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1. Introduction

The use of queue models implies the knowledge of the arrival and departure rates, which in
their turn require the well-defined time intervals [3].

For example, consider a clerk serving clients of some office during the day. Then, the arrival rate
A and the departure rate p per day completely describe the state of the system at the end of the day
but do not provide any information about the system during the day. On other hand, specification of
the rates 1 and p, for example, per minute is also useless since both the clients and the clerk do not
act with such rates.

The incorrect specification of the time intervals leads to incorrect consideration of the processes
with unsteady arrivals or departures. In many cases, such situations are resolved using the queues
with time dependent rates [5,8], but even in such considerations certain time intervals per which the
rates are defined have to be specified.

Similar problem appears in statistics while plotting histograms of the data sample X and it is
required to define the lengths § of the bins. Since there is no strictly proven formula, which defines
the bin length with respect to the number n of data counts or distribution over the sample, the
heuristic formulas are used.

For example, the simplest heuristic defines the bin length as

5 = W 1)

The Sturges rule [15] defines the number of bins as [log, n] + 1. Then the bin length is

max(X)—min(X)

8, = [log, n]+1 &)
The Scott rule [12] defines the bin length
— 349
8 =% ®
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with respect to the standard deviation s of the sample. Finally, the Freedman-Diaconis formula [2]
uses the interquartile range instead of the standard deviation and defines the bin length

2(Q3—Q1)
5, =14, @

where Q3 is the third quartile and @, is the first quartile of the sample.

In general, this problem can be considered in the terms of discretization of stochastic processes
[4], where it is required to build a discretization scheme, which is a sequence t;, i =0,1,2,..., of
stopping times such that A =t;,; —t; and t; = iA. Butif t; is a random variable, then the length A
of the time intervals is also random and depend on the distribution of the considered process.
Similarly, if the discretization scheme is regular with constant interval lengths A, then the increments
of the process at the times t; are random.

For example, let W; be a Wiener process at the time interval T = [0,t,,] starting with W, = 0.
In such a process, the increments dW, are independent and for any t; and t; > t; the differences
Wtj — W;, have normal distribution (0, of) with the variance of =t; —t;. Assume that the

interval T is divided to n sub-intervals with the length A = t,,/n. Then, the stopping times are
t; =14, i =0,1,2,.., and the increments dW; = th — Wti are normally distributed with of = A.

In this paper, we seek the answer to the following question formulated by Yaakov Reis [9]. Given
a total period, a sequence of clients arriving at the times tg, ty,t5, ..., t;;, to a service point, what is an
optimal length A of the time interval, on which the arrival rate A1 and the service rate y (which is a
departure rate) have to be defined?

An immediate answer to this question follows the heuristics used for definition of the bin length
6 inhistogram. However, such heuristics cannot be considered as the best method and their result is
not strictly proved approximation.

To find an optimal length A we follow the line of the Schwarz information criterion [11] and
apply well-known concepts of e-entropy and e-capacity, which were introduced by Kolmogorov
and Tikhomirov [6]. The calculations of the optimal interval are also based on the concept of the
entropy of partition introduced by Rokhlin [10].

Initially e-entropy and e-capacity were used for analysis of functions and functional spaces and
then, as well as the entropy of partition, were applied to the studies of dynamical systems. For many
examples of application of these concepts and their relationship with the Shannon entropy [13] see
the paper by Dinaburg [1] and the books by Vitushkin [16] and by Sinai [14].

2. Problem Formulation

Let T = [ty, t,,] be atimeinterval of thelength t,, — t, > 0 and assume that during this interval
sequentially occur m + 1 events ay, ay, ay, ..., . The times of occurrences of these events are t, <
t; < t, < --- < tyy, respectively.

The problem is to define a length A of the time interval or, that is the same, the stopping times
t;=1iA, 1 =0,1,2,..,n, such that n intervals T; = [¢t;, t;41] cover the interval T and such that they
as better as possible represent the times t, j=0,1,2,..,m, when the considered events occurred.

To illustrate the problem, let us consider a simple example of a non-steady supply process.
Assume that the mentioned above clerk serves the clients with the rate y =5 clients/hour. During
the workday of 8 hours arrive 24 clients. Then, the arrival rate of the clients defined over a
workday is A1 =24/8 =3 clients/hour and the transition rate p =A1/u=3/5<1 that should
guarantee that at the end of the workday all clients will be served.

Additionally, assume that in the morning, during the first two hours of the day, arrive 12
clients. Then during the next four hours the clients do not arrive and then, in the evening, during the
last two hours of the day, arrive the last 12 clients. Thus, in the morning and in the evening the
arrival rate is 4 = 12/2 = 6 clients/hour, that means that the first 12 clients will wait in the queue
and the last 12 clients will not be served until the end of the workday.


https://doi.org/10.20944/preprints202409.0583.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 September 2024 d0i:10.20944/preprints202409.0583.v1

Certainly, such phenomena are well-known; in the queue theory they are solved using the state-
dependent and time-dependent arrival rates [3,5,8], and in practice are overcome by adding the clerks
in the morning and in the evening and by stopping the service in the midday. However, a prior
definition of the appropriate time intervals can simplify further analysis and even decrease the
expected number of varying rates.

Finally, note that the considered problem is essentially discrete problem, where it is required to
split the discrete dataset. Together with that, since it is closely related to the discretization problems
dealing with the continuous functions, below we will make some remarks on such problems as well.

3. Methods

The suggested solution of the problem is based on the concepts of e-entropy and &-capacity,
which were introduced by Kolmogorov and Tikhomirov in the middle of 1950-s and presented in
detail in their paper [6]. In addition, it uses the multiplication of partitions as it was implemented by
Rokhlin [10] and by Sinai [14] in the studies of dynamical systems.

3.1. &-Entropy and &-Capacity

Let U € R be a non-empty bounded set of a metric space R and let £ > 0 be a real number.

The set a = {A: A c R} is called e-covering of the set U, if U € Uyeq A and the diameter of any
A € a is not greater than 2e.

The set U is said to be e-distinguishable, if any two of its distinct points are located at distance
greater than e.

Given a bounded set U c R, for any € > 0 there exists a finite e-covering of U, and for any
£ >0 any e-distinguishable set U c R is finite.

Denote by N (U) the minimal number of the sets in e-covering a of the set U, and by M, (U)
the maximal number of points in an e-distinguishable subset of the set U.

The value

#,(U) = log, N.(U) ©)
is called the e-entropy of the set U, and the value
&:(U) = log, M, (U) ©)

is called the e-capacity of the set U.

These values are interpreted as follows: e-entropy H.(U) is a minimal number of bits required
to transmit the set U with the precision ¢, and e-capacity £.(U) is a maximal number of bits, which
can be memorized by U with the precision &.

Among the properties of e-entropy H.(U) and e-capacity €.(U) we will use the following
fact [6]: given the bounded set U, both e-entropy and e-capacity as functions of & are non-
increasing with increasing &.

Examples of calculation of the e-entropy and e-capacity of the sets in different metric spaces
can be found in the paper by Kolmogorov and Tikhomirov [6] and in the book by Vitushkin [16].

3.2. g-entropy of Partition

Let § ={B:B c U} be a partition of the set U c R that is U = Ugeg B and for any two sets
B',B" € B holds B'nB" = @.

The entropy of partition is defined as follows [10,14]. Let u be a non-negative measure on the
set U such that u(@) =0 and p(U) = 1. Then, u(B) € [0,1] for any B € B. The value

S, (B) = — Xpep u(B)log, u(B) @)
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is called the entropy of partition. If p is the probability measure on U, then the sets B € § can be
interpreted as events and the entropy ¥, is equivalent to the Shannon entropy [13].

Assume that the partition f is finite and the number of the setsin f is N. Define the measure
i on the set U as follows:

0,B=0
u(B) ={<,B#@,B=U (€)
1,B=U

Then, the entropy of partition is reduced to the value
#,(B) = log, N ©)

Finally, if the diameter of any set B € 8 is not greater than 2¢, then the partition f is an e-
covering and called e-partition. Then, the entropy #,(f) of partition is equivalent to the e-entropy
H(U) of theset U = Upep B defined by equation (5).

Let f ={B:B c U} be e-partition of the set U with € = &5 and y = {C:C < U} be another &-
partition of the set U with & = g;. Multiplication of the partitions  and y is the partition

Bvy={D=BnC:Bep,CEy} (10)

Eachset D € B Vy isasubset of someset B € f and of some set C € y. Then it is said that Vv
y is a refinement of both f and y; this fact is denoted by f < fVy and y < Vy. Hence,
following the properties of the entropy of partition,

H,(B) < #,(BVy) and H,(y) < #,(BVY) (11)

Moreover, the entropy H,(f Vy) of the multiplication fVy of the partition f and y is the
g-entropy H.(U) of the set U with any ¢ € [min{ep, -}, max{ep, e-}].

For the other properties of the entropy #,, and its application for analysis of dynamical systems
see the paper [10] and the book [14].

4. Suggested Solution

Let T = [tg, t], tm > to, be a time interval and let T = {t,, t;, ty, ..., t;n} be the set of moments
in which certain events occur. We assume that the moments t; have an increasing order such that
t <tjyr, j=0,1,2,..,m—1,

As it follows from the formulation of the problem, in the consideration below the interval T
plays a role of the set U and the intervals [tj, tj+1], j=0,1,2,..,m—1, are considered as the
elements of e-partitions of the interval T.

Given ¢ > 0, the minimal number of sets in the e-covering a of the set T

N(T) = [, (12)
Then, the e-entropy of the set 7 is
H,(T) = log, N.(T) = log, [?] (13)
Let
Emin = 3 (14)

2 m?
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be a minimal value of ¢ for the set T. Then, the value

S,

Emin

(7) =log, [?:—to] =2log, m (15)

min

is maximal e-entropy of the set 7.

Finally, assume that on the interval T two sets J; = {t1,0: t11,t12 ---;t1,m1} and 7, =
{tr0tan taas wortam,} s tio =tso and tym, =ty,m,, of moments are defined. Denote by 7, =
{[tvo tua] [ta1r tr2], wos [E1my -1, tim, |} partition of the interval T corresponding to the set 7; and by
7, ={[ta0 tan) [t21 taz) ) [tz,mz—p tZ,mz]} partition of the interval corresponding to the set 7,. The
number of intervals in the partition 7, is m; and the number of intervals in the partition 7, is m,.

Then, since the multiplication 7, V 7, is a refinement of each of the partitions 7; and 7, of the
sets, the size m;y, of the partition 7, V1, is m,,, = max{m;, m,}, and the entropy #,(z; V 7;) of
the multiplication 7; V 7, is not smaller than the entropies #,,(7;) and #,(z;) of the partitions 7,
and T,.

Hence, if

2 = ]'=0,1I£1,?,)‘r(n]—1(t1'j+1 - tl,j) and 2¢ > j=0,£?§n2—1(t2'j+1 - tz’j), (16)

then, following equation (11),
He(T7) < He (T3 VD) and H(T5) < A (T3 V T). (17)

Following the line of the Schwarz information criterion [11], let us define e-information of the set
T.

Let 7 be a partition corresponding to the set 77 and let 7, be a partition corresponding to the
set T, ={teo terstess rtem} , teo ="ty and tgm, =tm , in which tgj, —t,;=2¢, j=
0,1,2,..,m — 2. In the partition 7, all intervals except the last are of the length 2.

Denote by T V7, the set of moments corresponding to the multiplication 7V, of the
partitions 7 and t.. Then, e-information of the set T'is defined as follows

ST =Sy, (T) = H(T) = H(TVT). (18)

In this formula, the first term represents the number of bits required to transmit the set 7 with
maximal precision, the second term represents the number of bits required to transmit the set I with
precision ¢, and the last term represents the number of bits required to transmit the set 77 with
precision ¢ using additional set 7. generated with precision €. Thus, the value J.(T) is the
number of bits remained after the transmission of the set 7 with the precision ¢. In the other words,
e-information of the set T characterizes the part of the set, which cannot be transmitted with the
precision e&.

Using equations (13) and (15), formula (18) of e-information can be simplified and written in the
form

4, (T) =2log,m —log, [t";:o] - H (T VT). (19)

The value of the entropy H, (7 vV J;) depends on the distribution of time moments t; € T, j =
0,1,2,...,m, over the interval T.If the moments tj are distributed evenly, then V7, =T and

H(TVT,) = #,(T) = log, [==4]. (20)
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Note that in general case equation (20) does not hold and calculation of the entropy of
multiplication of partitions is processed according to the algorithm presented by Function 1 (see
section 5).

Similarly, the value of e-capacity €.(7) depends on the distribution of the time moments t;
over the interval T. If the moments ¢t; are distributed evenly such that t;,; —t; = tj;, —t;;; and
tiyg —tj>¢ forany j=0,1,2,..,m— 2, then

A (T) = [ (21)
and
&.(T) = log, M(T) = log, [M] (22)

If the distribution of the moments t; is such that t,_,; —t, < &, which means that all the
moments except t,, are located between t, and t,_;, and t,, —t, > ¢, then

M(T) =2 (23)
and
&(T) = logZZ =1 (24)

Finally, if t,, —ty < ¢, thentheset T doesnot contain &-distinguishable subset, and we assume
that

M (T) =1 (25)
and
6(T) =log,1=0. (26)

Calculation of e-capacity in general case follows the algorithm of Function 2 (see section 5).
The length A of the time interval, which defines the stopping times t; = iA, i =0,1,2,..,n, is
defined as

A=2e 7)

where ¢ is such a value for which e-information 7.(7) of the set T is as close as possible to e-
capacity £.(T) of this set.

Note that given the set T, the entropy #, () is constant and both entropies #,(7") and
H.(T vT,) as functions of ¢ are decreasing. Thus, e-information J.(7) increases with €. Along
with that, e-capacity £.(T) as function of & decreases.

Hence, the problem of finding the length A is formulated as follows: given the set T, find the
value of & such that

|7.(T) = &:(T)| = min. (28)

To illustrate the calculation of the length A, let us consider a simple example. Assume that the
considered time interval is T = [ty,t,;,] and the set T = {tq,t;,t;, ..., t;,} consists of the evenly
distributed moments t; such that tj,; —t; = tj,, — tj;; forany j=0,1,2,..,m — 2. Then (here for
simplicity we omit the notion of ceiling),
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— — )3
I, (T) — &€.(T) = 2log, m — 2log, t";gto —log, tms % = log, m* — log, (Em—t)” (29)

4¢3

Hence, according to the criterion (28), it is required to specify the value ¢ such that

(ot 2, (30)
which is
s:%%. (31)
and finally
A=z%i§ (32)

For example, if T =[0,10] and A4 = {0, 1, 2, ...,10}, then

A=27—— =255
4x11

For comparison, the indicated above methods (1)-(4) of specifying the bin length in the
histograms result in the following values:

maxA-minAd _ 10-0

- the simplest rule: 6, = —= Sy 3.01,

- the Sturges rule [15]: 5, = mla:gj;lnj?‘q = 10;:)1_10“ =224,
3495 349x332

- the Scott rule [12']: | 63 = 2%(/(73_;_21) 3\/IZ_IX(S_=3)5.20,

- the Freedman-Diaconis formula [2]: 6y = —m - i - 4.94.

In the considered example, the interval length calculated using the suggested method is
compatible with the lengths obtained using the methods of calculating the bin lengths, but for the
other distributions the interval lengths can be strongly different.

Note again that in general case the interval lengths cannot be calculated using close formulas. In
the next section we summarize the suggested methods in the form of an algorithm which is applicable
to arbitrary data.

5. Algorithmic Implementation

We summarize the suggested solution in the form of an algorithm which can be directly
implemented in any high-level programming language. In our trials we used the MATLAB®
environment.

Algorithm 1. Computing an optimal interval length

Input: Set T = {ty, t1,ty, ..., tyy} of time moments, t; <t;.4, j=0,1,2,...,m—1;
step s > 0.
Output: Optimal interval length A.

1. Calculate &p, = (tn — t9)/(2m?) {minimal value of &, equation (14)}.
2. Calculate #,,  (7) = 2log, m {maximal &-entropy, equation (15)}.

3. For € = ey to (t, — t)/2 with step s do:

4 Calculate #,(A) = log2[(tm — ty)/2¢] {e-entropy, equation (13)}.
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5. Create set :T;- = {tg'o, tg’l, tS,Z! ey tS,THE} such that tg'j < ts,j+1/ ] = O, 1,2, e, Mg — 1, and tS,j+1 -
tej = 2¢, j=0,1,2,..,m, — 2.

6 Compute (T V T,) = eps_entropy(T,T.) {entropy of T V T, Function 1}

7 Calculate 4, (T) = 4, (T) — #(T) — #,(T VT,) {e-information, equation (18)}.
8. Compute &.(T) = eps_capacity(T, ) {e-capacity, Function 2}.

9 If 7.(7) > &(T) then

10. Break

11. End if.

12. End for.

13. Return A = 2e.

The algorithm includes two functions, eps_entropy(T,7.) and eps_capacity(T,e) which are
defined as follows.

Function 1. eps_entropy(T,T;)

Input: Set T ={tytst5...,tm} of time moments, t; <tj;, j=0,1,2,...,m—1; set T, =
{teo, teq teg s tem,} of time moments, t,; <tgjiy, j=0,1,2,..,m.— 1.

Output:  e-entropy (T VT,) of theset TV T,.

1. Jointhesets T and T;: Tjpine =T U T.

Find the number N (ﬂ}oint) of elements in the set T,

Set ]V:s(g}oint) = N(g;'oint) -1

Set #,(T V T;) = log, Ne(Toint)-

Return &, (T v T,).

AR

The function eps_entropy was implemented in MATLAB® by concatenation of the sets T and
T. using the function cat with further removing of the doubling elements by the function unique.

Function 2. eps_capacity (T, €)

Input: Set T = {ty, t1, Ly, ..., tyy} Of time moments, t; <tj.4, j=0,1,2,...,m—1;
radius € > 0.
Output:  e-capacity &.(T) of theset T.

1. If (¢, —ty) < € then

2 Set M (T)=1.

3. Else

4 Set M (T) =2.

5. Set j =0.

6 For i=1to m—1 do:

7 If (t; — tj) <eor (t, —t;) < e then
8 Continue.

9 Else

10. Set M (T) = M (T) + 1.
11. Set j =1i.

12. End if.

13. End for.

14. End if.

15. Set &.(T) = log, M(T).
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16. Return &.(T).

The function eps_capacity computes the number M .(T) of e-distinguishable elements in the
set T for given ¢ and then computes £.(T) as log, of this number.

Time complexity C of Algorithm 1 includes the following terms: 0(1) —complexity of the lines
1-4; O(m) - complexity of the line 5; O(mlogm) — complexity of the line 6; 0(1) — complexity of
the line 7; O(m) - complexity of the line 8 and 0(1) - complexity of the lines 9-13. Then, time
complexity of each iteration of the algorithm is O (mlogm). The maximal number of iterations is n =
(tm — to)/2s; hence complexity of Algorithm 1 is

C =nx0(mlogm). (33)

Convergence of Algorithm 1 is guaranteed by the indicated above fact that e-information 7.(7)
increases with increasing & while e-capacity €.(7) decreases with increasing &. Since the interval
T =[0,t,,] is bounded, the difference between increasing e-information 7.(7) and decreasing e-
capacity £.(7) has its minimum in T, which is a terminating point of the algorithm.

Dependence of the functions J3.(7) and E.(T) on the interval length A = 2¢ is illustrated in
Figure 1.

»

[§)]

N

€-information and &- capacity
w

2 Lo -
1- ! : A
] = = & -information
! — & - capacity
0 1 L | |
0 10 20 30 40
Interval A

Figure 1. Dependence of e-information J.(7") and &-capacity E.(7) on the interval length A = 2¢
for the set T of m = 100 evenly distributed time moments; T = [0,t,,], t,;, = 100 and s = 1.

The computed interval is A = 14.21. For this interval and ¢ = A/2 = 7.10, the values of e-
information and e-capacity are 7.(T) = £.(T) = 3.7 bit. Note that the accuracy of computing the
interval A increases with decreasing the step s.

6. Examples

First, let us consider the examples of computing the interval lengths for different distributions
of time intervals. In all considered cases we assume that the length of time interval T = [0,t,,] is
ty, = 100 and m = 100.

The data were generated by the MATLAB® function random with respect to the distribution
created by the MATLAB® function makedist. In the examples, we used uniform distribution with
a =0 and b = t,,, normal distribution with y =t,,/2 and ¢ = t,;/6, and exponential distribution
with pu = 2.

The obtained interval lengths A were used as bin lengths § in the histograms. For comparison,
we present the histograms plotted with the bin lengths & calculated using the Scott rule (see
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equation (3)), which is also used as a basis for a default method in MATLAB®. The resulting
histograms are shown in Figure 2.

Evenly distributed Uniform distribution: a =0, b = 100

20
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20 40 60 80 100

15
10

[=2Ne)]
—
Q
~

o

20 40 60 80 100

Normal distribution: z =50, o =17 Exponential distribution: z = 2

20

10

}

(=)

20

10
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Figure 2. Histograms of the data plotted using the bin lengths computed by the Scott rule (figures (a)
for each distribution) and using the bin lengths § = A computed by the suggested algorithm (figures
(b) for each distribution).

The values of the interval lengths A are:

- evenly distributed data:

A =1421, §; =990, 6, =12.95, &3 =21.81 and 6, = 21.54,
- uniform distribution with a =0 and b = t,;:

A =1411, §; =983, 6, =12.87, &3 =22.69 and &, = 22.65,
- normal distribution with u =t,,/2 and o = t,,/6:

A=1191, §; =827, §,=1082, §;=13.11 and &, = 10.38,
- exponential distribution with p = 2:

A =120, §; =107, 6§, =141, 6; =135 and &, = 0.91.
The suggested method results in the interval lengths A that are close to the interval lengths &

provided by the conventional methods with respect to the distribution of the data. In fact, for evenly

and uniformly distributed data interval length A is close to the interval length 6, resulted by the
Sturges method, for normal distribution 6, < A < §3 and for exponential distribution §; < A < 6,.
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Now let us consider the use of the suggested algorithm for specification of the arrival rates 4
and corresponding service rates u. Assume that the office, where the mentioned above clerk works,
serves 480 clients 8 hours during the day thatis T = 8 x 60 = 480 minutes. Also, assume that the
clients arrive by three “waves” — in the morning, in the midday and in the evening. The histogram of
the number of clients during the day is shown in Figure 3.a. In this histogram the bin length is
computed by the Scott rule (value §; below).

The values of the interval lengths A for this distribution are:

A =220, 5, =2191, 8§, = 4845, §; =67.99 and 8, = 6641.

Histogram of the number of clients during the day with the bin length § = A computed by the
suggested algorithm is shown in Figure 3.b. Dependence of the functions J.(4) and &.(A) on ¢ for
this distribution is shown in Figure 3.c.

3 waves distribution
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Figure 3. Arrivals of the clients during a day: (a) histogram with the bin length computed by the Scott
rule; (b) histogram with the bin length 6 = A computed by the suggested algorithm; (c) dependences
of e-information J.(A) and e-capacity £.(A) on ¢ for the set of arrival times.

From the results of computations of the interval length A and the bin lengths § it follows that
by the suggested algorithm the arrival rates during a day should be calculated each 22 minutes,
while by the Scott they should be calculated each 68 minutes. Thus, for multimodal distribution the
suggested algorithm results in shorter intervals that provides more exact representation of the data.

7. Conclusion

In the paper, we suggested the method of calculating optimal time intervals required for
definition of arrival and departure rates. The method is useful for specification of the bin lengths in
histograms, especially for the data with multimodal distributions.

The method utilizes the Kolmogorov and Tikhomirov e-entropy and e-capacity and the
Rokhlin entropy of partition. Optimality of the partition is defined basing on the &-information.

The procedure is presented in the form of a ready-to-use algorithm, which was compared with
the known methods used for calculation of the interval lengths in histograms and demonstrated its
robustness and correct sensitivity to the data.
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