted correlation filters less robust
than deep features.

Success Rate:
72.1 (RGB-D
benchmark)

OTR [49] Multi-
Modal/3D

RGB-D
Correlation

Filter + ReID

Exploits both depth and appearance;
improved occlusion handling in RGB-D
scenes; maintains IDs across viewpoint
changes.

Depth sensor noise affects accuracy;
limited to RGB-D applications; heavier
computation than 2D trackers.

Precision: 74.5
(RGB-D

benchmarks)

DPANet [50] Multi-
Modal/3D

Dual Path
Attention
Network

Fuses RGB and depth with attention
mechanisms; adaptive weighting
improves robustness; handles occlusion
well.

Needs high-quality depth input;
expensive feature fusion; generalization
limited to RGB-D datasets.

MOTA: 62.3
(MOT-RGBD)

AB3DMOT [51] Multi-
Modal/3D

Kalman + 3D
Bounding Box

Association

Widely used 3D MOT baseline; fast and
simple; effective for LiDAR-based tracking
in autonomous driving.

Limited by detection quality; struggles in
long occlusion; ignores appearance cues.

AMOTA: 67.5
(KITTI)

CenterPoint [52] Multi-
Modal/3D

Center-Based 3D
Detection +

Tracking

Center-based pipeline for LiDAR; accurate
and efficient; strong baseline for 3D MOT
in autonomous driving.

Requires high-quality LiDAR; misses
small/occluded objects; limited in
multi-modal fusion.

AMOTA: 78.1
(nuScenes)

JDE [60] ReID-Aware CNN detector +
embedding head

Unified backbone for joint detection and
embedding; reduced inference latency;
optimized for real-time applications.

Embeddings weaker than specialized
ReID models; suffers under heavy
occlusion; trade-off between detection and
ReID accuracy.

MOTA: 64.4
(MOT16)

TransReID [61] ReID-Aware Transformer
with CAPE

Captures long-range dependencies;
part-aware embedding improves
viewpoint robustness; strong results
across cameras.

High computational cost; domain-shift
sensitivity; needs large-scale pretraining
for stability.

IDF1: 78.0
(Market-1501)
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Appendix B. Long Term Tracking Methods

Table A2. Long Term Tracking methods categorized by architecture, backbone, strengths, weaknesses, and
performance (dataset + metric). Performance column shows metric along with the dataset it was reported on.

Method Category Backbone Key Strength Key Weakness Performance
(Dataset/Metric)

TLD [20] Early
Modular

Handcrafted
Features +

Online Detector

First to formalize LTT with
tracking-learning-detection
decomposition; separates short-term
tracking, validation, and incremental
learning; pioneering modular design.

Relies on handcrafted features; weak
under large appearance changes and
cluttered backgrounds; limited robustness.

Precision: 61.3
(VOT-LT)

DaSiamRPN [62] Siamese
Re-detection

Siamese RPN +
Distractor-

Aware Module

Introduces distractor suppression and
re-detection branch; global search enables
robust recovery; reliable under clutter and
reappearance-heavy sequences.

Sensitive to appearance drift without
memory; requires strong backbone for
stability; heavier computation than
short-term Siamese.

F-score: 0.61
(VOT2018-LT)

SiamRPN++ (LT) [9] Siamese
Re-detection

Deeper Siamese
RPN + Global

Template
Matching

Stronger backbone improves localization;
global search triggers on low-confidence
predictions; robust under distractors and
large motion.

Lacks adaptive memory; prone to drift
during long-term occlusion; global search
increases computational load.

Precision: 69.6
(UAV20L)

LTTrack [63] Occlusion-
Aware

Re-matching

Short-term
Association +
Zombie Pool
Re-activation

Suspends lost tracks into “zombie pool”
and re-matches based on motion and IoU;
improves continuity under prolonged
occlusion; effective in crowded scenes.

Dependent on accurate motion prediction;
errors in occlusion modeling propagate;
limited to 2D settings.

MOTA: 65.7
(MOT-LT

benchmark)

MambaLCT [64] Memory-
Augmented

State-Space
Model +

Long-Term
Context

Encoding

Aggregates long-horizon temporal
information efficiently; maintains identity
consistency over lengthy disconnections;
scalable and real-time feasible.

Computational overhead of memory
encoding; requires large-scale training;
sensitive to memory pruning strategies.

F-score: 72.8
(VOT2022-LT)
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