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Article
Xi-Jacobi Differential Polynomial Systems and

Related Double-Step Shape-Invariant Liouville
Potentials Solvable by Exceptional Orthogonal
Polynomials

Gregory Natanson
Independent Researcher, Silver Spring, MD 20904, USA ; greg_natanson@yahoo.com

Abstract: The paper develops the new formalism to treat both infinite and finite exceptional
orthogonal polynomial (EOP) sequences as X-orthogonal subsets of X-Jacobi differential polynomial
systems (DPSs). The new rational canonical Sturm-Liouville equations (RCSLEs) with quasi-rational
solutions (q-RSs) were obtained by applying rational Rudjak-Zakhariev transformations (RRZTs) to
the Jacobi equation re-written in the canonical form. The presented analysis was focused on the
RRZTs leading to the canonical form of the Heun equation. It was demonstrated that the latter
equation preserves its form under the second-order Darboux-Crum transformation. The associated
Sturm-Liouville problems (SLPs) were formulated for the so-called ‘prime’ SLEs solved under the
Dirichlet boundary conditions (DBCs). It was proven that one of the two Xi-Jacobi DPSs composed
of Heun polynomials contains both Xi-Jacobi orthogonal polynomial system (OPS) and finite EOP
sequence composed of the pseudo-Wronskian transforms of Romanovski-Jacobi (R-Jacobi)
polynomials, while the second analytically-solvable Heun equation does not have the discrete
energy spectrum. The quantum-mechanical realizations of the developed formalism were obtained
by applying the Liouville transformation to each of the SLPs formulated in such a way.

Keywords: canonical Sturm-Liouville equation; Liouville transformation; double-step shape-
invariant potential; Darboux-Crum transformation; differential polynomial system; pseudo-
Wronskian polynomial; classical Jacobi polynomial; Romanovski-Jacobi polynomial

1. Introduction

In the recently published article [1] we proved that the radial potential exactly solvable in terms
of the hypergeometric functions [2] preserves its form under two sequential rational Darboux
transformations (RDTs). It is essential that the first of these RDTs (using the ‘basic’ quasi-rational [3]
solution (q-RS) as its transformation function (TF) converts the Schrédinger equation with the cited
potential into the new radial Schrodinger equation exactly quantized in terms of polynomial
solutions of the Heun equation [4] with degree-dependent exponent parameters. It was then proven
that the new radial potential also preserves its form under two sequential RDTs. It was explicitly
demonstrated that the conventional rules of the SUSY quantum mechanics [5] fail if the first RDT
places the centrifugal barrier into the limit-circle (LC) range, while the second transformation keeps
it within the same range.

The purpose of this analysis is to show that similar results can be formulated for the rational
Darboux transforms (RDJs) of the trigonometric and hyperbolic Poschl-Teller (t- and h-PT)

potentials [6] quantized in terms of either infinite [7,8] or finite [9] exceptional orthogonal polynomial
(EOP) solutions of the Heun equation with degree-independent exponent parameters. Note that the
mentioned Heun-reference (HRef) potentials were incorrectly referred to in [10] as ‘shape-invariant’.
Indeed the RDT using the lowest-energy eigenfunction as its TF creates a new pole on the real axis
and therefore necessarily changes the form of the corresponding canonical Sturm-Liouville equation

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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(CSLE). On other hand, as thoroughly discussed below, the Liouville potentials associated with the
Heun-reference (HRef) CSLEs in question do preserve their form under two sequential (specially
chosen) RDTs.

The important novel element of our approach [11-13] to the theory of the EOPs that we define
them as solutions of the Bochner-type [14] ordinary differential equations (ODEs) with polynomial
coefficients, rather than eigenpolynomials of the rational differential operator [15,16]. Let us remind
the reader in this connection that, as stressed by Kwon and Littlewood [17], Bochner himself “did not
mention the orthogonality of the polynomial systems that he found. The problem of classifying all
classical orthogonal polynomials was handled by many authors thereafter” based on his analysis of
possible polynomial solutions of complex second-order differential eigenequations. This observation
brought the author [13,18] to the concept of complex exceptional Bochner (X-Bochner) polynomials
which satisfy a second-order ordinary differential equation (ODE) of Bochner type but violate his
theorem because each sequence either does not start from a constant or lacks a first-degree
polynomial. Therefore we refer to these sequences as complex exceptional differential polynomial
systems (X-DPSs) with the term ‘DPS’ used in exactly the same sense it is done by Everitt et al. [19,20]
for conventional sequences of polynomials obeying the Bochner theorem.

It has been proven by Kwon and Littlejohn [17} that all the real field reductions of the complex
DPSs constitute quasi-definite orthogonal polynomial sequences [21] and for this reason these
authors refer to the latter as ‘OPSs’. However this is not true for the X-DPSs and we thus preserve the
term “X-OPS’ solely for the sequences formed by positively definite orthogonal polynomials.

Any Bochner-type ODE with polynomial coefficients can be re-written in the form of the rational
differential eigenequation which brings us to the exceptional operator introduced in [22], with the
corresponding eigenpolynomials forming a X-DPS in our terms. While the authors of the cited paper
(see also their more recent work [23]) are interested solely in X-OPSs, we [11,12,18] have been
developing the technique covering both infinite and finite EOP sequences.

The formalism utilized by us [11] for constructing Xm-Jacobi DPSs goes back to the pioneering
paper by Rudyak and Zakhariev [24] introducing the so-called [25] ‘generalized Darboux
transformations’ of the generic CSLE. In [26] we suggested to term them as ‘Liouville-Darboux
transformation’ (LDT) to stress that they can be re-interpreted as the three-step operations:

i)  the Liouville transformation from the CSLE to the Schrodinger equation;
ii) the Darboux deformation of the corresponding Liouville potential;
iii) the reverse Liouville transformation from the Schrodinger equation to the new CSLE using the

same change of variable as at Step 1),

making it easier to relate our results to the conventional recipes of the SUSY quantum mechanics
[5]. It should be however stressed that the definition of these transformations ]24-26] requires no
reference to the Liouville transformation and for this reason we prefer to refer to them as ‘Rudyak
and Zakhariev transformations’ (RZTs) until we explicitly require for the transformation function
(TF) of the given RZT not to have nodes inside the given quantization interval.

In the case of our interest the RZT using quasi-raional TF is applied to the Jacobi-reference (JRef)
CSLE defined via (1)-(3) below. The transformed CSLE is then converted to the Bochner-type ODE
with polynomial coeffiecients taking advantage of the fact that the density function (3) has only
simple poles in the finite plane and as a results the mentioned gauge transformation is energy-
independent [27]. Concequently the linear oeficient function of the resultant differential equation
does not depend on degrees of the sought-for polynomials.

To construct the infinite and finite EOP sequences we take advantage of the concept of the prime
rational SLEs (p-RSLEs) suggested by the author [28] earlier. The gauge transformation used to
convert the given rational CSLE (RCSLE) to its prime form is chosen in such a way that the
characteristic exponents (ChExps) of the two Frobenius solutions near the given singular endpoint
differ only by their sign. As a result solving the resultant p-RSLE under the Dirichlet boundary
conditions (DBCs) unambiguously determines the principal Frobenius solution (PES). One of the
benefits of our approach is that we can take advantage of the powerful spectral theorems proven by
Gesztezy et al. [29] for solutions of the generic SLEs solved under the DBCs. In particular we assert
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that the q-RSs satisfying the DBCs are necessarily orthogonal and therefore this must be also true for
their polynomial components.

It was revealed that the rational RZTs (RRZTs ) of the JRef CSLEs with the basic TFs result in the
two distinguished HRef CSLEs with the third pole lying either inside the finite interval (-1,+1) or in
the negative interval (-e,-1). In the latter case the DBCs can be imposed at the endpoints of both
intervals [-1,+1] or [1,e]; however it turns out that the Lioiville potential on the positive infinite
interval does not have the discrete energy spectrum. While the Sturm-Liouville problem (SLP) on the

finite interval gives rise to the renowned Xi-Jacobi OPS, the eigenfunctions for the HRef CSLE with
the pole between -1 and +1 are expressible in terms of RD§s of the Romanovski-Jacobi (R-Jacobi)
polynomials [30-36]. It is remarkable that the latter (finite) EOP sequence belongs to the same X-DPS
as the X-OPS and as a result is formally defined by the formulas discovered in [14] for its infinite X-
orthogonal reduction. Based on this observation, Yadav et al. [37] refer to the X-DPS in question

simply as ‘X1-Jacobi polynomials’. This important distinction between the X1-Jacobi polynomials and

its infinite orthogonal reduction represented by the X1-Jacobi OPS was clarified in our works [12,38]
(but nevertheless entirely disregarded in [10]).

Both SLPs sketched above can be converted by the Liouville transformation to the
eigenproblems for the 1D Schrédinger equation giving rise to the two double-step shape-invariant
potentials discovered by Quesne [7,8] and Bagchi et al. [9] respectively.

Another important development initiated in this paper is the notion of the quasi-orthogonality
applied to polynomials with complex coefficients; namely, we say that the given sequence of complex
polynomials in a real argument is quasi-orthogonal if there is a complex-valued weight such that the
integral of the product of two polynomials multiplied by this weight vanishes for the specially
selected integration interval. Our discovery of the exceptional quasi-orthogonal sequences of
polynomials with complex coefficients was stimulated by Chen and Srivastava’s [34] observation that
the orthogonality relations for both classical Jacobi and R-Jacobi polynomials can be extended to the
complex field. While the formal ‘complexification” of the Jacobi indexes preserving the conventional
orthogonality relations between the classical Jacobi polynomials [39] is the well-established (though
relatively little-known) fact [40], the broadening of this assertion to include the finite orthogonal
sequences [34] constitutes the significant achievement mostly overlooked in the literature.

2. The q-RSs of the JRef CSLE with the Simple-Pole Density Function

Let us start our analysis with the Jacobi-reference (JRef) CSLE

2
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where )., are the exponents differences (ExpDiffs) for the poles at +1 and the energy reference

point is chosen via the requirement that the ExpDiff for the singular point at infinity vanishes at zero
energy, i. e,
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The sign of the spectral parameter ¢ is chosen to be positive (negative) when the Sturm-Liouville
problem in question is formulated on the finite interval —1<m <1 (or respectively on the positive
infinite interval 1 <m < oo0). An analysis of solutions of the CSLE (1) on the negative infinite interval
—o0 <1< —1 can be skipped without loss of generality due to the symmetry of the RefPF (2) under

reflection of its argument, accompanied by the interchange of the ExpDiffs XO;J_F for the CSLE poles

at 1.
As initially pointed to in [27], the JRef CSLE with the density function (2) has four infinite
sequences of the g-RSs

) O+l Vg +1
bl T =1 1 20D g 20D pd)

(6)
(s xo;i)
at the energies
2 —
e=sgn(l-n")ey ),
with
N 2
M=V +a_+2m+1
em®)= 1, (s m+1)~ )
By choosing [39]
Ay Ay, A_+A,+m=—k for any positive integer k <m (8)

(cf. (102) in [41] or (88) in [42]) we assure that the Jacobi polynomials in question has exactly m
simple zeros m;(A;m) . Itis crucial that the Jacobi indexes do not depend on the polynomial degree,
in contrast with the general case thoroughly examined by us in [43]. This remarkable feature of the
CSLE under consideration is the direct consequence of the fact that the density function (2) has only
simple poles in the finite plane and as a result the ExpDiffs for the CSLE poles at +1 become energy-
independent [4]. Consequently the polynomial components of the g-RSs (6) satisfy the eigenequation

2 =P Gt + 20t e G Ao +

[e0@) - em ) |BS+")(my =0 o

with dot standing for the derivative with respect to n. The vital point is that the linear coefficient
function is independent of the polynomial degree, in the sharp contrast with the general case [43].
Note that the derivation of this equation was essentially based on the presumption that the quasi-
rational function

S

(10)
satisfies the first-order differential equation:
(?\’-i- J\'—)
© e P M.
do[nsA] = ————o[m:A]
n -1 . ()
In other words,
(9\‘+ ’}"—)
- P M)
ld do[mA] = ——5——
-1
L , (12)

where the symbolic expression Id f[n] denotes the logarithmic derivative of the function f[n]. Re-
writing the CSLE
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in the Riccati form we can represent the RefPf (3) in the generic form
1°[n:X]=—1d §o[n: X1+ 1d>go[n: K] +29(%) p[n] a4)

If the density function is identically equal to 1 then the presented expression turns into the
standard supersymmetric representation of the quantum mechanical potential in terms of the
superpotential represented by the logarithmic derivative of the transformation function (TF)

doln; X] . In next Section we will use this expression to expand the supersymmetric approach to the

generic CSLE based on the formalism developed at the end of the last century by Rudjak and
Zakhariev [24].

3. Rational Rudjak-Zakhariev Transforms of JRef CSLE

Each of these g-RSs can be used as the TF for the RRZT of the CSLE (1) defined via the
requirement [26] that the quasi-rational function

T 1 A1, Al)
[ ] = o1/ B0+ )
o] ] O m e

(15)
is the solution of the transformed CSLE
2
d - R
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at the energy (7):
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Representing the latter CSLE in the Riccati form:
°[% | m]=~1d * o[ K]l * 0[]~ () 4[] )

and taking into account that the quasi-rational function
* A= AT
satisfies the Riccati equation (14) with A increased by 1:

—1d ¢o[m;—h—1]-1d>dgIm;—A—11- eg(-A—T) p, ] =1°[n: A +1] 20)

one finds
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(21)
— A s 7\4_ — —
21d * o[ X1 1d P+ =) () [ e (D) — 0 (-~ T) ] oy [].
For m=1 the Jacobi polynomial in question takes form
(s M)y 1 i (E
Rt )= 10 g+ DI -y ()] )
with
= A=A
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and therefore
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Taking into account that
gl(AM)—gg(-A—-1)=A_+Ar, +2, (25)

(Ap—L-2_—D, (ki hl)

P () =-P (m)+ n (26)
and decomposing the first-degree Jacobi polynomial on the right can via (22), the RefPF of the RCSLE
(7) can be represented for m=1 as

~ . 2 2
;A1) =1 A+ 1] - i

\12 2 N1
Examination of the RefPF (27) reveals that [11] we deal with the canonical form of the Heun

equation [4] and therefore we refer to the RCSLE (16) as ‘restricted Heun-reference’ (restr-HRef)

keeping in mind that the position of the third pole depends on the exponent parameters of the Heun
equation.

+

4. Form-Invariance of restr-HRef CSLE Under Two Sequential RZTs

Let us apply the RRZT with the TF ¢q[n; L] to the JRef CSLE (1), setting
ot =lhg +1

(28)
and
o4 =sgn(Ait +1), (29)
ie.,
7:=6><*XO—T. (30)
Substituting (30) into (23) then gives
= 0=k —04 oy
MO ~T)= e
04 *hop +0-* Ao, 1)
* _*
§ ()=S0t~ Hoi-
*hor + oy o)
where
oo Sgn[k_ + 1}
Ay +1 (33)

Making use of the conventional parameter h([3,a) defined via (A37) in Appendix C we can
alternatively represent the position (32) of the third pole of the RefPF (27) as

eS (o) =1/b" (*Lo) "

By applying the RRZT with the TF ¢1[n; L] to the JRef CSLE (1) we come to the two RCSLEs
2 o .- R
AR [n:*%o [0] +|&]p[n]  ®[n:*ho:e[0]=0 (c=1)
n

with the RefPFs
°[n;*%o | 0]:=1[m;*R0 ] -

35)

2 2n

—_ + —_
M-S (M =Dn-e§ (*io)]
(36)

(o=21).

It directly follows from (32) that
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.
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and
respectively.
If the third pole lies outside the interval [-1,+1], we also choose
ot >*hore (6=-) (39)
thereby assuring that it lies on the negative semi-axis:
— *—‘ _
e3 (*hg) < 1. )
By defining A via (30) we find that the two sequential RRZTs with the TFs
- ~1 R
*hm;Al=p % [n]/ ¢1(m; 2] @)
and ¢1[n; —A] convert the restr-HRef CSLE with the RefPF (27) into another restr-HRef CSLE with
the RefPF
0 Of. 7,7 2 n
90 1= A 1Ay 1= 1°[s-R+ 1] - n

7112 2 N
M-mEME (" =Din-ni(-1)] (42)
It then directly follows from the analysis presented in Appendix A that this is also true for the
second-order Darboux-Crum transformation (DCT) with the seed functions (41) and

O[m: k| == 1]:=*¢1 [ AW {oy [m: A1, oy [ =213 @)

We say that the restr-HRef CSLE (35) is double-step form-invariant iff the DCT in question keeps
the position of the third pole within the intervals (37) or (38) respectively. In other words, the
exponents (30) of the given TF must obey the constraint

Sgn(l_l_jzo
I=hy (44)

Theorem 1: The restr-HRef CSLE is double-step form-invariant for any value of the (positive by definition)
ExpDiff *Ao.— if o =+ orfor *hg._>2, if c_=-.

Proof of Theorem 1. Representing (30) as

I-A_=2-0_ *7\‘0;_, 1_7L+:2_G+*7\,0;+,

/ (45)
let us start with the case 6_=—, 6, =c==
I=A_ =24+%hg.—, 1-A =240 *hg.4.
0, + 0’+ . (46)
Note that the parameters (46) are both positive if o=+ and have opposite signsif c=— and

*Ao;+ > 2 (or, to be more precise, *Ag._ >*hg. 4 >2).

On other hand, examination of the parameters

reveals that they have opposite signs if *A,._ >2 regardless of the value of the second ExpDiff

*Aho;+ ,» which completes the proof. o

Remark: The restr-HRef CSLE preserves its form under the DCTs specified by both combinations
G4 =+, o_ =F of the exponents (30) if 2 <*Aq. 4 <*Ay._or if the parameters *Aq.+ —2 have the

same sign for c=+.
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Note that for all the anomalous cases:
i) K+=*ko;+ -1, A_= —*XO;_ -l (c_=—04 =+, *K0;+ <2),
i) Agp= —*l0;+ -1, A_ =*?»0;_ -1 (G:F =1, *7‘0;+ <*k0;_ <2),
iii) 7u+=*7u0;+ -1, A_= *7“0;— -1 (6 =04 =+*hg;4 <2<*ho.—)
the ExpDiff for the pole of the JRef CSLE (1) at +1 lies within the limit-circle (LC) range (0 <2, <1)
and therefore this must be also true for the ExpDiff [1-Aq., [for the pole of the restr-HRef CSLE

obtained from (35) by the corresponding DCT. By analogy with the conclusion made by us in [1] for
the radial JRef potential and its linear-tangent-polynomial (LTP) counter-part on the line, we assert
that the conventional rules of the quantum-mechanics must fail for all the Liouville potentials
associated with the listed anomalous cases. We shall come back to this issue in Section 8.

5. Pseudo-Wronskian Representation of Xi-Jacobi DPSs

Let us now apply the RRZT with the TF ¢[n; A] to another q-RS ¢ i n; A/ Twith
the eigenvalue € i (X') in the four quadrants @’ of the vector parameter

M i=6'xho =G xA (AL |=rs[>0). (48)
The corresponding rational Rudjak-Zakharov transform ( RRZ§) is given by the generic formula
[24]

W1 m: A1 65 A 1}
‘1—711(7») , (49)

M | @, j1:=*g[m;A]

Theorem 2. The restr-HRef CSLE (35) has four infinite sequences of -RSs with the polyno-mial components
formed by pseudo-Wronskians of two Jacobi polynomials.

Proof of Theorem 2. Representing the Wronskian in the right-hand side of (49) as

x = 1
W{oIm AL o5 AT} = 11 |1_Nn|é(7vx+l)x

N=E (50)
= YA =ha) H(M AL
Wiy (] 1 20570 pEAD .
taking into account that

| — L/ (1- A
1o 2O Ly O o)

dn N=T
~ V(ex1-D_(n La_+g_1
dg1(0) TT (- 2PN IDpetonbisa b
where, according to (91) in [44] with o =A,, B=A_, and n=1,
A_+1 if d=—+,
~ A+l if g=+-,
dg 1 (X) =
s 4 if §=——,
%(x++x_+2) if @=++,

(52)
we introduce the pseudo-Wronskian polynomials via the relations:
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(33)

—‘, Al Le_A_+¢_1 S (M AL
dg 1 (@A) TOO A D - p ety

and then we re-write the polynomial component of the Wronskian (50) as follows

WA{o1m: A1, 05 AT} = dolms A +1—Fx T]pg[m; A1

P . A @]
i, 1y EN16] a

Keeping in mind (41), the solution (49) can be then represented in the following quasi-rational
form:

ol |13, ] oc 20X D]

g A L8, ],
@ s fye RG]

which completes the proof of the Theorem 2.0
Comparing (54) with (A18) for g = —— and m=1, one finds that

9 jr2lmA [ ==1= Dy, (=A% LA, ]

Evaluating polynomials (A20) at F1gives .

B 1) = [+ DEF1T+ D)+ B+ DET-DIPEP D)
and therefore

AT 1. ' -\ ,_7\4'_ Al ,7L'_
Dy [FEAL LR fl= 220 T P ()

(55)

(56)
(57)

(58)
We thus proved that the PD (56) remains finite at F1 provided A/, ,A” #1 and
the j-th degree polynomial does not vanish at one of the poles. Out of the four PD sequences

introduced by us in [12] to generate the Xm-Jacobi DPSs it was the only sequence formed by the
polynomials remaining finite at +1 and therefore spanning the DPS which was referred by us for this

reason as the Xm-Jacobi DPS of series D.
Representing the pseudo-Wronskians (53) for ¢ = F £ as

K, 1A | F]= () 1)1(J_rw+’ch_)(”)P EMJ»’—)(n) (59)

+(g —DPL T ape )

we come to the polynomials (A25) in Appendix B, with m set to 1. As demonstrated in Appendix C,
the sequences (59) simply represent two alternative forms of the Xi-Jacobi DPS of series J.
For @ =+ + the pseudo-Wronskian (53) turns into the polynomial Wronskian

_, S = oA
;A |++]=%(k++x_+2)W{n—m(k ),Pj( + )(n)}. (60)

Since each Wronskian in the sequence can be converted into the PD via (A58) in Appendix D,
this polynomial sequence simply represents the alternative form of the aforementioned Xi-Jacobi DPS
of series D.

Let us now draw reader’s attention to the fact that the absolute values of the vector parameters

*X::@"-x(x+T)EX'+$XT (61)
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specifying the power exponents of the g-RS (55) represent the ExpDiffs

AL+ @ =% hgy = Ay +1]
for the poles of the RCSLE (35) at +1, and therefore each pseudo-Wronskian polynomial remains finite
at both poles (at least if A, +1 are not negative integers with the absolute values smaller the
polynomial degree).

Setting
*o =sgn(*AL *Ah_)

and taking into account (32), one finds
oy = )
e3” (*ho) =1/b(*L). 63)

At this point it is convenient to explicitly re-write the CSLEs (35) as the canonical forms of the

(62)

Heun equations
d2 R i,
— Tl [*A] +lepn]  @[n;*A;e] =0,
an (64)
where we set
Iy 2] =12 ;%% ]

=I°[m;*A] — 2 + 2N

=60 (7 =DIN=b" "' D] (g

(65)

Note that
b(*L) =b(—*L) (67)
and therefore the rest-Heun equation (64) is invariant under the simultaneous change of the signs of

both parameters *A; :

Since the polynomial sequences (58) and (59) start from the first-degree polynomial while the
polynomial sequence (60) lacks a first-degree polynomial, all the mentioned polynomial sequences
violate the prerequisites of the Bochner theorem. We thus arrived to one of the most important results
of this paper.

Theorem 3. The polynomial sequences (58), (59), and (60) satisfy the Bochner-type ODEs with polynomial
coefficients and therefore form the X-DPSs which either starts from a first-degree polynomial or respectively
lacks a polynomial of this degree.

Proof of Theorem 3. First note that the function (55),

do[m;*A] y
Tl - b*G (*7\‘) (69)

Q. . ¥ _ 1116 3
J_]+1—¢'+ %_$_%[n,$x A-1 | 1767 J]a
is the solution of the ODE
2

j—2+1H[n;*X]+sj(*X—6xT)p[n] o[ x*A—1/18, j1=0,
n

oM @x*h—11;,j]oc

(70)
where the vector parameter X , specifying the corresponding eigenvalue, was replaced for

) — @ x 1 , based on the definition (61) of L* , Taking into account that, according to (27),
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. *G1  x7 2 L% N
e MU
do[M;*A]  dn® n-5°'(*h)

(71)
Ay —1*A_—1 -
2P1( * )(m) go(*1)
2 ol ey 2
(" =D-b6""CM] n"-1
we come to the Bochner-type ODE with the polynomial coefficients:
Din:*\ S Ag (K
{Dm: 1+ Cy [ *Ks Ae(*h:8) 1} -

Q. . B _TI11-6 1=
JJ+1_$+%_¢_%[T]96-X }\‘ 1 | 19 69 J] 07

where the coefficient function of the first derivative in the second-order differential expression
2
_ 7 *G] .=, d ~.d
D[n;*A]=(Mm"-Dn—-b ° (V)]—— +2By[n:* Ao
dn n (73)
represented by the second-degree polynomial
x 61 s\ pC A A 2

Boln*A1=[n 5" (21p] 7y +1-m .

As for the free term of the ODE (72), it constitutes the first-degree polynomial linear in the energy

_ W I W | * _
CilmRse]=—2p] D ) —en -5 ()] )

with
Aei(*A; @) =e:(*A—@x1)—gg(*A
j(h:8) =2j(h = x1)—eo(h) 76)
The important common feature of the ODEs (72) is that the leading coefficient polynomial of
degree 3 has only simple zeros. This is the direct consequence of the fact that that each exponent of
the quasi-rational function (69) coincides with one of the ChExps for the corresponding pole.

Introducing the parameters a=(B-a)/2,b, and c =b +1/ a via (5a) and (5b) in [14], with
a=*,,B=*h_ b=b(h),n=j+1, *o=+,F=+F

(77)
here, one finds
(6B (1) = )= _
PP () =a(en-1D) =a(bn-1+n 78)
and
(a=LB=1) 1y _ _
9 (M) =a(n-1). 79)
The corresponding polynomial (74) takes form
Bl ] =P (m)Cyg . ;0] )
with
p(@B) oy _ 1/
PP ==Y m-o) -
and
C[m:B.30] = (B—a)[1 ~b(B,om] )
(cf. (2.1) in [45]). Note that

and therefore the energy shift (83) vanishes for the first-degree Xi-Jacobi polynomial (81), as expected.
The elementary change of variable 1 = 2z — 1 converts the Bochner-type ODE (72) to the Heun

equations
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&> Bolz*aCh) ;A1 d | anCRBy(R)z-an(%s8)|

dz2  z(z—1)[z—*a(*N)] dz z(z—D[z—*a(*\)] )
@n[n;(b‘x*X—T|l;6,n—l+¢+%+¢_%]=O,

where

*a(¥h) = 156" () +11,

Bylz*a ;*K]:=2(z—*a) P+ ) (22— 1) = 4z(z 1),

(85)

(86)
and

atp (A (R) = —n(*A_ +*A; +n—1)

Combining the latter formula with .

oty (A) + By (FA) = *h . +¥A_ —1
gives

oy (A) =-n, By (*A) =*A, +*\_+n—1 . ©9)

Evaluating the leading coefficient of the second-degree polynomial (86) confirms that

o (FR)By (FA) = —n[Bo.p (Fa(*A); ¥A) +n —1]

87)

, (88)

(90)
in agreement with the general properties (1.1) and (1.2) of the Heine polynomials in [50].
The accessory parameter for the Heun equation (84) is given by the elementary formula

ez —_ 1 _1-%% - %% .
10 (R;8) ==} Ci[-1:*h: A, (*4;8) ] o
Coming back to the particular case (77) and evaluating the polynomial (75) at n=-1, one finds
Ci[-1;*A;0]=2*A_. (92)
and therefore
1%k 1=00* % (K
Ci[-L*A;e]=2[*_+*a( k)s]. (93)
Taking into account that the energy shift (83) vanishes for n=1, we can re-write (91) as

dn (R £, F) = q1 (R) ~[(0 = D(*h_ + %Ay +n) *a(*R)]

(4)

with

ql(*}\‘) = _*;\‘—' (95)

Expressing the polynomial (82) in terms of z:

C1[22 - 1;*;0] = —2(*A_ —*A_ )[B(X)z—*a(*N)] 6)
with

. *
a(#Ty =
N —*h,

/ (97)
one can verify that

Y Cil22-1;%4;0] = o (R)B) (FR)z - q1 (*1)
as expected.

Comparing (89) with the parameters & and 3 defined via (6.5) in [46] we assert that the latter
formulas specify the Heun equation for the polynomials of degree k+1 (not k as stated in [46]), with

(98)

k standing for the integer j here. Re-writing (94) as
an (R £,F) = *a(R)[*A L —*A_ —(n —1)(*A_ +*A, +1)] 99)

and making use of (87), coupled with (88), we can represent the last term in the brackets in the right-
hand side of (99) as
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“( =D+ Ay +m) =0 M M) +an B +BaR)+1 )
which gives
o \_
qn (A5 1, F) = T
+7 e (101)
Ay = A + o CR)By (R) + 0ty (FR) + By (FR) +1]
Setting
y=*A_+1 *hL =¥ =0, (A) + By (FA) =2y +3 102)
turns (101) into the formula listed for the accessory parameter in [46].
Alternatively one can re-write the Bochner-type ODE (72) as the eigenvalue problem
Tey ), .1 —Ae:(*A:8) |9 Fx*A—1]1:8,7]=0
[ S W | i( )] J+1—¢+%—¢_%[n | 1l (103
for the exceptional differential operator:
- LA -1
) . d? Bo[m;*A] d 2P1( " ‘()
dn® b 7R -n I p R
(104)
with the eigenvalues (76). We thus come to the renowned eigenequation [14,45] for the X1-Jacobi

polynomials (A36):
plap) oy
[Topa — 4 =D+ pem PP ep =0 o9

though without any constraints on the relative sign of the parameters a and {. It should be
however stressed that we list these operators only for the proper references and by no means need
them in our analysis.

6. Energy Spectrum of “‘Prime’ SLEs Solved Under Dirichlet Boundary Conditions

Our next step is to formulate the Sturm-Liouville problems for the restr-HRef CSLEs (35) with
the boundary conditions imposed at the ends of either finite interval (-1,+1) or positive interval (1,%)
assuming that the CSLE in question does not have poles inside the given interval. Instead of the
conventional prerequisite of the spectral theory requiring the eigenfunctions to be normalizable with
the weight p[n]we require that the boundary conditions of our choice unambiguously select the
PFS near each singular endpoint. To achieve this goal, we first convert the given CSLE to its “prime’
form (p-SLE) selected by the requirement that the characteristic exponents (ChExps) of the two
Frobenius solutions near the given end differ only by their sign and as a result the DBC pinpoints the
PFS.

6.1. X1-Jacobi OPS

In particular, the rational prime form of the JRef CSLE (1),
{—( 1-n )——;ﬂn, J+& } W1 Kse] =0

(106)
for the finite interval (-1,+1) can be obtained by the gauge transformation
A el 12 o
(D[ns)"o:vg] - 1 T] lp[ns;"Oag]. (107)

The PF representing the zero—energy free term has the following generic form [28]:
-y 0
dlndol= pInIlI:ko]+5{ pinD),

with

(108)
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SUPII = Y 2 g 1 o
and

o =1-n2 for ne(-1+1), (110)
which gives [51],

2 2\-1
SA-nHi=01-m7)" . (11)
Keeping in mind that
. 2 Y 2

lim [ (-7 );f[n,ko]} ~22.,>0
n—tl1 (112)

we confirm that the ChExps of the Frobenius solutions for the pole at +1 have the same absolute
value %Ko;i but differ by their sign. The PFS can be thus unambiguously determined by solving

the p-SLE (106) under the DBCs

lim \P[n,xo,aj(xo)] =0
n—#l (113)

One of the benefits of our approach is that we can take advantage of the powerful spectral
theorems proven by Gesztesy et al. [29] for solutions of the generic SLEs solved under the DBCs.

Any eigenfunction of the p-SLE (106) with an eigenvalue & ] (XO) can be represented in the

form:
— Lo . Lo . —
Wn[nako] =(1+n)é i (l_n)é ot Fn[nako], (114)
where the function F[n; Xo] finite at the both endpoints:
0< lim |Fjn;Roll<oo
satisfies the ODE
2
d (Ao;+sho0-)
(2 -9 ap o Po) )—— Vilej(Ro) —20(Ro)] |
dnz 1 J

Fj[n;KO] =0. (116)
By converting this ODE to the hypergeometric equation, it can be shown [2] that the sought-for
eigenfunctions are expressible in terms of the classical Jacobi polynomials with the positive indexes

Ao+ as follows:

N V.. /2 (Mgea sk
VT o] =(em) 20 (2P plRess o)
(117)
for ne(-L+1)
The eigenfunctions (117) are normalizable:

+1

J dnyfinZel<

-1 (118)
and mutually orthogonal:

+1
[dnyimikolyimitol=0 (%)
-1 (119)

which brings us to the conventional orthogonality relations for the classical Jacobi polynomials
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+1

J dn (1m0 -mor pios o) plose o) gy~

-1 (120)
(G#3).

It is worth mentioning that our approach does not allow one to formulate the spectral problem
for the Jacobi differential equation if -1 < a, 3 < 0 [14,41,44,48]. As discussed below, this limitation
might affect the analysis of the transformed solutions in the LC region.

Similarly the restr-HRef CSLE (35) for o = - can be converted to its prime form

d d -~ _
g (11 go= o | T+ W Rose | -1 =0

(121)
for ne(—1,+1),
where
4 * g |1 = (> =DI° [ | <] +(1-0)"" for ne(-1,+D).

(122)

Keeping in mind that
. 2 2 2

lim [ (-0 gl | _]} =250
n—xl (123)
we can again confirm that the ChExps of the Frobenius solutions for the pole at +1 have
the same absolute value % *Ao;+ while differing by their sign and therefore one can
determine the PFS by solving the p-SLE (121) under the DBCs

lim W38 (Fho) | -1=0

n—o+l . (124)
Returning to the special case (77), we choose

A =% (125)
and

Ay =F*hy—1 (126)
under the restriction

Mop >ho,—>1 (127)

requiring both singular endpoints of the JRef CSLE to be LP. The vector parameters (61) are
defined via the relations:

g = Ao Fl=Hhp £1=%Ag o >0 (128)

It directly follows from (128) that 6 =+ — and hence & =—, as expected
Converting the solution (69) of the given CSLE to its prime form via the gauge transformation

— 2 .
;¥ [=1=4/1- A —L—*A, =1+ ]],
Vil * Ao [ -] n” on; +—1 il 129)
one can directly verify that the RRZJ of the jth eigenfunction of the p-SLE (106),
SEY T (RN )
yoln; z‘fo] P-( | 0;+> 0’_)(11)
n=b(ko) I*
for ne[-1,+1], (130)

satisfies the DBCs at the ends of the specified interval and therefore represents an ei-

vl g | -1=

genfunction of the transformed p-SLE with the eigenvalue & j (7\,0). Again the eigenfunctions

are squarely integrable:
+1 ) -
] dn\l’fj [M:*ho | =] <00
-1 (131)
and mutually orthogonal:
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+1 N . o,
[ dny;ns*he |-y * Ao [-1=0 (=],
-1 (132)

which brings us to the renowned orthogonality relations [14] for the X1-Jacobi OPS

Tan 0o pIPS P PP (1) =0 (0,850 n 2 m) (133)

with the weight

_(=n*a+nP (130
n—b(a.p)>

The sequence starts from the nodeless eigenfunction WO[T];*XO | =] with the first-degree

%,B[n]

polynomial (81) having a zero inside the infinite interval (-e0,-1):

oi— +*¥hg:q +2 .
b b < _

Ao+ —*ho:—
under the constraint (39), which implies the Dirichlet problem under consideration may not have
solutions at energies smaller than g, A o) - It directly follows from Proposition 5.1 in [14] that the

c(*hg) =—

Xi1-Jacobi polynomial of degree n has exactly n-1 zeros in (-1,+1)
and therefore no solution may exist between two sequential eigenvalues g, _j(A,)and

€K vy o) - Since the given sequence of the eigenvalues is unbounded from above, the
g-RSs (130) constitute the complete set of the eigenfunctions for the given Dirichlet problem.
Note that the symplectic form for two eigenfunctions [52],

[l | =Ly jmi*ie |1 ]:= (136)

A=nHW{lyjin %o | =Lyl ho -1} i<l
vanishes at the both singular ends +1 and therefore it must vanish for any two eigenfunctions of
the generic SLE
- P o1+ g D47 | =T8R! R F W[5 -1=0
dnjl > 70 dn % ;"o J\’ro N> Ao W] N Ao
(137)

with the canonical form (35), i.e., iff
5 ¥ 2
PIns Ao/ ;¥ ho]=1-Mm" >0

Wi Ao/ pIni*Aol=1-1 (138)
and
47 *ho | =1= = p[n:*ho] 1M *Rg | =1+ S{ p[ni*ho 1} (139)
In particular, Everitt [47] chose
PIE*01= Do plnl = (-1 &, gm] (140
which brought him to the boundary conditions

Popln] p(Fort o) ol g (141)
n==1
proven in his Remark 3.1iii. Imposing the Dirichlet boundary conditions (124) on the solutions
of the p-SLE (121) thus presents the alternative way to obey these boundary conditions for Case 1 in
[47]. Though his Case 2 (-1 < a,p < 0) is not covered by the technique developed here, the crucial
advantage of our approach is that, as discussed in subsection 6.2, it can be easily extended to the

infinite interval (1,%0) despite the fact the EOPs infinitely grow at the upper endpoint.

S Y
W (oo )

B
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In Section 4 we ran into the anomalous RRZTs which interconvert the LC regions for the singular
endpoints of the JRef CSLE (1) and restr-HRef CSLE (35). If both singular endpoints are LC then the
RRZ$ of the eigenfunction (117) has the form (129), with both Jacobi indexes lying between -1 and
+1. While these g-RSs are mutually orthogonal, they do not obey the DBCs (124) and therefore do not
represent the eigenfunctions of the p-SLE (121). As a result the orthogonality of these solutions cannot
be justified within this framework.

Before concluding the discussion of the Xi-Jacobi OPS, let us note that the symplectic form

preserves its zero value if the parameters *7\.0 of the prime SLE (121) are extended to the complex
field under the constraint Re *A.4 >0 . Since the corresponding orthogonality weight (134) is
complex, we refer to the corresponding complex polynomials in a real arguments as being ‘quasi-
orthogonal’. As discussed in more details in Section 8, the CSLE (35) may have the third pole on real
axis iff the arguments of both ExpDiffs *}*o;i- coincide and the third pole always lies outside the real
interval [-1,+1] in this case.

The quasi-orthogonality of Jacobi polynomials with complex indexes with real parts larger than
-1 was proven in the monograph [40]. By extending (141) to the complex field one can also prove the
quasi-orthogonality of the Xi-Jacobi polynomials with complex indexes under the extended
constraint Re *A4 > —1. But again the crucial advantage of our approach is that it can be easily

extended to the infinite interval (1,o0) despite the fact that the EOPs infinitely grow at the upper
endpoint.

6.2. Finite Orthogonal Subsequences of X1-Jacobi DPS

We finally switch our discussion to the subject which has got a very little attention, compared

with the Xi-Jacobi OPS sketched above. Namely, our next step is to formulate the Sturm-Liouville
problem on the infinite interval [1,0) first for the JRef CSLE (1) and then for the restr-HRef CSLEs
(35), taking advantage of the fact that the extraneous pole of the latter CSLE lies outside the cited
interval in both cases v = +, provided that the ExpDiffs for the poles at +1 are restrained by the
condition (33) for v=-.

The rational prime form of the JRef CSLE on the interval [1,%) is obtained by choosing the leading
coefficient to be the first-degree polynomial

pnl=n-1 for ne[l,), (142)
which brings us to the p-SLE [51]

d d - ~ - -
g 1D fTo 42 o uiriTo] w71 =0

(m>1) (143)
with the zero-energy free term

ko] === DI°[Ko ]+ o —— (n>1)

(m-1) (144)
and the positive weight

y -1
Wkol=(+n) ™ < 1) (n>1).
Taking into account that

lim | (n—=1) [T]ZXO] = 147“(%;+>0
n—>1+[ % ] (146)

we confirm that the ChExps of the Frobenius solutions for the pole at +1 have the same absolute

(145)

value % Ao:4 while differing by their sign. In contrast to the poles in the finite plane, the ExpDiff
for the pole of the JRef CSLE (1) at infinity turns out to be energy-dependent. Keeping in mind that

d0i:10.20944/preprints202411.1232.v1
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lim | (n=Dgflm:ko1] =0

n—>® (147)

we find that the ChExps of the Frobenius solutions for the pole at e are real only at negative
energies and have in this case the same non-zero absolute value % J—¢ while

differing by their sign. We thus confirm that the PFSs of the p-SLE (143) near both singular
endpoints) are unambiguously determined by the DBCs

Yil*Aol= lim yim;*As]1=0,

n—e (148)
as asserted.
One can directly verify that the q-RSs

1

W—+,j[n§xo]3: ¢—+,j[n;7~o]
vn-1 (1< <o) (149)

L (1-ng._) Vo (Mg i—Age)
=(1+n)é o (l—n)é S N )
, (150)
associated with the eigenvalues

—_ . 2
€t (Ao)= _% (hos— =oy+ =2J-1)
satisfy the DBCs (148) for
0<j< Y (o os =)

and therefore are normalizable with the weight (145):

o0
Idn\rfﬂ,j[n;ko]W[n;xo]@o.
1

(151)

(152)

(153)
Being the eigensolutions of the Sturm-Liouville problem solved under the DBCs they must be
also mutually orthogonal [29] with the weight (145):

o0
[dny_y jmdoly_y yInho IWinAg]=0 (154)
1

for j <j< %(xo;_,—ko;Jr -1),

which brings us to the conventional orthogonality relations for the R-Jacobi polynomials

o0

J dz 0q plz1 1P @1 =0 5 (155)

0
with the weight

@a,B[g] = ga (g + l)_|B| for n e[l,) (156)

under constraint a > 0, 3 < 0, where we adopted Askey’s [31] definition of the R-Jacobi
polynomials which, as proven by Chen and Srivastava [34], is equivalent to the elementary formula

1P 2y =p(®P) (27 11) for a > -1, B<0
with

— 1 _
z=lH(n-1) 15%)

Note that we [11] (see also [53]) changed the symbol R for ] to avoid the confusion with R-Routh
(Romanovski/pseudo-Jacobi [32,33] polynomials denoted in the recent publications [54-58] by the
same letter ‘R’. More recently Masjed-Jamei [59] (see Table 2 in [60] for the explanatory summary of
Moret-Bailey’s notation) started using the symbol ] for the R-Routh polynomials which is insistent
with the polynomial names in our classification scheme of the Romanovsi polynomials. On other

(157)
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hand, the symbol R used for the R-Jacobi polynomials in the just appearing paper [61] has been
reserved by us [62] for the Routh polynomials

inﬁ‘R +loc1)(x) — (=)™ Pl(l;xR +iag,aR lal)(ix). (159)

It is worth mentioning that our derivation does not cover the orthogonality region of the R-Jacobi
polynomials for a varying within the nonpositive interval (-1,0]. This deficiency of our approach
dealing solely with eigenfunctions of the p-SLEs may result in some limitations on the actual range
of the indexes of the RRZJs of the R-Jacobi polynomials discussed below.

Examination of Masjed-Jamei’s [63] interconnection formula (2.8) between his ‘First Class’ and
the Jacobi polynomials shows that the M-polynomials in his notation (see also [59,64]) are related to
the R-Jacobi polynomials (157) via the elementary formula

MPD ()= ()" n13{&P~D(z) forq>-1, p>0. (160)
(It is worth to remind the abbreviation ‘OPS’ in [63] stands for the orthogonal polynomial set,
but not for the infinite ‘orthogonal polynomial system’ — the abbreviation broadly used in the modern

theory of the exceptional orthogonal polynomials [13,17,22,23,41].)
Since the prime SLE (143) has the discrete energy spectrum only for L,._ > L., +1, the constraint

(39) reveals the SLE (35) does not have normalizable solutions on the interval [1,%0) if & =—. Strating
from this point we focus solely on the quantization of the SLE (35) with & =+.

Before coming to the case of our current interest (m=1), let us note that all the zeros of the
solutions (117) lie between -1 and +1 for any j > 0 and therefore each of them can be used as the TF for
the RRZT [11]. Each solution represents the PFS near the lower singular end point of the interval [1,e0)
at the energy

§++,m(7uo)= —%(ko;_ +hgq +2m+ 1)2 < g_to(xo) form>1

(c=1).
In this paper we make use of the very first solution in this infinite sequence of the TFs formed
by classical Jacobi polynomials. Alternatively we can consider the RRZT with the TF represented by
the PFS near the infinity at the energy

£ 1(ho)== V3 (hor—+hoz =3)” <&t 0(Ro) .
which leads us to the same CSLE (35) with ¢ = +. This is the direct manifestation of the form-

invariance of the latter CSLE under the second-order DCT with the seed functions *¢.; [, ]

(161)

and (I)——,l [ }\'0 1.
To formulate the Sturm-Liouville problem on the infinite interval [1,e0) for the restr-HRef CSLE
with & =+, we convert the latter to its prime form with the leading coefficient function (142) and

weight (145):
d d = - " -
{—a(n—l)aw[n;*?»o 41 | W R0] w4120,

(163)
where the zero-energy free term has the generic form
= = 1
G * Ao |+]1=-(=DI°M;*Ag [ +]+—— forn>1
4m-D (164)
Taking into account that
. N 2
lim | (n=Dgln*Ro |+]|= J4 234 >0
n—l (165)

and

lim | (n=Dgn;*Ao [+]|=0
”—"’O[ % J (166)
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we confirm that the ChExps of the Frobenius solutions for the poles at +1 or at infinity
have the same absolute value % * Ao or respectively % v/—¢ while differing by their sign in

both cases. Since the PFS of the p-SLE (163) at the given energy is unambiguously selected by the DBC
at the corresponding endpoint, the DBCs
Will*ho [+1= lim wiln*he [+]1=0
n—« (167)
unequivocally determine all the eigenfunctions of the given SLP.

By applying the RRZT with the TF y_ | 1[n;A,] to the eigenfunction (149), we find that the
solution of the p-SLE (163)

= . 7*7\1 A :
vl A |1;—+,J]ocmf]9’j+1[n;k | =+, ],
T]—b( }") (168)

with #=—"

T =Fhogs A=hq, (169)
*XJF = j—L?LO;:F F1 (fo=-), (170)
and
*ho = Ao +1 (171)

vanishes at ) =+1 or, in other words, represents the PFS of the p-SLE (163) near the lower
endpoint. Under the constraint (152) it also satisfies the DBC at infinity and therefore represents an
eigenfunction of the p-SLE (163).

Theorem 4: The RRZ3s of the R-Jacobi polynomials form a finite EOP subset of the X-DPS of series ].

Proof of Theorem 4. One can directly verify that the eigenfunctions constructed in such a way are
normalizable with the weight (145):

o0
2r 3. T e
Jdny I A [ L=+ wn; Ao ] < oo
1 for j< 1) (hgsms=hgs =) (172)
Again, being the eigensolutions of the Sturm-Liouville problem solved under the DBCs they
must be mutually orthogonal [29] with the same weight on the infinite interval in question:

o0
[dny;m A L=+ iy A [ L=+, jivin Ao 1=0
1 (173)
for j<j< %(xo;_,—xo;+ -1).
combining (170) and (171) we can re-write (168) and the associated eigenvalues as
woln— Ao, ho: 1 ] 13_(*?0;+ ;) ™)
n- b(—*?»o;_, >|<7‘o;+) I+

\If’j[T];_*7\'0;—»>’<7\'o;wL |—+1]=

(174)
and

gi(Ro | =)= —8j(hosms o) = = 1y (hopp =%k +2j-1 (175)

respectively. It then directly follows from (173) that the Xi-Jacobi polynomials in question are

)2

mutually orthogonal with the weight
g ot
4l+m) > d-m)

Win;*g |1,-+]:= > >
(*7‘0;— + *7“0;+) In—b(=* 7»0;_, *Ko;+) |

. (176)
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namely,

00 . (% * _*\
[ dn Wi | 1,-+1BL 0 0 (p o™ o) gy g

1 (177)
forI<n'<n< %(XO;_,—XO;JF -1),
which completes the proof of the Theorem 4.0

Theorem 4 constitutes one of the most important issues addressed by this analysis. Namely, we
proved that at least some eigenfunctions of the p-SLE (163) solved under the DBCs are expressible in

terms of a finite subset of the X1-DPS of type J. Yadav et al. [37] termed this subset simply as ‘Xi-
Jacobi polynomials’ (with reference to [14]), without going into any details. The surprising new
element of their use of this term n is that the indexes of the Xi-Jacobi polynomials in question have
opposite signs and therefore do not belong to the X1-OPS. The cited assertion in [37] stimulated my
interest in this problem [38] giving rise to the concept of the X-Jacobi DPSs which may contain both
X-Jacobi OPSs [22,23] and finite EOP sequences formed by rational Darboux-Crum transforms (
RDCS8s) of the R-Jacobi polynomials.

Proposition 1. The polynomial of degree j+1 in the given EOP sequence has one real zero between -1 and 1
and j real zeros larger than 1.

Proof of Proposition 1: First note that the EOP sequence in question starts from the first-degree
polynomial (81) having a zero at

A+ R +2

c(*N) = ey
-7 (178)
or, making use of (170) and (171),
*ho;— — o+ —2 2(*ho;+ +1)
c(=*ho;—*hos+) = ¥, vy =1- — - <l1.
0;— T Mo+ 0;— T Mo+ (179)

It then directly follows from the orthogonality relations (177) that the polynomial of the degree
j+1 must have at least j zeros larger than 1.

We still need to prove that no polynomial of degree j+1 may have all the zeros lying within the
interval (1,%) or, to be more precise, that each polynomial has a single zero inside the interval (-e,1).
The proof directly follows from our observation that the Xi-Jacobi polynomial of degree j+1 coincides
(after being converted to its monic form) with the second polynomial in the sequence of the monic

Xj+1-Jacobi polynomials with the same indexes. Namely, re-writing (A26), coupled with (A29), as
Ay =1, +1)
P A, A | =+ pm*lor +m P
el == DT T P e
and making use of (A23) for @ =—+ shows that

~ , SOV —1=0+1)
i e R =41 = (DL e

The crucial point for our current discussion is that both indexes of the polynomial on the right
are positive for A} =i, >1 and AL <0, which implies that the poly-

nomial (181) in the reflected argument -1 belong to the Xj-Jacobi OPS and, in particular,

D T A 11— (! S(AL—L-AL+1)
J1,]+1[ A [—+]=-(A0 + I)PJ 1+j (m) 182)

as asserted. It then directly follows from Proposition 5.4 in [42], with m=1, that each polynomial
(182) under the constraint (152) has one zero between -1 and +1 and therefore the polynomial of order
j+1 may not have more than j zeros larger than 1. This completes the proof of Proposition 1.0

d0i:10.20944/preprints202411.1232.v1
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We are now ready to prove that the q-RSs (174) represent all the possible solutions of the
Dirichlet problem of our interest.

Theorem 5: The Dirichlet problem for the p-SLE (163) defined on the infinite positive interval [1,o0) does not
have any solutions other than the eigenfunctions (174), assuming that the pole of the corresponding CSLE (35)
at +1is LP.

Proof of Theorem 5: Since the corresponding q-RS does not have nodes in [1,), the Dirichlet.
problem in question may not have solutions below the energy §0(*XO | —+) . As the direct
consequence of Proposition 1, we also assert that there may be no nodes between any two sequential

eigenvalues &, _| (*XO |—+)and g, (*Xo | =+).

However, compared with the proof presented by us for the Xi-Jacobi OPS, a certain complication
comes from the fact that there is only a finite number of the eigenfunctions expressible in terms of Xi-
Jacobi polynomials. We thus need also to confirm that no negative eigenvalue exists above the largest
eigenvalue in the sequence (175) under the constraint (152).

Suppose that the given Dirichlet problem has a solution wn[n;*XO |+] at an energy
€n (*Xo | +) . The RRZT with the TF *¢, 1 1[n; 7\.0] then converts the latter eigenfunction into the
following q-RS of the p-SLE (143):

— — 2 N —

Yol =W o IWNT =1/ w1 Ao L wn[ms ™A [+

ol d WealnRo lnln*A [ 4]
V%ol dn Jn2-1

(183)

(184)
Examination of the sum

iwn[n;*% |+]

dn n2 -1

2 " Y
Al -1 ld\ﬂ++,l[nv7\'o]Wn[na*)\'o | +] (185)
reveals that each summand vanishes at the limit ) - 1+, assuming that the pole the CSLE (35) at
+1 lies in the LP region (*A. >1).

yinskol=—(m* -1

Next, the derivative appearing in the first summand must diminish at infinity faster

than T]'Z and therefore the summand vanishes in the limit 1] — oo. Furthermore, keeping in mind

that y,, j[N;A,] is a quasi-rational function, one finds

lim \/112—1 | ldW++,1[n;7»o]| <o

n—>e® , (186)

which assures that the second summand in (185) also vanishes at infinity. We conclude that the
g-RS (183) of the p-SLE (143) satisfies the DBCs (146)-(147) and therefore represents an eigenfunction
with an eigenvalue differing from any of eigenvalues (151). This result contradicts to the assertion
that the latter represent the complete discrete energy spectrum of the given Dirichlet problem. We
thus confirmed that the p-SLE (163) solved under the DBCs (165)-(166) may not have eigenfunctions

other than (174).

7. Liouville Potentials Shape-Invariant Under Second-Order DCTs

To relate our approach to the conventional quantum-mechanical applications it is convenient to
convert the CSLEs (1) and (35) by the gauge transformations
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. | .
Y[n;rosel=p A[n@ [M;20;€]

(187)
and respectively
- y -
Ynidg:elol=p 4 MIP[n;hg;2 | 0] (188)
to the algebraic SLEs:
d -1 d - 1 -
{ P 5[n]—+(e—vm;xo])p A[n]} Pl kose] =0
n dn
(189)
sgne=sgn(l-n)
and
d -1 d ~ 1 -
{ —p A[n]—+(8—V[n;*% ol)p A[n]} Pn;*ho5e10]=0
dn dn
(190)
sgne=sgn(1-n)
defining the potentials
| ~ _1 ~ _1
P A[n]V[n; hol=-p A[n][n] I [m:2]+5{p A[n]} a91)
and
1 - -1 - 1 -1
p A[n]V[n;*ko [o]l=-p A[n] ¥4 0]+ p A[n]ﬁ{p A[n]}

(192)
via the general formula (108) with
4
pnl=p 72l (193)
The change of variable 1(x) determined by the first-order ODE
, _1
1) =p ()] won

converts each SLE into Schrédinger equation with the corresponding potential given by the
conventional formulas [65]:

V(xi%o) = VIN(X): %o ] = 001 2 1[(x): %0 1= ¥ (%), %}
and
VI [6]= - G01 > 1) [ 01 15 n(x). x}- 196)

where the Schwarzian derivative is related to the generic function (109) via the elementary
formula

[]
(), x1 =2 LIS y[n]}‘

(195)

n=n(x) . (197)
Substituting (4) and

[
Ju—nz|ﬁ{¢|1—n2|}:sgn<1—n)%( 32—1J
n

- (198)

into the right-hand side of (191) gives
2 2 2 2
Aoys +ho;- _% —(Ao- —Ag;2 M

20-17) (199)

V[n; Ao l=sgn(l-1)

Setting
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2A-1:=hoq + ko;_l 2B =2, —xo;+l =gy, Pr=Ro,— (200)
for Inl <1
or
2A+1:=hoiq + Ao, 2B=2. —XO;JFI o=Ag.q, Pr=—Ao,— 201)
forn>1
and making the change of variable
n(x) = sin x (202)
or
n(x) = cosh x (203)

on the intervals (-1,+1) or (1,%) accordingly, we come to the Schrodinger equation with the ‘Scarf
I potential in [8] and the ‘generalized PT” potential in [9] (t-PT and h-PT potentials in our terms).
The derived expression turns into the unified formula (18) in [10], with

z(x)=mn, C=sgn(l-n), a = }\'0;+9 B= Cko;—a (204)

However there are two lapses in Lévai et al’s formula (19) describing the corresponding
eigenfunctions. Namely, 1—m mustbe changed for | 1 =1 | and (what is even more important!) one
must to distinguish between the classical Jacobi polynomials for I1| <1 and the R-Jacobi polynomials
converted to the Jacobi form via (157). We shall come back to this issue after introducing a similar
representation for the Liouville potential (192).

Replacing Xo for *Xo in (191) and subtracting the resultant function from (192), one finds

VI [61= VI *hol-p _l[n]{ I°[n;*k | 0]-1° [n;*Xo]}

(205)

or, making use of (36),

VIn;*ho |0]= VI, ] (206)
“2sen(n-1) ! nll) (<5 (7)1 (6=1)

n/e§ (o) -1 m/e§ (*ho) -1

Setting

2A—1=% kg +¥ho—y 2Bi= %A — gy s 207

o= gy Br=*hgim, €3 () = A1 Inl <1
or

2A+1:=%hg, —Fhgry >0, 2B= g+ g, 208

and making the change of variable (202) or (203) respectively, brings us to the potential (3.5) in
[8] or accordingly (9) in [9].

Similarly, setting

= - —* — (%

z(x)=n, C=sgn(l-n),a="Ay. 4, p=C*hp._, 209)

we come to the unified formula (21) for these two potentials in [10]. (Note that the title of the
cited paper is misleading, since none of these potentials is shape-invariant in the conventional sense
(51

Keeping in mind that

bl (=B, 0) = b(B, ), (210)

we conclude that

e$ (*ho) =b(B, o) (211)
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in both cases 0 =+ and o = -. This important observation made by Lévai et al. [10] allowed these
authors to represent the eigenfunctions of the Schrédinger equation with the potentials (206) in the
uniform fashion, assuming that 1—m7 in their formula (22) is replaced for | 1—m | and (what is

crucial for the current analysis) one makes a clear distinction between the X-orthogonal polynomial
components of the g-RSs appearing in the right-hand side of the cited formula. Namely these

polynomial components form the infinite X1-Jacobi OPS [14,47] for Quesne’s [8] rationally deformed
t-PT potential and the finite EOP sequence composed of the RD&s of R-Jacobi polynomials for the
BQR potential [9]. This fundamentally important clarification of the term ‘Xi-Jacobi polynomials’
introduced by Yadav et al. [37] was thoroughly elucidated in my presentation in Prague [38], which
was simply ignored in [10]. (Either no explication of the latter term was made in the just appearing
study of Banerjee, Yadav et al. [66] on quasi-rational eigenfunctions of the Dirac equation with the
potentials (206).)
Finally, let us notice that the parameter swap B <> A + % discussed in [67] is

equivalent to the interchange of the values of the ExpDiffs *} .. As expected, the so

called ‘new’ potential (14) in [67] has the pole on the infinite interval (1,.°) and as a result it is
not quantized via X-orthogonal polynomials.

8. Discussion

One of the most important elements of the presented analysis is the use of RRZT's as a systematic
tool for constructing new RCSLEs solvable in terms of quasi-rational functions. By converting each
of the constructed RCSLEs to its ‘prime’ form [28], we re-formulated the associated Sturm-Liouville
problem as the Dirichlet problem and then took advantage of the rigorous theorems proven by
Gesztesy et al. [29] for eigenfunctions of generic SLEs solvable under DBCs.

By requiring the eigenfunctions of all the prime SLEs to satisfy the DBCs we accurately
confirmed that the given RRZJs of the exactly solvable JRef CSLE (1) are themselves exactly solvable
in terms of infinite or finite EOP sequences, in contrast with the numerous discussions of this issue
in the literature [7-10,14,68-71], where the exact solvability of the Sturm-Liouville problems under
consideration in terms of X-orthogonal polynomials was taken for granted. While the Sturm-Liouville

problem solvable via the X1-Jacobi OPS was scrupulously analyzed by Everitt [47], its counterpart on
the infinite interval (1,e°) has escaped attention of mathematicians so far.

The developed formalism was used to provide the rigorous mathematical basis for the unified
description [10] of eigenfunctions of the Schrodinger equation with the Liouville potentials (206)
solvable by infinite (0 = -) and finite (0 = +) EOP sequences. It was demonstrated that the finite
subsequence of X-orthogonal polynomials discovered in [9] is composed of the RD&s of the R-Jacobi
polynomials.

The suggested approach provides the accurate mathematical basis for the conventional SUSY
theory of rationally extended potentials utilized in [7-10]. It should be stressed that the renowned
SUSY rules [5] for the changes in energy spectra due to DTs of the Schrodinger equation were
originally formulated [72,73] for potentials with exponential tails at +eo. The latter restriction forced
the ODE under consideration to have the LP singularities at the quantization ends. It has been then
extended by Sukumar [74] to radial potentials without proper treating the LC range of the centrifugal
barrier. Since then the SUSY rules for the radial Schrodinger equation were copied without attentive
examination of this non-trivial problem, with Gangopadhyaya et al.’s paper [75] and Chapter 12 in
[76] as the only known-to-me exceptions.

In [28] we presented the scrupulous analysis of the RRZTs of RCSLEs in case when the ExpDiffs
for the poles at the origin lie within the LC range for either original or transformed CSLE and proved
(making use of the corresponding prime SLEs solved under the DBCs) that that the RRZ&s of the
eigenfunction do satisfy the DBCs unless the ExpDiffs lie within the LC range for both original or
transformed CSLE. Since the RRZTs of this kind turn the centrifugal barriers into infinitely deep
potential wells, the violation of the conventional SUSY rules in the latter case [51] may not seem very
exciting.
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In [1] we presented a more physical example of the breakdown of the conventional rules of the
SUSY quantum mechanics for the scenario when the ExpDiff for the pole at the origin lies within the
LC range only for the transformed RCSLE and as a result both initial and transformed potentials have
centrifugal barriers at the origin. It was shown that this anomalous behavior of the transformed
eigenfunctions was the direct manifestation of the fact that the first RRZT brought the quantum-
mechanical system into the LC region, while the sequential transformation kept the system in this
region, making unapplicable the conventional rules.

Let us mention once again that that the use of the DBCs allows one to select only the mutually
orthogonal PFSs which is sufficient for quantum-mechanical applications. However, as an apparent
setback of our approach, we were unable to pinpoint the Xi-Jacobi polynomials with two negative
indexes larger than -1 (which represent the polynomial components of mutually orthogonal non-
principal Frobenius solutions). It is very possible that the eigenfunction of the prime SLE (163) are
accompanied by a finite set of similar mutually orthogonal non-principal Frobenius solutions formed
by the RDJs of the R-Jacobi polynomials.

By analogy with the quasi-orthogonality of the X1-Jacobi polynomials with the complex weight
(134), one can extend the orthogonality relation (177) to the complex field provided that the complex
indexes *XO;J_F of the EOPs are restricted by the condition Re *}\,O;i > (. Our conclusion concerning

the quasi-orthogonality of the RD&s of the R-Jacobi polynomials with the complex weight (176) was
inspired by the work of Chen and Srivastava [34], who extended the conventional orthogonality
condition for both classical Jacobi and R-Jacobi polynomials to the complex field (see the integrals
(4.3) and (4.9) in [34]). Indeed, by analogy with the derivation of the orthogonality relation (177) under

the real field, its extension to the complex indexes *A,.+ of the EOPs under the constraint

Re*Lg,4 > 0 directly follows from the fact that the symplectic form
[w ¥ Ao [+L iy 2, | +]] =

2 — —
(M = DWW *% [+1wjn:*he | +1} for n>1
vanishes for any pair of solutions of the prime SLE (163) solved under the DBCs (165) and (166),
provided that the complex indexes *A.+ have positive real parts:

12)

/2 <arg*hg.4+ <+m/2 (213) and lie outside the

real interval [1, «]. Representing (A37) as

2 a2 .
b(B,G):|a| _|B| +Im((XB )

2
IB—o , (214)
we conclude that the third pole (34) of the CSLE (35) lies on the real axis iff
arg*hg. 4 =arg™hg._, (215)

which gives
*Ao;— | +1*ho:+ |

b(*hg:—,*hg:4) =
o Tho) = T Phee |

(216)

More specifically, the third pole (34) of the CSLE (35) for o= + is located on the negative semi-
axis if we choose

Aot [<[FAo.— |- (217)

Note that the third pole always lies outside the real interval [-1,+1] for o = -.
It is very possible that the quasi-orthogonality relation (177) also holds for the first index within
the interval (-1,0], but again our approach failed to address this issue.
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Since the complex solutions in question are quasi-orthogonal (not orthogonal!), we doubt that
they can represent the eigenfunctions of any properly formulated Sturm-Liouville problem and this
was the main reason why this part of the discussion was removed from the main body.

9. Conclusions

The presented analysis provides the rigorous mathematical grounds for the so-called [10]]
‘unified supersymmetric description” of two double step shape-invariant [12] potentials [8,9]
quantized by infinite and respectively finite X-orthogonal sequences of Heun polynomials. As

demonstrated above there are several reasons for a separate examination of the Xi-Jacobi DPSs and
the corresponding infinite and finite subsets of the EOPs, before proceeding to the general case of the

Xm-OPSs [41,42] and the finite EOP subsequences of the Xm-Jacobi DPSs [11].

First, the four Xm-Jacobi DPSs of series D, W, J1 and ]2 for m > 1 merge into the two DPSs of
series ] and D for m=1. In particular, the Xm-DPSs of series J1 and ]2 merge into the single X-DPS for
m =1 which contains both X1i-Jacobi OPS and the finite EOP sequences composed of theRDJs of the
R-Jacobi polynomials. As a result, the term “Xi-Jacobi polynomials’, put forward by Yadav et al. [37]
as the synonym for the Xi-Jacobi DPS in our terms. has the unambiguous meaning, in contrast to the
more equivocal epithet ‘Xm-Jacobi polynomials’ [70].

Secondly, the Xi-Jacobi polynomials obey the additional symmetry relation (A38). Since all the

polynomials forming the Xi-Jacobi OPS have only one exceptional zero its location can be easily
specified [46]. Furthermore one can compute asymptotics of the recurrence coefficients and
investigate the limit of the corresponding Christoffel function [47].

Finally, both the X1-Jacobi DPSs are formed by Heun polynomials and therefore can be used as
‘guinea pigs’ in the theory of polynomial solutions of the Heun equation. The fact that the
transformed CSLE has only one extraneous pole also made it easier to study its location and to
unambiguously avoid the cases when it lies inside the quantization interval. In particular one can
readily prove the quasi-orthogonality of the complex polynomials obtained by the complexification

of the Xm-Jacobi OPSs and the finite EOP subsets of Xm-Jacobi DPSs; however the elimination of the
cases when at least one of the poles lies inside the quantization interval represents a more challenging
problem.
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Appendix A

Rudjak-Zakhariev Transformation of Generic CSLE

Let ¢[n; Xo] be a nodeless solution of a CSLE

dn (A1)
at the energy
e=¢e(hg), (A2)
ie.,

2 o - R R
— + Ao ]+ec(hg) pIn] ¢ 0c[n;2o]=0

2
dn (A3)
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We define the Rudyak-Zahariev transformation of the given CSLE via the requirement that the

function

e
*(I)‘E[n’ 0] 4[Q_

is the solution of the transformed CSLE:

2
d B, )
—5+1°Ii kg [Tl +epn] PN Rg56]=0
dn

at the same energy (A2), i.e.,

(A5)

dn2
Representing both CSLEs (A3) and (A6) in the Riccati form:

10 o] = ~1d 2<% 1-1d <[ 7 -2 (L) PN (5,

and

2
d
{—+IO n, olt] +st(l0)p } d-[ n, =0.
(A6)

10002 | Tl —ld 2 #0711 * el 0]~ (o )P, (a5,

subtracting one from another, and also taking into account that the logarithmic derivatives of

the TF ¢[n; Xo] and its reciprocal (A4) are related in the elementary fashion:

1d*¢.[; ko] =—1d e[ ko ]- V5 ld p[n]
one finds [24]

- - d 1d ¢ [n; R ]
;o |11 = 1M Ao 142  pIn] — —==22+ §{p[n]},
Mho |t Ao pndn o] ${pn

(A9)

(A10)
where the last summand represents the so-called [28] ‘universal correction’ defined via the

generic formula

§iflz1} - / F d ldf[z] (A1)

Let ¢/[n; Xo]be another solution of the CSLE (A1) at an energy €.’ (XO) :
d2
0
—5 + Mm% T+ er (o)pln] { or[nilo]=0
dn
Keeping in mind that the function

drmho | Tl="0clm Ao IW bR Lo i Rolt (415
is the solution of the CSLE

(A12)

2
d _ _ _
{ d_2 + Io[nﬂ»o | t]+ey (Ao)pln] }d’r'[n; Ao |T]=0
" , (A14)
let us now consider the sequential RZT of the CSLE (A5) with the TF (A13). Substituting (A9),

(A10), and (A11) into the RefPF

ko |ut] =120 1+ (A15)
2 g &1 el T 1+ ld Wieli o by iR
an NP

+${ponl},
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we confirm that the sequential RZTs in question are equivalent to the second-order DCT of the

CSLE (A1) with the seed functions ¢T[n;XO] and (I)T'[T];XO], namely, as originally brought to
light by Schnizer and Leeb [25],

Io[mxo |t;1'] = Io[n;io]+ m d_dWipc[Mhol oy [mitol}

dn VAl (A16)

By combining
Wb 2o ) b [ 20 It =[x (Ro) — &0 (ho)IAMIe W20 J0r [ R0] (515,

Appendix B

Rectangular polynomial matrix with X-orthogonality along both rows and columns

As it has been pointed to in [28], the Wronskian of two q-RSs of JRef CSLE can be written in the
quasi-rational form

- ~, V(g +24)+1 = =
WibmIAL oA T = 11 [1-xnl 205990 ek mid, ),
N=x=

m+j+

(A18)
with the polynomial component represented by the ‘polynomial determinant” (PD):

TV

SO\‘+ > 7‘“—) (n) S( 7\‘:0- ’ A

@m+J+l [n;x‘s m;}\”i J] = _)
m+1 J+l ()

, (A19)
where the second row is composed of the so-called [26-28] ‘supplementary Jacobi-seed
polynomials’:

S () = Lo+ D+ 1)+ B+ D - DIPEP () + (2 -1y P &Py,

For
the PD vanishes at 1 respectively:

(A20)

(A21)

where
T A, FAL Ay AL
in, jem[R 5 2= (2 DOWHRE™ T4 i P4
r oM, AL AL, FAL
+2X¢Pj( )G+ (]
(A22)

Examination of the polynomials (A22) reveals that [11]
T, jem A | F 4] = =9 o [0 FAL, 2A) | 73], )

Making use of the fourth and last of Gauss’s contiguous relations in [77],

)P S+ ) 2Pl () = g + m)pP+EA-FD ()

(A24)
one finds

At A , 7\,'_ S\ ’7\,'_
n e[ 1521 =2 DP T P
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, A L FAF1 Ao
O -yl "+ T et )
(A25)
Setting B=A", o=\l in (72) in [42] shows that
’ ’ ' = —I,QL'_-FI
T jemlMAL 2 |+ 1= (DO + DB =Dy
or, making use of (61) for ¢ =+—,

ey 4+ DPC ) () = (MG o —1, % +1] 4]

(A26)

m,m+] (A27)

We conclude that he polynomials (A27) with
A ="ho— =B, *hp =gy =aor Ay =—a-1, A_=B-1 (A28)
must be mutually orthogonal with the weight (88) in the cited work.

The two exceptional infinite polynomial sequences are interrelated by the interchange of the
indexes accompanied by the change of the argument, namely,

! ! i 1
Tin, jrm[M:AL 2 | =] = (T (A29)

m,j+m[—n;7v,+’ A +-]
Making use of (61) once again, but this time for & =—+, we assert that the polynomials (A29)
with

My =%hoy £1, Ay =Fh;7 -l (A30)

are also mutually orthogonal with the weight

*ho;— *hos+

Wi » () = I+m) > d-m)

R "ho;—sm TV |P(*7»o;+—1,—*7uo;——1
m

(Inl<D
‘P
. (A31)
Despite the mentioned interdependence, we, in contrast with [41,42], prefer to treat these two X-

OPSs separately and refer to them as being of series J1 and ]2, in following the terminology suggested
in [68]. It should bed however stressed that, contrary to the definition (2.3) of these two series in [68]

with n=m,
A =hg_=h+m+1,>0 A, =hy, =g+m-3,>0
0; A T ot A , )
and

- = _3 - = 1
A_=ho.—=h+m A>0, Ay X0;+_g+m+é>0 2
in our notation [51], the indexes of the Jacobi polynomials in the right-hand side of (A25) are
independent of the polynomial degrees.

If we set
Mg =Fhog s o > 0, (A32)

coupled with (A30), then the polynomials (A29) under the constraint (152) constitute the RDJs
of the R-Jacobi polynomials constructed using the classical Jacobi polynomials as the polynomial
components of the corresponding quasi-rational TFs. As a result, they must be mutually orthogonal
with the weight

%) . )L
(+m) " (1-n) "o
(hgey—L,—*hg_—1)  _»
|Pm o o (T])| . (A33)

On other hand, as the direct consequence of the symmetry relation (A23), each polynomial (after

Win;*Ag | m,—+]:=

being converted to its monic form) coincides with the m-th monic polynomial from the Xj-Jacobi OPS
of series J1.
The main reason for distinguishing between the two X-OPSs is that the RD&s
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of the R-Jacobi polynomials belong to the Xm-Jacobi OPS of series J1, whereas Gomez -Ullate et
al. [41,42] happened to focus on the properties of the Xm-Jacobi OPS of series ]2, referring to the latter
simply as the Xm-Jacobi OPS.

Appendix C

Two alternative representations of of the Xi-Jacobi polynomials
In the separate publications [8] and [9] Quesne et al. introduced two alternative representations

2B+ )PP ) = =P D

(A34)
=By [+ )P 7P D 1 g pp{ D )
and
2o+ PP () = (- D)
j ] (A35)

~tn=b(a )1 [1-D P TP Dy ¢ oD )

for the polynomials %{I—OLl’B ) () and stated that they are both equivalent to the definition (56)

of Xi-Jacobi OPSs in [16]:
P(a B) (n) - P(a B) M)

PP ) == 1 m-pyp{®P ey

with

a+B+2J . (A36)

b(B.o)= 2P, (A7)

B-a
provided that one allows both indexes to take arbitrary real values. Note that Xi-Jacobi
polynomials defined via (56) in [14] obey the symmetry relation
B it pep)
i em = AP o) s,
The latter took a more complicated form after these polynomials were later re-defined according
to the relations [41,42]:

P(aﬁl)(n) P(OLB)( )= (a+ )P -o) (_‘(_XB)()
oa+j+1 J (A39)

The two independent statements made in [8] and [9] have the important implications which
were not properly appreciated in the literature. First this was the first (though implicit) instance of
treating (A36) by Bagchi et al. [9] as the definition of the Xi-Jacobi DPS rather than the Xi-Jacobi OPS.
Though the finite EOP sequence discovered by them obeyed the same three-term recurrence relations
(A36) as the Xi-Jacobi OPS [14], the cited authors were cautious enough not avoid the term ‘X1-Jacobi
polynomials’ in this connection.

The second vital implication of the mentioned statements is that the Xm-Jacobi DPSs of series J1
and J2 [12, DPT] become identical for m=1. The main purpose of this Appendix is to explicitly validate
this assertion.

First, making use of (22), we can represent (A22) for m=1 as

9 gl | 721 = e

AL FAL+2 (A40)
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, AL AL y oM AL
- XD P P o) )

Setting Ay =a—LA_ =B+1 for §=—+ or A} =OL+1,7»'_ =B—-1 for @ =+—and also
taking into account (23), coupled with (A37), we can re-write (A34) or respectively (A35) as follows:

T 1B+ =1 =+ = B+ )(B-o)P TP ()
(A41)

and

91 jolB-Lo+1]+-]=(@+)B-0) 2P )
(A42)

— (C!’ B)
a IP

It directly follows from the listed relations that the monic Xm-Jacobi DPSs of series J1 and ]2
coincide for m=1.

To explicitly confirm this assertion, let us make use of the fourth and last of Gauss’s contiguous
relations in [79],

(=0P D) 4 o pp D ) = @+ pp( P

(A44)
and

(m+DP @B Dy g pp OB ) = 34 j4 (AP ()
: ! ] (A45)

to simplify (A34) and (A35) as follows
23+ PGP ) = 1+ mpt@ D )

(B+j+DIn—b(e B P{“P )
(A46)

and

20+ PGP = (- DD -

o+ j+ D=, BIx PP )
J : (A47)
To proceed, let us first list two useful recursion relations

(a+p+2))n-DP{* Dy
(A48)

~[(a+B+2m - —-BIP{ P+ @+ PGP )
and

(a+B+2))m+ P Dy
(A49)

~[a+B+(@+B+29m]P{ P i -2+ pr{%P )
which can be easily confirmed by re-writing (22.7.17) - (22.7.19) in [78] as

(n+ DR B () = (q - yp{%B) () 1 2p(* P (o
! ] ] (A50)

(=P D) (e p{P ) —2p (P Dy,

(A51)
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J J J (A52)
and

(ot B+ 2P P D) = @+ B+ HP{*P )+ (o PP ().

(A53)
Substituting (A48) and (A49) into (A46) and (A47) respectively thus gives

200+ B+ 2 PP (0 = [0+ B+ 29b - BIPI*P )/ o+ )

2PEP ) - @+ B 2= P )
J J (A54)
and

200+ B+ 2) PGP ) =[a+ B+ (B 2] PP B+ )

2P %P ()~ o+ B+ 2 - 5P AP ).
J J (A55)
Making use of the elementary formulas
(a+B+2))b—a—-P=2(a+j)b (A56)
and
o+B+(a+B+2))b=2(B+)b

(A57)
then brings us back to (A20) for both instances (A34) and (A35) which completes the proof

Appendix D
Intrinsic Interconnection Between D- and W-Eigenpolynomials
Let us prove that the Xi-Jacobi DPS of series D composed of the PDs

pte i PR

~ _ J
@‘ [nsk,l,_y“’_]]: 5
i+2 Ay, )

s§+ Dy st m)

(A58)
are related to the Wronskians of Jacobi polynomials via the elementary formula [11]:

<o 4(+2)
D. A, LA, j]=———"—x
j+2n 1 I he

WP g—h 20 2) ) p (hy2h

(A59)
o 2.

First, substituting

SO =[p* M @]+ o - e,

(A60)
S = e e @ - e

(A61)
into the second row of the PD (A58) and taking into account that
(s ) ook (<hy—L,—h_—1)
P. -P =2P,
1 (n) 1 M) 1 (n), (A62)
one finds

. - Ay A
D,y 1R, =P+

(A63)
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[ )P {0 2p T D e e D)

2 =P P e )

After multiplying the term in brackets by %( Jj—Ay —A_), we can re-write the resultant
expression as the Jacobi operator acting on the Jacobi polynomial of degree j+1:
2 oy (FAi-1,-A_-l1 Ay —1,-A_-1 S (A —1,-A_-1
(2= e Yy +2p{ 7 Jp Y
. . Ay —L-A_-1
= (DG~ Ay~ P ‘)
(A64)

Similarly after multiplying the second summand in the right-hand side of (A63)by the same
factor and taking advantage of the backward shift relation (E16) in [68]:

R () B e ) R (R
(SR —2h_—2)

2 2)P: i
(G+2P5, 5 (M) A65)

we can re-write (A63) as

29 (=g =2 )D IR TR, 1= [+ D= Ry = A = by —h =20

pt ettt

J+1
. * (A, —Ayi—2,—-A_2
2+ 2P {3 )
. (A66)

Substituting

(J+1)(J_7\'+ _)\‘—)_}“-{- -A_-2= (J+2)(J_2_7\'+ _}\'—) (A67)
and

S(Ap=2,-A_=2), | _ 1/ ¢ (-Ap—1,-A_-1)

Pit ()= Y5 (=1=2y =2 )Py M
into the first summand in (A63) and also taking into account that

Aph) o\ p(-Ap=2,-A_-2)
P (n)= ) (n), (A69)

we come to the sought-for interrelation (A59) between the PDs and polynomial Wronskians.
In particular, substituting (A60) and (A61) into (A58) with j=0 and taking into account that

Ay —1,—A_—1) (hy—1,A_—1)

P ( + > = —P —+ s

1 (m) 1 (T]), (A70)
we can represent the resultant expression in the form of the Jacobi operator acting upon the

second degree polynomial with the indexes Ay —1:

A A 2 v (A —LA_-1)
— VO + 2+ DDy i, 54,01 = (n° P 5 D+

A—LA_—1 S (A —1A_—1
2p+ )myp )
which gives

D, [m;A, ;-4 0] = )
(A72)
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We thus conclude that the infinite sequence of the PDs (55) converted to their monic form starts
from the monic Jacobi polynomial of the second degree. Setting side by side (A72) and (A59) with j=0
gives
8

(—A —1,—A—1)
P =—
2 ) LA+

WP T (), p A )

(A73)

Since the Wronskian of two classical Jacobi polynomials of sequential degrees (1} >1) may not
have zeros between -1 and +1 [45] this must be also true for the Jacobi polynomials with negative
indexes. We thus conclude that the corresponding g-RS can be used as the TF of the RDT to construct
the Xz-Jacobi OPS of series J3 [79]. Grandati and Bérard have proved this important observation for
Jacobi polynomials of even degrees by using the disconjugacy theorem. Their proof can be
independently confirmed based on our observation that the any Jacobi polynomial of even degree
2m can be represented (up to a normalizing multiplier) as the Wronskian of m Jacobi polynomials of
sequential degrees starting from the first-degree polynomial.

Abbreviations
ChExp = characteristic exponent
CSLE = canonical Sturm-Liouville equation
DBC = Dirichlet boundary condition

DCT = Darboux-Crum transformation
DC§ = Darboux-Crum transform
EOP = exceptional orthogonal polynomial

ExpDiff = exponent difference
JRef = Jacobi-reference
LC  =limit circle

LDT = Liouville-Darboux transformation
LP  =limit point

ODE = ordinary differential equation

PF = polynomial fraction

PFES = principal Frobenius solution

p-SLE = prime Sturm-Liouville equation

h-PT = hyperbolic Poschl-Teller

t-PT = trigonometric Poschl-Teller

RCSLE = rational CSLE

RDCT = rational Darboux-Crum transformation
RDCS§ = rational Darboux-Crum transform

RDT =rational Darboux transformation
RD§ =rational Darboux transform
restr-HRef = restrictive Heun-reference

R-Jacobi = Romanovski-Jacobi
RRZT = rational Rudjak-Zakharov transformation
RRZ§ = rational Rudjak-Zakharov transform
RZT = Rudjak-Zakharov transformation
RZ§ = Rudjak-Zakharov transform
g-RS = quasi-rational solution
TF  =transformation function
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