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Abstract: This systematic review highlights the core elements and broad applications of Digital 

Twin (DT) technology, emphasizing its role in transforming various industries. A DT is a real-time 

digital replica of a physical system, built on a foundation of key components such as sensors, data 

acquisition systems, communication networks, and computational infrastructure for real-time 

processing. Integrated machine learning and analytics enable predictive insights, while edge 

computing ensures fast, secure data handling. High-resolution imaging, 3D visualization, and 

scanning technologies enhance modeling accuracy, and blockchain-based cybersecurity 

frameworks safeguard data integrity. Feedback-driven databases support continuous system 

optimization. DTs are widely applied across sectors: in manufacturing for predictive maintenance 

and process efficiency; in healthcare for personalized diagnostics and treatments; in urban planning 

for smart, sustainable infrastructure; and in energy for operational optimization and renewable 

integration. They also enhance immersive training, improve the reliability of autonomous systems, 

and strengthen supply chain resilience. Industries such as aerospace, automotive, oil and gas, 

transportation, and marine engineering increasingly rely on DTs to boost performance, reduce risk, 

and support innovation. This review synthesizes current developments and identifies key research 

directions to advance, scale, and secure next-generation DT systems. 
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1. Introduction 

Digital Twin (DT) technology is a transformative innovation that bridges the physical and digital 

worlds. It creates virtual replicas of real-world systems, enabling real time monitoring, simulation, 

and optimization. By integrating data with computational models, DT enhances efficiency, 

sustainability, and resilience across various industrial systems, giving operators full visibility of 

production processes [1]. 

Originally developed for aerospace applications, Digital Twin technology has expanded to offer 

transformative solutions for complex challenges in numerous sectors, including manufacturing, 

healthcare, infrastructure and urban planning, energy, logistics, education, transportation, and 

autonomous systems [2]. 

DT technology relies on sensors, data acquisition systems, and computational infrastructures for 

seamless data collection and real time processing. Machine learning and analytics improve predictive 

capabilities, allowing for proactive decision-making [3]. Connectivity solutions ensure smooth data 

exchange, while visualization tools, high-resolution imaging, and scanning techniques enhance 

digital modeling accuracy [4]. Advanced features in modern IoT devices further improve their 

performance [5,6]. To ensure security and data integrity, blockchain and cybersecurity mechanisms 

play a critical role [7]. 

Digital twins offer several key applications, including predictive maintenance, process 

optimization, design and prototyping, and healthcare advancements. In predictive maintenance, 

digital twins facilitate the identification of potential system failures before they occur, thereby 

reducing downtime, extending equipment lifespan, and lowering operational costs [8].  Process 
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optimization is another significant application, where digital twins streamline workflows and 

enhance resource allocation, leading to increased efficiency [7]. Furthermore, design and prototyping 

benefit from digital twins, as they enable virtual testing, accelerate development cycles, and reduce 

the need for physical prototypes [9].  In the healthcare sector, digital twins enable patient-specific 

modeling, which improves diagnosis, treatment planning, and surgical simulations [10]. 

Digital twins also play a crucial role in smart infrastructure and urban planning.  Engineers use 

them to monitor structural health and predict potential failures [11] , while urban planners utilize 

them to simulate traffic flow and optimize resource distribution, fostering the development of 

sustainable cities [12].  In the energy sector, digital twins enhance grid operations, facilitate the 

integration of renewable energy sources, and improve system safety [13].  Furthermore, both 

renewable and nuclear energy plants employ digital twins for real-time monitoring, efficiency 

optimization, and risk assessment [14]. 

DT also plays a vital role in training and education by providing interactive and immersive 

simulations that enhance learning and skill development [15]. It improves autonomous systems by 

creating high-fidelity virtual environments, allowing for safe algorithm testing before deployment 

[16]. In supply chain management, DT improves demand forecasting, route planning, and real-time 

tracking, thereby increasing operational efficiency [17]. In manufacturing and aerospace, DT 

optimizes production quality, monitors equipment performance, and facilitates predictive 

maintenance, leading to improved safety and productivity [18]. 

The impact of DT extends further into energy production and distribution, where it enhances 

the reliability of utilities and optimizes power management [19]. In civil engineering, DT supports 

real-time infrastructure monitoring, improving safety and extending the lifespan of critical structures 

[20]. Robotics and automation also benefit from DT, as it enables real-time system optimization and 

process refinement, improving accuracy and efficiency [21]. Oil and gas industries utilize DT to 

optimize workflows, enhance predictive maintenance, and improve risk management [22]. Similarly, 

transportation and marine engineering leverage DT for fleet management, route optimization, and 

operational safety, reducing costs and improving overall system reliability [23]. 

Despite its vast potential, DT faces several challenges, including high computational demands, 

data integration complexity, cybersecurity threats, and a lack of standardization [24]. To Address 

these challenges requires collaboration among researchers, industry experts, and policymakers to 

develop scalable and secure DT implementations [7]. Future research should focus on AI-driven 

analytics, hybrid DT models, edge computing for real-time processing, and blockchain-based security 

solutions [25]. Establishing standardized frameworks and interdisciplinary training programs will 

also be essential in driving the widespread adoption of DT across industries. 

This systematic review examines the current state of DT technology encompassing commonly 

integrated elements, its most impactful applications across industries, and future research directions.  

This article is structured into six comprehensive sections. Section 1 introduces digital twin 

technology and its diverse applications. Section 2 details the systematic review methodology, 

including research question formulation, literature search strategies, inclusion and exclusion criteria, 

study selection procedures, data extraction techniques, and validation methods. Section 3 delves into 

the core components and underlying technologies of digital twins. Section 4 presents a detailed 

overview of DT applications across various industries. Section 5 discusses existing technologies, 

current challenges, and future research directions. Finally, Section 6 concludes the article, 

summarizing key findings and implications. 

2. Methodology 

This systematic review followed a structured and comprehensive approach to examine the 

structure and application of various types of digital twins across different industries. The review 

process was conducted in five distinct stages: defining the research questions, identifying relevant 

studies, selecting studies based on inclusion and exclusion criteria, extracting data, and analyzing the 

findings. 
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2.1. Research Question Formulation 

This systematic review aimed to synthesize evidence regarding the applications of different 

types of digital twins. The review addressed the following specific questions: 

▪ What are the essential components of a functional digital twin system? 
▪ In what industries are digital twins currently being used successfully? 

2.2. Literature Search Strategy 

Searches were conducted using the phrase “the elements of a Digital twin” and "the application 

of Digital twin" in relation to the following areas: Predictive Maintenance, Process Optimization, 

Design and Prototyping, Personalized Medicine, Infrastructure and Urban Planning, Energy 

Management, Training and Education, Autonomous Systems, Supply Chain and Logistics, 

Aerospace Engineering, Automotive Engineering, Energy Systems and Utilities, Civil and Structural 

Engineering, Healthcare Engineering, Industrial Automation and Robotics, Oil and Gas Engineering, 

Transportation and Logistics, Marine and Offshore Engineering, and Smart Grids and Utilities. The 

search was limited to articles published in peer-reviewed journals between 2020 and 2025. To ensure 

thorough coverage, both backward and forward citation tracking of selected articles was performed. 

2.3. Inclusion and Exclusion Criteria 

Studies were included/excluded based on the following criteria: 

Inclusion criteria: 

- Studies published between 2020 to 2025.  

- Studies published in English 

- Studies that explicitly define or describe the technology being used as a "digital twin". 

- Application Area: Studies that describe the application of digital twins in one or more of the 

following areas: 

▪ Predictive Maintenance 

▪ Process Optimization 

▪ Design and Prototyping 

▪ Personalized Medicine 

▪ Infrastructure and Urban Planning 

▪ Energy Management 

▪ Training and Education 

▪ Autonomous Systems 

▪ Supply Chain and Logistics 

▪ Aerospace Engineering 

▪ Automotive Engineering 

▪ Energy Systems and Utilities 

▪ Civil and Structural Engineering 

▪ Healthcare Engineering 

▪ Industrial Automation and Robotics 

▪ Oil and Gas Engineering 

▪ Transportation and Logistics 

▪ Marine and Offshore Engineering 

▪ Smart Grids and Utilities 

Exclusion criteria: 

- Editorials, letters to the editor, and opinion pieces 

- Conferences 

- Books and book chapters (unless they contain primary research) 

- Patents 

- Websites, blogs, and other non-peer-reviewed sources 
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- Language: Studies published in languages other than English 

- Studies published before 2020 

- Studies that do not provide a clear definition or description of a digital twin. Studies that use the 

term "digital twin" loosely or interchangeably with other concepts (e.g., simulation, modeling) 

without meeting the core components. 

- Application Area: Studies that do not focus on the specified application areas. 

- Studies that describe the theoretical concepts of digital twins without empirical data or real-world 

applications. 

2.4. Study Selection 

Following database searches, duplicates were removed. Two independent reviewers then 

screened the titles and abstracts of the remaining studies and subsequently assessed the full-text 

articles for eligibility based on the inclusion and exclusion criteria. Disagreements were resolved 

through discussion. 

2.5. Data Extraction and Synthesis 

For the selected studies, data were extracted on the following parameters: type of digital twin 

system used, industrial application, technology used. A qualitative synthesis was performed to 

analyze the findings and categorize the digital twin applications based on their functionality. 

2.6. Quality Assessment 

The quality of the included studies was evaluated using a modified version of the Newcastle-

Ottawa Scale, specifically adapted to assess the methodological rigor and relevance of control system 

used in rehabilitation research.  

2.7. Data Analysis 

and practical application as the primary criteria. Out of 385 reviewed articles, 198 were 

shortlisted for detailed analysis. 
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Figure 1. Flow Chart of the Search and Inclusion Process. 

3. Key Elements of Digital Twin 

Digital twin (DT) technology creates virtual replicas of physical assets, enabling real-time 

monitoring, simulation, and optimization. A robust DT system relies on several key components. 

Sensors and IoT devices collect real-time data, while data acquisition and integration systems 

consolidate information from diverse sources. High-performance computing infrastructure and 

cloud platforms process and analyze the vast data streams. Simulation and modeling software build 

accurate virtual models, supported by advanced analytics and machine learning tools that enhance 

prediction and decision-making. 

Visualization tools, including dashboards and 3D simulations, provide intuitive user interaction. 

Blockchain technology ensures data security and transparency, while cybersecurity frameworks 

protect DT systems from evolving threats. Edge computing enables low-latency data processing close 

to the source, and standardized communication protocols ensure seamless interoperability across 

systems. High-resolution imaging technologies like LiDAR and 3D scanning create detailed models, 

and advanced databases manage the large and dynamic datasets. 

Together, these elements form the foundation of effective digital twin systems, driving 

innovation and efficiency across industries such as manufacturing, healthcare, infrastructure, and 

smart cities. 

3.1. Sensors and IoT Devices 

Sensors and Internet of Things (IoT) devices are essential for Digital Twin (DT) systems. They 

gather real-time data from physical assets, enabling accurate monitoring and analysis. Key 

parameters like temperature, pressure, vibration, and environmental conditions are captured by 

these devices, providing critical inputs for DT models [24]. 

Sensors link the physical and digital worlds by transmitting data to DT systems for processing 

and analysis. For instance, temperature sensors in manufacturing system detect temperature changes, 
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allowing DT models to simulate equipment performance and predict potential issues [7]. Similarly, 

the accelerometer can identify unusual patterns in machinery, offering early warnings for mechanical 

failures [14]. 

Accuracy is vital for reliable DT systems. High-quality sensors reduce data errors, ensuring 

digital models mirror their physical counterparts effectively  [15]. In healthcare, wearable IoT 

devices track heart rate and blood pressure. These real-time readings help digital twins support 

timely medical decisions [10]. 

Reliability is equally important, especially in safety-critical industries. Faulty sensors can cause 

incorrect predictions or delays, leading to significant issues. For example, smart city systems use 

environmental sensors to track air quality. Accurate data enables timely actions like adjusting traffic 

flows or deploying air-purification measures [12]. Dependable sensors ensure smooth system 

operations and informed decision-making [20]. 

3.2. Data Acquisition and Integration Systems 

Robust data acquisition and integration are fundamental to the operation of Digital Twin (DT) 

systems. These processes involve consolidating data from diverse sources, including IoT devices, 

enterprise systems, and historical datasets, each provides essential information for accurate system 

representation [1]. 

IoT devices capture real-time physical-world conditions through sensors, measuring variables 

like temperature, pressure, and movement. This continuous stream of data enhances the DT's 

precision in mirroring its physical counterpart and providing up-to-the-minute insights into system 

performance [1,24]. 

Enterprise systems, such as Enterprise Resource Planning (ERP), Customer Relationship 

Management (CRM), and supply chain management tools, contribute critical operational and 

transactional data. This integration provides a comprehensive view of an organization's operations, 

thereby improving efficiency and decision-making [26,27]. 

Historical datasets, containing past records, trends, and performance patterns, further enhance 

DT capabilities. By supporting predictive analytics, these datasets enable the identification of 

potential future outcomes. Combining historical data with real-time data strengthens forecasting 

accuracy and decision support systems [1,6]. 

Integrating these diverse data sources necessitates advanced integration tools. These tools 

ensure seamless communication and data flow between different components, minimizing delays 

and bottlenecks to facilitate real-time data processing [27]. A key aspect of this integration is data 

harmonization, which standardizes varying data formats from different systems to ensure 

compatibility and accessibility for analysis. This process enhances interoperability across platforms 

and devices [28]. 

The ability to perform real-time data analysis, enabled by seamless integration, is crucial for DT 

performance. This capability allows for the immediate detection of anomalies, prediction of failures, 

and optimization of operations. This is particularly valuable in industries like manufacturing, 

healthcare, and logistics, where timely decisions can significantly impact efficiency and safety [29]. 

Finally, effective data acquisition and integration, achieved through the consolidation of data 

from IoT devices, enterprise systems, and historical records, provides organizations with a 

comprehensive, real-time view of their operations. Advanced integration tools are essential in this 

process, facilitating efficient analysis and informed decision-making [30]. 

3.3. Computational Infrastructure 

High-performance computing (HPC) infrastructure plays a vital role in managing the enormous 

volumes of data generated by digital twin (DT) systems. These systems produce and analyze data at 

an extraordinary rate, making robust computing capabilities indispensable [31]. HPC provides the 

processing power required to handle such large-scale operations efficiently, ensuring the effective 

simulation, analysis, and optimization of complex systems [32]. 
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Cloud computing platforms, including widely recognized services such as Amazon Web 

Services (AWS), Microsoft Azure, and Google Cloud, offer significant advantages in addressing these 

computational demands [33]. These platforms are designed to provide scalable resources for both 

data storage and analysis [34]. Their scalability is a key feature, as it allows organizations to expand 

their computational capacity on demand without the need for substantial upfront investment in 

physical infrastructure [35]. This flexibility enables businesses to adapt to varying workloads and 

operational requirements, making cloud solutions an attractive option for supporting DT systems 

[36]. 

In addition to storage and analysis, cloud platforms provide a wide array of advanced tools and 

services. These include machine learning capabilities, data visualization tools, and specialized 

analytics engines, which enhance the ability of organizations to extract actionable insights from their 

data [37]. With these resources, businesses can streamline operations, improve decision-making, and 

achieve higher levels of efficiency in managing DT systems [38]. 

3.4. The Role of Simulation and Modeling Software in Digital Twin Systems 

Simulation and modeling software are essential for digital twin (DT) systems. These tools create 

virtual replicas of physical assets, enabling detailed analysis, real time simulations, and performance 

monitoring [4]. By accurately replicating real world objects, they help organizations to optimize 

operations, reduce costs, and enhance decision-making  [24]. Their integration is crucial for ensuring 

DT systems deliver reliable and valuable insights [32] 

Popular platforms in this domain include ANSYS, Siemens NX, and MATLAB [39]. Each offers 

unique capabilities suited to various industries. ANSYS provides extensive simulation tools for 

structural analysis, fluid dynamics, and thermal simulations [34]. Siemens NX supports product 

design, engineering, and manufacturing, making it popular in automotive and aerospace industries 

[4]. MATLAB excels in numerical computing, data analysis, and system modeling, making it valuable 

for research and development. 

A major strength of these platforms is their ability to combine physics-based models with data-

driven approaches [24]. Physics-based models simulate real-world phenomena using established 

scientific principles [15]. They help understand system behaviors, such as stress distribution in 

materials or fluid flow in pipelines [39]. However, real-world systems are complex, requiring 

additional insights beyond physics alone [6]. 

Data-driven techniques complement traditional modeling methods by incorporating machine 

learning and artificial intelligence. These tools analyze large volumes of historical and real-time data, 

identifying patterns, trends, and anomalies that may not be visible through conventional simulations 

[9]. This integration of physics-based accuracy with data-driven insights enhances predictive 

capabilities, improving the reliability of DT systems. 

Real-time simulation capabilities are another key feature of these tools [1]. By linking digital 

models to live data from sensors and IoT devices, organizations can continuously monitor physical 

assets [40]. This real-time connectivity supports proactive decision-making, allowing early detection 

and resolution of potential issues before they escalate [24]. For example, real-time simulations can 

identify equipment wear, optimize maintenance schedules, and minimize downtime [32]. 

Simulation and modeling software also play a critical role in product design and testing [15]. 

Virtual prototypes enable engineers to explore different designs, materials, and configurations 

without the cost and time associated with physical prototyping [32]. This speeds up the development 

process and encourages innovation by allowing the testing of unconventional solutions [6]. 

3.5. Analytics and Machine Learning (ML) Tools 

Advanced analytics and machine learning (ML) tools are essential for processing data derived 

from digital twin (DT) models. These tools transform raw data into actionable insights through 

advanced computational techniques [9]. ML algorithms can accurately identify patterns within data, 

detect anomalies for early issue identification, and predict future outcomes based on historical trends 
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and real-time inputs [24]. These capabilities enhance decision-making and operational efficiency in 

various industries. 

The ability to uncover patterns in data provides immense value across multiple sectors. By 

analyzing complex datasets, ML algorithms reveal trends that may not be immediately apparent 

through traditional methods, enabling evidence-based decision-making [32]. Additionally, detecting 

anomalies in operational data allows organizations to proactively address potential risks or 

inefficiencies, reducing downtime and improving system reliability [41]. 

Predictive maintenance is one of the most impactful applications of ML tools in digital twin 

environments. ML models use data from DT simulations to anticipate equipment failures before they 

occur, enabling organizations to schedule maintenance at optimal times [15]. By understanding the 

conditions under which failures are likely to happen, businesses can minimize disruptions to 

operations, extend the lifespan of machinery, and reduce maintenance costs by avoiding unnecessary 

repairs [40]. 

Another key application of these tools is the process optimization. ML algorithms analyze data 

from digital twins to identify inefficiencies in workflows, resource allocation, or system 

configurations [4]. By providing data-driven recommendations, these tools help organizations 

streamline operations, reduce waste, and improve productivity. This is particularly crucial in 

industries where precision and efficiency determine competitiveness and profitability [37]. 

Operational efficiency is further enhanced by ML-driven analytics. Continuous real-time data 

analysis offers organizations a clear view of current performance, helping optimize resource 

utilization, support informed decision-making, and adapt quickly to changing conditions [42]. By 

leveraging these capabilities, businesses can ensure sustained operational excellence and long-term 

success [1]. 

Advanced analytics and ML tools are foundational for getting predictive and prescriptive 

insights from digital twin models. Their ability to identify patterns, detect anomalies, and predict 

outcomes with high accuracy makes them indispensable across various applications [9]. Whether 

improving predictive maintenance, optimizing processes, or enhancing operational efficiency, these 

tools empower organizations to maximize the value of their data. By harnessing ML-enhanced 

analytics, businesses can achieve greater reliability, efficiency, and performance in their operations 

[27]. 

3.6. Visualization Tools 

Visualization tools are essential for intuitive interaction with digital twin (DT) models, bridging 

the gap between complex datasets and actionable insights [23]. These tools simplify data 

interpretation, enabling informed decision-making through user-friendly interfaces  [43,44]. 

Key features include dashboards, which consolidate data streams into a single view for real-time 

monitoring, anomaly identification, and efficiency evaluation  [32,45,46]. 3D simulations, which 

replicate physical systems in virtual environments for in-depth analysis and risk-free 

experimentation [9,15,47,48]. 

Augmented reality (AR) interfaces enhance interaction by overlaying digital information onto 

the physical world, improving efficiency in operations [1,43,49]. Platforms like Unity, Unreal Engine, 

and specialized AR frameworks support these advanced visualization capabilities. Unity and Unreal 

Engine are used for realistic 3D simulations in industries like manufacturing and automotive 

[39,45,50]. Specialized AR platforms integrate with IoT devices for visually engaging, real-time 

insights, enhancing situational awareness [1,49,51]. 

The ability to visualize system performance has broad implications across industries. In 

manufacturing, it improves production line monitoring; in healthcare, it advances training and 

surgical simulations [48,49] and in infrastructure management, it aids in planning and maintenance 

[47]. 

In conclusion, visualization tools transform complex data into actionable insights via 

dashboards, 3D simulations, and AR interfaces [45]. Platforms like Unity, Unreal Engine, and 
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specialized AR frameworks empower effective user engagement with virtual environments [49]. 

These tools enhance decision-making, streamline operations, and drive innovation across industries, 

with their role expanding as technology evolves [9,52]. 

3.7. Blockchain Technology 

Blockchain enhances data security and transparency in digital twin (DT) systems by creating 

immutable transaction records, ensuring data integrity [53–55]. 

Blockchain secures sensitive data in sectors like healthcare and supply chain management, 

preventing unauthorized access [55–58]. It also provides transparency through a decentralized 

ledger, allowing stakeholders to trace data history [55,59]. This is valuable in collaborative 

environments like smart energy grids [60]. 

By providing a single source of truth and verifying transactions through consensus mechanisms, 

blockchain enhances trust and accountability [55,58,61]. Its immutability creates a robust audit trail, 

useful in supply chains for resolving disputes [61]. Smart contracts can automate processes, such as 

payment release upon delivery verification, streamlining operations [58,62,63]. 

In conclusion, blockchain improves data security, transparency, trust, and accountability in DT 

systems. Its immutable records and decentralized nature support secure, efficient, and trustworthy 

operations across diverse industries [54,55,62]. 

3.8. Cybersecurity Frameworks 

As connectivity grows, cybersecurity is a vital concern for digital twin (DT) systems, which are 

vulnerable to cyber threats due to constant data exchange, [44,63]. Robust cybersecurity measures are 

essential to ensure their reliability and safety [45], A comprehensive security framework is crucial for 

protecting DT systems and ensuring data confidentiality and integrity [65–67].  

Key components include encryption, which secures data during transmission and storage 

[44,68,69], and access control, which defines and manages user access through methods like role-

based access controls and multi-factor authentication [63,65,70]. Real-time threat detection using 

machine learning and AI is also essential for identifying and responding to potential threats 

[66,67,69,70]. 

The importance of cybersecurity spans industries, including manufacturing, healthcare, and 

energy, where cyberattacks could have severe consequences [65,66,70]. 

Implementing strong cybersecurity measures also builds trust among stakeholders, which is 

essential for the adoption and growth of DT technologies [63,67]. 

In conclusion, cybersecurity is critical for DT systems. Robust frameworks with encryption, 

access control, and real-time threat detection are necessary to protect data, ensure reliable operations, 

and foster trust. The importance of strong security measures will only increase as cyber threats evolve  

[44,65] 

3.9. Edge Computing Devices 

Edge computing devices process data locally, reducing reliance on centralized cloud 

infrastructure and improve response times for real-time applications [71,72]. 

DT systems with real-time processing needs benefit from edge computing, which processes data 

closer to its source (sensors, IoT devices) instead of relying on a centralized cloud [71,73]. This reduces 

latency, which is crucial for applications like autonomous vehicles, industrial automation, and 

healthcare monitoring [9,71,73]. Edge computing also alleviates network strain and reduces data 

transfer, enhancing efficiency and lowering costs [71]. Edge solutions can operate in areas with 

limited connectivity [71]. 

Cloud computing handles large-scale data storage and long-term trend monitoring, while edge 

computing provides immediate processing and low-latency responses [71,72]. This combination 

allows organizations to maximize their DT systems' potential [9].  
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3.10. Digital Communication Protocols 

Standardized communication protocols are essential for effective interoperability among digital 

twin (DT) system elements [76]. They facilitate seamless data exchange between physical assets, IoT 

devices, and digital models across diverse platforms [77]. This efficient communication enhances the 

scalability and flexibility of DT implementations [77]. Standardized protocols create a common 

language for data exchange [78], which is crucial because DT ecosystems often comprise systems 

from various manufacturers and frameworks [79]. Without standardization, these systems may 

struggle to communicate, leading to inefficiencies or compatibility issues [80]. Protocols like MQTT, 

OPC UA, and REST APIs bridge this gap, enabling effortless sharing among components [51]. The 

following section reviews the commonly used digital communication protocols used in digital twin 

systems. 

MQTT (Message Queuing Telemetry Transport) is widely recognized for its lightweight design 

and efficiency [81]. It is particularly well-suited for IoT environments where bandwidth and resource 

constraints are common [82]. MQTT operates on a publish-subscribe model, which enables devices 

to share data with minimal latency [83]. This makes it an ideal choice for DT applications requiring 

real-time updates, such as monitoring equipment performance or tracking environmental conditions 

[51]. 

OPC UA (Open Platform Communications Unified Architecture) is another key protocol for 

DT systems. Known for its versatility, OPC UA provides a robust framework for integrating 

industrial systems and devices [80]. It supports platform independence, ensuring that components 

can exchange data regardless of the underlying hardware or software [84]. Additionally, OPC UA 

offers built-in security features, such as encryption and authentication, making it a reliable choice for 

industries with strict security requirements [85]. 

REST APIs (Representational State Transfer Application Programming Interfaces) further 

enhance interoperability by providing a standardized way for systems to interact over the web [84]. 

REST APIs use simple HTTP methods to enable seamless communication between applications, 

devices, and DT modules [85]. Their widespread adoption and simplicity make them an excellent 

choice for integrating modern DT systems with cloud services and third-party platforms [51]. 

Standardized communication protocols are essential for effective interoperability among digital 

twin (DT) systems [76]. They facilitate seamless data exchange between physical assets, IoT devices, 

and digital models across diverse platforms [77] .This efficient communication enhances the 

scalability and flexibility of DT implementations [77]. Standardized protocols create a common 

language for data exchange [78], which is crucial because DT ecosystems often comprise systems 

from various manufacturers and frameworks [79]. Without standardization, these systems may 

struggle to communicate, leading to inefficiencies or compatibility issues [80]. Protocols like MQTT, 

OPC UA, and REST APIs bridge this gap, enabling effortless information sharing among components 

[51]. 

Standardized protocols contribute to the scalability of DT implementations, allowing for the 

addition of new elements without major overhauls [84]. They also provide flexibility for DT systems 

to adapt to changing requirements, integrate new technologies, and support evolving business needs 

[85,89,90].   

3.11. High-Resolution Imaging and Scanning Equipment 

Technologies like LiDAR, 3D scanners, and high-resolution cameras are crucial for creating 

detailed virtual models, which are fundamental to digital twin (DT) systems [91,92]. These tools 

capture the physical attributes of objects, spaces, and environments, enabling the development of 

accurate and reliable virtual representations [90]. 

LiDAR uses laser beams to measure distance and build clear 3D models, even when lighting 

conditions changes [92,93–95]. 
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3D scanners use laser or structured light to create detailed 3D models, which are essential in 

manufacturing industries for applications such as reverse engineering and quality control  [90], 

[91,96,97]. 

High-resolution cameras capture visual details like texture and color, enhancing the realism of 

virtual models, particularly in applications like VR simulations [90]. 

In infrastructure modeling, LiDAR and 3D scanners aid in visualizing projects and optimize 

designs, contributing to cost savings and efficiency  [98,99]. In healthcare, 3D scanning is 

revolutionizing diagnostics and treatment planning by enabling the creation of detailed models of 

the human body [100,101]. 

These technologies also benefit other industries. LiDAR is used in entertainment and gaming to 

develop lifelike digital environments, while 3D scanners help preserve artifacts in archaeology and 

enable virtual try-on experiences in retail [99]. 

In conclusion, LiDAR and 3D scanners are essential for developing detailed virtual models by 

capturing precise physical attributes. Their role in creating realistic and reliable digital 

representations is transforming industries and driving innovation [90]. 

3.12. Advanced Databases 

Advanced database systems are essential for managing the vast datasets required by digital twin 

(DT) systems and support their complex operations [102]. Modern databases offer features like 

scalability, reliability, and performance to handle the diverse data demands of DT systems. 

Distributed databases, such as Cassandra and MongoDB, are commonly used in DT 

implementations for their ability to handle large data volumes across multiple servers, ensuring 

scalability and fault tolerance [103–107]. Cassandra is well-suited for high availability and write-

heavy workloads, like those in IoT-based DT systems  [103,104]. MongoDB offers a flexible schema 

design for handling diverse datasets, simplifying the mapping of physical assets to virtual models 

[91,108–110]. Time-series databases, like InfluxDB, are crucial for DT systems that rely on real-time 

data, such as sensor monitoring [111,112]. They efficiently handle time-stamped data, which is 

essential for DT systems monitoring dynamic environments [102,112]. The integration of distributed 

and time-series databases supports hybrid storage solutions, optimize the performance of DT systems 

[102,109,111]. 

Advanced databases contribute to the scalability and flexibility of DT systems and support 

analytics and visualization tools, enabling stakeholders to gain actionable insights [104,108,110], 

[111–113]. This integration enhances decision-making, operational efficiency, and system reliability 

across industries [113,114]. 

4. Comprehensive Applications of Digital Twins 

Digital twin technology is reshaping industries by creating virtual models of physical assets. It 

enables real-time monitoring, simulation, and predictive analytics. Key applications include 

predictive maintenance to reduce failures and downtime, and process optimization to boost 

efficiency in manufacturing, healthcare, and logistics. 

In design and prototyping, digital twins allow rapid testing before production, cutting costs and 

improving quality. Healthcare uses them for personalized treatments, improving outcomes. Urban 

planning and infrastructure benefit through better traffic flow, city layouts, and public service 

management. 

Energy management leverages digital twins for smarter, cleaner, and more resilient systems. 

They also support risk-free training in fields like healthcare and aviation. Autonomous systems, such 

as self-driving cars and robotics, rely on digital twins for learning and operational improvements. 

Supply chain and logistics use digital twins for real-time tracking, forecasting, and inventory 

control. Aerospace and automotive industries apply them for design, structural assessments, and 

maintenance. Utilities improve grid stability and efficiency with their help. 
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In engineering fields, digital twins strengthen building resilience, hospital operations, and 

industrial automation. They also enhance operations in oil and gas, marine engineering, 

transportation, and smart grids, driving better monitoring, maintenance, and performance. 

4.1. DT in Personal Medicine 

Digital Twins (DTs) are transforming healthcare by creating dynamic virtual replicas of physical 

entities. These models integrate real-time data, simulations, and predictive analytics to improve 

medical outcomes. They play a key role in personalized medicine, clinical decision-making, and 

public health management. This study explores DTs by examining their applications, underlying 

technologies, benefits, and challenges. By analyzing these aspects, we aim to understand their impact 

on modern healthcare and their potential to improve patient care. Figure 2 shows how DT is used to 

present the personalized medicine.  

 

Figure 2. Digital Twin in Healthcare: Personalized Medicine and Predictive Diagnosis. 

Applications of DT in Personal Medicine 

Digital Twins (DTs) have found diverse applications across healthcare, fundamentally 

transforming approaches from individualized patient care to public health interventions. Kamel 

Boulos & Zhang discuss DTs' potential in personalized diagnostics and preventive medicine, 

demonstrating their effectiveness through real-time integration of data from electronic health records 

(EHRs), genomics, wearable devices, and environmental sensors [124]. This integrative approach 

enables accurate silico simulations to predict disease progression and tailor treatment outcomes 

effectively. 

Papachristou et al. extend this application scope by introducing Digital Human Twins (DHTs), 

which are detailed virtual representations of individual physiological characteristics [125]. They 
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underscore DHTs' practical utility in precision cardiology, diabetes management, and virtual surgical 

planning, enhances both safety and precision. Similarly, Sahal et al. discuss Personal Digital Twins 

(PDTs), emphasize their unique integration of biological, mental, physical, and social data [131]. PDTs 

demonstrate significant advantages in COVID-19 management, osteoporosis prevention, and cancer 

treatment through improved diagnostic accuracy and disease prevention. 

Okegbile et al. explore Human Digital Twins (HDTs), focusing on proactive disease diagnosis, 

personalized treatment regimens, and surgical simulations [132]. They underline the importance of 

proactive health monitoring and individual care. Complementing these insights, Venkatesh et al. 

highlight how HDTs extend beyond personal care into virtual clinical trials and public health 

management, notably in addressing public health crises like COVID-19 [133]. 

Underlying DT Technologies used in Personal Medicine 

Digital Twins rely on advanced technological infrastructure, including artificial intelligence (AI), 

big data analytics, the Internet of Things (IoT), cloud computing, and virtual reality (VR). Armeni et 

al. and Cellina et al. specifically recognize AI and big data analytics as crucial elements enhancing 

DTs' predictive accuracy and simulation capabilities [128,137]. These technologies enable 

applications such as virtual clinical trials which significantly reduce reliance on human participants 

and address related ethical concerns. 

Gaebel et al. introduced a modular, multi-layered approach employing natural language 

processing (NLP) and machine learning (ML) for integrating heterogeneous medical data [127]. This 

technology significantly improves the scalability and flexibility of clinical decision support systems 

(CDSS). Similarly, Papachristou et al. emphasize the importance of IoT, cloud computing, and VR in 

real-time data collection and analysis within DHTs, enhance the effectiveness of these digital 

representations [125]. 

Additionally, Sahal et al.  and Okegbile et al. highlight blockchain technology alongside AI and 

IoT for secure data management [131,132]. They stress ultra-reliable, low-latency communications 

(URLLC) as vital for real-time synchronization between physical and virtual entities, ensure accuracy 

and timeliness in data-driven healthcare decisions. 

Benefits of Using DT in Personal Medicine 

Digital Twins offer extensive benefits, prominently improving clinical decision-making, patient 

outcomes, and public health management. Sun et al. highlight DTs' significant impact on clinical 

decision-making by simulating disease progression accurately and predicting treatment outcomes, 

thus enabling more timely and effective interventions [115]. This capability enhances patient 

outcomes and reduces overall healthcare costs. 

Abd Elaziz et al. further underscore DTs’ role in disease prediction, early diagnosis, and 

optimized treatment strategies [116]. These capabilities lead to improved patient engagement, 

substantial cost savings, and higher-quality care. Moreover, Papachristou et al. note the use of DTs 

in surgical planning, reducing complications through virtual simulations, thus enhance patient safety 

[125]. 

DTs also improve patient engagement by offering individualized health insights, fostering 

proactive health management. Venkatesh et al. emphasize the role of DTs during public health crises 

such as COVID-19, highlighting how DTs enable better resource allocation and effective risk 

assessment [133]. Furthermore, Sahal et al. emphasize the holistic advantages of PDTs, delivering 

actionable insights for mental and nutritional health, ultimately contributing to overall well-being 

[131]. 

Challenges Involved in the Use of DT in Personal Medicine 

Despite their promising benefits, the adoption and implementation of Digital Twins in 

healthcare face numerous challenges. One of the most significant is data privacy, a critical issue 

consistently raised across the references reviewed. Kamel Boulos & Zhang, Papachristou et al., and 
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Sahal et al. identify substantial privacy and ethical concerns related to digital representations of 

patients, data ownership, and biases in AI algorithms [124,125,131]. Armeni et al. specifically warn 

of risks associated with inequitable healthcare delivery due to biases inherent in AI training datasets 

[137]. 

Integration complexities and the lack of standardized data protocols are additional significant 

barriers. Okegbile et al. and Venkatesh et al. stress these integration challenges, noting the difficulty 

of managing heterogeneous data streams and ensuring seamless interoperability [132,133]. 

Additionally, computational demands and the need for robust technological infrastructure represent 

major technical hurdles. Meijer et al. emphasize the challenges in data standardization and 

management, highlighting the requirement for significant advancements in non-invasive data 

collection, computational modeling, and high-throughput analytics [117]. 

Financial considerations also pose challenges, as Cellina et al. note the high costs associated with 

developing and maintaining DT infrastructures [128]. Furthermore, evolving regulatory landscapes 

and clinical acceptance issues add complexity. Venkatesh et al. highlight concerns among clinicians 

regarding AI transparency and algorithmic reliability, stressing the importance of building clinician 

trust and developing robust regulatory frameworks [133]. 

Digital Twins (DTs) hold significant promise for transforming healthcare through personalized 

medicine, clinical decisions, and public health. Their diverse applications and benefits position them 

as vital tools. However, realizing this potential requires addressing challenges like data privacy, 

integration, computational needs, and regulations. Overcoming these barriers through collaboration, 

research, and strong regulations is crucial for the successful adoption of DTs to improve patient 

outcomes and healthcare delivery. 

4.2. Applications of DT in Training and Education 

Digital Twin (DT) technology is being widely adopted across diverse fields, including education, 

training, cybersecurity, and industry. While its primary goal is to improve efficiency, learning, and 

security, its implementation varies across domains. In education, DTs enhance hands-on learning 

experiences, while in safety training and cybersecurity, they strengthen preparedness and threat 

mitigation. Additionally, the integration of Augmented Reality (AR) and Virtual Reality (VR) further 

expands DT capabilities, creating immersive and interactive environments. The following study 

explores the different approaches to DT adoption, highlighting their role in advancing knowledge, 

security, and operational effectiveness. Figure 3 shows the use of DT in immersive learning. 

 

Figure 3. Immersive Learning with Digital Twin Technology in Education and Research. 
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Educational Applications of Digital Twin 

Zhou et al. and Kuhn et al. explore the role of DT in education and training, using different 

methodologies and target audiences [118,119]. Zhou et al. investigate how AR enhanced chemical 

engineering education by allowing students to visualize and interact with complex chemical 

processes [118]. The integration of AR and Computational Fluid Dynamics (CFD) simulations helps 

in understanding airflow dynamics and internal structures of laboratory equipment. The study 

highlights that AR-driven learning improves engagement, reduces safety risks, and enhances 

students' technical proficiency. 

In contrast, Kuhn et al. focus on a modular DT training system designed to bridge the digital 

skills gap for non-technical individuals in industrial environments [119]. Their framework uses low-

cost, hands-on training modules equipped with microprocessors, sensors, and actuators, helping 

participants learn data analysis, real-time monitoring, and system optimization. Unlike Zhou et al., 

which integrates AR for immersive learning, Kuhn et al. emphasize a progressive learning approach, 

allowing users to gradually build DTs using open-source tools like Unity and Node-Red [118,126]. 

Both studies highlight DT’s educational benefits, Zhou et al. is more focused on visualization, 

whereas Kuhn et al. offers a structured, hands-on approach for broader digital competency 

development [118,119]. 

Digital Twin for Safety and Training 

Speiser & Teizer and Martínez-Gutiérrez et al. focus on DT applications in training, particularly 

in safety-critical environments [120,121]. Speiser & Teizer present the Digital Twin for Construction 

Safety (DTCS) framework, which generates personalized safety training environments using real-

time construction data [120]. The system automatically updates training scenarios to match evolving 

site conditions, allowing trainers to tailor safety lessons based on specific risks present at the worksite. 

The study emphasizes the importance of hazard recognition and risk-based decision-making in 

dynamic construction environments. 

Martínez-Gutiérrez et al. explore the combination of DT and VR for industrial operator training 

[121]. Their study assesses how VR-based training compares with traditional equipment-based 

training and computer-based training. Results show that while real-equipment training provides the 

highest skill improvement (47%), VR-based training achieves a significant 38% improvement while 

reducing costs and safety risks. VR enhances situational awareness and allows workers to practice in 

high-risk scenarios without real-world dangers. 

The key difference is that Speiser & Teizer apply DT to dynamically update and personalize 

training, while Martínez-Gutiérrez et al. focus on VR as a cost-effective alternative to physical 

equipment training [120,121]. 

Cybersecurity Applications in Digital Twin 

Unlike the other studies that focus on education and training, Kandasamy et al. investigates DT’s 

role in cybersecurity research [122]. Their study introduces the EPIC DT, a digital replica of an electric 

power microgrid designed for cybersecurity testing. Traditional physical testbeds are expensive and 

difficult to scale, whereas the EPIC DT provides a cost-effective alternative for simulating 

cyberattacks, testing defense mechanisms, and developing intrusion detection systems (IDS). 

Developed platform supports multiple communication protocols, including MMS, GOOSE, MQTT, 

and Modbus, allowing researchers to evaluate vulnerabilities across different smart grid components. 

A key contribution of this study is the development of tools like the Attack Designer (AD) and 

Attack Launcher (AL), which systematically deploy cyberattacks, such as man-in-the-middle (MITM) 

attacks, to assess the resilience of smart grid security measures. The study highlights how DTs enable 

extensive cybersecurity research without risking live infrastructure. 

Unlike the other references, which focus on improving education, workforce skills, or safety, 

Kandasamy et al. emphasize DT’s application in cyber defense, demonstrating its significance in 

securing critical infrastructure [122]. 
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Key Differences in Implementation and Technologies Among the Representative Articles 

Each study integrates different technological solutions to enhance DT’s effectiveness in its 

respective applications. Zhou et al. incorporates AR and CFD simulations to improve visualization 

in education, while Kuhn et al. focus on a hands-on modular learning approach using IoT-based tools 

[118,119]. Speiser & Teizer use real-time construction data and game engine technology (Unity) to 

create personalized training scenarios, whereas Martínez-Gutiérrez et al. leverage VR for immersive 

learning experiences [120,121]. 

Kandasamy et al. take a completely different approach, focusing on cybersecurity and using DT 

to simulate real-world cyberattacks [122]. Their study integrates cybersecurity-specific tools like the 

Attack Designer and various communication protocols, making it the only reference that applies DT 

to security and infrastructure protection rather than education or training. 

Another notable contrast is in automation and real-time adaptation. Speiser & Teizer and 

Kandasamy et al. emphasize automation, with the former dynamically generating training 

environments and the latter simulating real-time cyberattacks [120,122]. In contrast, Zhou et al. and 

Kuhn et al. focus more on structured learning experiences, with predefined exercises and step-by-

step training approaches [118,119]. 

While all studies explore DT applications, their focus areas and technological implementations 

vary significantly. Some studies emphasize immersive technologies like AR (Zhou et al.) and VR 

(Martínez-Gutiérrez et al.), while others prioritize hands-on training for digital literacy (Kuhn et al.) 

or real-time hazard awareness (Speiser & Teizer) [118,119–121]. Kandasamy et al. stands out by 

focusing on cybersecurity, demonstrating DT’s potential beyond training and education [122]. 

Despite these differences, all studies highlight the transformative potential of DT technology in 

their respective fields. Whether improving education, enhancing safety, training workers, or securing 

infrastructure, DT continues to be a versatile tool driving innovation across industries. Future 

research may explore the convergence of these applications, such as integrating cybersecurity 

awareness into DT-based training or using VR-enhanced DT models for both industrial education 

and security testing. 

4.3. Applications of DT in Design and Optimization 

Digital twin technology in design and optimization leverages AI, IoT, simulation, and cloud 

computing to create virtual replicas of physical systems. It enables real-time performance analysis, 

predictive simulations, and iterative design improvements, reduce development time and costs. By 

integrating data-driven insights, digital twins optimize product lifecycles, structural integrity, and 

energy efficiency. These applications enhance decision-making, streamline manufacturing, and drive 

innovation across various industries. The following sections analyze the application of DT in design 

and optimization from different prospectives. Figure 4 shows the use of DT for Design and 

optimization in various sectors. 
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Figure 4. Digital Twin Ecosystem for Design and Optimization. 

Application Domains of DT in Design and Optimization 

The selected references present diverse applications of Digital Twin (DT) technology tailored to 

specific industry needs and objectives. Bellalouna focuses on product design optimization, aiming to 

reduce material usage and improve structural efficiency through precise stress simulations in an 

arbor press [123]. Conversely, Kalantari et al. apply DT in architectural design prototyping, aiming 

to bridge physical creativity with digital analytics through their Ph2D system, enhancing spatial 

understanding and energy performance [124]. 

In facility management, Asare et al. utilize DT for predictive maintenance, integrated Building 

Information Modeling (BIM) and Internet of Things (IoT) to enhance decision-making, reduce costs, 

and improve maintenance efficiency [125]. Sreedharan et al. target mining automation, employing 

DT and Industrial IoT (IIoT) to address safety, connectivity, and productivity challenges in mining 

operations, particularly in remote sites [126]. 

Bellavista et al. explore adaptive DTs for digital factories, aiming to improve flexibility, 

resilience, and operational efficiency in Industry 4.0 environments [127]. Sifat et al. focus on electric 

grid management, developing a DT framework for enhancing grid stability, predictive maintenance, 

and cybersecurity through advanced analytics [128]. Lee et al. emphasize user-centric DT 

applications in building management, prioritizing occupant comfort, energy efficiency, and 

personalized environmental control [129]. 

Innovations of DT in Design and Optimization 

Selected studies employ specific technological frameworks that highlight DT versatility. 

Bellalouna integrates IoT platforms and Finite Element Analysis (FEA) to enable accurate real-time 

data collection and structural simulations [123]. In contrast, Kalantari et al. leverage 3D printing, 

modular tiles, and digital analytical tools for real-time synchronization of physical and digital 

architectural prototypes [124]. 

Asare et al. compare Autodesk Tandem and Unreal Engine combined with Microsoft Azure, 

evaluating their effectiveness in real-time data management and advanced visualization for facility 

maintenance [125]. Sreedharan et al. adopt Business Process Modeling Notation (BPMN), mesh 

networking and simulation analytics to ensure reliable data transmission and robust decision-making 

support in harsh mining environments [126]. 

Bellavista et al. implement micro-services architecture coordinated by Kubernetes, using 

patterns like microkernel, sidecar, ambassador, and adapter to enhance scalability and adaptability 

in digital factories [127]. Sifat et al. employ cloud platforms, machine learning algorithms, and bi-

directional communication systems for dynamic grid optimization [128]. Lee et al. integrate 3D 
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visualization, AI-driven recommendations, and intuitive interfaces, significantly enhancing building 

management and occupant interactions [129]. 

Benefits and Performance Outcomes of DT in Design and Optimization 

The implementation of DTs in the selected studies yields significant performance benefits. 

Bellalouna achieves notable reductions in material waste and improved sustainability due to precise 

simulations and optimized designs [123]. Kalantari et al. enhance creative exploration, spatial 

visualization, and interdisciplinary collaboration in architectural design through the Ph2D system 

[124]. 

Asare et al. report substantial improvements in facility maintenance efficiency, proactive 

maintenance strategies, and reduced operational costs, enabled by their predictive DT prototypes 

[125]. Sreedharan et al. achieve enhanced safety, productivity, and resource optimization in mining 

operations, highlighting the transformative impact of DT and IIoT integration [126]. 

Bellavista et al.  demonstrate improved adaptability, autonomous operations, and legacy 

system integration capabilities, enhancing digital factory operations' reliability and flexibility [127]. 

Sifat et al. report increased grid stability, optimized resource allocation, and enhanced cybersecurity, 

enabled by their DT framework [128]. Lee et al. significantly improve occupant comfort, energy 

efficiency, and empowerment in building management, underlining the advantages of democratized 

DT systems [129]. 

Challenges and Implementation Considerations of DT in Design and Optimization 

Despite significant benefits, each reference identifies specific implementation challenges. 

Bellalouna emphasizes challenges related to sensor placement accuracy and data reliability crucial 

for effective structural optimizations [123]. Kalantari et al. express concerns over simplifying complex 

architectural details and recommend refining digital functionalities for broader usability [124]. 

Asare et al. highlight difficulties in system integration, scalability, data security, and managing 

costs associated with deploying advanced DT platforms in facility management [125]. Sreedharan et 

al.  note significant challenges due to poor connectivity, extreme environmental conditions, and 

integrating automated systems with traditional mining practices [126]. 

Bellavista et al. acknowledge difficulties in managing real-time data processing and complexity 

in rapidly changing industrial contexts [127]. Sifat et al. mention challenges in accurately modeling 

complex electric grid subsystems and ensuring robust cybersecurity measures [128]. Lee et al. address 

challenges related to data privacy, intuitive user interface design, and balancing occupant comfort 

with energy efficiency in democratized building management systems [129]. 

This comparative analysis among the prominent innovations emphasizes Digital Twins' 

extensive applicability, technological diversity, significant performance improvements, and 

implementation challenges across varied industries. Overcoming these challenges through 

innovative solutions and interdisciplinary collaboration will be critical to harness the full potential of 

Digital Twin technologies and promoting their broader adoption. 

4.4. DT in Infrastructure and Urban Planning 

Digital twin technology in infrastructure and urban planning employs IoT, AI, GIS, and 

simulation models to construct virtual replicas of cities and infrastructure systems. It enables real-

time monitoring, predictive maintenance, and optimized resource management for smart cities and 

sustainable urban development. Applications include traffic flow optimization, energy efficiency 

planning, and disaster response simulations to enhance urban resilience. By integrating real-time 

data and analytics, digital twins improve decision-making and support the creation of more efficient, 

livable, and sustainable urban environments. 

Application Domains of DT in Infrastructure and Urban Planning 
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The selected references cover diverse applications of Digital Twin (DT) technology across 

various urban and infrastructure domains. Wan et al. focus on city-level DT development, 

emphasizing policy-driven approaches and cross-sector data integration, particularly for smart 

infrastructure and urban planning [130]. Their study, centered around Cambridge, highlights DT’s 

role in improving policy coordination across transport, housing, energy, and environmental sectors. 

Similarly, Abdeen et al. prioritize citizen engagement through Citizen-Centric Digital Twins 

(CCDTs), aiming to foster transparency and inclusivity in urban governance [131]. 

In stormwater management, Sharifi et al. utilize AI-enhanced DTs to predict system performance 

and proactively optimize operations, demonstrate how DT can contribute to address urban 

environmental challenges [132]. Bellalouna applies DT in product design optimization, notably in an 

arbor press, improving material efficiency and structural performance [123]. Meanwhile, Gürdür 

Broo et al. and Marai et al. discuss DTs in smart infrastructure and road infrastructure management 

respectively, focusing on real-time monitoring and predictive maintenance to enhance resilience and 

operational efficiency [133,134]. Lastly, Ye et al. emphasize community resilience through human-

centered Urban Digital Twins (UDTs), particularly for climate adaptation planning in vulnerable 

coastal areas [135]. Figure 5 shows how DT can be used to facilitate the Infrastructure and Urban 

Planning. 

 

Figure 5. Digital Twin Application in Infrastructure and Urban Planning. 

Technological Specifications of DT in Infrastructure and Urban Planning 

The selected references integrate various technological frameworks into their DT 

implementations. Wan et al. leverage data science and machine learning, complementing traditional 

urban theories, to enhance predictive capabilities [130]. Abdeen et al. employ volunteered geographic 

information (VGI), remote sensors, machine learning algorithms, and Application Programming 

Interfaces (APIs) for dynamic, interactive management [131]. Sharifi et al. utilize AI, machine learning 

(ML), deep learning (DL), and IoT sensors to enable accurate stormwater predictions and real-time 

system adjustments [132]. 

Bellalouna incorporates IoT platforms, computer-aided design (CAD), and finite element 

analysis (FEA) for structural optimization, while Gürdür Broo et al. implement a multi-layered DT 

framework integrating sensors, data analytics, and visualization tools [123,133]. Marai et al. rely on 

IoT devices, edge computing, and advanced object detection algorithms for real-time road 

infrastructure monitoring [134]. Ye et al. propose integrating big data, AI, and multi-agent interaction 

models within human-centered UDT frameworks to enhance decision-making and resilience [135]. 

Benefits and Outcomes of DT in Infrastructure and Urban Planning 
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Implementing DT technology yields numerous benefits across these studies. Wan et al. 

demonstrate DT's effectiveness in identifying systemic urban risks and facilitating policy 

experimentation [130]. Abdeen et al.  report improved urban infrastructure governance through 

enhanced citizen participation and real-time responsiveness [131]. Sharifi et al. highlight improved 

stormwater management, optimized resource allocation, and proactive maintenance through AI-

enhanced DTs [132]. 

Bellalouna achieves significant material reductions and structural efficiency improvements, 

emphasizing sustainability [123]. Gürdür Broo et al. enhance infrastructure resilience, operational 

efficiency, and predictive maintenance through real-time data analytics [133]. Marai et al. note 

improved road safety, optimized traffic management, and reduced operational risks, while Ye et al. 

emphasize enhanced community resilience and improved adaptation planning capabilities for 

climate risks  [134]. 

Challenges and Implementation Considerations of DT in Infrastructure and Urban Planning 

Despite their advantages, these DT implementations face significant challenges. Wan et al. stress 

the necessity of aligning technical development with governance frameworks [130]. Abdeen et al. 

highlight challenges related to data interoperability, crowd-sourced data quality, and advanced AI 

integration [131]. Sharifi et al. discuss issues in data integration, model accuracy, and standardization 

within AI-powered DTs [132]. 

Bellalouna emphasizes precise sensor placement, data synchronization, and real-time 

monitoring as critical challenges [123]. Gürdür Broo et al. note data quality, system integration, and 

multidisciplinary collaboration as significant barriers [133]. Marai et al. point out cybersecurity risks, 

high deployment costs, and limitations in detection accuracy under poor conditions [134]. Ye et al. 

underline the complexity of integrating socio-environmental data, ensuring data privacy, and 

developing standardized methodologies [135]. 

This comparative analysis among the selected articles highlights the diverse applications, robust 

technological frameworks, significant benefits, and notable challenges associated with Digital Twins 

across various urban infrastructure domains. Addressing these challenges through innovative 

approaches and interdisciplinary collaboration is essential for maximizing DT potential and fostering 

broader adoption in urban planning and infrastructure management. 

4.5. DT in Transportation and Logistics 

Digital twin technology in transportation and logistics integrates IoT, AI, and simulation models 

to optimize operations and decision-making. It enables real-time tracking of fleets, predictive 

maintenance of vehicles, and route optimization to reduce delays and fuel consumption. In logistics, 

digital twins enhance warehouse automation, supply chain resilience, and demand forecasting 

through data-driven simulations. These applications improve efficiency, reduce costs, and enhance 

sustainability in transportation networks. Figure 6 presents the applications of DT in Transportation 

and Logistics. 
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Figure 6. Applications of Digital Twin in Transportation and Logistics. 

Application Domains of DT in Transportation and Logistics 

The selected references demonstrate diverse applications of Digital Twin (DT) technology across 

various logistics and manufacturing domains, addressing specific operational challenges and 

objectives. Cuñat Negueroles et al. focus on logistics and transportation, integrating blockchain with 

DT to improve data security, traceability, and operational efficiency in vehicle fleet management and 

supply chain processes [136]. Z. Zhang et al. target open production logistics, using DT and 

blockchain to enhance trusted synchronization and dynamic decision-making in manufacturing 

environments [137]. 

L. Zhang et al. address crowdsourcing logistics, combining DT with a four-party evolutionary 

game model to optimize logistics operations amongst e-commerce growth [138]. Hong et al.  aim to 

improve cross-enterprise synchronization in production-delivery processes, leveraging DT to 

coordinate manufacturers and third-party logistics providers (3PLs) effectively [139]. Zhao et al. 

apply DT to production logistics resource allocation, introduce dynamic spatial-temporal knowledge 

graphs to enhance efficiency [137]. Coelho et al. focus on in-house logistics, employing DT combined 

with simulation-based decision support tools to optimize warehousing, material handling, and order 

picking [140]. Greif et al. concentrate on construction site logistics, specifically bulk material supply, 

proposing a lightweight DT model to improve operational efficiency and resource management [141]. 

Technological Specifications of DT in Transportation and Logistics 

Each selected reference employs distinct technological frameworks within their DT 

implementations. Cuñat Negueroles et al. integrate blockchain technology with DT, using FIWARE, 

Ethereum-based Canis Major, Orion Context Broker, and KrakenD API Gateway to ensure secure 

data flow and immutability [136]. Z. Zhang et al. combine blockchain for secure resource 

management with DT for real-time monitoring and control, utilizing analytical target cascading 

(ATC) for synchronization decisions [142]. 

L. Zhang et al. integrate DT with evolutionary game theory and multi-agent reinforcement 

learning, employing blockchain for data transparency and predictive analytics for strategic decision-

making [138]. Hong et al. develop a DT-based bidirectional interactive synchronization mechanism, 

including distributed decision-making models and optimization algorithms for dynamic cross-

enterprise collaboration [139]. Zhao et al. utilize DT technology with dynamic spatial-temporal 

knowledge graphs powered by deep neural networks, enabling real-time resource tracking and 

optimized allocation [137]. 

Coelho et al. apply DT through simulation-based decision support using Simio software, 

creating virtual replicas of logistics systems for real-time monitoring and analysis [140]. Greif et al. 
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introduce lightweight DT models integrated with decision support systems (DSS) for continuous 

monitoring, predictive analytics, and optimized resource allocation in construction logistics [141]. 

Benefits and Outcomes DT in Transportation and Logistics 

DT implementations across these studies deliver substantial performance improvements. Cuñat 

Negueroles et al. demonstrate enhanced operational efficiency, reduced delays, and improved 

decision-making in freight transportation through blockchain-enabled DTs [136]. Z. Zhang et al. 

report improved reliability, operational cost reductions, and increased adaptability in production 

logistics synchronization [142]. 

L. Zhang et al. achieve system stability and efficiency in crowdsourcing logistics, discouraging 

dishonest behavior and improving logistics performance through predictive insights [138]. Hong et 

al. highlight improved production-delivery coordination, cost efficiency, and system resilience under 

dynamic conditions, favoring bidirectional collaboration over traditional unidirectional models [139]. 

Zhao et al. demonstrate optimized travel routes, reduced waiting times, and enhanced operational 

efficiency in production logistics resource allocation [137]. 

Coelho et al. validate improved decision-making, bottleneck identification, and resource 

allocation accuracy in in-house logistics, enhancing operational productivity [140]. Greif et al. show 

significant cost reductions, improved logistics planning, and enhanced sustainability in construction 

logistics through DT-based strategies, achieving a 25% decrease in truck-related costs [141]. 

Implementation Considerations of DT in Transportation and Logistics 

Despite their advantages, these DT implementations encounter various challenges. Cuñat 

Negueroles et al. emphasize scalability and data validation issues in centralized systems, highlighting 

the importance of blockchain integration [136]. Z. Zhang et al.  identify the need for interoperability 

and optimization of dynamic decision algorithms within complex logistics systems [137]. 

L. Zhang et al. face challenges in refining incentive mechanisms and preventing behaviors like 

collusion and false reporting in crowdsourcing logistics [138]. Hong et al. discuss difficulties related 

to data privacy, synchronization mechanisms, and dynamic disruption management between 

collaborating enterprises [139]. Zhao et al. highlight challenges in real-time performance 

enhancement and dynamic disturbance incorporation in spatial-temporal logistics models [137]. 

Coelho et al. recognize limitations due to reliance on simulated data and the need for integration 

with real-time systems and sustainability aspects in in-house logistics [140]. Greif et al. acknowledge 

challenges in extending lightweight DT frameworks to broader low-tech industries and enhancing 

predictive analytics for dynamic decision-making [141]. 

This comparative analysis among the selected articles underscores the transformative potential 

of Digital Twin technology across logistics and manufacturing sectors. Each study reveals significant 

operational improvements, highlighting DT's capability to enhance efficiency, security, and decision-

making. Addressed implementation challenges through technological innovation, interdisciplinary 

collaboration, and advanced algorithm development will be crucial for maximizing DT's impact and 

achieving widespread industrial adoption. 

4.6. DT application in Process Optimization 

The selected references illustrate the extensive range of Digital Twin (DT) applications across 

diverse sectors, each targeting specific industrial or operational challenges. Zhou et al. focus on 

ironmaking, employing DT integrated with self-adaptive genetic algorithms (SAPGAs) to optimize 

blast furnace operations by reducing coke consumption and enhancing operational efficiency [143]. 

Bellalouna applies DT to product design optimization, specifically for an arbor press, aiming to 

achieve material efficiency and precise structural performance through real-time operational data 

[123]. Zheng et al. utilize DT technology to optimize oil and gas production, integrating real-time 

data, physical models, and intelligent algorithms to enhance production efficiency, reduce energy 

consumption, and extend asset life [1]. 
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Bayer et al. explore DT's potential in bioprocessing, combining digital twins with model-based 

design of experiments (DoE) to maximize bioprocess yields efficiently [144]. Davies et al. implement 

DT for predictive maintenance of engineering assets, focusing on component degradation monitoring 

and maintenance optimization [145]. Liu et al. adopt DT for process planning in manufacturing, 

emphasizing the reuse and real-time evaluation of machining processes [146]. Lim et al. highlight 

DT's application in product family design and optimization, integrating context awareness to support 

dynamic industrial environments [147]. Figure 7 shows the use of DT for Real-Time Supply Chain 

and Industrial Process Optimization. 

 

Figure 7. Digital Twin for Real-Time Supply Chain and Industrial Process Optimization. 

Technological Specifications of DT in Process Optimization 

The references exhibit diverse technological integrations within their DT frameworks. Zhou et 

al. (2020) combine SAPGAs with autoregressive moving average (ARMA) models, leveraging cloud-

based platforms like Apache Spark for real-time analytics [143]. Bellalouna integrates IoT sensors, 

computer-aided design (CAD), and finite element analysis (FEA) for structural optimization and 

material reduction [123]. Zheng et al. employ multi-disciplinary, multi-scale models combined with 

IoT, artificial intelligence, and virtual/augmented reality to simulate and optimize oilfield operations 

[1]. 

Bayer et al. utilize hybrid modeling techniques, combining mechanistic and data-driven 

approaches with iterative model validation for bioprocess optimization [144]. Davies et al. 

incorporate simulation-based digital twins with mathematical degradation models and MATLAB-

based dashboards for maintenance decision-making [145]. Liu et al. implement a Digital Twin-based 

Process Knowledge Model (DT-PKM), integrating geometric information, process constraints, and 

real-time equipment data for dynamic process evaluation [146]. Lim et al. propose a three-layer 

digital twin architecture comprising cyber-physical interaction, data processing, and knowledge 

computation layers. This architecture integrates IoT sensors, cloud computing, and big data analytics 

to enable context-aware product design. [147]. 

Benefits and Outcomes of DT in Process Optimization 

DT implementations across these studies demonstrate substantial performance improvements. 

Zhou et al. achieve a reduction in coke consumption during ironmaking by approximately 14 kg per 

ton of iron. This improvement enhances both the economic and environmental performance of the 

process. [143]. Bellalouna achieves a 60% reduction in material use for an arbor press, enhancing 

design efficiency and sustainability [123]. Zheng et al. report increased oilfield efficiency, reduced 

energy costs, and improved production predictions through digital twin optimization [1]. 
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Bayer et al. demonstrate efficient bioprocess optimization, significantly reduces experimental 

efforts from twenty-seven to nine experiments while maximizing yields [144]. Davies et al. effectively 

predict the remaining useful life (RUL) of engineering components, supporting proactive 

maintenance and reduced downtime [145]. Liu et al. enhance manufacturing efficiency, tripling 

process planning speed and increasing process knowledge reuse by over 60% [146]. Lim et al. enhance 

operational safety and efficiency in smart manufacturing by implementing context-aware asset 

optimization. This approach effectively addresses supply chain and operational disruptions [147]. 

Implementation Considerations of DT in Process Optimization 

Despite these benefits, the references identify various challenges. Zhou et al. highlight occasional 

deviations due to abnormal conditions and the need for robust anomaly handling in optimization 

frameworks [143]. Bellalouna emphasizes challenges in precise sensor placement and data 

synchronization for accurate DT operation [123]. Zheng et al. note challenges in model accuracy, data 

integration, and adapting complex digital twins to diverse oilfield conditions [1]. 

Bayer et al. discuss challenges related to model bias and reliability in higher-dimensional design 

spaces for bioprocessing [144]. Davies et al. acknowledge limitations due to reliance on simulated 

data, suggesting the need for validation with real-world assets [145]. Liu et al. identify limited 

application scope and the requirement for robust data acquisition systems [146]. Lim et al. point out 

challenges associated with cyber-physical synchronization and the transition from lab-based 

simulations to real-world applications [147]. 

This comparative analysis among the selective articles highlight the extensive and 

transformative applications of Digital Twin technology across diverse industries. Each study 

leverages DTs for significant operational improvements, demonstrating their potential to enhance 

efficiency, sustainability, and decision-making capabilities. However, addressing implementation 

challenges through innovative solutions, advanced computational methods, and interdisciplinary 

collaboration will be critical for maximizing DT effectiveness and achieving widespread industrial 

adoption. 

4.7. DT in Manufacturing, Supply Chain Management, and Logistics 

The following section reviewed studies illustrate the diverse applications of Digital Twin (DT) 

technology in manufacturing, supply chain management, and logistics. The integration of artificial 

intelligence (AI), machine learning (ML), and optimization techniques has significantly enhanced 

decision-making, efficiency, and resilience across various sectors. 

Use of DT in Process Optimization in Manufacturing 

Shan et al. and Yuan et al. both emphasize process optimization in manufacturing through DT-

driven approach. While Shan et al. focus on optimizing pharmaceutical manufacturing, particularly 

in solvent recovery, Yuan et al. address production efficiency in electrical cable manufacturing [148], 

[149]. Both studies implement advanced optimization techniques Shan et al. using NSGA-II and 

CNN-LSTM models, while Yuan et al. employ multi-objective algorithms and a piecewise coupling 

mechanism [148,149]. The outcomes in both cases showcase notable improvements in efficiency, 

yield, and defect reduction, highlighting DT’s potential to refine manufacturing processes. Figure 8 

presents the application of DT in Smart Warehousing and Supply Chain management. 
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Figure 8. Digital Twin-Enabled Smart Warehousing and Supply Chain Intelligence. 

Use of DT in Production Layout and Internal Supply Chain Optimization 

Lee et al. and Cimino et al. explore DT applications in production layout and supply chain 

optimization, respectively [150,151]. Lee et al. focus on enhancing production flexibility in SMEs 

through a Simulation-Optimization with Multi-Criteria Decision-Making (SOMCDM) framework, 

whereas Cimino et al. develop a modular DT platform to optimize internal supply chains [150]. Both 

approaches integrate simulation models, but Lee et al. utilize Multivariate Adaptive Regression 

Splines (MARS) for parameter optimization, while Cimino et al. adopt object-oriented modeling for 

ISC management [150,151]. The studies differ in scope Lee et al. target SMEs struggling with Industry 

4.0 adoption, whereas Cimino et al. cater to multi-plant production planning, making their findings 

more relevant for large-scale manufacturers. 

Use of DT in Supply Chain Coordination and Resilience 

Pan et al. and Singh et al. examine DT's role in improving supply chain coordination and 

resilience [152,153]. Pan et al. propose a multi-level DT architecture for kitting production logistics, 

incorporating real-time data integration and a cloud-fog-edge-terminal model to optimize operations 

dynamically [152]. In contrast, Singh et al. analyze DT’s influence on resilient and sustainable 

manufacturing supply chains, identifying key factors through the Grey Influence Analysis (GINA) 

methodology [153]. Pan et al. focus on synchronization and efficiency improvements in 

manufacturing logistics, but Singh et al. take a broader approach by considering environmental and 

operational sustainability aspects in MSCs [152,153]. Both studies emphasize DT’s ability to enhance 

coordination, but Singh et al. extend the analysis to resilience and sustainability, making their work 

more applicable to long-term strategic planning. 

Use of DT in Predictive Modeling and Resilient Production Strategies 

Corsini et al. and Perno et al. explore DT applications in production resilience and predictive 

modeling [25,154]. Corsini et al. investigate DT-driven replenishment strategies for semiconductor 

production, leveraging an Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) 

to manage supply chain disruptions [25]. Perno et al., on the other hand, focus on ML-based DT 

frameworks for catalyst manufacturing, comparing multiple machine learning algorithms to 

optimize process monitoring [154]. Both studies employ predictive analytics, Corsini et al. apply their 

model to inventory and supply chain resilience, but Perno et al. concentrate on real-time process 

parameter prediction [25,154]. The findings from Corsini et al. are valuable for industries requiring 

robust supply chain adaptability, whereas Perno et al.’s work benefits process industries looking to 

enhance precision in manufacturing. 
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Use of DT in Environmental and Quality Control Applications 

Rietdorf et al. and Fu et al. integrate DT with environmental and quality control measures [155], 

[156]. Rietdorf et al. develop a real-time environmental monitoring DT prototype for battery 

manufacturing, linking it to Life Cycle Assessment (LCA) and regulatory compliance [155]. Fu et al. 

introduce a simulation-in-the-loop framework for real-time structural validation in additive 

manufacturing, utilizing finite element analysis (FEA) and image segmentation for defect detection 

[156]. Both studies use DT for monitoring and optimization, Rietdorf et al. focus on sustainability and 

regulatory compliance, whereas Fu et al. enhance real-time defect detection and material efficiency 

in AM. Their contributions highlight DT’s versatility in improving both environmental impact 

tracking and product quality control. 

Use of DT in Human-Robot Collaboration in Manufacturing 

Park et al. stands out by integrating DT with human–robot collaboration (HRC) using 

exoskeleton-type robots [157]. Unlike the other studies, which emphasize manufacturing 

optimization, supply chain resilience, or sustainability. Park et al. explore DT’s role in enhancing 

intuitive human-robot interaction through real-time motion tracking, haptic feedback, and VR 

visualization. This work presents an unique perspective on how DT can be leveraged beyond 

traditional manufacturing improvements, extending its application to ergonomic and operational 

enhancements in industrial robotics. 

While all studies examine the impact of Digital Twin (DT) technology on manufacturing, they 

differ in their areas of emphasis. Some focus on process and layout optimization, as explored by Shan 

et al., Yuan et al., Lee et al., and Cimino et al [40,149,151,158].  Others investigate supply chain 

resilience.  Real-time monitoring is also addressed by Rietdorf et al. and Fu et al., while predictive 

modeling is the central theme in the study by Perno et al. [155],  Additionally, Park et al. highlight 

the role of DT in facilitating human-robot collaboration. Collectively, these studies underscore the 

transformative potential of DT across various dimensions of manufacturing, reinforcing its position 

as a critical enabler of Industry 4.0 advancements. 

4.8. Digital Twin Technology in Healthcare: Advancements, Applications, and Challenges 

Digital Twin (DT) technology is transforming healthcare by enabling advancements in 

personalized medicine, clinical decision-making, disease prevention, and public health monitoring. 

Originally developed for engineering and manufacturing, DTs now play a crucial role in medicine 

by improving diagnostics, treatment planning, patient monitoring, and hospital operations [159]. A 

DT is a virtual replica of a physical entity that continuously updates using real-time data from 

electronic health records, wearable devices, imaging, and biological markers [160]. Figure 9 

demonstrates the use of DT for diagnosis, treatment, and training. 

The following section explores the applications, technological foundations, challenges, and 

future directions of DTs in healthcare by analyzing findings from multiple studies. 
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Figure 9. Revolutionizing Medicine: Digital Twins for Diagnosis, Treatment, and Training. 

Applications of Digital Twins for Personalized Medicine and Precision Healthcare 

Digital Twins are transforming precision medicine by enabling patient-specific modeling that 

supports optimized treatment strategies and accurate disease prediction. These models integrate 

genomics, physiological data, wearables, and AI-driven analytics to simulate potential outcomes and 

improve medical decisions [159]. 

Papachristou et al. introduce Digital Human Twins, which leverage IoT, AI, virtual reality, and 

cloud computing to monitor patient health in real time [160]. These models help predict disease 

progression, optimize drug therapies, and improve chronic disease management. Similarly, Sun et 

al. highlight DT applications in orthopedics, cardiology, and pharmacology, showing their 

effectiveness in biomechanical simulations, cardiovascular modeling, and drug response 

optimization [115]. 

DTs also contribute to oncology treatment. Gaebel et al. propose a modular DT framework that 

integrates electronic health records, imaging, and decision-support modules to refine cancer therapy 

strategies [161]. Cellina et al. emphasize the potential of multi-omics data integration, demonstrating 

how DTs can simulate tumor behavior and adjust treatment plans accordingly [162]. 

Applications of Digital Twins in Ophthalmology and Neurology 

DTs are also being developed for ophthalmology applications. Iliuţă et al. present a DT 

framework for glaucoma prediction, integrating genetic, demographic, and clinical data to assess 

patient risk [163]. Their model achieves 84 percent accuracy in detecting early glaucoma signs, 

offering potential for early intervention and prevention. 

Neurological applications are explored by Gazerani, who introduces Intelligent Digital Twins 

for migraine management [164]. These models analyze biosensor data to predict migraine triggers, 

optimize treatments, and provide personalized interventions. This demonstrates how specialized 

DTs improve treatment strategies for complex neurological conditions. 

Use of DT in Pandemic Response and Population Health Monitoring 

DTs enhance public health surveillance by enabling real-time tracking of disease outbreaks and 

risk assessment. Kamel Boulos & Zhang highlight their use in COVID-19 monitoring, demonstrating 

how DTs helped predict outbreaks and guide public health responses [159]. Similarly, Sahal et al.  

introduce Personal Digital Twins that integrate biological, mental, and environmental data to provide 

early health warnings and insights [165]. 

Okegbile et al. and Venkatesh et al. propose Health Digital Twins, which optimize pandemic 

response, vaccine distribution, and healthcare resource allocation [173,166]. Their research suggests 
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that DTs can improve crisis management by integrating real-time epidemiological data, patient 

tracking, and hospital capacity monitoring. 

Cardiovascular Disease Management Using Digital Twins 

Cardiovascular disease is another area benefiting from DT applications. Coorey et al. explore 

Health Digital Twins in cardiovascular healthcare, particularly for ischemic heart disease, heart 

failure, and aneurysm repair [167]. Their study shows that real-time data synchronization enhances 

risk assessments and treatment decisions. 

Abd Elaziz et al. extend DT applications to remote cardiac monitoring, patient stratification, and 

surgical planning [116]. By integrating electronic health records and wearable sensor data, DTs can 

predict cardiac events, support preoperative simulations, and optimize long-term disease 

management. 

Data Integration, Standardization, and Computational Complexity Associated with the Use of DT 

in Health Care System 

A major challenge in DT implementation is data standardization and integration. Meijer et al. 

highlight difficulties in merging heterogeneous datasets from electronic health records, wearable 

sensors, and multi-omics sources [117]. Armeni et al. emphasize the computational complexity 

involved in real-time data fusion and AI-driven modeling [168]. 

Gaebel et al. propose modular DT architectures to improve interoperability, while Coorey et al. 

discuss Cyber-Physical Systems and Closed-Loop Optimization to enhance data synchronization 

[161,167]. These approaches aim to make DT adoption scalable and efficient in clinical practice. 

Ethical Concerns and Data Privacy Risks of Using DT in Health Care System 

DTs raise significant ethical concerns regarding data ownership, privacy, and AI biases. Meijer 

et al. and Armeni et al. highlight privacy risks, algorithmic biases, and clinician skepticism as barriers 

to DT adoption [117,168]. 

To address these concerns, Sahal et al.  and Gazerani propose blockchain and federated learning 

as solutions for enhancing data security and reducing AI biases [165,171]. Regulatory frameworks 

such as the FDA’s Medical Device Development Tools program are evolving to ensure AI-based 

medical technologies meet safety and ethical standards [166]. 

Future Directions and Innovations in Digital Twin Healthcare 

Future directions in digital twin healthcare focus on integrating AI-driven predictive analytics 

to forecast diseases and optimize personalized treatment plans. Real-time IoT integration will 

enhance continuous monitoring, allowing for precision healthcare through seamless data exchange. 

Blockchain technology is expected to play a crucial role in ensuring secure and interoperable data 

sharing, protecting patient information while fostering collaboration among healthcare providers. 

Additionally, advancements in genomic and biomolecular simulations will enable more accurate 

drug testing and genetic therapy simulations, paving the way for truly personalized medicine. 

Expanding Digital Twin Applications in Telemedicine and Virtual Clinical Trials 

Future developments will expand DT applications in telemedicine, remote patient monitoring, 

and virtual clinical trials. Abd Elaziz et al. predict that AI-driven diagnostics will play a crucial role 

in digital healthcare ecosystems [116]. Papachristou et al. foresee DTs reducing reliance on human 

control groups by providing virtual patient models for drug trials [160]. 

Advancements in AI-Driven Predictive Models 

Enhancing AI-driven predictive capabilities is crucial to the success of digital transformation. 

According to Iliuţă et al. and Gazerani, deep learning models have the potential to significantly 

improve early disease detection and enable more personalized treatment approaches [163,164]. The 
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integration of natural language processing will further enhance data interpretation in clinical 

decision-making. 

Integration with Emerging Technologies 

DTs will increasingly integrate with edge computing, blockchain, and the Internet of Things to 

enhance real-time processing and cybersecurity. Okegbile et al.  emphasize the role of secure cloud 

architecture, while Sahal et al. propose blockchain-based solutions for data transparency and 

interoperability [165,169]. 

Digital Twin technology is revolutionizing healthcare by advancing personalized medicine, 

optimizing disease management, and improving public health monitoring. Digital Human Twins, 

Personal Digital Twins, and Health Digital Twins are transforming precision medicine through real-

time simulations, predictive analytics, and AI-driven diagnostics. 

Despite these benefits, challenges such as data privacy, standardization, and computational 

demands must be addressed. Future research should focus on improving AI-driven predictive 

models, integrating blockchain for security, and expanding DT applications in telemedicine and 

virtual trials. 

As digital twin technology continues to evolve, its potential to enhance patient outcomes, reduce 

healthcare costs, and revolutionize medical practice remains vast. Continued innovation in this field 

will pave the way for smarter, data-driven, and patient-centric healthcare systems. 

4.9. DT in Autonomous Systems 

Digital Twin (DT) technology is revolutionizing autonomous systems by creating real-time 

digital replicas of physical systems, continuously updated through sensors and data analytics. These 

replicas enable monitoring, predictive maintenance, virtual testing, and performance optimization 

for autonomous vehicles, drones, and robots. DTs reduce costs, mitigate risks, and accelerate 

innovation by allowing engineers to test and improve systems safely and efficiently. They also 

enhance adaptability and safety in dynamic environments. A recent review highlights the growing 

relevance of DTs across various domains, comparing their applications by domain, methodology, 

performance, scalability, and future potential. Figure 10 shows the use of DT for autonomous systems 

and smart mobility control. 

 

Figure 10. Digital Twin Technology for Autonomous Systems and Smart Mobility Control. 

Application Domains in Autonomous Systems 

Digital Twin (DT) technology is being effectively applied across multiple autonomous system 

domains, demonstrating its versatility and impact. In autonomous driving, Shoukat et al. [170] 
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leverage DT to integrate hybrid reality with real-time simulations, enhancing safety and test 

efficiency. In the field of autonomous marine systems, Hasan et al. [171] utilize DT for fault diagnosis, 

particularly focusing on propulsion systems, enabling precise detection and minimal operational 

disruption. 

In industrial applications, Khawale et al. [172] implement a DT-based hybrid modeling 

framework for fault mitigation in autonomous diesel engines. Their approach combines data-driven 

and physics-based methods to achieve high fault detection accuracy and rapid recovery. Agriculture 

also benefits from DT innovations. De Bortoli et al. [173], applied a DT-based computer vision 

algorithm to improve the alignment accuracy of autonomous cultivators during weeding operations. 

These application domains highlight the adaptability of DT technology to address unique 

operational challenges ranging from transportation and energy systems to maritime and agricultural 

automation. Each case underscores how DTs enhance reliability, safety, and performance in 

autonomous environments. 

DT Technologies in Autonomous Systems 

A range of Digital Twin (DT) technologies has been employed to support autonomous system 

functionality through real-time data processing, hybrid modeling, and simulation integration. In 

autonomous driving systems, Shoukat et al. [170] combine real and virtual environments using 3D 

coordinate mapping, collision detection, and virtual scene registration. This hybrid reality approach 

allows for synchronized interaction between physical vehicles and their digital counterparts. 

Khawale et al. [172] introduce a hybrid engine model that integrates neural networks with 

physics-based equations, implemented within a hierarchical control architecture. This design enables 

real-time fault detection and recovery in diesel engines with high computational efficiency. Hasan et 

al. [171] incorporate an Adaptive Extended Kalman Filter (AEKF) algorithm into their DT framework 

for autonomous ships. This allows precise estimation of fault parameters using real-time sensor data, 

enhancing diagnostic accuracy. 

In precision agriculture, De Bortoli et al. [173] implement a computer vision-based DT system 

utilizing template matching and color segmentation within the Lab color space. This facilitates 

accurate row detection and cultivator alignment under challenging field conditions. 

These technologies highlight the wide range of DT applications across sectors, all centered 

on creating dynamic digital replicas to enable smart decision-making in autonomous 

systems. 

DT Performance Metrics in Autonomous Systems 

Performance evaluation is critical to validating the effectiveness of Digital Twin (DT) 

technologies in autonomous systems. Various metrics have been used across studies to assess 

accuracy, responsiveness, and stability under operational conditions. 

Shoukat et al. [170] conducted performance tests at multiple sampling intervals (50 ms, 200 ms, 

and 800 ms) and found 200 ms to be optimal. This rate offered a balanced trade-off between real-time 

responsiveness and system stability in autonomous driving simulations. Khawale et al. [172] reported 

a 96% fault detection accuracy in their DT-enabled diesel engine model, coupled with rapid recovery 

times following detected anomalies. The system maintained stable torque output and exhibited 

minimal overshoot even during fault scenarios. 

Hasan et al. [171] demonstrated high diagnostic precision in maritime environments using real-

time DT frameworks. Their system is effectively distinguished between normal and faulty states, 

enhancing fault detection reliability.  

These metrics highlight the impact of DT on fault tolerance, system resilience, and predictive 

capability. The consistent emphasis on real-time performance and diagnostic accuracy underscores 

DT’s potential as a foundational technology in high-stakes autonomous applications. 

DT Scalability in Autonomous Systems 
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The scalability of Digital Twin (DT) technology in autonomous systems is a key theme across 

multiple domains discussed among the selected articles. In autonomous driving, Shoukat et al. 

illustrate a DT-based hybrid reality test system that integrates real and virtual environments [170]. 

This scalable framework supports variable sampling rates and real-time feedback, making it suitable 

for evolving vehicle models and complex road scenarios. 

In the context of diesel engines, Khawale et al. demonstrate a scalable DT-enabled fault 

mitigation system [172]. Their approach uses a hybrid engine model and hierarchical control to adapt 

to different fault types. Validated through simulations and hardware testing, the system shows 

potential for extension to various engine configurations and autonomous platforms such as 

unmanned marine vessels. 

Hasan et al. highlight scalability in maritime systems through a DT framework for fault 

diagnosis in autonomous ships [171]. Their model processes real-time sensor data and adapts fault 

estimation to different operational states using the AEKF algorithm. Its application to a specific vessel 

(the Otter) with successful experimental validation suggests readiness for broader use in similar 

maritime platforms. 

In agriculture, De Bortoli et al. apply a DT-based vision algorithm to autonomous cultivators 

[173]. The modular design of the algorithm, including template matching and adaptive measurement 

confidence, allows it to perform well across diverse environmental conditions and crop types. The 

system’s success in real field conditions underscores its potential for scaling to other agricultural 

machinery and larger fields. 

DT Unique Contributions in Autonomous Systems 

Each Digital Twin (DT) implementation across autonomous systems introduces distinct 

innovations tailored to domain-specific challenges, showcasing the versatility and creative potential 

of DT technology. 

Shoukat et al. [170] uniquely integrate DT with hybrid reality, enabling dynamic testing 

environments that blend virtual and real-world conditions. Their system enhances simulation fidelity 

and supports real-time interaction for autonomous driving evaluations. Khawale et al.  [172] 

contribute a hybrid engine modeling framework that fuses neural networks with physics-based 

formulations, offering high fault detection accuracy and rapid system recovery, which is particularly 

valuable in safety-critical applications. 

Hasan et al. [171] validate their DT system for autonomous ships using both simulation and 

experimental data, demonstrating strong diagnostic precision and real-time responsiveness. Their 

integration of an adaptive extended Kalman filter allows for nuanced fault parameter estimation. De 

Bortoli et al. [173]  bring innovation to agricultural automation by developing a DT-based vision 

algorithm that uses template matching and color segmentation, achieving robust performance even 

under variable field conditions. 

Future Directions 

Future research in Digital Twin (DT) technologies for autonomous systems emphasize 

enhancing predictive capabilities, expanding sensor integration, and improving system adaptability 

across diverse environments. 

Several studies propose strengthening the predictive functionality of DT frameworks. Shoukat 

et al. [170] and Khawale et al. [172] both highlight the need to refine real-time data integration and 

forecasting in complex, dynamic environments. Improved predictions would enhance system safety 

and operational planning, particularly in high-risk or fast-changing scenarios. 

Sensor fusion and hardware integration are also key areas for advancement. De Bortoli et al. 

[173] and Khawale et al. [172] suggest incorporating additional sensors to capture more nuanced 

environmental or operational data, which could improve system responsiveness and decision 

accuracy. Enhanced sensor integration is especially relevant in fields such as agriculture and heavy 

machinery, where external conditions vary significantly. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 May 2025 doi:10.20944/preprints202505.0784.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0784.v1
http://creativecommons.org/licenses/by/4.0/


 32 of 64 

 

Scalability remains a central concern. Lin et al. [174] and Khawale et al. [172] all envision broader 

industrial deployment of their DT models, adapting them to new domains such as marine systems, 

manufacturing, and energy infrastructure. This will require more modular and interoperable DT 

architectures that can be efficiently customized to fit different use cases. 

Overall, the future of DT in autonomous systems lies in more intelligent, adaptive, and context-

aware models that can learn from data, interact with complex environments, and scale across sectors 

without loss of reliability or performance. 

Digital Twin (DT) Technology Applications Across Various Supply Chains 

Digital Twin (DT) technology has emerged as a transformative force in modern supply chains, 

offering unprecedented capabilities to optimize operations and enhance decision-making. Selected 

articles examine DT applications across diverse supply chains, focusing on key properties such as 

operational impact, scalability, strategic decision-making, resilience, and sector-specific adaptations. 

Digital Twins enhance operational efficiency and streamline processes by combining real-time 

monitoring, predictive analytics, and modular architecture. 

DT frameworks facilitate strategic insights and fairness among stakeholders, ensuring robust 

supply chain resilience. Sector-specific adaptations further demonstrate DT’s versatility, addressing 

unique challenges in areas like agri-food, manufacturing, and logistics. 

Operational Impact of DT on Supply Chains 

Singh et al. and Cimino et al. both emphasize DT’s role in enhancing visibility and coordination 

[153,151]. Singh et al. highlight real-time monitoring for better decision-making, while Cimino et al. 

focus on predictive analytics and “what-if” analyses that improve key operational metrics like flow 

time and order tardiness. 

Cimino et al. uniquely address DT’s modular architecture, making it adaptable for multi-plant 

environments [151]. This property sets it apart from Singh et al., which broadly recommends 

exploring DT across different industries but does not detail scalability [153]. 

Strategic Decision-Making and Fairness  

Zhang et al. uniquely focus on strategic decision-making and fairness in DT applications [175]. 

Unlike other studies that emphasize operational efficiencies, Zhang et al. address the interactions 

among manufacturers, consumers, and regulators. The study highlights the challenges posed by 

investment costs, tax incentives, and data transparency, emphasizing the need for governmental 

policies to facilitate DT adoption in ESG contexts. 

Resilience 

Resilience is another crucial property explored differently by Singh et al. [176]. This study 

highlights the roles of supply chain resilience (SCR) and supply chain performance (SCP) as key 

mediators of Digital Twin (DT) technology’s sustainability impact. Using Structural Equation 

Modeling to demonstrate DT’s positive effects on agility, waste reduction, and customer satisfaction. 

Sector-Specific Adaptations  

Sector-specific adaptations are prominently featured in Gallego-García et al. and the refrigerated 

supply chain research [177,178]. Gallego-García et al. adapt DT technology specifically for agri-food 

supply chains, focusing on smallholder vulnerabilities and integrating tools like SWOT and Material 

Flow Analysis. In contrast, refrigerated supply chain research uniquely addresses temperature 

management and biochemical quality of perishable fruits, highlighting DT’s precise applications in 

product-level logistics. 

These studies demonstrate DT technology's diverse properties: operational enhancements, 

scalability, strategic decision-making and fairness, resilience, and sector-specific adaptations 
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[177,178]. Future research should further investigate these properties across broader contexts and 

industries. 

4.10. Digital Twin (DT) Technology in Oil and Gas 

Digital Twin (DT) technology has emerged as a transformative force in the oil and gas industry. 

This review highlights the recent research on DT applications in oil and gas, focusing on technology 

integration, application scope, real-time capabilities, innovation, and industry impact. Several studies 

emphasize diverse integration strategies, ranging from cloud and edge computing to SCADA, GIS, 

IoT, and advanced AI methods. Research spans broad operational areas, such as predictive 

maintenance and reservoir simulation, to specialized functions like pipeline management and leak 

detection. Furthermore, real-time monitoring and adaptive learning innovations highlight DT’s 

potential to enhance safety, efficiency, and decision-making. By evaluating these distinct criteria, the 

review underscores DT’s transformative impact and identifies future research directions to further 

optimize operational performance significantly in diverse environments. Figure 11 shows the use of 

DT for offshore oil platforms: Real-Time monitoring and predictive maintenance. 

 

Figure 11. Digital Twin for Offshore Oil Platforms: Real-Time Monitoring and Predictive Maintenance. 

Technology Integration 

Knebel et al. emphasize DT integration with cloud and edge computing, providing scalable 

computational power and low latency [179]. Similarly, Bo et al. highlight integration with SCADA, 

GIS, and IoT for centralized pipeline management [180]. Wei et al. integrate 3D modeling and AI 

methods like Case-Based Reasoning (CBR), distinct from Knebel and Bo's focus on infrastructure 

integration [181]. Liang et al. and Wen et al. integrate DT with deep learning and hybrid control 

algorithms, respectively, showing a more specialized technology fusion [182,183]. 

Application Scope 

Knebel et al. broadly address various oil and gas operations, from predictive maintenance to 

reservoir simulation [179]. In contrast, Bo et al. narrowly focus on pipeline management [180]. Wei et 

al. target offshore oil/gas field development, emphasizing FEED processes [181]. Liang et al. further 

narrow their focus to leak detection, while Wen et al. concentrate on natural gas flowmeter 

calibration, representing the most specialized scope [182,183]. 

Real-Time Capabilities 

Knebel et al. highlight cloud-edge architectures enabling real-time data analysis and remote 

monitoring [179]. Similarly, Liang et al. prioritize real-time anomaly detection through continuous 
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adaptive learning [182]. Bo et al. acknowledge real-time monitoring challenges, while Wei et al. and 

Wen et al. both incorporate real-time data to enhance visualization and calibration precision, 

respectively [180,181,183]. 

Innovation 

Liang et al. present a significant innovation with adaptive learning in leak detection, 

outperforming traditional methods [182]. Wen et al. innovate by combining physics-based models 

with advanced machine learning controls, achieving high calibration accuracy  [183]. Wei et al. 

introduce innovative AI-driven case-based reasoning for rapid FEED design [181]. Knebel et al. and 

Bo et al. innovate mainly through integration strategies rather than novel methodologies [179,180]. 

Industry Impact 

Knebel et al. argue DTs enhance overall operational efficiency, safety, and decision-making 

[179]. Bo et al. stress pipeline safety, cost reduction, and sustainability [180]. Wei et al. highlight 

efficiency improvements in offshore projects, reducing design time and costs [181]. Liang et al. 

provide impactful improvements in leak detection accuracy and reliability [182]. Wen et al. 

significantly impact calibration practices, reducing time and operational costs [183]. 

These studies highlight DT’s diverse benefits in oil and gas based on distinct criteria. Knebel et 

al. and Bo et al. broadly integrate existing technologies for infrastructure management [179,180]. Wei 

et al. and Wen et al. focus on specific operational improvements [181,183]. Liang et al. uniquely 

innovate in real-time detection capabilities [182]. Future research should further investigate these 

criteria to expand DT’s transformative potential in various operational contexts. 

4.11. Digital Twin (DT) Technology in Aerospace Applications 

Digital twin technology is emerging as a transformative tool in the aerospace industry, driving 

improvements across monitoring, assembly, machining, and security. This comprehensive analysis 

examines four significant studies that explore diverse aspects of digital twins. Selvarajan et al. 

emphasize uncertainty reduction in aerospace monitoring through deep learning, while Aggarwal et 

al. focus on enhancing data privacy and security using blockchain technologies [184,185]. Jin et al. 

extend digital twin applications to aerospace assembly by integrating advanced models for 

reconfigurable tooling [186]. Liu et al. introduce a biomimicry-inspired method to optimize 

machining processes with real-time monitoring and adaptive control [187]. Together, these studies 

illustrate the multifaceted potential of digital twins to revolutionize aerospace operations by 

improving efficiency, precision, and safety in complex environments. This review highlights current 

trends and future potential. Figure 12 shows immersive aerospace engineering with DT Technology. 

 

Figure 12. Immersive Aerospace Engineering with Digital Twin Technology. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 May 2025 doi:10.20944/preprints202505.0784.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0784.v1
http://creativecommons.org/licenses/by/4.0/


 35 of 64 

 

Application Domain and Focus of DT in Aerospace Applications 

Selvarajan et al. concentrate on aerospace monitoring by employing digital twins to reduce 

uncertainties in aero engines [184]. Their work replaces traditional manual inspections with advanced 

virtual models, leading to enhanced data accuracy even under extreme operational conditions. In 

contrast, Aggarwal et al. address a different but equally critical challenge: data privacy and security 

in cloud-based digital twin platforms [185]. Their study secures data exchanges between aerospace 

assets and cloud servers, ensuring robust protection against cyber threats. Jin et al. expand the 

application of digital twins to aerospace assembly, focusing on the monitoring of reconfigurable 

tooling systems, which are pivotal in maintaining product quality and reducing production cycles 

[188]. Meanwhile, Liu et al. focus on machining aerospace components, using a biomimicry-inspired 

approach to enable real-time monitoring and adaptive control during complex machining processes, 

thereby improving overall precision [90]. 

Methodological Approach of DT in Aerospace Applications 

Selvarajan et al. integrate aero transfer functions with deep learning models, specifically 

employing Convolutional Neural Networks (CNN) and Radial Basis Networks (RBN) [184]. This 

combination is designed to optimize data representation and reduce uncertainties, ensuring 

improved performance in high-speed conditions. Aggarwal et al. take a markedly different route by 

incorporating blockchain technology with elliptic curve cryptography (ECC), fuzzy verifiers, and 

BAN logic [185]. This integrated approach not only secures data exchange but also minimizes 

computation and communication overhead. Jin et al. develop a comprehensive digital twin system 

that merges geometric, physical, behavioral, and rule-based models, embedding calibration 

parameters to address variations and improve monitoring accuracy [188]. Liu et al. propose a novel 

modeling method inspired by biological systems [187]. By combining geometric, behavioral, and 

contextual sub-models with an XML-based data integration framework, they enable adaptive real-

time updates that capture dynamic changes during the machining process. 

Performance and Key Findings of DT in Aerospace Applications 

The performance outcomes reported by these studies vary according to their specific objectives. 

Selvarajan et al. report achieving a data transmission efficiency of 91% while reducing uncertainties 

to 8%, a result that underscores the effectiveness of deep learning in high-demand aerospace 

environments [184]. Aggarwal et al. demonstrate remarkable efficiency by reducing computation 

time to 178.297 ms and lowering communication costs to 5184 bits [185]. Their approach also provides 

strong resistance against various cyber-attacks, highlighting its real-world applicability. Jin et al. 

show that their digital twin system effectively detects positioning deviations and optimizes assembly 

sequences, thus reducing manual inspections and minimizing errors in aerospace assembly [188]. Liu 

et al. highlight that their biomimicry-based approach outperforms traditional systems by 

significantly enhancing machining precision and enabling predictive maintenance through real-time 

data fusion and adaptive control [187]. 

Security and Data Privacy of DT in Aerospace Applications 

Security and data privacy emerge as a critical focus, particularly in the work of Aggarwal et al. 

[185]. Their blockchain-based approach ensures data verifiability and integrity by integrating 

cryptographic techniques and secure authentication protocols. This emphasis on protecting sensitive 

aerospace data sets their study apart from the others, which primarily focus on performance 

enhancements and operational efficiency. While Selvarajan et al., Jin et al. and Liu et al. prioritize 

reducing uncertainties and optimizing monitoring processes, Aggarwal et al. provide an 

indispensable security layer for digital twin applications in increasingly interconnected aerospace 

environments [184,185,187,188]. 

Future Research Directions of DT in Aerospace Applications 
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Looking toward the future, each study outlines clear avenues for further development. 

Selvarajan et al. suggest that integrating artificial intelligence for multi-item detection could further 

enhance control and predictive capabilities within digital twin systems [184]. Aggarwal et al. propose 

further incorporation of AI and machine learning to boost big data analytics, thereby expanding the 

utility of their security framework in real-world scenarios [185]. Jin et al. recommend the adoption of 

advanced sensors and AI-driven analytics to further refine real-time monitoring and system 

effectiveness in aerospace assembly [188]. Finally, Liu et al. aim to improve modeling speed through 

cloud technologies and to address simulation lag, ensuring that their biomimicry-based approach 

remains both scalable and robust [187]. Collectively, these future research directions underscore the 

evolving nature of digital twin technology in aerospace, where performance, security, and 

adaptability are continuously refined. 

Accuracy Improvement of DT in Aerospace Applications 

Selvarajan et al. utilize deep learning (CNN, RBN) with aero transfer functions to minimize 

uncertainties in aerospace systems, achieve a notable 8% uncertainty reduction [184]. Liu et al. also 

focuses on accuracy through biomimicry-based DT modeling, improving machining precision and 

real-time predictive accuracy [187]. Jin et al. enhance accuracy in reconfigurable tooling by 

embedding calibration parameters and rule models, improving detection of positioning deviations 

[186].  

Adaptability of DT in Aerospace Applications 

Liu et al. employ biomimicry-inspired models (geometric, behavioral, contextual) for dynamic 

and adaptive DT updates, reflecting physical changes during machining in real-time [187]. Jin et al. 

provide adaptability through reconfigurable tooling systems, supporting multiple product types. 

Selvarajan et al. use deep learning for adaptive uncertainty management, primarily in predictive 

maintenance, Aggarwal et al. do not emphasize adaptability [184,185] 

Digital twin technologies are revolutionizing aerospace applications by enhancing monitoring, 

precision, and security. Their innovative methodologies drive operational efficiency and robust data 

management across diverse aerospace processes. Future research will likely yield even greater 

integration of AI, advanced sensors, and cloud computing to address current limitations and foster 

further advancements. 

4.12. Digital Twin (DT) Technology in the Automotive Sector 

Digital Twin (DT) technology has emerged as a revolutionary tool in the automotive sector. It 

drives technological innovation by enabling accurate virtual representations of physical vehicles and 

systems. DT offers a practical impact by optimizing design, production, and maintenance processes. 

Manufacturers can simulate scenarios and predict outcomes with high precision. The technology is 

highly adaptable to various automotive applications, including autonomous driving, connected 

vehicles, and smart manufacturing. Its adaptability makes it an essential asset in managing complex 

systems and integrating new technologies. Sustainability is a core benefit of DT technology. It 

supports efficient resource management, reduces waste, and lowers environmental impacts. DT also 

contributes to the lifecycle management of vehicles. This technology paves the way for safer, greener, 

and more efficient automotive solutions while encouraging continuous improvement and innovative 

practices. Overall, DT transforms the automotive industry with significant lasting benefits. 

The following section highlights the recent progress in research on Digital Twin (DT) technology 

in the automotive sector using specific criteria: technological innovation, practical impact, 

adaptability, and sustainability. Figure 13 shows the use of DT for virtual testing and smart 

manufacturing 
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Figure 13. Automotive Innovation with Digital Twins: Virtual Testing and Smart Manufacturing. 

Application of DT in Energy Management in Electric Vehicles 

Ye et al. (2024) demonstrate technological innovation by integrating DT with deep reinforcement 

learning (DRL) for electric vehicles (EVs). This innovation leads to practical impacts, improving 

energy efficiency by 7.08% and reducing battery degradation by 25.28%. Their approach showcases 

adaptability through real-time updates based on driving conditions. Sustainability is indirectly 

supported by extending battery lifespan, thus reducing waste and resource consumption. 

Application of DT in Riding Profile Prediction for Motorcycles 

Smeets et al. exhibit technological innovation by developing a comprehensive DT model 

incorporating motorcycle mechanics, rider behavior, and environmental factors [189]. The practical 

impact is high, as accurate predictions of speed and banking angles enhance safety systems and 

vehicle design. Their model demonstrates adaptability by integrating various data sources and 

adjusting to different riding conditions. Sustainability aspects are less emphasized, with the focus 

primarily on performance and safety. 

Circular Economy Strategies Using DT 

Mügge et al. focus significantly on sustainability by utilizing DT to optimize end-of-life (EoL) 

decisions, supporting circular economy (CE) practices [190]. Technological innovation lies in creating 

transparent, product-specific DT models across vehicle lifecycles. Practical impacts include improved 

resource efficiency and sustainable dismantling. Adaptability is demonstrated by applying the 

framework across different vehicle components and scenarios, although real-time adaptability is less 

prominent. 

Classic Car Restoration Using DT 

Ferreira et al. bring technological innovation by integrating IoT sensors with DT for classic car 

restoration [191]. Practical impacts include enhanced workshop efficiency, accurate resource 

management, and authenticity preservation. Adaptability is present through real-time monitoring 

and predictive analytics tailored to unique restoration needs. Sustainability is indirectly addressed 

through improved resource management but is not the primary focus. 

In technological innovation, Ye et al. and Ferreira et al. stand out for integrating advanced 

technologies (DRL, IoT sensors) [191,192]. Smeets et al. are innovative by incorporating human 

factors [189]. Mügge et al. innovate through comprehensive lifecycle modeling [190]. 
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Practical impacts are strong across all studies. Ye et al. and Ferreira et al. significantly enhance 

operational efficiency [191,192]. Smeets et al. impact vehicle safety and design, while Mügge et al. 

improve sustainability practices [189,190]. 

These studies highlight DT's diverse applications and strengths across criteria like innovation, 

impact, adaptability, and sustainability. Integrating these criteria can develop robust, multi-

functional DT systems beneficial for future automotive industry advancements. 

4.13. Digital Twin in Energy System 

Digital twin technology is transforming energy systems by creating accurate digital replicas of 

physical assets. These virtual models allow operators to monitor real-time performance and simulate 

various operational scenarios. They support predictive maintenance and enhance decision-making 

across generation, transmission, and distribution networks. Digital twins provide detailed insights 

into system efficiency and help optimize energy production. They also improve reliability by 

identifying potential faults before they escalate. This technology encourages innovation in renewable 

energy integration and grid management. As a result, digital twin solutions drive cost savings and 

improve environmental sustainability. Overall, digital twins offer a powerful tool for modernizing 

energy systems and ensuring secure, efficient, and resilient operations. These innovative systems 

support strategic planning and foster sustainable growth in the evolving energy landscape globally 

today.  

The following section provides a comprehensive analysis of the selected articles focused on the 

use of digital twin technologies across energy domain. Figure 14 shows smart energy ecosystem 

powered by Digital Twin Technology. 

 

Figure 14. Smart Energy Ecosystem Powered by Digital Twin Technology. 

Application Domains and Key Focus Areas on Energy System 

Jamil et al. optimize energy management in smart nano grids using AIoT and blockchain [193]. 

Their work enhances energy trading efficiency. Spinti et al. apply digital twins and Bayesian Decision 

Theory to biomass energy systems [194]. They focus on improving operational efficiency and 

reducing emissions at a biomass power plant. In contrast, Deakin et al. develop digital twin 

frameworks for electrical distribution networks [195]. They aim to improve system state estimation, 

voltage control, and energy trading in microgrids. Padovano et al. emphasize sustainability [196]. 

They address environmental impacts through lifecycle assessment and waste management in 

cognitive digital twins. 

Sifat et al. propose a comprehensive digital twin (DT) framework for electric grid operations 

[128]. They integrate IoE and IIoT technologies to improve grid stability, operational efficiency, and 
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cybersecurity. Manfren et al. address building energy management by developing lean, interpretable 

DT models [197]. Their approach incorporates smart thermostatic radiator valves and gas absorption 

heat pumps. This method significantly reduces energy consumption in residential buildings. 

Mousavi et al. present a novel method for structural health monitoring of floating wind turbines 

[198]. They combine DT technology with deep learning for damage detection under variable loading 

conditions. Bardeeniz et al.  employ DT-aided transfer learning to boost energy efficiency in thermal 

spray dryers [199]. Their technique substantially reduces energy demand and environmental impacts 

in industrial processes. Meanwhile, Diz et al. integrate DT with edge computing for real-time 

condition monitoring of three-phase power converters [200]. Their work enhances maintenance 

reliability. 

Technological Innovation of DT in Energy System 

Technological innovation is diverse across studies. Jamil et al. utilize AIoT and blockchain, 

highlighting advanced data security and trading optimization [193]. Spinti et al. innovate by applying 

Bayesian decision theory to biomass energy systems, integrate real-time sensor data [194]. Deakin et 

al. implement real-time power flow algorithms, addressing dynamic distribution system challenges 

[195]. Padovano et al.  introduce a lifecycle assessment-based framework for managing digital 

waste, while Sifat et al. integrate IoE, IIoT, and machine learning for predictive grid maintenance 

[128,196]. Manfren et al. develop lean, interpretable regression models for building energy 

management [197]. Mousavi et al. combine deep learning with simulated data for structural health 

monitoring  [198]. Bardeeniz et al. use LSTM-based transfer learning for spray dryer efficiency, and 

Diz et al. leverage PSO and GA algorithms for real-time power converter monitoring [200,206]. 

Practical Impact of DT in Energy System 

All studies demonstrate significant practical impacts. Jamil et al. reduce peak load and increase 

renewable energy use [193]. Spinti et al. improve boiler efficiency and reduce emissions in biomass 

systems [194]. Deakin et al. achieve substantial energy curtailment reductions [195]. Padovano et al. 

effectively identify and mitigate digital waste [196]. Sifat et al. enhance grid stability and operational 

efficiency [128]. Manfren et al. significantly reduce natural gas consumption in buildings [197]. 

Mousavi et al. effectively detect structural damage in wind turbines [198]. Bardeeniz et al. 

considerably reduce energy demand and emissions in spray dryers [199]. Diz et al. efficiently detect 

component degradation in power converters [200]. 

Adaptability of DT in Energy System 

Adaptability is well demonstrated across the references. Jamil et al. showcase real-time 

adaptability in energy trading and monitoring [193]. Spinti et al. dynamically update operational 

strategies every five minutes [194]. Deakin et al. include dynamic voltage control and energy trading 

adaptability [195]. Padovano et al. apply their methodology across various CDT lifecycle stages [196]. 

Sifat et al. offer a modular, scalable system design [128]. Manfren et al. capture real-time energy 

performance variations [197]. Mousavi et al. validate their approach under varying environmental 

conditions [198]. Bardeeniz et al. demonstrate adaptability by transferring learning between 

simulations and real applications [199]. Diz et al.  highlight real-time adaptability through edge 

computing [200]. 

Sustainability of DT in Energy System 

Sustainability focus varies among studies. Padovano et al. and Manfren et al. explicitly address 

sustainability through lifecycle assessment and energy consumption reduction, respectively 

[197,203]. Jamil et al. directly enhance sustainability via renewable energy utilization [193]. Spinti et 

al.  and Deakin et al. indirectly support sustainability by reducing emissions and enhancing 

efficiency [195,201]. Sifat et al.  promote sustainability through renewable energy integration [128]. 

Mousavi et al. and Diz et al. indirectly contribute to sustainability by extending infrastructure 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 May 2025 doi:10.20944/preprints202505.0784.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0784.v1
http://creativecommons.org/licenses/by/4.0/


 40 of 64 

 

lifespan and reducing maintenance needs [198,200]. Bardeeniz et al. directly address sustainability 

by significantly cutting energy consumption and emissions [199]. 

In technological innovation, the studies use varied approaches like advanced algorithms, real-

time systems, and deep learning. Practical impacts are universally strong, ranging from operational 

efficiencies to structural integrity enhancements. Adaptability is robust across all references, evident 

in real-time adjustments and scalability. Sustainability approaches differ, some directly address 

environmental goals, while others achieve sustainability indirectly through improved efficiency and 

reduced resource consumption. 

Technological Integration and Optimization Methods of DT in Energy System 

Artificial intelligence and machine learning are common across these studies. Jamil et al. and 

Sifat et al.  emphasize blockchain and cybersecurity in energy trading and grid management [193], 

[128]. Optimization methods differ among the studies. For example, Jamil et al. and Diz et al. use 

heuristic approaches like Particle Swarm Optimization [193,200]. Spinti et al. uniquely apply 

Bayesian methods [194]. Transfer learning appears only in Bardeeniz et al.'s work [199]. Performance 

metrics often focus on energy efficiency and sustainability, as noted by Jamil et al., Bardeeniz et al., 

and Manfren et al. [193,197,199]. In contrast, predictive accuracy and real-time control are 

emphasized by Spinti et al., Deakin et al., Sifat et al. and Diz et al. [128,195,200]. 

Unique Technological Features and Challenges 

Technologically, the studies differ in their focus and approach. Manfren et al. stress 

interpretability and actionable insights for building energy management [197]. Mousavi et al. apply 

digital twin technology for offshore wind turbine structural health monitoring [198]. Padovano et al. 

highlight lifecycle management and environmental impacts [196]. Other studies place less emphasis 

on these aspects. Common challenges include data quality and model uncertainty. These issues are 

noted by Deakin et al., Spinti et al. , and Mousavi et al. [195,205]. 

Future Research Directions 

Future research may focus on integrating advanced machine learning techniques. Researchers 

are exploring ways to increase scalability and improve automated decision-making capabilities. 

These findings show that digital twins have broad applicability. They also reveal a varied 

technological focus. Digital twins can improve operational efficiency, sustainability, and 

technological advancement across many sectors. This research paves the way for future 

interdisciplinary collaboration. Further studies will unlock even more potential in digital twin 

technology. 

4.14. DT in Marine and Offshore Engineering 

Digital twin technology plays a significant role in marine and offshore engineering. It creates 

accurate digital replicas of vessels, offshore platforms, and marine structures. Engineers use these 

models for real-time monitoring and to simulate various operating conditions. Digital twins help 

predict maintenance needs and prevent potential failures. They also support design optimization and 

enhance safety measures. This technology improves operational efficiency and reduces downtime. It 

aids decision-making by providing detailed data on structural health and environmental impacts. 

Digital twins drive innovation and offer promising solutions for the challenges faced in the marine 

and offshore industry. 

The following section explores references on various applications of Digital Twin (DT) 

technology across the marine and offshore sectors, each with distinct focuses and methodologies. 

Figure 15 shows the use of DT in offshore energy systems. 
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Figure 15. Digital Transformation of Offshore Energy Systems with 3D and Immersive Technologies. 

Applications of DT in Marine Renewable Energy  

Majidi Nezhad et al. discuss the transformative role of digital twins in marine renewable energy 

[201]. They emphasize operational efficiency, predictive maintenance, and environmental 

sustainability. Their work follows a holistic approach that integrates IoT, AI, and big data analytics. 

The aim is to achieve extensive data interoperability. They also target a wide range of applications, 

such as offshore wind and carbon capture. 

DT applications for Offshore Structural Safety 

Fang et al. focus on predicting fatigue crack growth in offshore platforms  [202]. They use finite 

element surrogate modeling and dynamic Bayesian networks. Their primary aim is to ensure 

structural safety and precise maintenance. They rigorously validate their approach with experiments 

on material specimens. They emphasize real-time updating and accuracy in handling complex and 

variable loading conditions. 

Use DT in Floating Wind Turbine (FWT) Management 

Liu et al. and Mousavi et al. (2024) both focus on Floating Wind Turbines (FWTs)  [198]. Their 

methodologies differ significantly [203]. Liu et al. present a comprehensive DT framework that 

integrates lifecycle data [203]. Their work emphasizes simulation, real-time monitoring, and 

predictive maintenance. The framework follows a structured, multi-layer approach. They validate 

their method with real-world installations, offering practical insights into lifecycle management and 

cost efficiency. In contrast, Mousavi et al. combine DT with deep learning techniques [198]. They use 

a Deep Convolution Long Short-Term Memory Neural Network (DCLSTMNN) for advanced 

structural health monitoring. Their work relies on simulated data and sophisticated signal 

processing. This method accurately detects structural damage under uncertain loading conditions, 

reducing the need for physical inspections. 

Applications for DT in Ecological and Coastal Management 

Pillai et al. (2022) stand apart with their focus on ecological and coastal management [204]. They 

apply digital twin technology to evaluate seagrass effectiveness in mitigating storm surges. Their 

method integrates numerical models with ecological variables, such as vegetation dynamics. Their 

validation approach is scenario-based and offers significant insights into climate resilience strategies. 

This method is distinctly different from the engineering-centric approaches used by other references. 

Common Challenges for DT in Marine and Offshore Engineering 
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Common challenges among the references on use of digital twin applications in Marine and 

Offshore Engineering include data integration complexities, cybersecurity concerns, and 

uncertainties in real-world conditions. There is also a need for standardized frameworks. Majidi 

Nezhad et al. and Liu et al. address these issues within marine energy systems [201,203]. Fang et al. 

and Mousavi et al. focus on technical challenges related to structural health uncertainties [198,202]. 

Pillai et al. uniquely address ecological modeling challenges [204]. They work on flexible vegetation 

dynamics and real-time data assimilation. 

Summary and Future Directions 

In summary, each selected reference uniquely contributes to digital twin applications. Majidi 

Nezhad et al. provide broad best practices [201]. Fang et al. focus on structural safety [202]. Liu et al. 

offer lifecycle management frameworks [203]. Mousavi et al. enhance structural monitoring through 

deep learning. Pillai et al. pioneer ecological applications [198,204]. 

Future research directions include advancing data interoperability and AI analytics. They also 

call for refining models with real-world data and integrating flexible environmental dynamics. These 

studies highlight digital twin's diverse potential in marine and offshore applications. 

4.15. DT in Civil Engineering 

Digital twin technology is revolutionizing civil engineering by creating accurate digital replicas 

of physical structures. These virtual models enable real-time monitoring, predictive maintenance, 

and improved decision-making throughout design, construction, and management. Engineers can 

simulate complex scenarios to assess structural performance and optimize resource use, leading to 

early detection of issues and proactive maintenance. This technology promotes innovation, 

sustainability, and efficiency in infrastructure projects, offering benefits like enhanced safety, cost 

reduction, and improved overall performance. It is shaping a more resilient and future-focused civil 

engineering industry. Figure 16 presents integrated urban ecosystems with structural digital twins. 

 

Figure 16. Integrated Urban Ecosystems with Structural Digital Twins. 

Scope and Application 

The selected references cover a broad range of applications for digital twin (DT) technology in 

civil engineering. Pregnolato et al. focus on implementing DTs for existing infrastructure 

maintenance [205]. Wang et al. address automated post-earthquake structural inspections [206]. 

Adeagbo et al. explore DTs in advanced rail transit systems [207]. Torzoni et al. discuss predictive 

maintenance frameworks for civil structures [208]. Sun et al. and Chen et al. concentrate on improving 

3D point cloud accuracy for DT modeling [205,209], Hielscher et al. focus on reinforced concrete 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 May 2025 doi:10.20944/preprints202505.0784.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.0784.v1
http://creativecommons.org/licenses/by/4.0/


 43 of 64 

 

bridges [210]. Chiachío et al. present a DT framework for general structural health monitoring (SHM) 

[211]. Xu et al. integrate DT with Building Information Modeling (BIM) for buildings, and Teng et al. 

leverage DTs for bridge damage detection using transfer learning [206,212]. 

Methodological Approaches 

Selected references adopts distinct methodological approaches. Pregnolato et al. provide a 

structured five-step workflow integrating finite element modeling [205]. Wang et al. use graphics-

based DT frameworks involving UAVs and photorealistic modeling [206]. Adeagbo et al. implement 

bi-directional communication and adaptive data fusion [207]. Torzoni et al. utilize probabilistic 

Bayesian networks combined with deep learning [208]. Sun et al. and Chen et al.  develop a Cost 

Volume Pyramid-Based Depth Completion (CVP-DC) deep learning model [213,216]. Hielscher et al. 

employ neural networks combined with fiber-optic sensor data [210]. Chiachío et al. integrate IoT 

sensors with Bayesian inference and Petri nets [211]. Xu et al. merge BIM with real-scene 3D models, 

and Teng et al. apply CNNs trained with DT-generated data and transfer learning [206,212]. 

DT Technologies Integrated in Civil Engineering 

The references demonstrate diverse technological integrations. Pregnolato et al. primarily use 

finite element models and sensor data [205]. Wang et al. integrate UAVs, finite element models, and 

computer graphics [206]. Adeagbo et al. use sensors, AI, and adaptive data fusion [207]. Torzoni et 

al. incorporate dynamic Bayesian networks and deep learning [208]. Sun et al.  and Chen et al. utilize 

deep learning and multi-view stereo algorithms [231,216]. Hielscher et al. implement fibre-optic 

sensors and deep neural networks [210]. Chiachío et al. employ IoT sensors, Bayesian learning, and 

Petri nets [211]. Xu et al. integrate IoT sensors with BIM and real-scene 3D models [211]. Teng et al. 

combine CNNs, transfer learning, and Bayesian optimization [212]. 

Practical Impact of DT in Civil Engineering 

All studies demonstrate significant practical impacts. Pregnolato et al. enhance predictive 

maintenance for infrastructure [205]. Wang et al. improve safety and efficiency in post-earthquake 

inspections [206]. Adeagbo et al. enhance rail system monitoring and decision-making [207]. Torzoni 

et al. track structural health effectively, optimizing maintenance [208]. Sun et al. and Chen et al. 

improve 3D model completeness, aiding accurate structural analysis. Hielscher et al. achieve precise 

bridge monitoring [209,210]. Chiachío et al. autonomously assess structural conditions, improving 

maintenance schedules [211]. Xu et al. offer comprehensive real-time building monitoring [211]. Teng 

et al. enhance structural damage detection accuracy  [212]. 

Adaptability of DT in Civil Engineering 

Adaptability is consistently strong across studies. Pregnolato et al. propose a flexible workflow 

adaptable to various infrastructures [205]. Wang et al. dynamically adapt UAV inspection paths [206]. 

Adeagbo et al. emphasize modularity and adaptive updating rates. Torzoni et al. (2024) utilize 

continuous Bayesian updates [208]. Sun et al. (2024) and Chen et al. (2023) adapt their models to 

different structures [213,216]. Hielscher et al. use adaptable neural network models based on sensor 

data [210]. Chiachío et al. demonstrate adaptability in workflow management [211]. Xu et al. (2023) 

adapt by integrating BIM and real-scene models. Teng et al.  adapt CNN models from simulated to 

real conditions using transfer learning [212]. 

Sustainability of DT in Civil Engineering 

Sustainability is mostly addressed indirectly. Pregnolato et al. suggest improved efficiency 

leading to sustainable practices [205]. Wang et al. support sustainability by efficient disaster response 

[206]. Adeagbo et al. aim for long-term asset management, indirectly promoting sustainability [207]. 

Torzoni et al. focus explicitly on reducing lifecycle costs and improving safety [208]. Sun et al. and 

Chen et al. support sustainability by improving long-term monitoring accuracy [213,216]. Hielscher 
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et al. and Chiachío et al. (2022) indirectly enhance sustainability through extended structural lifespans 

[210,211]. Xu et al. and Teng et al. contribute to sustainability by facilitating predictive maintenance, 

reducing waste [212,214]. 

Validation and Practical Implementation of DT in Civil Engineering 

Wang et al., Sun et al., Chen et al., and Teng et al. provide substantial real-world validation 

through practical case studies, enhancing their credibility [206,209,212,213]. Hielscher et al. also 

provide experimental validation with high precision results [210]. In contrast, Pregnolato et al., 

Torzoni et al., and Chiachío et al. primarily validate their frameworks through synthetic or 

laboratory-scale models [205,208,211]. Xu et al. effectively demonstrate validation through the 

integration of real BIM and real-scene data [214]. 

Strengths and Challenges of DT in Civil Engineering 

The selected references reveal several strengths. They show methodological clarity and enable 

rapid, safer inspections [206,212]. Other studies demonstrate real-time monitoring capabilities and 

support predictive maintenance [208,214]. Accuracy in 3D modeling is highlighted by Sun et al. and 

Chen et al. [209,213]. Hielscher et al. emphasize precision with sensor data [210]. Chiachío et al. focus 

on autonomous decision-making [211]. Teng et al. show improved accuracy through transfer learning 

[212]. Common challenges include standardization, data validation, and integration complexity. 

Other challenges are data security, high costs, sensor management issues, and extensive training 

requirements. 

Collectively selected references highlight the transformative potential of DT technology in civil 

engineering, particularly emphasizing structural health monitoring, predictive maintenance, and 

response optimization. Differences in scope, methodological approaches, integrated technologies, 

and validation strategies underscore the diverse and evolving nature of DT applications, 

demonstrating significant promises but also considerable challenges in implementation. 

4.16. DT in Industrial Automation and Robotics 

Digital twins are rapidly transforming industrial automation and robotics by providing 

dynamic, real-time simulations of physical assets and processes. By integrating sensor data with 

advanced algorithms, digital twins allow predictive maintenance, optimization, and performance 

analysis, reducing downtime and enhancing operational efficiency. In robotics, they enable virtual 

testing of robotic systems, improving design and functionality before physical deployment. This 

technology bridges the gap between digital models and the real world, fostering innovation in 

automation strategies and manufacturing processes. As digital twin applications evolve, they are 

poised to drive substantial improvements in reliability, safety, and productivity across industries. 

Embracing these innovations consistently. The following section outlines innovative technologies 

and applications from multiple perspectives. Figure 17 shows DT integration in smart manufacturing 

and robotics. 
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Figure 17. Digital Twin Integration in Smart Manufacturing and Robotics. 

Application Domains of DT in Industrial Automation and Robotics 

 Based on the available references on uses of Digital Twin (DT) in robotics and automation, 

several key application domains have emerged prominently. Z. Zhang et al. and Dallel et al. center 

their research on enhancing Human-Robot Collaboration (HRC), specifically within assembly tasks, 

utilizing sophisticated algorithms and virtual reality respectively [215,222]. Baratta et al. adopt a 

broader analytical approach, reviewing DT applications across various manufacturing processes 

such as assembly, material handling, and welding, without introducing novel experimental setups 

[216].  

Methodological Innovations of DT in Industrial Automation and Robotics 

Distinct methodological innovations appear among the references. Z. Zhang et al. use advanced 

algorithms such as Occlusion Robust Mesh Recovery (ORMR) and Enhanced Spatiotemporal Graph 

Convolutional Networks (EST-GCN) [217]. Their approach improves human modeling and action 

recognition accuracy. In contrast, X. Zhang et al. focuses on knowledge management and structured 

data representation [218]. They integrate Knowledge Graphs (KG) and Function Blocks (FB) for 

robotic machining. Lee et al. incorporates Deep Reinforcement Learning (DRL) within DT 

frameworks [219]. Their method supports adaptive task allocation in unpredictable construction 

environments and shows significant efficiency gains. 

User-Centric Innovations of DT in Industrial Automation and Robotics 

Niermann et al. and Li et al. prioritize ease of use and user engagement [144,220]. They focus on 

user-centric innovation. Niermann et al. propose a visual programming interface integrated with DT. 

Their design reduces the cognitive load for operators. It makes complex automation tasks accessible 

to non-experts. Li et al. combine Augmented Reality (AR) with DT [220]. Their approach enhances 

intuitive teleoperation and improves coordination in multi-robot systems. Their work demonstrates 

flexibility and user-friendly interaction. 

Validation and Outcomes of DT in Industrial Automation and Robotics 

In terms of validation and outcomes, several studies highlight substantial performance 

improvements and safety enhancements. Z. Zhang et al., Dallel et al., and Lu et al. validate their DT 

systems in realistic scenarios, showcasing marked advancements in operational efficiency, accuracy, 

and safety [214,215,222]. Hu distinguishes their research through remarkable improvements in 

vision-guided robotic grasping, achieving near-perfect success rates via mutual information-driven 

DT, significantly outperforming conventional methods [221].  X. Zhang et al. and Lee et al. 
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emphasize adaptive process control and optimization, achieving notable reductions in process steps 

and time, reflecting DT’s robust predictive and adaptive capabilities [142,219]. 

Overall, each selected representative reference underscores DT’s potential across different 

domains, they diverge significantly in their methodological approaches, user engagement strategies, 

and validation outcomes, collectively illustrating DT’s multifaceted capabilities in improving 

industrial processes and human-robot interactions. 

4.17. Application of DT in Various Supply Chain Domains 

The six references explore the role of Digital Twin (DT) technology across various supply chain 

domains, each focusing on different applications, methodologies, key findings, technological 

integrations, sustainability aspects, and future research directions. Although all the studies recognize 

the transformative potential of digital transformation (DT), they each apply it within different 

industrial contexts, utilizing distinct analytical methods to tackle specific challenges. Together, these 

studies underscore the increasing importance of DT in strengthening supply chain resilience, 

improving efficiency, promoting sustainability, and enhancing decision-making processes. Figure 18 

shows DT driven smart logistics and supply chain ecosystem. 

 

Figure 18. Digital Twin-Driven Smart Logistics and Supply Chain Ecosystem. 

Major Uses of DT in Supply Chain Domains 

The application of DT varies across different supply chain environments. Singh et al. focus on 

manufacturing supply chains, with the former emphasizing resilience and sustainability, and the 

latter exploring how DT influences resilience and supply chain performance to drive sustainability 

outcomes[153,176]. Cimino et al. investigates the optimization of internal supply chain management 

in manufacturing through a simulation-based DT platform [216]. Zhang et al. uniquely examines ESG 

decision-making in semiconductor supply chains, considering the role of fairness concerns and 

regulatory policies in DT-enabled environments [175]. Gallego-García et al. extends DT applications 

beyond manufacturing to the agri-food sector, focusing on smallholder farmers who often face 

challenges related to resource allocation and sustainability [177]. Defraeye et al. addresses the cold 

chain logistics of perishable food products, particularly mangoes, leveraging DT for improved 

temperature management and quality preservation [178]. These diverse applications demonstrate the 

versatility of DT in tackling different supply chain complexities across industries. 

Technologies Enabling the Use of Digital Twin in Supply Chain Domains 

Each study employs a distinct methodology to analyze DT’s impact. Singh et al. (2024) utilizes 

Grey Influence Analysis (GINA) to identify 17 key resilience and sustainability factors in 
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manufacturing supply chains, highlighting visibility and coordination as critical elements. Cimino et 

al. adopts a simulation-based DT platform, designed with object-oriented structures, to conduct 

“what-if” analyses and optimize internal supply chain configurations [216]. Zhang et al. applies an 

evolutionary game model to study strategic interactions among manufacturers, consumers, and 

government regulatory agencies in the semiconductor industry [175]. Singh et al. uses Partial Least 

Squares Structural Equation Modeling (PLS-SEM) to quantify DT’s influence on supply chain 

resilience and performance based on data from 203 industry professionals [176]. Gallego-García et 

al. combines system dynamics modeling with simulation techniques to develop the "Farmer Manager 

4.0" framework, helping farmers predict disruptions and optimize processes [177]. Defraeye et al. 

integrates a biophysical fruit simulator with DT modeling to assess thermal behavior, enabling real-

time tracking of temperature fluctuations in refrigerated supply chains [178]. These methodologies 

illustrate the diverse analytical approaches used to evaluate DT’s role in enhancing supply chains. 

Key Findings in the Use of Digital Twin in Supply Chain Domains 

The studies highlight significant insights into DT’s impact on supply chains. Singh et al. finds 

that DT improves supply chain visibility, coordination, demand forecasting, and energy efficiency, 

thereby enhancing resilience and sustainability [176]. Cimino et al. demonstrates that DT-driven 

simulations significantly reduce scheduling inefficiencies, improve production flow, minimizing 

tardiness, and optimizing resource allocation in internal supply chains[153,216]. Zhang et al. 

emphasizes the role of fairness concerns in ESG decision-making, revealing that high investment 

demands and low regulatory tax rates hinder manufacturers’ motivation to adopt ESG measures 

[175]. Singh et al. establishes that DT strengthens supply chain resilience and performance, indirectly 

contributing to sustainability through better waste reduction, quality control, and customer 

satisfaction [176]. Gallego-García et al. shows that DT enables smallholder farmers to improve 

decision-making, mitigate risks, and enhance operational efficiency through real-time monitoring 

and predictive analytics [177]. Defraeye et al. highlights that DT enhances cold chain logistics by 

identifying temperature fluctuations that impact fruit quality, reduce food waste and post-harvest 

losses [178]. These findings underscore DT’s role in driving efficiency, resilience, and sustainability 

across various supply chain sectors. 

Technologies Integration in the Use of Digital Twin in Supply Chain Domains 

DT integration varies significantly across studies based on industry requirements. Singh et al. 

highlights how DT improves real-time tracking, decision-making, and risk management in 

manufacturing supply chains [153]. Cimino et al. leverages DT with predictive analytics and 

simulation-based architectures to optimize supply chain performance dynamically [216]. Zhang et 

al. focuses on DT’s role in ESG transparency and governance, particularly its influence on regulatory 

compliance and consumer perception [175]. Singh et al. explores DT’s ability to enhance real-time 

monitoring, coordination, and flexibility in manufacturing operations [176]. Gallego-García et al. 

integrates DT with emerging Industry 4.0 technologies, such as IoT, big data analytics, and cloud 

computing, to strengthen agri-food supply chain sustainability [177]. Defraeye et al. utilizes DT in 

combination with real-time environmental monitoring tools to track perishable goods’ temperature-

sensitive attributes [178]. These integrations demonstrate how DT can be customized to different 

supply chain needs, offering real-time insights, predictive capabilities, and automated decision-

making tools. 

Driving Sustainability Through Digital Twin Technology in Supply Chain Operations 

Sustainability is a common theme across all studies but with different focal points. Singh et al. 

emphasizes DT’s role in sustainable manufacturing, particularly in improving energy efficiency and 

reducing supply-demand mismatches [153]. Cimino et al. focuses on optimizing resource utilization 

and enhancing agility in industrial supply chains [216]. Zhang et al. explores DT’s influence on ESG 

decision-making, highlighting how regulatory policies and fairness concerns affect sustainability 
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outcomes [175]. Singh et al. links DT adoption to supply chain sustainability, showing how improved 

resilience and performance contribute to waste reduction and long-term environmental benefits 

[176]. Gallego-García et al. prioritizes sustainability in smallholder farming by enabling better risk 

management, resource allocation, and supply chain coordination [177]. Defraeye et al. demonstrates 

DT’s potential in reducing food waste and improving refrigeration efficiency in perishable goods 

logistics [178]. These studies collectively show how DT plays a crucial role in advancing sustainability 

across diverse supply chain environments. 

Future Research Directions of Digital Twin Technology in Supply Chain Operations 

Each study suggests future research directions to enhance DT applications. Singh et al. advocates 

for expanding DT applications across industries to support dynamic decision-making and long-term 

sustainability strategies [153]. Cimino et al. proposes integrating optimization algorithms and testing 

the DT platform’s scalability in different industrial settings [216]. Zhang et al. calls for stronger 

regulatory policies and fairness mechanisms to ensure transparent ESG adoption in DT-enabled 

supply chains [175]. Singh et al. suggests broader geographic and industry-specific research to 

validate the impact of DT on supply chain resilience and performance [176]. Gallego-García et al. 

aims to extend its DT-based sustainability framework to other agricultural sectors and integrate life 

cycle assessment methodologies [177]. Defraeye et al. recommends incorporating real-time data 

inputs and expanding DT applications to other perishable goods beyond mangoes, considering 

additional variables such as moisture loss and chilling injuries [178]. These recommendations 

highlight the potential for further advancements in DT technology and its cross-sector applicability. 

Overall, the studies illustrate how DT technology is transforming supply chain management by 

enhancing resilience, efficiency, sustainability, and decision-making. While some studies focus on 

operational and logistical improvements, others emphasize ESG concerns, regulatory implications, 

and industry-specific sustainability goals. The findings collectively demonstrate that DT is not just a 

tool for optimization but also a strategic enabler for sustainable and data-driven supply chains. As 

DT continues to evolve, further research and industry adoption will be crucial in unlocking its full 

potential across various global supply chain networks. 

4.18. Digital Twin Applications in Energy System 

Digital Twin (DT) technology is revolutionizing the energy sector by enabling real-time 

monitoring, predictive analytics, and system optimization. By creating virtual replicas of physical 

assets, DTs facilitate enhanced decision-making, improved efficiency, and proactive maintenance in 

power generation, transmission, and distribution. From smart grids to renewable energy integration, 

DT applications help optimize energy flow, reduce operational risks, and enhance sustainability. As 

the energy sector transitions toward digitalization and decarbonization, DT technology plays a 

crucial role in improving reliability, performance, and resilience across the industry. Figure 19 shows 

DT applications in smart energy and power plant management. 
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Figure 19. Digital Twin Applications in Smart Energy and Power Plant Management. 

Scope of DT in Energy System 

DT applications vary significantly across the studies. Energy systems are a primary focus for 

Das et al., Jamil et al., Mourtzis et al., and Yuan & Xie, who examine how DT enhances smart grids, 

microgrids, and nanogrids [193,222,223,224]  Das et al. highlight DT’s synergy with Machine 

Learning (ML) for real-time energy management, while Jamil et al. introduce blockchain-based 

decentralized energy trading [128,193]. Mourtzis et al. optimize energy distribution through IoT and 

cloud computing, whereas Yuan & Xie employ reinforcement learning (RL) for demand-response 

optimization in microgrids [223,224]. 

In contrast, Peldon et al. examine DT’s integration into urban planning, emphasizing 

infrastructure sustainability and disaster response [12]. Wu et al. focus on DT’s role in smart water 

grids, demonstrating its effectiveness in real-time anomaly detection and leakage prevention [225]. 

These studies highlight DT’s versatility beyond energy management, demonstrating its potential in 

urban governance and water infrastructure monitoring. 

Technological Advancements of DT Applications in Energy Systems 

The studies employ various technologies to enhance DT functionality. AI and ML play a crucial 

role in energy forecasting, predictive maintenance, and optimization, as seen in Das et al. and Jamil 

et al. [193,226]. Wu et al. integrates physics-based models with ML to detect anomalies in water grids, 

while Yuan & Xie  leverage RL for adaptive energy scheduling  [220,224] . 

Jamil et al. distinguish themselves by incorporating blockchain to secure and enhance 

transparency in decentralized energy trading, whereas other studies acknowledge cybersecurity risks 

but do not propose blockchain-based solutions [193]. IoT is another key enabler of DT applications, 

with Mourtzis et al. and Das et al. utilizing IoT sensors for real-time energy monitoring [78,128]. Wu 

et al. employ IoT-based pressure and flow sensors for water grid anomaly detection, while Peldon et 

al. emphasize Geographic Information Systems (GIS) and Building Information Modeling (BIM) for 

urban DT applications [12,225]. 

Performance Evaluation of DT in Energy System 

The effectiveness of DT applications is validated through experimental studies and real-world 

implementations. Jamil et al. demonstrate a 53% reduction in peak load and a 24% increase in 

renewable energy utilization, showcasing DT’s potential in energy trading [193]. Similarly, Mourtzis 

et al. report an 18.6% reduction in energy consumption in a university smart grid pilot, while Yuan 

& Xie validate RL-based scheduling against other optimization techniques, showing improved 

efficiency [223,224]. 
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Wu et al. conduct a large-scale case study in Singapore’s water grid, achieving over 80% anomaly 

detection accuracy with a localization precision of 400 meters [225]. Peldon et al. highlights DT’s 

effectiveness in urban infrastructure planning through case studies in Zurich, Helsinki, and 

Herrenberg, demonstrating its potential for smart city governance and public engagement [12]. These 

case studies provide empirical evidence supporting DT’s impact across various domains. 

Challenges and Limitations of DT in Energy System 

Despite these advancements, several challenges hinder DT implementation. Cybersecurity 

remains a significant concern, particularly in decentralized energy trading and water grid 

management, as discussed by Jamil et al., Wu et al. Peldon et al. and Mourtzis et al. emphasize 

interoperability challenges, calling for standardized frameworks to enhance data integration 

[12,193223,225]. 

Computational complexity is another barrier, with Yuan & Xie pointing to RL-based 

scheduling’s high processing demands [224]. Mourtzis et al. and Das et al. highlight scalability issues 

in large-scale energy distribution, while Wu et al. underscore the challenges of managing vast sensor 

networks in smart water grids [128,223,225] . Cost constraints also limit DT adoption, with Peldon et 

al. (2024) citing high implementation costs in smart cities and Wu et al. (2023) discussing 

infrastructure challenges in water grid systems [12,225]. 

Future Research Directions of DT in Energy System 

To address these limitations, future research should enhance AI and ML integration, as proposed 

by Das et al. and Jamil et al. , to improve DT-driven forecasting and optimization [193,222]. Wu et al. 

suggest refining ML-based anomaly detection for water grid monitoring [225]. Standardization 

efforts are also critical, with Peldon et al. calling for unified DT frameworks in urban planning and 

Mourtzis et al. advocating for modularized smart grid components to enhance interoperability 

[12,223]. 

Sustainability remains a major research priority, as Yuan & Xie propose integrating energy 

storage systems for improved microgrid resilience, while Mourtzis et al. highlight the need to 

incorporate alternative power sources to reduce carbon emissions [223,224]. Addressing these 

challenges will be crucial in scaling DT technology for broader applications. 

Overall, the studies collectively reinforce DT’s transformative impact on energy systems, smart 

cities, and water management. Energy-focused studies emphasize AI and IoT-driven optimization 

but differ in centralization and security approaches, [193,222,223,224]. Wu et al. and Peldon et al. 

extend DT applications to non-energy sectors, demonstrating their versatility in infrastructure 

management [12,225].  

Future research should prioritize AI-ML advancements, improved cybersecurity measures, and 

standardized DT architectures to fully unlock DT’s potential in sustainable and intelligent 

infrastructure development. By addressing these key challenges, DT can further enhance decision-

making, operational efficiency, and sustainability across multiple domains. 

5. Future Research Scope 

The future of Digital Twin (DT) technology offers many research opportunities that can improve 

its implementation and impact. Despite rapid adoption, several challenges remain. One major issue 

is the lack of standardization across industries. This creates barriers in data exchange and system 

integration. As healthcare, manufacturing, energy, and logistics continue adopting DTs, the need for 

universal standards grows. Future research should focus on developing common data formats and 

communication protocols. Establishing the best practices and governance models will also help 

ensure consistency. Collaboration between regulatory bodies is necessary to create policies for ethical 

DT use, especially in sensitive areas like healthcare and defense. 

AI-driven analytics and automation present another key research area. Current DT models rely 

on machine learning (ML) for predictive capabilities. However, future advancements in deep 
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learning and reinforcement learning can enhance decision-making. AI-driven DTs can process real-

time data, optimize workflows, and detect inefficiencies. Hybrid AI models that combine physics-

based simulations with data-driven insights will improve accuracy. Self-learning DTs that adapt to 

new conditions can revolutionize industries like healthcare and manufacturing. Generative AI can 

further enhance simulations, making DTs more responsive to changes in their environment. 

Edge computing and real-time processing also require further study. Many DT applications, 

such as autonomous vehicles and industrial automation, need instant data processing. Cloud 

computing supports large-scale DTs, but edge computing can reduce latency and improve efficiency. 

Future research should focus on optimizing edge computing architecture for real-time applications. 

Energy-efficient edge computing can help lower the environmental impact of DT systems. In smart 

cities, faster processing can improve traffic management, emergency response, and urban 

infrastructure maintenance. A balanced approach between cloud and edge computing will allow DTs 

to scale while maintaining real-time responsiveness. 

Security and data integrity are critical concerns for DT systems. As these systems handle large 

amounts of sensitive data, cybersecurity risks increase. Blockchain technology offers a promising 

solution. It can ensure tamper-proof data storage and secure data-sharing. However, its integration 

with DTs remains an open research area. Future studies should explore scalable blockchain 

architectures that allow high-speed data exchange while maintaining security. Smart contracts can 

automate processes within DTs, reducing the need for human intervention. Strong cybersecurity 

frameworks will protect DTs from data breaches and unauthorized access. 

Expanding DT applications into emerging industries is another promising direction. While DTs 

are widely used in healthcare, manufacturing, and energy, they have potential in quantum 

computing and biotechnology. In quantum computing, DTs could simulate quantum states and 

accelerate breakthroughs in material science. In biotechnology, they could model genetic interactions 

and improve drug development. Space exploration could also benefit from DTs, enabling real-time 

monitoring of spacecraft and mission planning. Research in these areas could open new opportunities 

for innovation. 

Human-DT interaction is another important area for future research. Augmented Reality (AR) 

and Virtual Reality (VR) can improve visualization and decision-making in DT applications. 

Interactive interfaces can help users engage with DT models more effectively. In healthcare, 3D DT 

visualizations can assist surgeons in planning procedures. In manufacturing, AR-enabled DTs can 

provide real-time diagnostics. Research should also explore neural interfaces that allow direct 

human-machine interaction with DTs. Haptic feedback and AI-powered assistants can further 

enhance usability. These advancements will make DT technology more accessible to a wider range of 

users. 

DTs also have the potential to drive sustainability and environmental efficiency. They can be 

used to optimize resource use, track carbon footprints, and reduce waste. Research should focus on 

developing energy-efficient DT models that lower computational demands. Integrating DTs with 

smart grids can improve energy distribution and storage. In urban planning, DTs can optimize public 

transportation and simulate environmental impacts of new developments. They can also support 

conservation efforts by monitoring biodiversity and tracking climate change patterns. 

The ethical, legal, and social implications (ELSI) of DT technology must be examined. As DTs 

influence decision-making in healthcare and governance, data privacy and accountability become 

critical. Ethical AI frameworks should be developed to prevent biases in DT predictions. Legal 

regulations should address data ownership and liability in DT-driven decisions. The impact of DTs 

on employment should also be studied. Workforce adaptation programs can help employees 

transition into new roles as DT-driven automation grows. Ensuring fairness and transparency in DT 

applications is key to their responsible adoption. 

Addressing these research challenges will help Digital Twin technology evolve into a more 

secure, intelligent, and sustainable tool. Collaboration between researchers, industry experts, and 

policymakers will be essential in overcoming technical barriers. Advancements in AI, cybersecurity, 
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and edge computing will shape the next generation of DTs. These innovations will drive efficiency, 

sustainability, and resilience across industries. DTs will play a central role in the future of digital 

transformation, bridging the gap between physical and digital systems. 

6. Conclusion 

The rapid advancement and growing adoption of Digital Twin (DT) technology mark a 

transformative shift in how industries design, monitor, and optimize complex systems. As this 

systematic review illustrates, DTs are no longer a futuristic concept but a tangible, multi-functional 

framework with real-world applications across healthcare, infrastructure, manufacturing, energy, 

transportation, and beyond. By creating a real-time digital counterpart of a physical system, DTs 

enable continuous monitoring, predictive analytics, and adaptive optimization-ultimately improving 

efficiency, resilience, and sustainability. 

One of the most profound contributions of DTs lies in their capacity for predictive maintenance 

and risk mitigation. By harnessing real-time data streams, advanced machine learning models, and 

feedback loops, organizations can anticipate failures, reduce downtime, and extend the lifecycle of 

critical assets. These capabilities translate into significant operational cost savings and improved 

safety across sectors such as aerospace, oil and gas, and marine engineering. 

The enabling technologies behind DTs-artificial intelligence, the Internet of Things (IoT), edge 

computing, and secure communication protocols-are central to their success. Together, these 

technologies facilitate fast, decentralized decision-making and seamless interaction between the 

physical and digital worlds. The integration of blockchain and robust cybersecurity frameworks 

further ensures data integrity, trust, and system reliability, addressing one of the primary concerns 

hindering broader adoption. 

Applications of DTs are not limited to engineering and operations. In healthcare, patient-specific 

digital models allow for personalized diagnostics and treatment planning, while in education and 

training, high-fidelity simulations offer immersive, risk-free environments for skill development. In 

smart cities and infrastructure planning, DTs enable sustainable design, efficient resource 

management, and enhanced public services. 

As industries increasingly adopt DTs, future research must focus on scalability, interoperability, 

standardization, and enhanced cybersecurity. Expanding DT capabilities to support more complex, 

interconnected systems will be vital in realizing their full potential. Additionally, developing ethical 

guidelines and data governance frameworks will be essential as these systems become more 

autonomous and data intensive. 

In summary, Digital Twin technology represents a cornerstone of the ongoing digital 

transformation across industries. Its ability to deliver data-driven insights, improve operational 

agility, and foster innovation positions it as a key driver of the next industrial era. Continued 

interdisciplinary collaboration and investment in foundational technologies will ensure that DTs 

evolve to meet the demands of an increasingly connected and dynamic world. 
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