
Article Not peer-reviewed version

Comparing and Combining Artificial

Intelligence and Spectral/Statistical

Approaches for Elevating Prostate

Cancer Assessment in Bi-Parametric

MRI: A Pilot Study

Rulon Mayer * , Yuan Yuan , Jayaram Udupa , Baris Turkbey , Peter Choyke , Dong Han , Haibo Lin ,

Charles B. Simone II

Posted Date: 5 February 2025

doi: 10.20944/preprints202502.0343.v1

Keywords: Prostate Cancer; Bi-parametric MRI; Spectral/statistics Approaches; Deep Learning; Artificial

Intelligence.

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/2784094
https://sciprofiles.com/profile/54985
https://sciprofiles.com/profile/3072222
https://sciprofiles.com/profile/432253
https://sciprofiles.com/profile/1569358


 

 

Article 

Comparing and Combining Artificial Intelligence 

and Spectral/Statistical Approaches for Elevating 

Prostate Cancer Assessment in Bi-Parametric MRI:  

A Pilot Study 

Rulon Mayer 1,*, Yuan Yuan 2, Jayaram Udupa 3, Baris Turkbey 4, Peter Choyke 4, Dong Han 5, 

Haibo Lin 5 and Charles B. Simone, II 5 

1 Oncoscore, Garrett Park, MD 20896, USA 
2 The University of Sydney, Sydney, NSW 2050, Australia 

3 Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 

4 National Institutes of Health (NIH), Bethesda, MD 20892, USA 
5 New York Proton, New York, NY 10035, USA 

* Correspondence: mayerru@yahoo.com 

Abstract: Background Prostate cancer management optimally requires non-invasive, objective, quantitative, 

accurate evaluation of prostate tumors. Current research applies visual inspection and quantitative approaches, 

such as artificial intelligence (AI) focused in deep learning (DL) to evaluate MRI. Recently, a different 

spectral/statistical approach successfully evaluated spatially registered bi-parametric MRIs for prostate cancer. 

This study aimed to further assess and improve the spectral/statistics approach through benchmarking and 

combining with AI. Methods A zonal-aware self-supervised mesh network (Z-SSMNet) was applied to the same 

42-patient cohort from previous spectral/statistical studies. The probability of clinical significance of prostate 

cancer (PCsPCa) and detection map with affiliated tumor volume, eccentricity were computed for each patient. 

Linear and logistic regression were applied to International Society of Urological Pathology (ISUP) grade and 

PCsPCa, respectively. The R, p-value, Area Under the Curve (AUROC) from Z-SSMNet output was computed 

The Z-SSMNet output was combined with spectral/statistics output for multiple-variate regression. Results The 

R (p-value), AUROC [95% Confidence Interval] from Z-SSMNet algorithm relating ISUP to PCsPCa is 0.298 

(0.06), 0.50 [0.08-1.0], to average blob volume is 0.51 (0.0005), 0.37 [0.0-0.91], to total tumor volume is 0.36 (0.02), 

0.50 [0.0-1.0]. R (p-value), AUROC computations showed much poorer correlation for eccentricity derived from 

Z-SSMNet detection map with ISUP. Overall DL/AI performed less well relative to spectral/statistical 

approaches from previous studies. Multi-variable regression fitted AI average blob size and SCR results in 

R=0.70 (0.000003) significantly higher than univariate regression fits of AI, spectral/statistics alone. Conclusions. 

Spectral/statistical approaches performed well relative to Z-SSMNet. Combining Z-SSMNet with 

spectral/statistics approaches significantly enhanced tumor grade prediction, possibly providing an alternative 

to current prostate tumor assessment. 

Keywords: prostate cancer; Bi-parametric MRI; spectral/statistics approaches; deep learning; artificial 

intelligence 

 

1. Introduction 

Determining the prostate tumor’s potential for growth and metastases is essential for choosing 

whether a patient should undergo therapy or active surveillance [1–6]. Surgery, radiation therapy, 

and systemic therapy can control the disease but can also be physically, emotionally, and financially 

debilitating for the patient. Proper treatment choice may prolong life while  preventing unnecessary 

side effects. MRI and ultrasound have been used to non-invasively evaluate the prostate with 

minimal side effects [11–14]. MRI is particularly sensitive for detecting prostate cancers. MRI 
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scanning generates structural (T2) and functional (diffusion, dynamic contrast enhancement) images 

that can offer additional insight into the aggressiveness of the tumor [15–19]. Trained radiologists 

visually inspect the prostate tumor and assess the patient based on specific scoring systems such as 

PI-RADS [20,21]. In practice, visual inspection of MRI can be inconsistent, and accurate assessment 

depends on the experience and training of a given radiologist [21,22]. Although injecting contrast 

reveals the tumor vasculature and provides valuable information, reducing patient inconvenience 

and simplifying and expediting clinical flow motivate foregoing the contrast scan by scanning with 

only two parameters (Apparent Diffusion Coefficient, DWI (High-B Value), T2), also known as bi-

parametric (BP) MRI [24–31].  

Instead of relying on the radiologist’s subjective judgement, quantitative approaches, such as 

deep learning (DL) and artificial intelligence (AI) algorithms [32–34], are applied to BP-MRI to 

expedite the analysis and aid the radiologist. The DL and AI models were trained on large-scale 

datasets of the patients to capture spatial features such as textures for predicting tumor 

aggressiveness. There has been great interest in DL and AI throughout technology and science, 

especially in examining MRI for prostate cancer assessment [32–34]. To help sort through the plethora 

of DL and AI algorithms, a PI-CAI Grand Challenge [35–38] evaluated 293 DL and AI algorithms 

trained on a common BP-MRI dataset of publicly available 1,500 cases from 1476 patients that had 

tissue confirmation of the diagnosis . Each of the candidate algorithms produced tumor detection 

maps and the probability of clinical significance for prostate cancer for each patient. The competing 

algorithms were evaluated based on an additional, common test set of independent patient data. In 

particular, a Z-SSMNet algorithm composed of Yuan et al. from Australia [38] achieved a top 

performing algorithm status in the PI-CAI Grand Challenge for accurate prostate tumor evaluation 

and detection. 

Recently, spectral/statistical techniques have been applied to spatially registered multi- and bi- 

parametric MRI [39–44] to assess prostate cancer. The techniques were adapted from processing 

hyperspectral imagers mounted on airborne platforms. Instead of extracting and employing spatial 

features such as used in DL and AI, the spectral/statistics identify tumors through spectral signatures, 

analogous to spectroscopic studies and human color vision, require minimal training and can be 

adapted to different clinical conditions. The pilot studies demonstrated that features such as Signal 

to Clutter Ratio [39,42,43], tumor volume [42,44], and tumor eccentricity [42,44] correlated with tumor 

grade and showed promise in terms of their ability to assess prostate cancer. Although the Area 

Under the Curve (AUROC) derived from Receiver Operator Characteristic (ROC) curve from the 

spectral/statistical approaches in previous pilot studies have generally not inferior to AI, those studies 

did not directly compare AI and spectral/statistical approaches at the patient-to-patient level [39–44]. 

DL and AI that primarily exploit spatial features such as textures differ substantially from 

spectral/statistics approaches. These differences may mean that the DL/AI and spectral/statistics 

approaches are uncorrelated with each other. Combining spatial and spectra approaches may 

potentially boost tumor grade prediction, analogous to human vision and its ability to detect and 

evaluate a given scene.   

2. Materials and Methods 

This is a retrospective study to compare two approaches for assessing prostate cancer from bi-

parametric MRI. The novel techniques employed are summarized below with greater detail in prior 

reports and small-cohort pilot studies [38–44]. Some details are also summarized in later sections of 

this approach. 

2.1. Overall Approach 

Figure 1 shows the overall scheme to compare a metric related to the Gleason score, namely the 

International Society of Urological Pathology (ISUP) grade [45] and Clinically Significant 

(Insignificant) Prostate Cancer or CsPCa (CiPCa) with metrics generated from spatially registered 

MRI, namely z-score and processed Signal to Clutter Ratio (SCR) [39,42,43] (green highlighted panel), 
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eccentricity (red highlighted panel), and tumor volume (blue highlighted panel). In addition, an AI 

approach was applied to the same data(yellow panel). ISUP grade is determined from PI-CAI 

pathology analysis [45] of the histopathology slides from MRI-directed biopsy (MRBx), Systematic 

Biopsy (SysBx), the combination of MRBx and SysBx, and radical prostatectomy (RP) (Figure 1. label 

A). For this study, patient MRI data and their assessments were gathered as part of the PI-CAI Grand 

Challenge [35–38] (Figure 1. label A, B). In the BP-MRI arm [39–44] of the study, spatially registered 

vectorial 3D image to the voxel level are assembled from the individual MRI sequences, specifically 

the Apparent Diffusion Coefficient (ADC), High B-Value (HBV) from the Diffusion Weighted Images 

(DWI), and T2 by translating, resizing the images (Figure 1. label C). Using the spatially registered 

MRI, the prostate is manually outlined to generate a normal prostate mask (Figure 1. label D), input 

for covariance matrix computation (Figure 1. label E). In-scene signatures (Figure 1. label F) are 

derived from the spatially registered vectorial 3D image to provide input for the z-score and SCR 

computation [39,42]. Noise in the SCR [39,42] is reduced through principal component filtering, 

regularizing the covariance matrix (Figure 1. label G). The processed SCR and z-score are linearly 

(logistical probability) fitted to the ISUP grade (CsPCa/CiPCa), respectively (Figure 1. label H, green 

hashed arrows). Metrics describing the linear and logistic fits are given by the correlation coefficients 

(R) and the AUROC from Receiver Operator Characteristic (ROC) [39–44]. 

 

Figure 1. Schematic showing the overall process for calculating features from spectral/statistics approaches and 

Yuan's algorithm and their relationship to ISUP and detection map. 

Figure 1 also summarizes the procedures for generating the eccentricity and tumor volume 

measurements. Adaptive Cosine Estimator (ACE) detection calculations (Figure 1, label ‘I’), 

thresholding (Figure I, label ‘J’’ and ‘N’) and prostate volume calculations (Figure 1, label “K”,”L”) 

and prostate tumor eccentricity (Figure 1, label “O”,”P”) and linear regression and logistic probability 

fits (Figure 1, label ‘M’) to the ISUP, CsPCa from biopsy (Figure 1 label ‘P’). Direction of output data 

to be used as input denoted by arrows. Red arrows and box indicate eccentricity calculations from 

BP- MRI-based data; blue arrows and box denote tumor volume estimated from bi-parametric MRI. 
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The spatial registration of the bi-parametric data, processing, and calculations of SCR, ROC 

curve, and AUROC were executed using the Python 3 programming language, scikit-learn, numpy, 

panda libraries. 

In addition, a Deep Learning approach entitled Z-SSMNet (Zonal-aware Self-supervised Mesh 

Network) by Yuan et al. [38] was applied to the same 42 patient cohort. The 42 patients resided in the 

validation set of fold0 designated by the PI-CAI [36]. The Z-SSMNet algorithm was trained on the 

rest data composed of the validation set of fold1, fold2, fold3, fold4 to generate weights (Figure 1, 

label “R”) in order to infer likelihood and detection maps for the 42 patients (Figure 1, label “S”). 

These inferred values were used in the regression fits (Figure 1, label “T”). 

Figure 2 shows a specific example taken from patient 10085 in the PI-CAI data collect. The figures 

show spatially registered slices that have been stitched together. Selected stitched sections of ADC, 

High-B-Value, and T2 files were assigned red, green, blue colors, respectively, in the color composite. 

A threshold (set to 0.9) stitched selection from Adaptive Cosine Estimator (ranges from 0.0 to 1.0) and 

labeled blobs and their volume and eccentricity. In addition, Figure 2 shows the volumes and 

eccentricity for the blobs from Z-SSMNet (Yuan) detection map. 

 

Figure 2. Example of stitched spatially registered bi-parametric MRI, and Yuan's detection map, the color 

composite, and the blobbing, labeling, eccentricity and volume computations for Yuan’s detection map. 

2.2. Study Design and Population 

MRI and assessments were collected and stored through PI-CAI [35–37]. The PI-CAI challenge 

stores an annotated multi-center, multi-vendor publicly available dataset of 1500 BP-MRI exams that 

includes clinical and acquisition variables. Various histopathology techniques were used [35,36], but 

only a subset of the 1500-patient study underwent or had available biopsy results. Patients were 

scanned at a variety of centers and assorted Siemens and Philips scanners. The PI-CAI data collection 

[35,36] only includes bi-parametric MRI, namely ADC, HBV, and T2 sequences. 

Previously, 42 consecutive patients who had been biopsied in the PI-CAI database were 

assessed. All patients had biopsy-proven adenocarcinoma of the prostate, with a mean patient age of 

65.1 years (range, 50 to 78 years), a mean PSA of 13.49 ng/mL (range, 1.5 to 81.95 ng/mL), mean 
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prostate volume of 60.6 cm3 (range 19 to 192 cm3), and mean ISUP grade of 1.12 (range, 0 to 5), 31(11) 

cases were confirmed as clinically insignificant (significant) prostate cancer. This study placed no 

restrictions on tumor location within the prostate. Informed consent was exempted due to the 

retrospective nature of this study. All cases were anonymized for subsequent analysis. 

2.3. Spatial Registered Vectorial 3D Image Assembly: Magnetic Resonance Imaging 

The bi-parametric MRI data collected [35,36] was composed of structural (T2) images, DWIs, 

specifically, the ADC and HBV. This data collection excluded DCE images. 

2.4. Spatial Registered Vectorial 3D Image Assembly: Image Processing, Pre-Analysis 

Before applying spatial registration, the spatial resolution and spatial offsets for the scanning 

setup of a given patient were read from image header files for each of the MRI sequences (ADC, HBV, 

and T2). The MRI images were digitally resized [39–44] to the sequence with the lowest spatial 

resolution in the transverse direction. Using the offsets listed in the image header files, the images 

were translated a few pixels (or no pixels) to the reference image (ADC and HBV)). Based on the 

known location of the axial offsets, the slices were selected and resampled to match the offsets. Also, 

small transverse translation adjustments, based on visual inspection, were applied to the T2 image to 

match the appropriate ADC and HBV slices.  

A “cube” is composed of stacked individual slices that had been appropriately scaled, translated, 

cropped, and spatially registered at the voxel level. Following cropping, all images shared the 

common field of view (FOV). These “three dimensional” (two transverse directions plus spectral 

dimension composed of ADC, HBV, and T2 images) cubes were “stitched” together into a narrow 

three-dimensional vectorial image  cube to depict the entire body within the common field of view 

of the MRI scan. This stitching of MRI slices (or mosaicking) emulates configurations used in remote 

sensing, in which small patches are stitched together into large swaths of areas,  thereby increasing 

the processing speed to handle large, high dimensional data. Spatial registration for each patient took 

a few seconds to process on a Windows 10, Base Speed 2 Ghz, Cache memory 8 Gbyte machine. The 

registration was visually inspected. Sometimes small translations (1 voxel) corrections were applied 

to for individual slices correctly spatially register the BP-MRI and cropping to ensure common size 

for all slices within the stack. 

2.5. Overall Quantitative Metrics Description: SCR, Z-Score 

In medical practice, trained radiologists visually inspect multiple MRI images to qualitatively 

determine a tumor aggressiveness [22,23]. In contrast, the SCR and z-score are quantitative metrics 

denoting a tumors’ departure from normal prostate tissue. The z-score and SCR formulation combine 

information from all BP-MRI sequences. SCR and z-score compute the difference between the mean 

tumor signature value and the mean normal prostate value, scaled by the normal prostate standard 

deviation for each MRI sequence (ADC, HBV, and T2). However, z-score does not account for 

correlation among the BP-MRI sequences (ADC, HBV, and T2). Instead, the SCR decorrelates the 

sequences by whitening the spatially registered BP-MRI. In the whitening process, noise is added. 

The SCR computation requires computing the covariance matrix that ultimately corrects for 

correlations among the different sequences (i.e., the correlation between ADC and DWI) and thereby 

determines the true contribution of each sequence. References [39–44] summarizes the mathematics 

behind the SCR algorithm. For each patient, SCR calculations took a few seconds to process on a 

Windows 10, base speed 2 Ghz, cache memory 8 Gbyte machine. 

2.6. SCR: Filtering Noise 

The covariance matrix for the SCR can be decomposed into principal components (PC) [47]. 

Principal components are linear combinations of all MRI components. The principal components are 

orthogonal to each other and, therefore, decorrelated. Conventionally, the principal components 
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ordering is based on their eigenvalue or statistical variation. The high eigenvalue (low PC number) 

PC image displays high variation within the image. In contrast, noisy images (high PC number) are 

associated with principal components having small eigenvalues and low variation within the image. 

Filtering and eliminating the noisy (low eigenvalue, high PC number) principal components reduces 

noise from inverting the covariance matrix and increases the SCR calculation accuracy. References 

[39–44,48] summarizes the mathematics for filtering principal components.  

2.7. Regularization and Shrinkage 

Regularization [40,43,49] results from the constraints on the coefficients in the Langrangian 

optimization process. In this application, regularization also ensures that the covariance matrix 

follows a normal distribution. The analytic formula only approximates the covariance matrix. 

Shrinkage regularization [40,43,49] perturbs the original covariance matrix CM(γ) by mixing a 

diagonal matrix with an adjustable parameter γ to generate a regularized or modified regularized 

covariance matrix. The appropriate γ  minimizes the discriminant function and thereby more 

appropriately mimic the normal distribution. Regularized and modified regularized covariance 

matrix calculations follow the same procedure but differ in their choice of the mixing diagonal matrix. 

References [40,43,49] summarizes the mathematics behind regularization procedures.  

2.8. Logistic Regression 

A logistic regression fit [50] results from fitting processed SCR, z-score, patient data, Z-SSMNet 

likelihood scores to the dependent categorical variable CsPCa. The ISUP grade is taken from biopsy. 

The clinically significant PCa (CsPCa) was assigned to ISUP grade ≥ 2. The clinically insignificant 

PCa (CiPCa) was assigned to <2. New randomized sets were generated 1000 times forming 

configurations of patients within the training/test sets, generating 1000 ROC [51] curves and resulting 

in a distribution of AUROC. The distribution of AUROC scores was recorded, along with the 2.5% 

and 97.5% largest AUROC delineated the 95% confidence interval. The fit quality was assessed 

through the AUROC and the 95% confidence interval from the ROC curves. 

2.9. Adaptive Cosine Estimator (ACE) Algorithm 

The Adaptive Cosine Estimator (ACE) algorithm is a supervised target detection algorithm [38–

43,51]. Supervised target detection algorithms [39–44,52] peruse and classify a voxel into either a 

target (prostate tumor) or background (normal prostate) based on information about the target 

(tumor), specifically the tumor signature. The tumor signature S is a three-dimensional vector whose 

components are intensity values within the manifold (ADC, High B Value, T2) that characterize the 

target. The background is characterized by a mean three-dimensional vector m and covariance matrix 

CM (3 dimensions X 3 dimensions) that includes the variance and accounts for correlations among 

the different dimensions. A multi-dimensional (3-D for BP-MRI) cone is centered around the target 

signature S. The ACE decision surface follows this cone. Voxels whose ACE scores residing within 

the decision cone are assigned to the target. Voxels residing outside the cone are assigned to the 

background. References [39–44,52] offers a more detailed summary of the ACE algorithm and 

clarifying equations. 

2.10. Tumor Volume Measurements, Supervised Target Detection 

To compute a metric associated with the tumor volume, the ACE algorithm was applied to the 

spatially registered BP-MRI [41,42,44]. Voxels that lie inside the decision cone or exceed a threshold 

for ACE scores were assigned to the tumor. Normal tissue was assigned to voxels that resided outside 

the decision cone or had ACE scores residing below the threshold. The number of voxels exceeding 

a given threshold were counted and assigned to be tumor. This sum is converted to volume based on 

the MRI spatial resolution. References [41,42,44] summarizes the mathematics behind the tumor 

volume computation. 
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2.11. Labeling and Blob Generation 

Within computer vision, connected component labeling or blobbing and labeling [41,42,44] refer 

to the process of objectively aggregating neighboring voxels. The blobbing is applied to a mask image 

or binary image following the application of a threshold to the ACE detection image. The values of 1 

or 0, or “True” or “False,” are associated with the tumor (background) in each masked image. Each 

“True” voxel peruses voxels within a given neighborhood (1 voxel away) to see if they are also 

“True.” Blobbing is associated with an 8-pixel connected neighborhood involving the “True,”  “1,” 

or “Tumor” voxels in the masked image. If the “True” are connected, the particular voxels are 

collected and labeled as a member of a blob. Blobs smaller than 5 voxels (~10−2 mL) were filtered out. 

2.12. Eccentricity Calculation 

Custom software coded in Python 3 calculated the eccentricity [41,42,44] for every labeled blob. 

Following the identification of a blob, the moment of inertia matrix I for the kth blob was computed. 

The eigen equation (using the moment of inertia I) was solved, resulting in computing the 

eigenvalues for each blob.. The largest eigenvalue was assigned to the large axis lk,, and the second 

eigenvalue was assigned to the transverse moment sk. The eccentricity Ek for the kth blob is a 

normalized difference of the major axis lk and minor axis sk. Eccentricity values Ek range from 0 

(spherical shape) to 1 (line). Reference [40,41,43] offers a more detailed summary of the eccentricity 

computation and clarifying equations. 

2.13. Machine Learning Application: Z-SSMNet 

This study directly compares the findings of spectral/statistical techniques with the application 

of a publicly available trained AI models derived from a highly performing program as judged in the 

recent PI-CAI Challenge [35–38]. Specifically, this study examined and applied the Zonal-aware Self-

supervised Mesh Network (Z-SSMNet) algorithm developed by Yuan et al. from Australia [38]. 

The Z-SSMNet algorithm [38] used axial-plane image sequences from BP-MRI PI-CAI dataset. 

No clinical variables from routine practice (patient age, PSA, prostate volume) nor acquisition 

variables (MRI scanner manufacturer, vendor, scanner, model, b-value of the diffusion weighted 

imaging etc.) associated with the imaging were employed to guide the prediction. The Z-SSMNet 

algorithm ameliorated some issues that plague DL resulting in improved performance. Current state-

of-the-art AI algorithms are often based on deep learning for 2D images that fail to capture inter-slice 

correlations in 3D volumetric images. 3D convolutional neural networks (CNNs) partly overcome 

this deficiency. However, 3D CNN does not handle the anisotropy within images and can introduce 

artifacts. In addition, due to the limited amount of labelled data of BP-MRI and labelling difficulties, 

CNNs employ relatively small datasets, leading to poor performance. To address these limitations, a 

new Z-SSMNet model deployed on the 3D nnU-Net framework [53] to help learn region-specific 

high-level semantic information, zonal specific domain knowledge, (whole gland or the transitional 

and peripheral zones), to constrain the computation and improve the diagnostic precision for csPCa 

and reduce false positive detection. The new method adaptatively fuses multiple 2D/2.5D/3D CNNs 

following the U-Net architecture) [54] and accommodates for both sparse inter-slice information and 

dense intra-slice information in BP-MRI. In addition, a self-supervised learning (SSL) technique 

extracts textures and boundary information and pre-trains the unlabelled data in order to extract the 

generalizable image features. Experiments on the PI-CAI Challenge BP-MRI datasets show high 

performance for csPCa detection and diagnosis. The AUROC and Average Precision (AP) scores are 

0.890 and 0.709 in Hidden Validation and Tuning Cohort (100 cases) (2nd rank) and 0.881 and 0.633 

in Hidden Testing Cohort (1000 cases) (1st rank), respectively. 

The Z-SSMNet algorithm [38] computes a suspicion score (single floating-point value between 

0-1) for a given patient representing the likelihood that a patient harbors a clinically significant cancer. 

The relationship between CsPCa likelihood and ISUP is unclear. The ISUP grades 0, 2, 5 should 

correspond to probabilities of 0., 0.5, 1.0 respectively. In addition to recording Z-SSMNet’s likelihood 
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scores for each patient, this study inferred the ISUP from interpolating linear relationship. Figure 3 

plots the inferred ISUP grades against the probability of CsPCa and shows the known fixed points 

(blue filled circles) and the patient values derived from linear interpolation. This study also 

interpolated patient values based on ISUP=3.6409*tanh-1 (Probability) where 3.6409 is chosen so that 

probability=0.5 corresponds to ISUP=2.  

 

Figure 3. Calibration plot for interpolating ISUP values from Yuan's probability of CsPCa based on linear 

calibration curves. 

The 42 cases analyzed using the spectral/statistics approach were extracted from the validation set of 

fold0 (semi-supervised setting) in the PI-CAI Challenge. The weights for the inference were based on the 

model trained on the rest of the data composed of the validation set of fold1, fold2, fold3, fold4. 

2.14. Univariate and Multivariate Fitting 

One or multiple independent variables are fitted to a single independent variable using 

univariate and multivariate linear regression analysis, respectively [55,56]. In this study, the 

independent variables correspond to an individual (such as largest) and collective (such as average 

or weighted) blob eccentricity, blob volume derived from a fixed, thresholds, Signal to Clutter Ratio 

(PC filtered, Regularized) ACE, and likelihood scores from Z-SSMNet. The dependent variable is the 

ISUP grade or CsPCa. The latter is a categorical variable (binary variable or either True or False). The 

fits minimize the error in a least squares calculation by finding the optimal fitting coefficient for the 

independent variable. These fitting coefficients can be applied to the independent variables to 

generate a fit, which are then compared to actual data. Correlation coefficients and fitted lines test 

the agreement of the computed p values to assess the probability that the fit is or is not correlated. 

Confidence Intervals are computed for every variable along with p values for the multivariable fit. 

Reference [27] offers a more detailed summary of the linear regression fitting and provides clarifying 

equations. 

Tumor aggressiveness or CsPCa estimation might be improved (beyond univariate regression) 

by applying linear multi-variate [55,56] or logistic probability regression (Methods, 2.8) [50] to the 

combination of AI approach with spectral/statistical algorithms. Previously [21,22], SCR combined 

with tumor eccentricity, volume increased the correlation coefficient, AUROC. 

3. Results 

Yuan’s algorithm generates likelihood scores and detection maps. Figure 4 plots a variety of 

measures derived from the Z-SSMNet algorithm computed from each patient such as the likelihood 

and from the computed detection map. Processing of the detection map generated a number of 

features, specifically, the number of blobs, eccentricity from the largest blob, average eccentricity, 

mass weighted eccentricity, maximum blob volume, average blob volume, total tumor volume. The 

likelihood and the detection maps features were plotted against the ISUP score derived from biopsy. 
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From linear regression, the correlation coefficient (R) and p-value are also shown in the figure. Unlike 

spectra/statistical approaches, the AI derived tumor eccentricity was not a good predictor of prostate 

tumor aggressiveness. 

 

Figure 4. Plot of features of individual patients computed from Yuan's detection map plottted against ISUP 

values. Correlation coefficients (R) and p-values from linear regression shown/. 

The Z-SSMNet likelihood and features derived from the detection map was plotted and fitted 

through linear regression to the ISUP score for each patient in the 42-patient cohort. The R (p-value) 

and AUROC [95% Confidence Interval] from Z-SSMNet (Yuan) algorithm relating ISUP to PCsPCa 

is 0.298 (0.06) and 0.50 [0.08-1.0], to average blob volume is 0.51 (0.0005) and 0.37 [0.0-0.91], to total 

tumor volume is 0.36 (0.02) and 0.50 [0.0-1.0], to eccentricity (maximum blob) is 0.0 (0.96), to 

eccentricity (average) is 0.14 (0.38), to eccentricity (weighted) is 0.06 (0.73). From earlier studies, the 

R (p-value) from spectral/statistics approach relating ISUP score to processed SCR ranged from 0.55 

to 0.58 (<<0.02), to tumor volumes from 0.37 to 0.42 (0.018 to 0.03) and 0.70 to 0.95 [0.33-1.0], to tumor 

eccentricity (largest blob) from 0.35 to 0.37 (0.01 to 0.015) and 0.44 to 0.90 [0.12-1.0]. Generally, the R 

and AUROC values from the Z-SSMNet algorithm are lower than those from spectral/statistical 

approaches.  

Table 1 summarizes the best performing univariate linear regression from Z-SSMNet predictors 

to ISUP. 

Table 1. AI (Z-SSMNet) Linear Regression Summary. 

 R p-value AUROC [2.5%-97.5% CI] 

Independent Variable    

Probability of CsPCa 0.298 0.0554 0.503 [0.083-1.0] 

ISUP (Linear Conversion) 0.301 0.0525 0.503 [0.083-1.0] 

Average Blob Volume 0.512 0.00053 0.367 [0.0-0.909] 

Total Volume 0.355 0.021 0.501 [0.0-1.0] 

AI derived features and spectral/statistical features were combined in multi-variable fitting to 

ISUP. The best performing multivariate linear regression fits are summarized in Table 2. The biggest 

increase in correlation occurs for features that mix AI and spectral/statistical approaches, which also 

has the lowest cross-correlation coefficient from mixing AI and spectral/statistical approaches. Note, 

combining z-score and SCR (modified Regularization) from spectral/statistics approach shows high 

univariate R1, R2, and also high cross correlation, but poor R12 relative to the combinations that mix 

AI and Spectral/Statistics approaches. AI average blob size and SCR results in R-0.70, p<0.02, 

significantly higher than multiple regression fits involving AI or Spectral/statistics alone. Combining 
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spectral/statistics approach derived eccentricity (maximum blob) or average blob volume, or 

maximum blob with Z-SSMNet derived average blob in a multi-variate fit to ISUP resulted in 

minimal increases in correlation coefficient (R12) due to relatively poor univariate correlation (R1, R2) 

and high cross correlation among the tumor volume measures. Previously, univariate logistic fits of 

z-score, processed SCR from spectral/statistics achieved AUROC scores of 1.0[1.0-1.0] [43] resulting 

in similar AUROC scores for multi-variate logistic fits that include SCR derived from the 

spectral/statistics approach.  

Table 2. Summary of Uni- and Multi-Variate Fit to ISUP Combining AI and Spectral/Statistical. 

Independent 

Variable 1 

(AI mostly) 

R1 

(Uni-

variate) 

Independent Variable 2 

(Spectral/Statistical 

only) 

R2 

(Uni-

variate) 

Variable 1-

Variable 2 

Cross-

Correlation 

R12 

(Multi-

variate) 

Probability 

(F-Statistic) 

z-score 0.532 SCR (Modified Reg) 0.57 0.985 0.595 0.0002 

Ave Blob 

Volume (AI) 
0.512 SCR (2 PC removed) 0.554 0.412 0.635 0.000042 

Ave Blob 

Volume (AI) 
0.512 z-score 0.532 0.167 0.683 0.0000059 

Ave Blob 

Volume (AI) 
0.512 SCR (Reg) 0.588 0.384 0.665 0.000012 

Ave Blob 

Volume (AI) 
0.512 SCR (Modified Reg) 0.57 0.219 0.695 0.0000026 

Figure 5 plots the individual patient data as well as the calculated multi-variate fits taken from 

the average blob derived from AI (Z-SSMNet) and the Modified Regularized SCR from 

spectral/statistical approach against the ISUP derived from biopsy.   

 

Figure 5. Plot of multi-variate fit to ISUP combining average AI tumor blob volume and spectral/statistics SCR 

from modified regularization. 

4. Discussion 

This is the first study to directly compare and combine DL/AI algorithms and spectral/statistics 

approaches on a per- patient basis. This retrospective pilot study of 42 patients from the PI-CAI data 

collect shows that the new spectral/statistics approach demonstrates performance at least comparable 

to an DL/AI algorithm for achieving high correlation with tumor grade and accurately predicting 

clinically significant prostate cancer. The high performance of spectral/statistics approaches is notable 

due to its simplicity in conception, calculation, application and understanding relative to AI Unlike 

spectral/statistics approaches, the eccentricity from the DL/AI algorithm detection map did not show 

anti-correlation with prostate tumor grade. Based on the results of this pilot study, further studies to 
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confirm these promising results regarding the relative efficacy of individually spectral/statistics 

approach and AI and the combination of the two approaches are warranted.  

Studies of adenocarcinoma morphologies of breast cancer [57] and lung cancer [58,59] show that 

the tumors become more symmetric as the tumor grade increases or adenocarcinoma eccentricity is 

anti-correlated with tumor grade. Recently [41–44], evidence has been gathered that prostate cancer, 

nearly always an adenocarcinoma, also is anti-correlated with tumor grade.  The recent studies [41] 

examined outlined histopathology slides from prostatectomy, spectral/statistical approaches applied 

to 26 patients with multi-parametric MRI and bi-parametric MRI. In this study, DL/AI found that 

tumor grade correlated with tumor volume but did not correlate with tumor eccentricity or shape. 

The detection maps generated by the models in the PI-CAI challenges may not accurately predict the 

tumor region as the evaluation criterion is that the overlap between the predicted tumor and the true 

value exceeds 0.1. The DL/AI algorithms may further benefit by incorporating training using tumor 

morphology, such as tumor volume and eccentricity instead of confining their training to spatial 

textures for predicting clinical significance of prostate cancer.  

This study only analyzed 42 consecutive patients. All the studied patients resided in the PI-CAI 

fold0 among 5 folds cross-validation study in the PI-CAI Grand Challenge. Although the calculated 

p-values for correlating the ISUP and the 95% confidence intervals for the AUROC in the ROC curves, 

additional independent study using a higher number of patients are needed to meaningfully confirm 

the results. 

This study confined its analysis to only one DL/AI algorithm, namely the Z-SSMNet algorithm 

by Yuan et al. from Australia [38]. The Z-SSMNet algorithm achieved second place (among 293 

algorithms) in the PI-CAI Grand-Challenge assessment. There is no evidence that the choice of the Z-

SSMNet algorithm achieves a performance inconsistent with other high achieving performers in the 

Grand-Challenge. Nevertheless, future studies should process the selected patient cohort with 

additional AI algorithms. 

For multi-variate regression fitting, combining DL/AI with spectral/statistics approaches 

achieves higher correlation with tumor grade than separately applying regression involving DL/AI 

or spectral/statistics. Note the low correlation coefficient, meaning less replication and possibly more 

synergy among algorithms that are distinctly different. Further investigations into the combined use 

of DL/AI and spectral/statistics approaches are warranted with larger number of patients and 

employing other DL/AI algorithms. 

Human vision employs both spatial and spectral features to detect and discriminate among 

targets. This study showed that combining spatial and spectral approaches can be especially effective 

in determining prostate tumor aggressiveness. Emulating vision (or possibly human-ideation-driven 

approaches), instead of intelligence, may prove a more fruitful avenue for improving algorithmic 

performance for analyzing prostate tumors depicted in MRI. 

5. Conclusions 

This first pilot retrospective study compared and combined prostate tumor assessments from DL/AI 

algorithms with spectral/statistics approaches. Spectral/statistical approaches performed well relative to 

DL. Combining AI with spectral/statistics approaches significantly enhanced tumor grade prediction. 
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The following abbreviations are used in this manuscript: 

SSA Spectral/Statistics Approach 

SCR Signal to Clutter Ratio 

ACE Adaptive Cosine Estimator 

AUROC Area Under the Curve 

AP Average Precision 

BP-MRI Bi-parametric MRI 

CsPCa Clinically Significant Prostate Cancer 

ROC Receiver Operator Characteristic 

Mod Reg Modified Regularization 

Reg Regularization 

PC Principal Component 

DL Deep Learning 

AI Artificial Intelligence 

ISUP International Society Urological Pathology 

PI-RADS Prostate Imaging Reporting and Data System 

PI-CAI Prostate Imaging Artificial Intelligence 

Z-SSMNet Zonal-Aware Self-Supervised Mesh Network 
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