

Concept Paper

Not peer-reviewed version

Preparing for Disease X: Strategies and Insights for Future Epidemics

Mujahed Mustafa*, Awad Alzebair, Abdelrafie Makhawi

Posted Date: 13 January 2025

doi: 10.20944/preprints202501.0976.v1

Keywords: Disease X; Epidemic preparedness; Infectious diseases; Pandemic response; Vaccine development.

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Concept Paper

Preparing for Disease X: Strategies and Insights for Future Epidemics

Mujahed I. Mustafa 1*, Awad A. Alzebair 2 and Abdelrafie M. Makhawi 1

- Department of Biotechnology, College of Applied and Industrial Sciences, University of Bahri, Khartoum, Sudan
- ² Department of Biotechnology, School of Life Sciences and Technology, Omdurman Islamic University, Omdurman, Sudan
- * Correspondence: mujahedimustafa@gmail.com

Abstract: The term "Disease X," introduced by the World Health Organization, symbolizes the imminent threat posed by unknown pathogens capable of sparking global epidemics. This perspective article emphasizes the urgency of preparing for such threats by drawing on insights from the COVID-19 pandemic. Key strategies include robust surveillance systems leveraging genomic technologies and artificial intelligence to enable early detection, as well as innovations in rapid diagnostics and vaccine development. The rapid deployment of mRNA vaccines during the pandemic exemplifies the transformative potential of scientific advancements in mitigating future outbreaks. Equitable access to healthcare resources remains paramount, as marginalized populations often bear disproportionate impacts. International collaboration is highlighted as a cornerstone for epidemic preparedness, ensuring shared expertise and coordinated responses. Furthermore, integrating social sciences enhances public compliance with health measures, addressing behavioral factors and misinformation. This article underscores the critical need for a multidisciplinary and equitable framework to strengthen global resilience against emerging infectious diseases.

Keywords: Disease X; Epidemic preparedness; Infectious diseases; Pandemic response; Vaccine development

Introduction:

The term "Disease X" was introduced by the World Health Organization (WHO) to represent a hypothetical, unknown pathogen that could cause a future epidemic [1]. This concept highlights the unpredictable nature of infectious diseases and the ongoing threat they pose to global health. Disease X represents the potential for a novel pathogen to emerge, spread rapidly, and disrupt societies, economies, and healthcare systems worldwide. History has shown that such diseases can emerge with little warning, making preparedness a critical priority [2].

The implications of Disease X for global health are profound. In an increasingly interconnected world, pathogens can cross borders with unprecedented speed, complicating containment efforts. The COVID-19 pandemic serves as a stark reminder of this reality [3]. The SARS-CoV-2 virus, which emerged in late 2019, quickly spread across the globe, causing widespread illness, loss of life, and severe socio-economic disruption. The pandemic exposed vulnerabilities in public health systems and highlighted the need for comprehensive preparedness strategies that can be activated swiftly [4].

To address the challenges posed by Disease X, it is essential to learn from the COVID-19 pandemic. Early detection and surveillance are critical for identifying emerging pathogens and enabling timely interventions [4]. Global surveillance systems must be strengthened to monitor zoonotic diseases and improve data sharing among nations. The rapid development of mRNA vaccines during the pandemic demonstrated the potential of modern science and technology to

combat infectious diseases. This innovation has set a precedent for future vaccine research, emphasizing adaptability and the importance of staying ahead of new threats [5].

International collaboration is equally vital. Effective responses to global health challenges require the sharing of information, resources, and expertise among nations and organizations. Initiatives like COVAX, which aimed to ensure equitable access to vaccines, illustrate the importance of solidarity in health crises. Moreover, addressing social determinants of health is crucial, as disparities in health outcomes often leave marginalized populations most vulnerable during outbreaks. Future strategies must prioritize equity and ensure that all populations have access to necessary healthcare resources [6].

Economic challenges associated with Disease X are particularly significant for developing countries. The COVID-19 pandemic disrupted trade, tourism, and labor markets, causing financial strain worldwide. Future outbreaks could have similar or worse economic impacts, especially if critical industries are affected. Building economic resilience through measures like stabilizing supply chains and supporting vulnerable populations is crucial [7].

Preparedness for Disease X requires a proactive and comprehensive approach, combining early detection, vaccine innovation, international cooperation, and equitable healthcare access. The threat of zoonotic diseases, such as those caused by H5N1 or other emerging pathogens, remains everpresent, particularly in areas with close human-animal interactions [8]. Strengthening global health systems and addressing social and economic vulnerabilities will be essential to mitigating the potential impacts of Disease X and protecting global health [2].

2. Biological and Immunological Perspectives:

2.1. Understanding Emerging Pathogens and Their Detection

Emerging pathogens, which include viruses, bacteria, and other microorganisms, represent a significant and ongoing threat to global health. These pathogens can arise through various mechanisms, including zoonotic spillover, where diseases jump from animals to humans, or through genetic mutations that enhance their transmissibility or virulence. Understanding the biology of these pathogens is crucial for developing effective detection and response strategies.

One of the key challenges in managing emerging pathogens is the rapidity with which they can spread [9]. The COVID-19 pandemic exemplified how a novel virus can quickly become a global health crisis. To effectively combat such threats, early detection is paramount. Advances in genomic sequencing technologies, particularly next-generation sequencing (NGS), have revolutionized our ability to identify and characterize pathogens swiftly. NGS enables researchers to sequence entire genomes directly from clinical samples, providing critical information about the pathogen's genetic makeup and evolutionary trajectory [10].

Additionally, the integration of artificial intelligence (AI) and machine learning into pathogen surveillance has enhanced our ability to predict and identify potential outbreaks. These technologies analyze vast datasets to detect patterns and anomalies that may indicate the emergence of a new pathogen. Furthermore, environmental monitoring, including surveillance of wildlife and ecosystems, plays a vital role in identifying potential zoonotic sources before they spill over into human populations [11].

Another promising approach in pathogen detection is the development of biosensors and multiplex diagnostic assays. These technologies can detect multiple pathogens simultaneously, significantly enhancing the speed and accuracy of diagnosis [12]. For instance, point-of-care tests that integrate molecular diagnostics with portable devices enable rapid identification of infectious agents, allowing for timely public health interventions [12].

2.2. Innovations in Vaccine Development and Immune Monitoring

The rapid advancements in vaccine development, particularly seen during the COVID-19 pandemic, have transformed our approach to immunization against emerging pathogens [13].

Traditional vaccine development can be a lengthy process, but the urgency of the pandemic led to the adoption of innovative platforms. mRNA vaccines, such as those developed by Pfizer-BioNTech and Moderna, emerged as a groundbreaking approach, allowing for rapid design and production [14]. These vaccines utilize synthetic mRNA to instruct cells to produce viral proteins, thereby eliciting a robust immune response without the use of live virus. This technology not only expedited the development timeline but also demonstrated the potential for rapid adaptability to emerging variants [14].

In addition to mRNA vaccines, viral vector vaccines and protein subunit vaccines have also proven effective. Viral vector vaccines use a harmless virus to deliver genetic material encoding for the target pathogen's antigens, while protein subunit vaccines contain specific proteins from the pathogen to stimulate an immune response. The diversity of these vaccine platforms enhances our ability to respond to a variety of emerging infectious diseases [15].

Monitoring the immune response to vaccines is critical for assessing their effectiveness and informing public health strategies. Immune monitoring involves measuring specific antibodies and T-cell responses to determine the strength and duration of immunity in vaccinated populations. Techniques such as enzyme-linked immunosorbent assays (ELISAs) and flow cytometry are commonly used to quantify immune responses. Understanding the nuances of immune responses can inform decisions about booster doses and the need for updated vaccines in response to new variants [16].

Moreover, ongoing research is focused on developing broadly protective vaccines that can target multiple strains or species of pathogens. For instance, initiatives aimed at creating a universal influenza vaccine seek to enhance long-term immunity against various influenza strains, thereby reducing the risk of seasonal outbreaks.

3. Diagnostic Technologies: Enhancing Detection and Response:

In the realm of public health, the ability to quickly detect and respond to emerging infectious diseases is paramount. Recent advancements in diagnostic technologies have revolutionized this landscape, particularly through the development of rapid diagnostics and point-of-care (POC) testing [17]. These innovations play a critical role in enhancing disease detection, with each tool offering unique strengths and limitations that shape their effectiveness in outbreak management.

Rapid diagnostics have transformed the way healthcare providers identify infections. Molecular diagnostic techniques, such as polymerase chain reaction (PCR), have become instrumental in detecting genetic material from pathogens [18]. The speed and accuracy of PCR testing were notably highlighted during the COVID-19 pandemic, where it became the gold standard for diagnosing SARS-CoV-2 infections. PCR tests can deliver results in just a few hours, allowing for timely clinical decision-making. In contrast, antigen tests, which detect specific proteins from pathogens, provide results in mere minutes. While generally less sensitive than PCR, these rapid antigen tests are invaluable for mass screenings, enabling healthcare systems to identify infectious individuals quickly and efficiently [19].

On the other hand, serology tests play a different yet complementary role. By identifying antibodies in the blood, serological tests provide insight into past infections and the extent of community spread. This information is particularly useful in assessing immune responses following vaccination and understanding population-level immunity. Each of these diagnostic tools brings distinct capabilities to the table, with molecular tests excelling in accuracy, antigen tests in speed, and serology tests in understanding immune dynamics.

Point-of-care testing represents a significant advancement in making diagnostics more accessible and immediate. These tests are designed to be performed at or near the site of patient care, eliminating the need for centralized laboratory facilities. The user-friendly design of many POC tests allows healthcare providers to administer them with minimal training, making them suitable for diverse settings, including remote areas with limited resources [20]. The speed of POC tests is particularly advantageous, as results can be obtained in real-time, facilitating prompt clinical decisions that are

critical in managing infectious disease outbreaks. Moreover, the integration of digital health technologies into POC testing enables seamless data sharing and enhances surveillance capabilities, allowing health authorities to monitor trends and respond effectively.

While the advancements in rapid diagnostics and POC testing are remarkable, the role of technology in outbreak surveillance and early intervention cannot be overstated. Enhanced surveillance systems have emerged as vital tools in detecting and managing infectious disease threats. Global health networks, such as the Global Health Observatory and ProMED-mail, provide real-time data on outbreaks, enabling health authorities to monitor trends and respond promptly. The application of artificial intelligence and machine learning in analyzing vast datasets has further improved our ability to identify patterns and predict potential outbreaks. These predictive models can inform resource allocation and preventive measures, enhancing overall preparedness.

Genomic surveillance has also become increasingly important in understanding the dynamics of pathogen transmission [21]. By sequencing the genomes of pathogens from infected individuals, health officials can track mutations and assess how diseases spread within populations. This information is essential for tailoring interventions effectively and responding to emerging threats. Real-time reporting systems that allow healthcare providers to report cases immediately facilitate swift investigation and intervention, preventing outbreaks from escalating.

Mobile health applications and community engagement tools further enhance outbreak management by empowering individuals to take proactive health measures [22]. These technologies disseminate information about symptoms, vaccination campaigns, and ongoing outbreaks, fostering community awareness and involvement. Engaged communities can play a crucial role in early detection and reporting of unusual health events, further supporting public health initiatives.

4. Therapeutic Innovations: Developing Effective Treatments:

The rapid emergence of infectious diseases poses significant challenges to public health, necessitating the development of effective therapeutic interventions. Recent research has focused on broad-spectrum antivirals and novel therapeutic approaches that can address a variety of pathogens. These innovations, along with case studies from recent outbreaks, illustrate the potential for effective treatments in mitigating the impact of emerging diseases.

Research into broad-spectrum antivirals aims to create medications capable of targeting multiple viruses, which is particularly valuable in a world where new viral threats are constantly emerging. Traditional antiviral therapies have typically been specific to narrow categories of viruses, limiting their effectiveness when new pathogens arise [23]. However, the development of broad-spectrum agents, such as favipiravir and remdesivir, has shown promise in treating a range of viral infections. For instance, remdesivir, initially developed for Ebola, has been repurposed for the treatment of COVID-19 [24]. Its mechanism of action—interfering with viral RNA replication—has made it effective against various RNA viruses, demonstrating the potential of broad-spectrum antivirals in managing multiple outbreaks [24].

Another innovative approach involves the use of monoclonal antibodies, which are engineered to target specific pathogens. These therapies have become increasingly important in treating viral infections. For example, during the COVID-19 pandemic, several monoclonal antibody therapies were authorized for emergency use to treat patients with mild to moderate COVID-19, significantly reducing hospitalizations and severe disease outcomes [25]. This class of therapeutics exemplifies how targeted treatments can enhance patient outcomes and provide a rapid response to emerging health threats.

In addition to antivirals and monoclonal antibodies, other novel therapeutic approaches are being explored. The use of host-targeted therapies, which aim to bolster the body's immune response rather than directly targeting the pathogen, has gained attention [26]. These therapies can enhance the immune system's ability to fight infections, providing a complementary strategy to traditional antiviral treatments. For example, the use of interferons, which are signaling proteins that modulate

the immune response, has been investigated for their potential to treat various viral infections, including hepatitis and influenza.

Case studies from recent outbreaks highlight the effectiveness of these therapeutic innovations. During the Ebola outbreak in West Africa (2014-2016), the use of the monoclonal antibody therapy ZMapp proved to be a significant advancement in treatment [27]. Although initially developed for research purposes, ZMapp was administered under compassionate use protocols and showed promising results in reducing mortality among treated patients. This case underscores the importance of rapid development and deployment of therapeutic agents during public health emergencies.

Similarly, the response to the COVID-19 pandemic showcased the rapid translation of research into effective treatments. The development and authorization of various antiviral drugs, including remdesivir and molnupiravir, along with monoclonal antibody treatments, have provided effective options for managing COVID-19 [28]. Clinical trials demonstrated that these treatments not only reduced the severity of the disease but also decreased hospitalization rates, highlighting the critical role of therapeutic innovations in outbreak management.

Moreover, the global collaboration in vaccine development and distribution during the COVID-19 pandemic has also paved the way for therapeutic advancements. The expedited development processes and regulatory pathways established during this time may serve as models for future therapeutic innovations against emerging pathogens, emphasizing the need for preparedness and rapid response capabilities.

The landscape of therapeutic innovations is evolving rapidly, driven by research on broadspectrum antivirals and novel approaches to treatment. Case studies from recent outbreaks illustrate the effectiveness of these advancements, showcasing how targeted therapies and broad-spectrum agents can significantly impact patient outcomes and public health responses. As we continue to face emerging infectious diseases, the ongoing development of effective treatments will be essential for mitigating their impact and protecting global health.

5. Collaborative Research: Building a Global Response Network:

In an increasingly interconnected world, the importance of international collaboration in epidemic preparedness cannot be overstated. Emerging infectious diseases do not respect borders; they can spread rapidly across countries and continents, making a coordinated global response essential. Collaborative research efforts allow countries to share knowledge, resources, and expertise, ultimately enhancing the ability to prevent, detect, and respond to outbreaks effectively.

One of the key advantages of international collaboration is the pooling of resources and expertise. Different countries and organizations bring unique strengths to the table, whether it be advanced research capabilities, local knowledge of disease dynamics, or established public health infrastructures. By working together, nations can leverage these strengths to develop more comprehensive strategies for epidemic preparedness. For instance, during the COVID-19 pandemic, countries around the world shared genomic data on the virus, allowing scientists to track mutations and understand transmission patterns. This collaborative approach facilitated the rapid development of vaccines and therapeutic interventions, highlighting the critical role of shared information in combating infectious diseases.

Successful partnerships in research and public health initiatives serve as powerful examples of the impact of collaboration. The Global Health Security Agenda (GHSA) is one such initiative aimed at strengthening global health security. Launched in 2014, GHSA brings together governments, international organizations, and civil society to enhance capacities for preventing, detecting, and responding to infectious disease threats. Through joint exercises, capacity-building efforts, and shared surveillance systems, GHSA has fostered collaboration across countries, enabling a more coordinated response to outbreaks [29].

Another notable example is the Coalition for Epidemic Preparedness Innovations (CEPI), which was established in 2017 in response to the increasing threat of emerging infectious diseases. CEPI focuses on funding and facilitating vaccine research and development, particularly for diseases that may not attract sufficient investment from the private sector. During the COVID-19 pandemic, CEPI played a crucial role in accelerating vaccine development by funding multiple candidates and supporting global clinical trials. This collaborative effort resulted in the rapid deployment of effective vaccines, showcasing how partnerships can enhance epidemic preparedness [30].

The World Health Organization (WHO) also plays a vital role in fostering international collaboration through its Global Outbreak Alert and Response Network (GOARN). This network connects a variety of partners, including governments, NGOs, and academic institutions, to respond to outbreaks swiftly. By coordinating resources and expertise, GOARN has been instrumental in managing public health emergencies, such as the Ebola outbreak in West Africa and the ongoing responses to COVID-19 [31].

Furthermore, local collaborations within regions can enhance epidemic preparedness. For instance, the African Union's Africa Centres for Disease Control and Prevention (Africa CDC) has established partnerships with regional health organizations and member states to strengthen health systems and improve disease surveillance across the continent. Initiatives such as the Africa CDC's Surveillance and Outbreak Response Management System (SORMAS) illustrate how regional collaboration can improve response capabilities to outbreaks, ensuring that countries are better prepared to manage public health threats [32].

The importance of international collaboration in epidemic preparedness is clear. By building a global response network that emphasizes shared knowledge, resources, and expertise, countries can enhance their ability to prevent, detect, and respond to infectious diseases effectively.

6. Integrating Social Sciences and Behavioral Insights:

The management of public health crises requires not only scientific and medical expertise but also a deep understanding of the social dynamics that influence health behaviors. Integrating social sciences and behavioral insights into public health strategies is essential for effectively addressing outbreaks and ensuring community compliance with health guidelines. By recognizing the role of human behavior in health decisions, public health officials can develop more effective interventions and communication strategies.

Social sciences provide valuable insights into how cultural, social, and economic factors shape individual and community responses to health threats. During public health crises, understanding these factors allows for a more nuanced approach to managing outbreaks. For instance, research in sociology and psychology can reveal how misinformation spreads, the impact of trust in health authorities, and the role of social norms in behavior change. By applying these insights, public health campaigns can be tailored to resonate with specific communities, improving the likelihood of compliance with health advisories.

Effective communication is a cornerstone of successful public health management. During outbreaks, clear and transparent communication helps to build trust and mitigate fear. Strategies for effective communication include using plain language to convey complex health information, actively engaging with communities to understand their concerns, and addressing misinformation promptly. Public health messages should be culturally sensitive and delivered through trusted channels, such as community leaders or local organizations, to enhance their credibility.

Community engagement is equally crucial in managing public health crises. Involving communities in decision-making processes fosters a sense of ownership and responsibility, which can lead to greater adherence to health measures. Strategies for effective community engagement include participatory approaches that invite community members to share their experiences and insights. This can be achieved through focus groups, surveys, or town hall meetings, allowing public health officials to tailor interventions to the specific needs and preferences of the community [33].

During the COVID-19 pandemic, the integration of social sciences became evident in various public health initiatives. For example, understanding vaccine hesitancy required insights from behavioral science to identify the underlying reasons for reluctance. Public health campaigns were designed to address these concerns by highlighting the safety and efficacy of vaccines through relatable narratives and testimonials from trusted figures within communities. This approach not only informed the public but also reassured them, ultimately increasing vaccination rates.

Moreover, leveraging technology to engage communities has proven effective. Social media platforms, mobile apps, and online forums provide avenues for real-time communication and feedback. These tools facilitate two-way communication, allowing public health authorities to disseminate information while also listening to community concerns. Engaging with the public through these channels can counter misinformation and foster a collaborative environment where individuals feel empowered to contribute to public health efforts.

Integrating social sciences and behavioral insights into public health strategies is vital for managing public health crises effectively. Understanding the social determinants of health and employing effective communication and community engagement strategies can significantly enhance public compliance with health measures.

7. Policy Recommendations: Strengthening Preparedness Frameworks

In the face of emerging infectious diseases, strengthening epidemic preparedness frameworks is essential for safeguarding public health. Effective policies must be developed and implemented to enhance readiness, improve response capabilities, and ensure equitable access to healthcare resources. Identifying key policy measures and addressing issues of equity are critical components of a comprehensive strategy to mitigate the impact of future epidemics.

One of the primary policy measures to enhance epidemic preparedness is the establishment of robust surveillance systems [34]. These systems should integrate data from various sources, including healthcare facilities, laboratories, and community reports, to enable early detection of outbreaks. Investments in digital health technologies can facilitate real-time data collection and sharing, allowing public health authorities to respond swiftly to emerging threats. Additionally, strengthening laboratory capacities and ensuring that they are equipped to conduct timely diagnostic testing is crucial for effective outbreak management [34].

Another important policy recommendation is to foster international collaboration and information sharing. Establishing frameworks that promote coordination among countries can enhance global readiness. Initiatives such as joint training exercises, shared research agendas, and collaborative response plans can facilitate a united approach to epidemic preparedness. This global perspective ensures that resources and expertise are mobilized quickly in response to outbreaks, ultimately reducing the spread of infectious diseases [35].

Equity in access to healthcare resources and vaccines is paramount in strengthening epidemic preparedness. Disparities in healthcare access can exacerbate the impact of outbreaks, particularly in marginalized communities. Policymakers must prioritize equitable distribution of resources, ensuring that vaccines, treatments, and preventive measures are accessible to all populations, regardless of socioeconomic status. This can be achieved through targeted outreach efforts, mobile vaccination units, and partnerships with community organizations that can help identify and address barriers to access [36].

Furthermore, policies should emphasize investment in public health infrastructure, particularly in low- and middle-income countries that may lack the resources to respond effectively to epidemics. Strengthening healthcare systems, training healthcare workers, and enhancing community health initiatives are essential for building resilience against infectious diseases. By investing in local capacities, countries can improve their ability to manage outbreaks and protect vulnerable populations [37].

Public communication strategies also play a vital role in epidemic preparedness. Policymakers should develop clear, transparent communication plans that provide accurate information to the public. Engaging communities through participatory approaches allows for the incorporation of local knowledge and concerns, fostering trust and cooperation. This is particularly important during health crises, where misinformation can spread rapidly and undermine public health efforts [38].

The COVID-19 pandemic highlighted the critical need for equitable access to vaccines globally. As countries rushed to secure supplies, many low-income nations faced significant challenges in obtaining vaccines, leading to disparities in vaccination rates [39]. Policymakers must prioritize mechanisms, such as the COVAX initiative, that aim to ensure fair distribution of vaccines to all countries. Strengthening international agreements and commitments to support equitable access can help prevent similar inequities in future outbreaks [39].

Strengthening preparedness frameworks for epidemics requires a multifaceted approach that includes robust surveillance systems, international collaboration, and a focus on equity in healthcare access. Policymakers must prioritize the development and implementation of policies that enhance readiness and response capabilities while addressing the underlying disparities that can exacerbate the impact of infectious diseases. By fostering an equitable and comprehensive approach to epidemic preparedness, we can better protect public health and strengthen global resilience against future health threats.

8. Conclusion:

In anticipation of the next Disease X, it is imperative to adopt a comprehensive framework for epidemic preparedness. Key strategies should include the establishment of robust surveillance systems to facilitate early detection and rapid response, effective communication strategies to foster public trust, and equitable access to healthcare resources and vaccines to mitigate disparities in health outcomes.

Ongoing investment in research and technology is essential for the development of innovative treatments and vaccines. The expedited response to the COVID-19 pandemic exemplifies the potential of prioritizing these areas. Furthermore, international collaboration is crucial; the interconnected nature of global health necessitates a coordinated approach to effectively address emerging threats.

Now is the critical moment to implement these essential strategies—enhancing surveillance, communication, equity, research, and international collaboration. By doing so, we can strengthen our public health infrastructure, improve our capacity to respond to future outbreaks, and safeguard global health. The commitment to these measures is vital for ensuring a resilient and equitable response to emerging infectious diseases.

Author contribution: MM: Conceptualization, investigation, and writing (original draft). AA: Conceptualization, investigation, writing (original draft); AM: Writing – review & editing, Supervision. All authors read and approved the final manuscript.

Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of competing interest: None declared.

Data availability: No data was used for the research described in the article.

Acknowledgements: The authors acknowledge the Deanship of Scientific Research at University of Bahri for the supportive cooperation.

References

- 1. Kelland, K., Disease X: the 100 days mission to end pandemics. 2024: Canbury Press.
- 2. Bloom, D.E. and D. Cadarette, *Infectious disease threats in the twenty-first century: strengthening the global response.* Frontiers in immunology, 2019. **10**: p. 549.
- 3. Bernes, T., et al., *Challenges of Global Governance Amidst the COVID-19 Pandemic*. Council on Foreign Relations Paper Series. Council on Foreign Relations, New York, 2020.
- 4. Lal, A., et al., *Optimizing pandemic preparedness and response through health information systems: lessons learned from Ebola to COVID-19*. Disaster medicine and public health preparedness, 2022. **16**(1): p. 333-340.
- Kumar, A., et al., The mRNA vaccine development landscape for infectious diseases. Nat Rev Drug Discov, 2022.
 21(5): p. 333-334.
- de Bengy Puyvallée, A. and K.T. Storeng, COVAX, vaccine donations and the politics of global vaccine inequity.
 Globalization and Health, 2022. 18(1): p. 26.
- 7. Russell, S., The economic burden of illness for households in developing countries: a review of studies focusing on malaria, tuberculosis, and human immunodeficiency virus/acquired immunodeficiency syndrome. The Intolerable Burden of Malaria II: What's New, What's Needed: Supplement to Volume 71 (2) of the American Journal of Tropical Medicine and Hygiene, 2004.
- 8. Chatterjee, P., et al., One health, "disease X" & the challenge of "unknown" unknowns. Indian Journal of Medical Research, 2021. 153(3): p. 264-271.
- 9. Baker, S., et al., Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens. Science, 2018. **360**(6390): p. 733-738.
- 10. Satam, H., et al., Next-generation sequencing technology: current trends and advancements. Biology, 2023. **12**(7): p. 997.
- 11. Zhao, A.P., et al., AI for science: predicting infectious diseases. Journal of Safety Science and Resilience, 2024.
- 12. Mustafa Mujahed, I. and M. Makhawi Abdelrafie, SHERLOCK and DETECTR: CRISPR-Cas Systems as Potential Rapid Diagnostic Tools for Emerging Infectious Diseases. Journal of Clinical Microbiology, 2021. 59(3): p. 10.1128/jcm.00745-20.
- 13. Graham, B.S., Rapid COVID-19 vaccine development. Science, 2020. 368(6494): p. 945-946.
- 14. Al Fayez, N., et al., Recent advancement in mRNA vaccine development and applications. Pharmaceutics, 2023. **15**(7): p. 1972.
- 15. Bråve, A., et al., Vaccine delivery methods using viral vectors. Molecular pharmaceutics, 2007. 4(1): p. 18-32.
- 16. Cobey, S., et al., Concerns about SARS-CoV-2 evolution should not hold back efforts to expand vaccination. Nature Reviews Immunology, 2021. 21(5): p. 330-335.
- 17. Nayak, S., et al., *Point-of-care diagnostics: recent developments in a connected age.* Analytical chemistry, 2017. **89**(1): p. 102-123.
- 18. Rajapaksha, P., et al., A review of methods for the detection of pathogenic microorganisms. Analyst, 2019. **144**(2): p. 396-411.
- 19. Esbin, M.N., et al., Overcoming the bottleneck to widespread testing: a rapid review of nucleic acid testing approaches for COVID-19 detection. Rna, 2020. **26**(7): p. 771-783.
- 20. St John, A. and C.P. Price, *Existing and emerging technologies for point-of-care testing*. The Clinical Biochemist Reviews, 2014. **35**(3): p. 155.
- 21. Gardy, J.L. and N.J. Loman, *Towards a genomics-informed, real-time, global pathogen surveillance system*. Nature Reviews Genetics, 2018. **19**(1): p. 9-20.
- 22. Qiang, C.Z., et al., Mobile applications for the health sector. Washington: World Bank, 2011. 2.
- 23. Meganck, R.M. and R.S. Baric, *Developing therapeutic approaches for twenty-first-century emerging infectious viral diseases*. Nature medicine, 2021. **27**(3): p. 401-410.
- 24. Eastman, R.T., et al., Remdesivir: a review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS central Science, 2020. 6(5): p. 672-683.
- 25. Berger, M., V. Shankar, and A. Vafai, *Therapeutic applications of monoclonal antibodies*. The American journal of the medical sciences, 2002. **324**(1): p. 14-30.
- 26. Kaufmann, S.H., et al., *Host-directed therapies for bacterial and viral infections*. Nature reviews Drug discovery, 2018. **17**(1): p. 35-56.

- 27. Mulangu, S., et al., *A randomized, controlled trial of Ebola virus disease therapeutics*. New England journal of medicine, 2019. **381**(24): p. 2293-2303.
- Imran, M., et al., Discovery, development, and patent trends on molnupiravir: a prospective oral treatment for COVID-19. Molecules, 2021. 26(19): p. 5795.
- 29. Wolicki, S.B., et al., *Public health surveillance: at the core of the global health security agenda*. Health security, 2016. **14**(3): p. 185-188.
- 30. Gouglas, D., et al., CEPI: driving progress toward epidemic preparedness and response. Epidemiologic Reviews, 2019. **41**(1): p. 28-33.
- 31. Ansell, C., E. Sondorp, and R.H. Stevens, *The promise and challenge of global network governance: the global outbreak alert and response network.* Global Governance, 2012: p. 317-337.
- 32. Tom-Aba, D., et al., *The Surveillance Outbreak Response Management and Analysis System (SORMAS): digital health global goods maturity assessment.* JMIR public health and surveillance, 2020. **6**(2): p. e15860.
- 33. Organization, W.H., COVID-19 global risk communication and community engagement strategy, December 2020-May 2021: interim guidance, 23 December 2020. 2020, World Health Organization.
- 34. Sharan, M., et al., *Surveillance and response strategies for zoonotic diseases: A comprehensive review.* Science in One Health, 2023: p. 100050.
- 35. Omotayo, O., et al., *Pandemic epidemiology: a comprehensive review of covid-19 lessons and future healthcare preparedness*. International Medical Science Research Journal, 2024. 4(1): p. 89-107.
- 36. Lubanga, A.F., et al., Addressing the re-emergence and resurgence of vaccine-preventable diseases in Africa: A health equity perspective. Human Vaccines & Immunotherapeutics, 2024. **20**(1): p. 2375081.
- 37. Perry, H.B. and J.D. Sachs, The investment case for strengthening primary healthcare and community health worker programs in low-and lower-middle-income countries, in Oxford Research Encyclopedia of Global Public Health. 2024.
- 38. Kisa, S. and A. Kisa, A comprehensive analysis of COVID-19 misinformation, public health impacts, and communication strategies: scoping review. Journal of Medical Internet Research, 2024. 26: p. e56931.
- Santangelo, O.E., et al., COVID-19 Vaccination and Public Health: Addressing Global, Regional, and Within-Country Inequalities. Vaccines, 2024. 12(8): p. 885.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.