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Article 

X1-Jacobi Differential Polynomial Systems and 
Related Double-Step Shape-Invariant Liouville 
Potentials Solvable by Exceptional Orthogonal 
Polynomials 
Gregory Natanson 

Independent Researcher, Silver Spring, MD 20904, USA ; greg_natanson@yahoo.com 

Abstract: The paper develops the new formalism to treat both infinite and finite exceptional 
orthogonal polynomial (EOP) sequences as X-orthogonal subsets of X-Jacobi differential polynomial 
systems (DPSs). The new rational canonical Sturm-Liouville equations (RCSLEs) with quasi-rational 
solutions (q-RSs) were obtained by applying rational Rudjak-Zakhariev transformations (RRZTs) to 
the Jacobi equation re-written in the canonical form. The presented analysis was focused on the 
RRZTs leading to the canonical form of the Heun equation. It was demonstrated that the latter 
equation preserves its form under the second-order Darboux-Crum transformation. The associated 
Sturm-Liouville problems (SLPs) were formulated for the so-called ‘prime’ SLEs solved under the 
Dirichlet boundary conditions (DBCs). It was proven that one of the two X1-Jacobi DPSs composed 
of Heun polynomials contains both X1-Jacobi orthogonal polynomial system (OPS) and finite EOP 
sequence composed of the pseudo-Wronskian transforms of Romanovski-Jacobi (R-Jacobi) 
polynomials, while the second analytically-solvable Heun equation does not have the discrete 
energy spectrum. The quantum-mechanical realizations of the developed formalism were obtained 
by applying the Liouville transformation to each of the SLPs formulated in such a way. 

Keywords: canonical Sturm–Liouville equation; Liouville transformation; double-step shape-
invariant potential; Darboux-Crum transformation; differential polynomial system; pseudo-
Wronskian polynomial; classical Jacobi polynomial; Romanovski–Jacobi polynomial 

 

1. Introduction 

In the recently published article [1] we proved that the radial potential exactly solvable in terms 
of the hypergeometric functions [2] preserves its form under two sequential rational Darboux 
transformations (RDTs). It is essential that the first of these RDTs (using the ‘basic’ quasi-rational [3] 
solution (q-RS) as its transformation function (TF) converts the Schrödinger equation with the cited 
potential into the new radial Schrödinger equation exactly quantized in terms of polynomial 
solutions of the Heun equation [4] with degree-dependent exponent parameters. It was then proven 
that the new radial potential also preserves its form under two sequential RDTs. It was explicitly 
demonstrated that the conventional rules of the SUSY quantum mechanics [5] fail if the first RDT 
places the centrifugal barrier into the limit-circle (LC) range, while the second transformation keeps 
it within the same range. 

The purpose of this analysis is to show that similar results can be formulated for the rational 
Darboux transforms (RD s)T of the trigonometric and hyperbolic Pöschl-Teller (t- and h-PT) 
potentials [6] quantized in terms of either infinite [7,8] or finite [9] exceptional orthogonal polynomial 
(EOP) solutions of the Heun equation with degree-independent exponent parameters. Note that the 
mentioned Heun-reference (HRef) potentials were incorrectly referred to in [10] as ‘shape-invariant’. 
Indeed the RDT using the lowest-energy eigenfunction as its TF creates a new pole on the real axis 
and therefore necessarily changes the form of the corresponding canonical Sturm-Liouville equation 
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(CSLE). On other hand, as thoroughly discussed below, the Liouville potentials associated with the 
Heun-reference (HRef) CSLEs in question do preserve their form under two sequential (specially 
chosen) RDTs. 

The important novel element of our approach [11–13] to the theory of the EOPs that we define 
them as solutions of the Bochner-type [14] ordinary differential equations (ODEs) with polynomial 
coefficients, rather than eigenpolynomials of the rational differential operator [15,16]. Let us remind 
the reader in this connection that, as stressed by Kwon and Littlewood [17], Bochner himself “did not 
mention the orthogonality of the polynomial systems that he found. The problem of classifying all 
classical orthogonal polynomials was handled by many authors thereafter” based on his analysis of 
possible polynomial solutions of complex second-order differential eigenequations. This observation 
brought the author [13,18] to the concept of complex exceptional Bochner (X-Bochner) polynomials 
which satisfy a second-order ordinary differential equation (ODE) of Bochner type but violate his 
theorem because each sequence either does not start from a constant or lacks a first-degree 
polynomial. Therefore we refer to these sequences as complex exceptional differential polynomial 
systems (X-DPSs) with the term ‘DPS’ used in exactly the same sense it is done by Everitt et al. [19,20] 
for conventional sequences of polynomials obeying the Bochner theorem. 

It has been proven by Kwon and Littlejohn [17} that all the real field reductions of the complex 
DPSs constitute quasi-definite orthogonal polynomial sequences [21] and for this reason these 
authors refer to the latter as ‘OPSs’. However this is not true for the X-DPSs and we thus preserve the 
term ‘X-OPS’ solely for the sequences formed by positively definite orthogonal polynomials. 

Any Bochner-type ODE with polynomial coefficients can be re-written in the form of the rational 
differential eigenequation which brings us to the exceptional operator introduced in [22], with the 
corresponding eigenpolynomials forming a X-DPS in our terms. While the authors of the cited paper 
(see also their more recent work [23]) are interested solely in X-OPSs, we [11,12,18] have been 
developing the technique covering both infinite and finite EOP sequences. 

The formalism utilized by us [11] for constructing Xm-Jacobi DPSs goes back to the pioneering 
paper by Rudyak and Zakhariev [24] introducing the so-called [25] ‘generalized Darboux 
transformations’ of the generic CSLE. In [26] we suggested to term them as ‘Liouville-Darboux 
transformation’ (LDT) to stress that they can be re-interpreted as the three-step operations: 
i) the Liouville transformation from the CSLE to the Schrödinger equation; 
ii) the Darboux deformation of the corresponding Liouville potential; 
iii) the reverse Liouville transformation from the Schrödinger equation to the new CSLE using the 

same change of variable as at Step i), 
making it easier to relate our results to the conventional recipes of the SUSY quantum mechanics 

[5]. It should be however stressed that the definition of these transformations ]24-26] requires no 
reference to the Liouville transformation and for this reason we prefer to refer to them as ‘Rudyak 
and Zakhariev transformations’ (RZTs) until we explicitly require for the transformation function 
(TF) of the given RZT not to have nodes inside the given quantization interval. 

In the case of our interest the RZT using quasi-raional TF is applied to the Jacobi-reference (JRef) 
CSLE defined via (1)-(3) below. The transformed CSLE is then converted to the Bochner-type ODE 
with polynomial coeffiecients taking advantage of the fact that the density function (3) has only 
simple poles in the finite plane and as a results the mentioned gauge transformation is energy-
independent [27]. Concequently the linear oeficient function of the resultant differential equation 
does not depend on degrees of the sought-for polynomials. 

To construct the infinite and finite EOP sequences we take advantage of the concept of the prime 
rational SLEs (p-RSLEs) suggested by the author [28] earlier. The gauge transformation used to 
convert the given rational CSLE (RCSLE) to its prime form is chosen in such a way that the 
characteristic exponents (ChExps) of the two Frobenius solutions near the given singular endpoint 
differ only by their sign. As a result solving the resultant p-RSLE under the Dirichlet boundary 
conditions (DBCs) unambiguously determines the principal Frobenius solution (PFS). One of the 
benefits of our approach is that we can take advantage of the powerful spectral theorems proven by 
Gesztezy et al. [29] for solutions of the generic SLEs solved under the DBCs. In particular we assert 
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that the q-RSs satisfying the DBCs are necessarily orthogonal and therefore this must be also true for 
their polynomial components. 

It was revealed that the rational RZTs (RRZTs ) of the JRef CSLEs with the basic TFs result in the 
two distinguished HRef CSLEs with the third pole lying either inside the finite interval (-1,+1) or in 
the negative interval (-∞,-1). In the latter case the DBCs can be imposed at the endpoints of both 
intervals [-1,+1] or [1,∞]; however it turns out that the Lioiville potential on the positive infinite 
interval does not have the discrete energy spectrum. While the Sturm-Liouville problem (SLP) on the 
finite interval gives rise to the renowned X1-Jacobi OPS, the eigenfunctions for the HRef CSLE with 
the pole between -1 and +1 are expressible in terms of RD sT of the Romanovski-Jacobi (R-Jacobi) 
polynomials [30–36]. It is remarkable that the latter (finite) EOP sequence belongs to the same X-DPS 
as the X-OPS and as a result is formally defined by the formulas discovered in [14] for its infinite X-
orthogonal reduction. Based on this observation, Yadav et al. [37] refer to the X-DPS in question 
simply as ‘X1-Jacobi polynomials’. This important distinction between the X1-Jacobi polynomials and 
its infinite orthogonal reduction represented by the X1-Jacobi OPS was clarified in our works [12,38] 
(but nevertheless entirely disregarded in [10]). 

Both SLPs sketched above can be converted by the Liouville transformation to the 
eigenproblems for the 1D Schrödinger equation giving rise to the two double-step shape-invariant 
potentials discovered by Quesne [7,8] and Bagchi et al. [9] respectively. 

Another important development initiated in this paper is the notion of the quasi-orthogonality 
applied to polynomials with complex coefficients; namely, we say that the given sequence of complex 
polynomials in a real argument is quasi-orthogonal if there is a complex-valued weight such that the 
integral of the product of two polynomials multiplied by this weight vanishes for the specially 
selected integration interval. Our discovery of the exceptional quasi-orthogonal sequences of 
polynomials with complex coefficients was stimulated by Chen and Srivastava’s [34] observation that 
the orthogonality relations for both classical Jacobi and R-Jacobi polynomials can be extended to the 
complex field. While the formal ‘complexification’ of the Jacobi indexes preserving the conventional 
orthogonality relations between the classical Jacobi polynomials [39] is the well-established (though 
relatively little-known) fact [40], the broadening of this assertion to include the finite orthogonal 
sequences [34] constitutes the significant achievement mostly overlooked in the literature. 

2. The q-RSs of the JRef CSLE with the Simple-Pole Density Function 

Let us start our analysis with the Jacobi-reference (JRef) CSLE 
2

o
o o2

d I ; ] [ ] [ ; ] 0
d

[
  + η λ + ε η Φ η ε = 
η  

;λ
 

ρ
     (1) 

with the single pole density function 

2
1[ ] : 0

|1 |
η = >

−η
ρ

         (2) 
and the reference polynomial fraction (RefPF) parameterized as follows: 

2 2 2
o; o; o;o o 2 2

1 1
I ; )

4(1 ) 4(1 )
( ℵ

ℵ ℵ

+ −

=±

−λ −λ −λ
η ≡ +∑

− η −η



λ
    (3) 

2
o;

2 2
11 1
12(1 ) 4(1 )

ℵ

ℵ ℵ=±

−λ
= −∑

− η−η −η ,     (4) 
where o;±λ are the exponents differences (ExpDiffs) for the poles at ±1 and the energy reference 

point is chosen via the requirement that the ExpDiff for the singular point at infinity vanishes at zero 
energy, i. e., 
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( )2 o o
| |

1I ; ] .4[
η→∞

η η =


λlim
        (5) 

The sign of the spectral parameter ε is chosen to be positive (negative) when the Sturm-Liouville 
problem in question is formulated on the finite interval 1 1− < η <  (or respectively on the positive 
infinite interval 1<η< ∞ ). An analysis of solutions of the CSLE (1) on the negative infinite interval 

1−∞ <η< − can be skipped without loss of generality due to the symmetry of the RefPF (2) under 

reflection of its argument, accompanied by the interchange of the ExpDiffs o;±λ  for the CSLE poles 

at ±1. 
As initially pointed to in [27], the JRef CSLE with the density function (2) has four infinite 

sequences of the q-RSs 
1 1( (2 21) 1) ( , )

m m[ ; ] |1 | |1 | P ( )− + + −λ + λ + λ λφ η λ = +η −η η


   (6) 

      o;(| | )± ±λ = λ
    

at the energies 
2 ( ),m(1 )ε = −η ε λsgn



     
with 

21( ):m 4 ( 2m 1)+ −ε = λ + λ + +λ


.       (7) 
By choosing [39] 

, , m k− + − +λ λ λ + λ + ≠ −  for any positive integer k m≤   (8) 
(cf. (102) in [41] or (88) in [42]) we assure that the Jacobi polynomials in question has exactly m 

simple zeros ( ;m)η


λl . It is crucial that the Jacobi indexes do not depend on the polynomial degree, 
in contrast with the general case thoroughly examined by us in [43]. This remarkable feature of the 
CSLE under consideration is the direct consequence of the fact that the density function (2) has only 
simple poles in the finite plane and as a result the ExpDiffs for the CSLE poles at ±1 become energy-
independent [4]. Consequently the polynomial components of the q-RSs (6) satisfy the eigenequation 

( , ) ( , ) ( , )2( 1) P ( ) 2P ( )P ( )m m1
•• •

+ − + − + −λ λ λ λ λ λη − η + η η +
       

       
( , )( ) ( ) P ( ) 00 m m + −λ λ ε − ε η = 

 

λ λ
  (9) 

with dot standing for the derivative with respect to η. The vital point is that the linear coefficient 
function is independent of the polynomial degree, in the sharp contrast with the general case [43]. 
Note that the derivation of this equation was essentially based on the presumption that the quasi-
rational function 

1 1( (2 21) 1)
0[ ; ]: |1 | |1 |− +λ + λ +
φ η = +η −η



λ       (10) 
satisfies the first-order differential equation: 

( , )
1

00 2
P ( )

[ ; ] [ ; ]
1

• + −λ λ η
φ η = φ η

η −

 

λ λ
.       (11) 

In other words, 
( , )
1

0 2
P ( )

[ ; ]
1

+ −λ λ η
φ η =

η −



λld
,        (12) 

where the symbolic expression ld f[η] denotes the logarithmic derivative of the function f[η]. Re-
writing the CSLE 
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2
o ( ) ( )o 0 o 02

d I ; ] [ ] [ ; ] 0
d

[
  + η λ + ε η Φ η ε = 
η  
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λ ;λ λρ
   (13) 

in the Riccati form we can represent the RefPf (3) in the generic form 

o 2
0 0 0I ; ] [ ; ] [ ; ] ( ) [ ][

•
η λ = − φ η λ + φ η λ + ε λ η
   

l d ld ρ .    (14) 
If the density function is identically equal to 1 then the presented expression turns into the 

standard supersymmetric representation of the quantum mechanical potential in terms of the 
superpotential represented by the logarithmic derivative of the transformation function (TF) 

0[ ; ]φ η λ


. In next Section we will use this expression to expand the supersymmetric approach to the 
generic CSLE based on the formalism developed at the end of the last century by Rudjak and 
Zakhariev [24]. 

3. Rational Rudjak-Zakhariev Transforms of JRef CSLE 

Each of these q-RSs can be used as the TF for the RRZT of the CSLE (1) defined via the 
requirement [26] that the quasi-rational function 

( , )
m 0 m

m

1* [ ; ] * [ ; ] / P ( )
[ ] [ ; ]

+ −λ λ

◊
φ η λ = = φ η λ η

η φ η λ

 



ρ
  (15) 

is the solution of the transformed CSLE 
2

o
2

d I ; | m] | | [ ] [ ; | m] 0
d

[
  + η λ + ε η Φ η ε = 
η  

 

;λρ
    (16) 

at the energy (7): 
2

o ( )m m2
d I ; | m] [ ] * [ ; ] 0.
d

[
  + η λ + ε η φ η λ = 
η  

  

λ ρ
   (17) 

Representing the latter CSLE in the Riccati form: 

o 2
m m mI ; | m] * [ ; ] * [ ; ] ( ) [ ][

•

+η λ = − φ η λ − φ η λ − ε λ η
   

l d ld ρ
  (18) 

and taking into account that the quasi-rational function 

0 0* [ ; ] [ ; 1]φ η λ = φ η −λ −
  

         (19) 
satisfies the Riccati equation (14) with ±λ  increased by 1: 

2 o
0 0 0[ ; 1] [ ; 1] ( 1) [ ] I ; 1][

•

+− φ η −λ − − φ η −λ − − ε −λ − η = η λ +
       

l d ld ρ
, (20) 

one finds 

( , ) ( , )o o 2
m mI [ ; |m] I [ ; ] P ( ) P ( )

•
+ − + −λ λ λ λη = η + η − η +

  

ld ldλ λ + 1  (21) 
( , )

0 m m 02 * [ ; ] P ( ) ( ) ( 1) [ ].+ −
+

λ λ  φ η λ η − ε λ − ε −λ − η 
   

ld ld ρ
 

For m=1 the Jacobi polynomial in question takes form 
( , ) 1P ( ) ( 2)[ ( )]11 2
+ −λ λ η ≡ λ + λ + η−η λ− +



     (22) 
with 

( )1 2
λ − λ− +η λ =

λ + λ ++ −



         (23) 
and therefore 
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2
1 12

1

1[ ( )] [ ( )]
[ ( )]

•
η−η λ = − = − η−η λ

η−η λ

 



ld ld
.    (24) 

Taking into account that 

1 0( ) ( 1) 2− +ε λ − ε −λ − = λ + λ +
  

,       (25) 
( 1, 1) ( , )
1 1P ( ) P ( )+ − + −−λ − −λ − λ λη = − η +η

,     (26) 
and decomposing the first-degree Jacobi polynomial on the right can via (22), the RefPF of the RCSLE 
(7) can be represented for m=1 as 

o o
2 2

1 1

2 2I [ ; |1] I [ ;| |] .
[ ( )] ( 1)[ ( )]

η
η = η − +

η−η λ η − η−η λ

  

 

λ λ + 1
 (27) 

Examination of the RefPF (27) reveals that [11] we deal with the canonical form of the Heun 
equation [4] and therefore we refer to the RCSLE (16) as ‘restricted Heun-reference’ (restr-HRef) 
keeping in mind that the position of the third pole depends on the exponent parameters of the Heun 
equation. 

4. Form-Invariance of restr-HRef CSLE Under Two Sequential RZTs 

Let us apply the RRZT with the TF 1[ ; ]φ η λ


 to the JRef CSLE (1), setting 

* : | 1|o;λ = λ +± ±           (28) 
and 

: ( 1),σ = λ +± ±sgn           (29) 
i.e., 

* 1.oλ = σ× λ −
  



          (30) 
Substituting (30) into (23) then gives 

* *o; o;( * 1)1 o * *o; o;

σ λ −σ λ− − + +η σ× λ − = =
σ λ + σ λ+ + − −

 



      (31) 

  
3

o; o;
o

o; o;

* *
e (* ):=

* *
+ −σ

− +

σ λ − λ
λ

σ λ + λ



,     (32)  
where 

1 .
1

 λ +−σ =  λ ++ 
sgn

          (33) 
Making use of the conventional parameter ( , )β αb  defined via (A37) in Appendix C we can 

alternatively represent the position (32) of the third pole of the RefPF (27) as 

3
1

o oe (* ) =1/ (* )σ σλ λ
 

b .         (34) 

By applying the RRZT with the TF 1[ ; ]φ η λ


 to the JRef CSLE (1) we come to the two RCSLEs 

2
o

o o2
d I [ ; | ] | | [ ] [ ; ; | ] 0 ( )
d

  + η λ σ + ε η Φ η λ ε σ = σ = ± 
η  

 

* *ρ
 (35)  

with the RefPFs 

3 3

o o
o o 2 2

o o

2 2I [ ; | ] : I [ ; ] ( ).
[ e (* )] ( 1)[ e (* )]σ σ

η
η λ σ = η λ − + σ = ±

η− λ η − η− λ

 

 

* *     

           (36) 
It directly follows from (32) that 
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3 o1 e (* ) 1+− λ < +


<           (37) 
and 

3 oe (* ) | 1− λ >


|           (38) 
      respectively. 

If the third pole lies outside the interval [-1,+1], we also choose 

o; o;+ −λ > λ* *  ( )σ = −         (39) 

thereby assuring that it lies on the negative semi-axis: 

3 oe (* ) 1.− λ < −


          (40) 

By defining λ


 via (30) we find that the two sequential RRZTs with the TFs 
1

21 1[ ; ] [ ] / [ ; ]−
φ η λ = η φ η λ

 

* ρ        (41) 
and 1[ ; ]φ η −λ



 convert the restr-HRef CSLE with the RefPF (27) into another restr-HRef CSLE with 
the RefPF 

o o
2 2

1 1

2 2I [ ;|1 |,|1 |] I [ ; ] .
[ ( )] ( 1)[ ( )]

υ − +
η

η − − = η − − +
η−η −λ η − η−η −λ

 

 

λ λ λ + 1
 (42) 

It then directly follows from the analysis presented in Appendix A that this is also true for the 
second-order Darboux-Crum transformation (DCT) with the seed functions (41) and 

1 1 1[ ; |1; ,1] : [ ; ]W{ [ ; ], [ ; ]}.φ η λ −− = φ η λ φ η λ φ η −λ
   

*     (43) 
We say that the restr-HRef CSLE (35) is double-step form-invariant iff the DCT in question keeps 

the position of the third pole within the intervals (37) or (38) respectively. In other words, the 
exponents (30) of the given TF must obey the constraint 

1 .
1
 − λ− = σ − λ+ 

sgn
          (44) 

Theorem 1: The restr-HRef CSLE is double-step form-invariant for any value of the (positive by definition) 
ExpDiff * o;λ −  if σ = ++  or for * 2,o;λ >−  if σ = −− . 

Proof of Theorem 1. Representing (30) as 

1 2 * , 1 =2 * ,o; o;− λ = − σ λ − λ −σ λ− − − + + + ,     (45) 
let us start with the case ,σ = − σ = σ = ±− +  

1 2 * , 1 =2+ * .o; o;− λ = + λ − λ σ λ− − + + .      (46) 
Note that the parameters (46) are both positive if σ = +  and have opposite signs if σ = −  and 

* 2o;λ >+ (or, to be more precise, * * 2o; o;λ > λ >− + ) . 

On other hand, examination of the parameters 
1 2 * , 1 = 2+* foro; o;− λ = − λ − λ λ σ = ±− − + +      (47) 

reveals that they have opposite signs if * 2o;λ >−  regardless of the value of the second ExpDiff 

* o;λ + , which completes the proof. □ 

Remark: The restr-HRef CSLE preserves its form under the DCTs specified by both combinations 
,σ = ± σ =+ − 

of the exponents (30) if 2 * *o; o;< λ < λ+ − or if the parameters* 2o;λ −±  have the 

same sign for σ = + . 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 November 2024 doi:10.20944/preprints202411.1232.v1

https://doi.org/10.20944/preprints202411.1232.v1


 8 

 

Note that for all the anomalous cases: 
i) =* 1, * 1 ( , , * 2 )o; o; o;λ λ − λ = − λ − σ = − σ = + λ <+ + − − − + + , 

ii) = * 1, * 1 ( , * * 2)o; o; o; o;λ − λ − λ = λ − σ = ± λ < λ <+ + − − + −

, 

iii) =* 1, * 1 ( ,* 2 * )o; o; o; o;λ λ − λ = λ − σ =σ = + λ < < λ+ + − − − + + −  

the ExpDiff for the pole of the JRef CSLE (1) at +1 lies within the limit-circle (LC) range (0 1)o;< λ <+
and therefore this must be also true for the ExpDiff |1 |o;− λ + for the pole of the restr-HRef CSLE 

obtained from (35) by the corresponding DCT. By analogy with the conclusion made by us in [1] for 
the radial JRef potential and its linear-tangent-polynomial (LTP) counter-part on the line, we assert 
that the conventional rules of the quantum-mechanics must fail for all the Liouville potentials 
associated with the listed anomalous cases. We shall come back to this issue in Section 8. 

5. Pseudo-Wronskian Representation of X1-Jacobi DPSs 

Let us now apply the RRZT with the TF 1[ ; ]φ η


λ  to another q-RS j[ ; ]′φ η


λ with 

the eigenvalue j( )′ε


λ  in the four quadrants ′/
σ  of the vector parameter 

o′ ′× ≡ ×/ /
  

 λ := σ λ σ λ  (| | | | 0)′λ = λ >± ± .      (48) 
The corresponding rational Rudjak-Zakharov transform ( RRZ )T is given by the generic formula 

[24] 

1 j
0

1

W [ ; ], [ ; ]
[ ; |1; j] : * [ ; ]

( )
{ }′φ η φ η

φ η λ = φ η/
η−η λ

 

 





λ λ
σ, λ

,    (49) 

Theorem 2. The restr-HRef CSLE (35) has four infinite sequences of q-RSs with the polyno-mial components 
formed by pseudo-Wronskians of two Jacobi polynomials. 

Proof of Theorem 2. Representing the Wronskian in the right-hand side of (49) as 

1 ( 1)21 jW [ ; ], [ ; ] |1 |{ } ℵ

ℵ

ℵ
+λ

=±
′φ η φ η = − η ×∏

 

λ λ
    (50) 

1 ( )2 ( , )
1 jW ( ),|1 | P ( ){ },ℵ ℵℵ

− + −′λ λ ′ ′λ λη−η λ − η η


 
taking into account that 

( )1 1
2 2 1 1( 1 1) ( , )

m
d|1 | |1 | P ( )
d

[ ]ℵ ℵℵ

ℵ

ℵ ℵℵ + −−σ λσ − λ / λ λ/

=
− η − η η =∏

η
     

 

1 ( )2
1 1

2 2

( 1, 1)
,1 m

1 1d ( ) ( 1) P ( ),
ℵ

ℵ
σ/ℵ + + − −

+ −

λ +σ λ +σ/ /
/ −σ −σ/ /=

−
η− η∏





σ λ
  (51) 

where, according to (91) in [44] with ,+ −α = β =λ λ , and n=1, 

,1

1
2

1 if ,

1 if ,
d ( )

4 if ,

( 2) if ,

−

/

+ −

λ + = −+ /

 λ + =+−/+= 

=−−/

 λ + λ + = ++/













σ

σ

σ
λ

σ

σ
       (52) 

we introduce the pseudo-Wronskian polynomials via the relations: 
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1 1
2 21, j 1 [ ; ] :

+ −+ −σ −σ/ /
′η =/


λ | σP
        (53) 

( )1
2 1 ( , ) ( , )

1 j

( 1, 1) ( , )
,1 1 j

( 1) P ( ) P ( )

d ( )P ( ) P ( )

ℵ

ℵ

•

ℵ + + − − + −

+ + + − − − + −

−σ ′ ′ ′ ′/ σ λ σ λ λ λ/ /

=

′ ′ ′ ′σ λ +σ σ λ +σ λ λ/ / / /
/

η− η η∏

′× η η/









σ σ λ

 
and then we re-write the polynomial component of the Wronskian (50) as follows 

1 j 0 0W [ ; ], [ ; ] [ ; ] [ ; ]{ }′ ′φ η φ η = φ η σ× φ η ×/
   

λ λ λ +1− 1 λ
 

      
1 1

2 21, j 1 [ ; ].
+ −+ −σ −σ/ /

′η /


λ | σP
   (54) 

Keeping in mind (41), the solution (49) can be then represented in the following quasi-rational 
form: 

1 1
2 2

0
j 1

1

[ ; ( 1)][ ; |1; j] [ ; 1; , j],
( ) + −+ −σ −σ/ /

φ η σ× λ +/φ η λ ∝ η/ /
η−η λ

 



 

 

σ, λ | σP
  (55) 

which completes the proof of the Theorem 2.□ 
Comparing (54) with (A18) for /

σ = − −  and m=1, one finds that 

1, j 2 j+2[ ; ] [ ; 1 j]+ ′ ′ ′η = η −
  

P Dλ | − − λ , ;λ ,
.      (56) 

Evaluating polynomials (A20) at 1 gives 
( , ) ( , )1 mm 1 2S ( 1) [( 1)( 1 1) ( 1)( 1 1)]P ( 1)α β α β
+ = α + + + β+ −   

   (57) 
and therefore 

( , ) ( , )
1 jj+2 [ 1; 1 j] 2 P ( 1)P ( 1)+ − + −′ ′ ′ ′−λ −λ λ λ′ ′ ′− = λ



 

  λ , ;λ ,D
 . (58) 

We thus proved that the PD (56) remains finite at 1  provided , 1+ −′ ′λ λ ≠  and 
the j-th degree polynomial does not vanish at one of the poles. Out of the four PD sequences 
introduced by us in [12] to generate the Xm-Jacobi DPSs it was the only sequence formed by the 
polynomials remaining finite at ±1 and therefore spanning the DPS which was referred by us for this 
reason as the Xm-Jacobi DPS of series D. 

Representing the pseudo-Wronskians (53) for ±/


σ = as 

( , ) ( , )
1, j 1 1 j[ ; ] ( 1) P ( ) P ( )

•
+ − + −′ ′ ′ ′±λ λ λ λ

+ ′η ± = η± η η



λ |P
   (59) 

( 1, 1) ( , )
1 j( 1)P ( )P ( )+ − + −′ ′ ′ ′±λ ± λ λ λ′+ λ − η η 



 
we come to the polynomials (A25) in Appendix B, with m set to 1. As demonstrated in Appendix C, 
the sequences (59) simply represent two alternative forms of the X1-Jacobi DPS of series J. 

For /
σ = + + the pseudo-Wronskian (53) turns into the polynomial Wronskian 

( , )11, j 1 j2[ ; ] ( 2)W{ ( ),P ( )}+ −′ ′λ λ
+ −′ ′ ′ ′η = λ + λ + η−η λ η

 

P λ | + +
.  (60) 

Since each Wronskian in the sequence can be converted into the PD via (A58) in Appendix D, 
this polynomial sequence simply represents the alternative form of the aforementioned X1-Jacobi DPS 
of series D. 

Let us now draw reader’s attention to the fact that the absolute values of the vector parameters 

* : ( 1) 1′λ = σ× λ + ≡ λ +σ×/ /
    

 

,        (61) 
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specifying the power exponents of the q-RS (55) represent the ExpDiffs 

o;| 1 | * : | 1 |± ± ± ±′λ + σ = λ = λ +/          
for the poles of the RCSLE (35) at ±1, and therefore each pseudo-Wronskian polynomial remains finite 
at both poles (at least if 1±λ + are not negative integers with the absolute values smaller the 
polynomial degree). 

Setting 
* : (* * )σ = + −λ λsgn          (62) 

and taking into account (32), one finds 
*
3 oe (* ) 1/ (* ).σ λ = λ

 

b          (63) 
At this point it is convenient to explicitly re-write the CSLEs (35) as the canonical forms of the 

Heun equations 
2

H2
d I [ ;* ] | | [ ] [ ;* ; ] 0,
d

  + η λ + ε η Φ η λ ε = 
η  

 

ρ
     (64)  

where we set 
o

H o*I [ ;* ] : I [ ;* ]ση λ = η λ
 

         (65) 

* *
o

1 2 2 1
2 2I [ ;* ]

[ (* )] ( 1)[ (* )]σ σ
η

= η λ − +
η− λ η − η− λ



 

b b . (66) 
Note that 

(* ) ( * )λ = − λ
 

b b           (67) 
and therefore the rest-Heun equation (64) is invariant under the simultaneous change of the signs of 
both parameters * ±λ : 

H HI [ ; * ] I [ ;* ]η − λ = η λ
 

.         (68) 
Since the polynomial sequences (58) and (59) start from the first-degree polynomial while the 

polynomial sequence (60) lacks a first-degree polynomial, all the mentioned polynomial sequences 
violate the prerequisites of the Bochner theorem. We thus arrived to one of the most important results 
of this paper. 

Theorem 3. The polynomial sequences (58), (59), and (60) satisfy the Bochner-type ODEs with polynomial 
coefficients and therefore form the X-DPSs which either starts from a first-degree polynomial or respectively 
lacks a polynomial of this degree. 

Proof of Theorem 3. First note that the function (55), 

0[ ;* ][ ; * 1 |1; j]
(* )

φ η λ
φ η σ× λ − ∝ ×/ /

η− λ



 

 



b∗σ
σ,

      (69) 

1 1
2 2j 1 [ ; * 1 1; , j],

+ −+ −σ −σ/ / η σ× λ −/ /
 

 P | σ
 

is the solution of the ODE 
2

H j2
d I [ ;* ] (* 1) [ ] [ ; * 1 |1; j] 0,
d

  + η λ +ε λ −σ× η φ η σ× λ − =/ / / 
η  

    

  ρ σ,

 (70) 

where the vector parameter ′λ


, specifying the corresponding eigenvalue, was replaced for 

* 1λ −σ×/
 

 , based on the definition (61) of *λ


, Taking into account that, according to (27), 
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*

*

1 2
0

H2 10

[ ;* ](* ) d I [ ;* ]
[ ;* ] d (* )

σ

σ
φ ηη− λ

= − η λ −
φ η η η− λ










b
b

λ
λ

     (71) 

*

(* 1,* 1)
01

2 1 2
2P ( ) (* )

( 1)[ (* )] 1

+ −λ − λ −

σ
η ε λ

+
η − η− λ η −





b , 
we come to the Bochner-type ODE with the polynomial coefficients: 

1 j[ ;* ] C [ ;* ; (* ; ) ]{ }η + η ∆ε ×/D λ λ λ σ
  



       (72) 

1 1
2 2j 1 [ ; * 1 1; , j] 0,

+ −+ −σ −σ/ / η σ× λ − =/ /
 

 P | σ
 

where the coefficient function of the first derivative in the second-order differential expression 

*
2

2 1
22

d d[ ;* ] : ( 1)[ (* )] 2B [ ;* ]
dd

ση = η − η− λ + η
ηη

D
  

bλ λ
   (73) 

represented by the second-degree polynomial 
* (* ,* )1 2

2 1B [ ;* ] : [ (* )]P ( ) 1+ −λ λση = η− λ η + −η
 

bλ
.    (74) 

As for the free term of the ODE (72), it constitutes the first-degree polynomial linear in the energy
  

*(* 1,* 1) 1
1 1C [ ;* ; ] 2P ( ) [ (* )],+ −λ − λ − ση ε = − η − ε η− λ

 

bλ
   (75)  

with 

j j 0(* ; ) : (* ) (* )∆ε = ε − × − ε/ /
  

 λ σ λ σ 1 λ
.      (76) 

The important common feature of the ODEs (72) is that the leading coefficient polynomial of 
degree 3 has only simple zeros. This is the direct consequence of the fact that that each exponent of 
the quasi-rational function (69) coincides with one of the ChExps for the corresponding pole. 

Introducing the parameters ( ) / 2= β −αa , b, and c = b +1/ a via (5a) and (5b) in [14], with 

* , *+ −α ≡ λ β ≡ λ , (* ), n j 1,≡ λ = +


b b * ,σ = + ±/


σ =     (77) 
here, one finds 

( )
1P ( ) ( 1) ( 1)α β η = η− = η− +ηa c a b,

      (78) 
and 

( 1 1)
1P ( ) ( 1).α− β− η = η−, a b

        (79) 
The corresponding polynomial (74) takes form 

( , )
2 11B [ ; , ] P ( )C [ ; , ;0]α βη β α = η η β α



,      (80) 
with 

( , ) 1P ( ) ( c)1 2
α β η ≡ − η−



        (81) 
and 

1C [ ; , ;0] ( )[1 ( , ) ]η β α = β−α − β α ηb .       (82) 
(cf. (2.1) in [45]). Note that 

n)n 1( , ; , ) (n 1)( β +−∆ε β α ± = − α +       (83) 
and therefore the energy shift (83) vanishes for the first-degree X1-Jacobi polynomial (81), as expected. 

The elementary change of variable 2z 1η = − converts the Bochner-type ODE (72) to the Heun 
equations 
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2
2 n n n

2
B [z;* (* ) * ] (* ) * )z q * )d d

dzz(z 1)[z * (* ) ] z(z 1)[z * (* ) ]dz

( ( α β − /+ + × 
− − − − 

    



 

a
a a

λ ; λ λ λ λ;σ
λ λ

 (84) 

n 1 1[ ; * 1 1; , n 1 ] 0,2 2+ −η σ× λ − − +σ +σ =/ / / /
 

 P | σ
 

where 
* 11 [2* (* ) : (* ) 1],σ= λ +

 

a bλ
        (85) 
(* ,* )

2 1B [z;* * ] : 2(z * ) P (2z 1) 4z(z 1),+ −λ λ= − − − −


a a; λ
   (86) 

and 

n n(* ) * ) n(* * n 1)( − +α β = − + + −
 

λ λ λ λ .      (87) 
Combining the latter formula with 

n n(* ) * ) * * 1( + −α +β = λ + λ −
 

λ λ ,       (88) 
gives 

n n(* ) n, * ) * * n 1( + −α ≡ − β = λ + λ + −
 

λ λ .     (89) 
Evaluating the leading coefficient of the second-degree polynomial (86) confirms that 

n n 2;2(* ) ) n B ( ) n 1(* [ (* * * ) ]α β = − + −
   

aλ λ λ ; λ
,     (90) 

in agreement with the general properties (1.1) and (1.2) of the Heine polynomials in [50].  
The accessory parameter for the Heun equation (84) is given by the elementary formula 

1n 1 n2q * ) C [ 1;* ; (* ) ]( = − − ∆ε/ /
  

 λ;σ λ λ;σ
.      (91) 

Coming back to the particular case (77) and evaluating the polynomial (75) at η=-1, one finds 

1C [ 1;* ;0] 2* −− =


λ λ .         (92)  
and therefore 

1C [ 1;* ; ] 2[* * (* ) ]−− ε = λ + ε
 

aλ λ .       (93) 
Taking into account that the energy shift (83) vanishes for n=1, we can re-write (91) as 

n 1q , ) q ) [(n 1)(* * n) * (* )](* (* a− +± = − − + +
  

λ; λ λ λ λ .   (94) 
with 

1q ) * .(* −= −


λ λ           (95) 
Expressing the polynomial (82) in terms of z: 

1C [2z 1;* ;0] 2(* )[ (* )z * (* )]− +− = − λ λ −
  

b aλ −∗ λ λ     (96)  
with 

*
(* )

* *
*a −

− +

λ
=

λ − λ



λ
,         (97) 

one can verify that 
1 1 1 1 12 C [2z 1;* ;0] (* ) )z q )(* (*− = α β −

   

λ λ λ λ
,    (98) 

as expected. 
Comparing (89) with the parameters α and β defined via (6.5) in [46] we assert that the latter 

formulas specify the Heun equation for the polynomials of degree k+1 (not k as stated in [46]), with 
k standing for the integer j here. Re-writing (94) as 

nq , ) * (* )[* * (n 1)(* * n)](* a + − − +± = − − − + +
 

λ; λ λ λ λ λ ,  (99) 
and making use of (87), coupled with (88), we can represent the last term in the brackets in the right-
hand side of (99) as 
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n n n n(n 1)( n) ( ) ) ( ) ) 1( (− +− − + + = α β +α +β +
   

λ λ λ λ λ λ ,  (100) 
which gives 

nq , ) *(*
* *

−

+ −
± = − ×

−





λ
λ;

λ λ        (101) 

n n n n[ ( ) ) ( ) ) 1]* * * (* * (*+ −− +α β +α +β +
   

λ λ λ λ λ λ . 
Setting 

* 1−γ = λ + , n n* * (* ) * ) 2 3(+ −λ − λ = α +β − γ +
 

λ λ    (102) 
turns (101) into the formula listed for the accessory parameter in [46]. 
Alternatively one can re-write the Bochner-type ODE (72) as the eigenvalue problem 

1 1
2 2

* ,* ;1 j j 1(* ; ) [ ; * 1 1; , j] 0+ − + −λ λ + −σ −σ/ /
 − ∆ε η σ× λ − =/ / / T

  

  λ σ | σP
 (103) 

for the exceptional differential operator: 

* *

(* 1,* 1)2
2 2 1

* ,* ;1 2 1 1
2P ( )B [ ; ]d d( ) : ( 1)

dd ( ) ( )

*
* *b b

+ −

+ −

λ − λ −

λ λ σ σ
ηη

η = η − − +
ηη −η −η

T


 

λ

λ λ
   

               (104) 
with the eigenvalues (76). We thus come to the renowned eigenequation [14,45] for the X1-Jacobi 

polynomials (A36): 
( , )n);1 n4(n 1)( P ( ) 0α β+α β − − α +β η = T


, ,     (105) 
though without any constraints on the relative sign of the parameters α and β. It should be 

however stressed that we list these operators only for the proper references and by no means need 
them in our analysis. 

6. Energy Spectrum of ‘Prime’ SLEs Solved Under Dirichlet Boundary Conditions 

Our next step is to formulate the Sturm-Liouville problems for the restr-HRef CSLEs (35) with 
the boundary conditions imposed at the ends of either finite interval (-1,+1) or positive interval (1,∞) 
assuming that the CSLE in question does not have poles inside the given interval. Instead of the 
conventional prerequisite of the spectral theory requiring the eigenfunctions to be normalizable with 
the weight [ ]ηρ we require that the boundary conditions of our choice unambiguously select the 
PFS near each singular endpoint. To achieve this goal, we first convert the given CSLE to its ‘prime’ 
form (p-SLE) selected by the requirement that the characteristic exponents (ChExps) of the two 
Frobenius solutions near the given end differ only by their sign and as a result the DBC pinpoints the 
PFS. 

6.1. X1-Jacobi OPS 

In particular, the rational prime form of the JRef CSLE (1), 

2
o o

d d(1 ) [ ] [ ; ] 0
d d

{ }−η − η + ε Ψ/ η ε =
η η /

 

;λ ;λq
    (106) 

for the finite interval (-1,+1) can be obtained by the gauge transformation 
2

o o[ ; ] 1 [ ; ]Φ η ε = −η Ψ/ η ε
 

;λ ;λ .       (107) 
The PF representing the zero-energy free term has the following generic form [28]: 

o
o o[ ; ] [ ]I [ ; ] [ ]){ },η = η η + η/ / /
 

λ λ Iq p p
      (108) 

with 
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21 1{ [ ]}: [ ] / [ ] [ ]4 2
• ••

η = η η − η/ / / /I p p p p�

       (109) 
and 

2[ ] 1η = −η/p  for ( 1, 1),η∈ − +        (110) 

which gives [51], 
2 2 1(1 ) (1 ){ } −−η = −ηI  .        (111) 

Keeping in mind that 
2 2

o o;
1

(1 ) [ ; ] 0±
η→±

 −η η = λ >  /


lim  λq
      (112) 

we confirm that the ChExps of the Frobenius solutions for the pole at ±1 have the same absolute 
value 1 o;2 ±λ but differ by their sign. The PFS can be thus unambiguously determined by solving 

the p-SLE (106) under the DBCs 

o j o
1

[ ; ( )] 0
η→±

Ψ/ η ε =
 

;λ λlim
.        (113) 

One of the benefits of our approach is that we can take advantage of the powerful spectral 
theorems proven by Gesztesy et al. [29] for solutions of the generic SLEs solved under the DBCs. 

Any eigenfunction of the p-SLE (106) with an eigenvalue j o( )ε


λ  can be represented in the 

form: 
1 1o; o;2 2n o n o[ ; ] (1 ) (1 ) F [ ; ]− +λ λ

ψ η λ = +η −η η λ
 

,    (114) 
where the function oF[ ; ]η λ



 finite at the both endpoints: 

j o
1

0 | F [ ; ] |
η→±

< η λ < ∞


lim
        (115) 

satisfies the ODE 

j o 0 o
o; o

2 ( , )d d2 1( 1) 2P ( ) [ ( ) ( )]1 42 dd
+ − λ λ

 η − + η − ε − ε ×
η η 

 

λ λ     

        j oF [ ; ] 0η λ =


.  (116) 

By converting this ODE to the hypergeometric equation, it can be shown [2] that the sought-for 
eigenfunctions are expressible in terms of the classical Jacobi polynomials with the positive indexes 

o;±λ as follows: 
1 1 o; o;o; o;2 2 ( , )

j o j[ ; ] (1 ) (1 ) P ( )+ −− + λ λλ λ
ψ η λ = +η −η η



   (117) 
for ( 1, 1)η∈ − + . 
The eigenfunctions (117) are normalizable: 

1 2
oj

1
d [ ; ]

+

−
ηψ η λ < ∞∫ /



         (118) 
and mutually orthogonal: 

1
j o j o

1
d [ ; ] [ ; ] 0 ( j j ),

+
′

−
′ηψ η λ ψ η λ = ≠∫ / /

 

      (119) 
which brings us to the conventional orthogonality relations for the classical Jacobi polynomials 
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o; o; o; o;o; o;
1 ( , ) ( , )

j j
1
d (1 ) (1 ) P ( )P ( ) 0+ − + −− +

+ λ λ λ λλ λ
′

−
η +η −η η η =∫

 (120) 
( j j ).′≠  

It is worth mentioning that our approach does not allow one to formulate the spectral problem 
for the Jacobi differential equation if -1 < α, β ≤ 0 [14,41,44,48]. As discussed below, this limitation 
might affect the analysis of the transformed solutions in the LC region. 

Similarly the restr-HRef CSLE (35) for σ = - can be converted to its prime form 
 

2
o o

d d(1 ) [ ;* | ] [ * ; | ] 0
d d

{ }−η − η λ − + ε Ψ/ η ε − =
η η /

 

; λq
   (121) 

for ( 1, 1),η∈ − +  
where 

o2 2 1
o o[ ;* | ] ( 1) I [ ;* | ] (1 ) for ( 1, 1).−η λ − = η − η λ − + −η η∈ − +/
 q

  (122) 
Keeping in mind that 

2 2
o o;

1
(1 ) [ ;* | ] * 0lim  ±

η→±
 −η η λ − = λ >  /

q
     (123) 

we can again confirm that the ChExps of the Frobenius solutions for the pole at ±1 have 
the same absolute value 1 * o;2 ±λ while differing by their sign and therefore one can 

determine the PFS by solving the p-SLE (121) under the DBCs 

[ * * | ] 0o n o
1

; ( )lim Ψ/ η − =
η→±

ε
 

; λ λ
.        (124) 

Returning to the special case (77), we choose 

o′λ = λ
 

            (125) 
and 

* 1± ±λ = λ −           (126) 
under the restriction 

o; o; 1+ −λ > λ >           (127) 

requiring both singular endpoints of the JRef CSLE to be LP. The vector parameters (61) are 
defined via the relations: 

o; o;* 1 1 * 0λ = λ ± = ±λ ± = λ >
    .      (128) 

It directly follows from (128) that σ = + −  and hence σ = − , as expected 
Converting the solution (69) of the given CSLE to its prime form via the gauge transformation 

2
j o[ ;* | ] 1 [ ;* 1, * 1|1; , j],− +ψ η λ − = −η φ η λ − − λ − +−/



   (129) 
one can directly verify that the TRRZ of the jth eigenfunction of the p-SLE (106), 

o; o;(* ,* )0 o
j o j 1

o

[ ;* ][ ;* | ] P ( )
(* )b

+ −λ λ
+

ψ η/ψ η λ − = η/ η− λ



 



λ

 for [ 1, 1]η∈ − + , (130) 
satisfies the DBCs at the ends of the specified interval and therefore represents an ei- 

genfunction of the transformed p-SLE with the eigenvalue j o( )ε


λ . Again the eigenfunctions 

are squarely integrable: 
1 2

oj
1

d [ ; | ]
+

−
ηψ η λ − < ∞∫ /



*
        (131) 

and mutually orthogonal: 
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1
j o j o

1
d [ ; | ] [ ; | ] 0 ( j j ),

+
′

−
′ηψ η λ − ψ η λ − = ≠∫ / /

 

* *
     (132) 

which brings us to the renowned orthogonality relations [14] for the X1-Jacobi OPS 
1 ( , ) ( , )

, n n
1
d [ ]P ( )P ( ) 0

+ α β α β
α β ′

−
ηω η η η =∫

 



 (α,β >0; n ≠ n′)    (133) 

with the weight 

, 2
(1 ) (1 )[ ]
| ( , ) |

α β
α β

−η +η
ω η =

η− α β



b
.        (134)   

The sequence starts from the nodeless eigenfunction 0 o[ ;* | ]ψ η λ −/


 with the first-degree 
polynomial (81) having a zero inside the infinite interval (-∞,-1): 

* * 2o; o;(* ) : 1o * *o; o;

λ + λ +− +λ = − < −
λ − λ+ −



c
       (135) 

under the constraint (39), which implies the Dirichlet problem under consideration may not have 
solutions at energies smaller than 0 o( )ε



λ . It directly follows from Proposition 5.1 in [14] that the 

X1-Jacobi polynomial of degree n has exactly n-1 zeros in (-1,+1) 
and therefore no solution may exist between two sequential eigenvalues k 1 o( )−ε



λ and 

k o( )ε


λ . Since the given sequence of the eigenvalues is unbounded from above, the 
q-RSs (130) constitute the complete set of the eigenfunctions for the given Dirichlet problem. 
Note that the symplectic form for two eigenfunctions [52], 

j o j o[ ;* | ], [ ;* | ] :′ ψ η λ − ψ η λ − =/ / 
 

       (136) 

{ }2
j o j o(1 )W [ ;* | ], [ ;* | ]{ ′− η ψ η λ − ψ η λ −/ /

 

 for | | 1η <  
vanishes at the both singular ends ±1 and therefore it must vanish for any two eigenfunctions of 

the generic SLE 

o o j o o oj
d d[ ;* ] [ ;* | ] ( ) [ ] [ ;* | ] 0
d d

{ }w− η λ + η λ − − ε η ψ η λ − =
η η /

    

λ ;λ pp pp q
 

             (137) 
     with the canonical form (35), i.e., iff 

2
o o[ ] / [ ;* ] 1 0η η λ ≡ −η >
 

w ;λp p
       (138) 

and 
o

o o o o[ ;* | ] [ ;* ] I [ ;* | ] [ ;* ]{ }η λ − = − η λ η λ − + η λ/
   p Iq p p

.  (139) 
In particular, Everitt [47] chose 

2
o , ,[ ;* ] p [ ] (1 ) [ ]α β α βη λ = η = −η ω η


 p
      (140) 

which brought him to the boundary conditions 

,p [ ]α β η

W (* ,* ) (* ,* )o; o; o; o;
n1

1
P ( ),P ( ) 0{ }λ λ λ λ+ − + −

η=±
η η =

    (141) 

proven in his Remark 3.1iii. Imposing the Dirichlet boundary conditions (124) on the solutions 
of the p-SLE (121) thus presents the alternative way to obey these boundary conditions for Case 1 in 
[47]. Though his Case 2 (-1 < α,β < 0) is not covered by the technique developed here, the crucial 
advantage of our approach is that, as discussed in subsection 6.2, it can be easily extended to the 
infinite interval (1,∞) despite the fact the EOPs infinitely grow at the upper endpoint. 
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In Section 4 we ran into the anomalous RRZTs which interconvert the LC regions for the singular 
endpoints of the JRef CSLE (1) and restr-HRef CSLE (35). If both singular endpoints are LC then the

TRRZ of the eigenfunction (117) has the form (129), with both Jacobi indexes lying between -1 and 
+1. While these q-RSs are mutually orthogonal, they do not obey the DBCs (124) and therefore do not 
represent the eigenfunctions of the p-SLE (121). As a result the orthogonality of these solutions cannot 
be justified within this framework. 

Before concluding the discussion of the X1-Jacobi OPS, let us note that the symplectic form 

preserves its zero value if the parameters o*λ


of the prime SLE (121) are extended to the complex 
field under the constraint o;* 0±λ >Re . Since the corresponding orthogonality weight (134) is 

complex, we refer to the corresponding complex polynomials in a real arguments as being ‘quasi-
orthogonal’. As discussed in more details in Section 8, the CSLE (35) may have the third pole on real 
axis iff the arguments of both ExpDiffs o;* ±λ coincide and the third pole always lies outside the real 

interval [-1,+1] in this case. 
The quasi-orthogonality of Jacobi polynomials with complex indexes with real parts larger than 

-1 was proven in the monograph [40]. By extending (141) to the complex field one can also prove the 
quasi-orthogonality of the X1-Jacobi polynomials with complex indexes under the extended 
constraint * 1±λ > −Re . But again the crucial advantage of our approach is that it can be easily 
extended to the infinite interval (1,∞) despite the fact that the EOPs infinitely grow at the upper 
endpoint. 

6.2. Finite Orthogonal Subsequences of X1-Jacobi DPS 

We finally switch our discussion to the subject which has got a very little attention, compared 
with the X1-Jacobi OPS sketched above. Namely, our next step is to formulate the Sturm-Liouville 
problem on the infinite interval [1,∞) first for the JRef CSLE (1) and then for the restr-HRef CSLEs 
(35), taking advantage of the fact that the extraneous pole of the latter CSLE lies outside the cited 
interval in both cases υ = ±, provided that the ExpDiffs for the poles at ±1 are restrained by the 
condition (33) for υ = -. 

The rational prime form of the JRef CSLE on the interval [1,∞) is obtained by choosing the leading 
coefficient to be the first-degree polynomial 

[ ] 1η = η−/p  for [1, )η∈ ∞ ,        (142) 

which brings us to the p-SLE [51] 

o j o o j o
d d( 1) [ ; ] ( ) [ ] [ ;* ] 0
d d

{ }w− η− + η + ε η ψ η λ =/ /η η /
   



λ λ ;λq
 ( 1)η >  (143) 

with the zero-energy free term  
o

o o
1[ ; ] ( 1)I [ ; ] ( 1)

4( 1)
η = − η− η + η >

η−/
 

λ λq
    (144)  

and the positive weight 
1 1o 2[ ] (1 ) ( 1).w −η = +η < η >/



;λ
       (145) 

Taking into account that 
2

o o;
1

1( 1) [ ; ] 04 +
η→ +

 η− η = λ > /


lim  λq
      (146) 

we confirm that the ChExps of the Frobenius solutions for the pole at +1 have the same absolute 
value 1

2 o;+λ while differing by their sign. In contrast to the poles in the finite plane, the ExpDiff 

for the pole of the JRef CSLE (1) at infinity turns out to be energy-dependent. Keeping in mind that 
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o( 1) [ ; ] 0
η→∞

 η− η = /


lim  λq
        (147) 

we find that the ChExps of the Frobenius solutions for the pole at ∞ are real only at negative 
energies and have in this case the same non-zero absolute value 1

2 −ε while 

differing by their sign. We thus confirm that the PFSs of the p-SLE (143) near both singular 
endpoints) are unambiguously determined by the DBCs 

j o j o[1;* ] [ ;* ] 0,
η→∞

ψ λ = ψ η λ =/ /
 

lim
       (148) 

as asserted. 
One can directly verify that the q-RSs 

, j o , j o
1[ ; ] : [ ; ]

1−+ −+ψ η λ = φ η λ/
η−

 

  (1 )≤ η < ∞   (149) 
1 1(1 o; o;o; o;2 2 ( , ))

j(1 ) (1 ) P ( )− + −− + λ −λλ λ
= +η −η η

,  (150) 
associated with the eigenvalues 

21( )j o o; o;4 ( 2 j 1)−+. − +ε = − λ −λ − −




λ
,      (151) 

satisfy the DBCs (148) for 

o; o;10 j ( , 1)2 − +≤ < λ −λ −
        (152) 

and therefore are normalizable with the weight (145): 

2
o o, j

1
d [ ; ] [ ] .w

∞

−+ηψ η λ η < ∞/∫ /
 

;λ
       (153) 

Being the eigensolutions of the Sturm-Liouville problem solved under the DBCs they must be 
also mutually orthogonal [29] with the weight (145): 

, j o , j o o
1

d [ ; ] [ ; ] [ ] 0w
∞

′−+ −+ηψ η λ ψ η λ η =/∫ / /
  

;λ      (154)   

   o; o;1j ( , 1)2for j ,− +< λ −λ −′ <    

which brings us to the conventional orthogonality relations for the R-Jacobi polynomials 

( , ) ( , )
, j j

0
dz [z]J (z)J (z) 0

∞ α β α β
α β ′ω =∫

   

 (j ≠ j′)     (155) 

with the weight 
| |

, [z] : z (z 1)α −β
α βω = +

  

 for [1, )η∈ ∞       (156) 

under constraint α > 0, β < 0, where we adopted Askey’s [31] definition of the R-Jacobi 
polynomials which, as proven by Chen and Srivastava [34], is equivalent to the elementary formula 

( , ) ( , )
n nJ (z) : P (2z 1) for 1, 0α β α β= + α > − β <

  ,     (157) 
with 

1
2z : ( 1)= η−

 .        (158) 
Note that we [11] (see also [53]) changed the symbol R for J to avoid the confusion with R-Routh 

(Romanovski/pseudo-Jacobi [32,33] polynomials denoted in the recent publications [54–58] by the 
same letter ‘R’. More recently Masjed-Jamei [59] (see Table 2 in [60] for the explanatory summary of 
Moret-Bailey’s notation) started using the symbol J for the R-Routh polynomials which is insistent 
with the polynomial names in our classification scheme of the Romanovsi polynomials. On other 
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hand, the symbol ℜ used for the R-Jacobi polynomials in the just appearing paper [61] has been 
reserved by us [62] for the Routh polynomials 

R I R I R I( ) ( , )m
m m(x) : ( ) P ( x)i i ii i−α α α + α α α+ℜ = − .     (159) 

It is worth mentioning that our derivation does not cover the orthogonality region of the R-Jacobi 
polynomials for α varying within the nonpositive interval (-1,0]. This deficiency of our approach 
dealing solely with eigenfunctions of the p-SLEs may result in some limitations on the actual range 
of the indexes of the TRRZ s of the R-Jacobi polynomials discussed below. 

Examination of Masjed-Jamei’s [63] interconnection formula (2.8) between his ‘First Class’ and 
the Jacobi polynomials shows that the M-polynomials in his notation (see also [59,64]) are related to 
the R-Jacobi polynomials (157) via the elementary formula 

(p,q) (q, p q)n
n nM (z) ( 1) n!J (z)− −= −

 

 for q > -1, p > 0.    (160) 
(It is worth to remind the abbreviation ‘OPS’ in [63] stands for the orthogonal polynomial set, 

but not for the infinite ‘orthogonal polynomial system’ – the abbreviation broadly used in the modern 
theory of the exceptional orthogonal polynomials [13,17,22,23,41].) 

Since the prime SLE (143) has the discrete energy spectrum only for o; o; 1,− +λ > λ + the constraint 

(39) reveals the SLE (35) does not have normalizable solutions on the interval [1,∞) if σ = − . Strating 
from this point we focus solely on the quantization of the SLE (35) with .σ = +  

Before coming to the case of our current interest (m=1), let us note that all the zeros of the 
solutions (117) lie between -1 and +1 for any j > 0 and therefore each of them can be used as the TF for 
the RRZT [11]. Each solution represents the PFS near the lower singular end point of the interval [1,∞) 
at the energy 

21( ) ( ) for m 1++,m o o; o; +,0 o4 ( 2m 1) ≥− + −ε = − λ + λ + + < ε
 

 

λ λ
  (161) 

( = +).σ  
In this paper we make use of the very first solution in this infinite sequence of the TFs formed 

by classical Jacobi polynomials. Alternatively we can consider the RRZT with the TF represented by 
the PFS near the infinity at the energy 

21( ) ( ),1 o o; o; +,0 o4 ( 3)−− − + −ε = − λ + λ − < ε
 

 

λ λ
,    (162) 

which leads us to the same CSLE (35) with = +σ . This is the direct manifestation of the form-

invariance of the latter CSLE under the second-order DCT with the seed functions ,1 o* [ ; ]++φ η λ


 

and ,1 o[ ; ]−−φ η λ


. 

To formulate the Sturm-Liouville problem on the infinite interval [1,∞) for the restr-HRef CSLE 
with ,σ = + we convert the latter to its prime form with the leading coefficient function (142) and 
weight (145): 

o j o o j o
d d( 1) [ ;* | ] (* | ) [ ] [ ;* | ] 0,
d d

{ }w− η− + η + − ε + η ψ η λ + =/ /η η /
   



λ λ ;λq
  (163) 

where the zero-energy free term has the generic form  
o

o o
1[ ;* | ] ( 1)I [ ;* | ] for 1

4( 1)
η + = − η− η + + η >

η−/
 

λ λq
  (164)  

Taking into account that 
2

o o;
1

1( 1) [ ;* | ] * 04lim  +
η→

 η− η + = λ > /


λq
     (165) 

and 

o( 1) [ ;* | ] 0lim  
η→∞

 η− η + = /


λq
       (166) 
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we confirm that the ChExps of the Frobenius solutions for the poles at +1 or at infinity 
have the same absolute value 1

2 * o;+λ or respectively 1
2 −ε while differing by their sign in 

both cases. Since the PFS of the p-SLE (163) at the given energy is unambiguously selected by the DBC 
at the corresponding endpoint, the DBCs 

j o j o[1;* | ] [ * | ] 0
η→∞

ψ λ + = ψ η + =/ /
 

lim ; λ
      (167) 

unequivocally determine all the eigenfunctions of the given SLP. 

By applying the RRZT with the TF ,1 o[ ; ]++ψ η λ/


 to the eigenfunction (149), we find that the 

solution of the p-SLE (163) 

0
j 1

[ ;* ][ ; |1; j] [ ; 1; , j],
(* )b +

ψ η λ/′ ′ψ η λ −+ ∝ η λ/ η− λ



 

, | − +P
    (168) 

with ,σ = −+/


       

o; o,′λ = λ λ = λ
 

 

 ,         (169) 

o;* 1λ = λ
 

   (*σ = - ) ,         (170) 

and 

o o* 1λ = λ +
 

           (171) 
vanishes at η =+1 or, in other words, represents the PFS of the p-SLE (163) near the lower 

endpoint. Under the constraint (152) it also satisfies the DBC at infinity and therefore represents an 
eigenfunction of the p-SLE (163). 

Theorem 4: The TRRZ s of the R-Jacobi polynomials form a finite EOP subset of the X-DPS of series J. 

Proof of Theorem 4. One can directly verify that the eigenfunctions constructed in such a way are 
normalizable with the weight (145): 

2
oj

1
d [ ; |1; j] [ ]w

∞
′ηψ η λ −+ η < ∞/∫ /
 

, ;λ
 o; o;1j ( , 1).2for − +< λ −λ −  (172) 

Again, being the eigensolutions of the Sturm-Liouville problem solved under the DBCs they 
must be mutually orthogonal [29] with the same weight on the infinite interval in question: 

j j o
1

d [ ; |1; j] [ ; |1; j] [ ] 0w
∞

′′ ′ηψ η λ −+ ψ η λ −+ η =/∫ / /
  

, , ;λ
   (173) 

o; o;1j ( , 1).2for j − +< λ −λ −′ <
 

combining (170) and (171) we can re-write (168) and the associated eigenvalues as 

o; o;(* , * )0 o; o;
j o; o; j 1o; o;

[ ; * ,* ]
[ ; * ,* | ,1] P ( )

( * ,* )b
+ −λ − λ− +

− + +
− +

ψ η − λ λ/ψ η − λ λ −+ = η/ η− − λ λ



    

            (174) 
and 

21j o j o; o; o; o;4(* | ) : ( , ) (* * 2j 1)− + + −ε −+ = −ε −λ λ = − λ − λ + −




λ
 (175) 

respectively. It then directly follows from (173) that the X1-Jacobi polynomials in question are 
mutually orthogonal with the weight 

* o; o;*
o 2 2

o; o; o; o;

4(1 ) (1 )[ ;* |1, ] :
(* * ) | ( * ,* ) |b

− − +λ λ

− + − +

+ η −η
η −+ =

λ + λ η− − λ λ



λW

, (176) 
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namely, 

o; o; o; o;(* , * ) (* , * )
o n n

1
d [ ;* |1, ]P ( )P ( ) 0+ − + −

∞ λ − λ λ − λ
′η η −+ η η =∫

  

λW

 (177) 

o; o;1n ( , 1),2for 1 n − +< λ −λ −′≤ <
  

which completes the proof of the Theorem 4.□ 
Theorem 4 constitutes one of the most important issues addressed by this analysis. Namely, we 

proved that at least some eigenfunctions of the p-SLE (163) solved under the DBCs are expressible in 
terms of a finite subset of the X1-DPS of type J. Yadav et al. [37] termed this subset simply as ‘X1-
Jacobi polynomials’ (with reference to [14]), without going into any details. The surprising new 
element of their use of this term n is that the indexes of the X1-Jacobi polynomials in question have 
opposite signs and therefore do not belong to the X1-OPS. The cited assertion in [37] stimulated my 
interest in this problem [38] giving rise to the concept of the X-Jacobi DPSs which may contain both 
X-Jacobi OPSs [22,23] and finite EOP sequences formed by rational Darboux-Crum transforms (

TRDC s ) of the R-Jacobi polynomials. 

Proposition 1. The polynomial of degree j+1 in the given EOP sequence has one real zero between -1 and 1 
and j real zeros larger than 1. . 

Proof of Proposition 1: First note that the EOP sequence in question starts from the first-degree 
polynomial (81) having a zero at 

* * 2(* ) :
* *

c λ + λ +− +λ =
λ − λ− +



         (178) 
or, making use of (170) and (171), 

* * 2 2(* 1)o; o; o;( * ,* ) 1 1.o; o; * * * *o; o; o; o;

λ − λ − λ +− + +− λ λ = = − <− + λ + λ λ + λ− + − +
c

 (179) 
It then directly follows from the orthogonality relations (177) that the polynomial of the degree 

j+1 must have at least j zeros larger than 1. 
We still need to prove that no polynomial of degree j+1 may have all the zeros lying within the 

interval (1,∞) or, to be more precise, that each polynomial has a single zero inside the interval (-∞,1). 
The proof directly follows from our observation that the X1-Jacobi polynomial of degree j+1 coincides 
(after being converted to its monic form) with the second polynomial in the sequence of the monic 

Xj+1-Jacobi polynomials with the same indexes. Namely, re-writing (A26), coupled with (A29), as 
( 1, 1)

j, j m j,m j
m 1[ ; ] ( 1) ( m) ( )+ −′ ′λ − −λ +

+ − + + +
+′ ′ ′η −λ λ + = − λ + −η



P , | − P
 (180) 

and making use of (A23) for −+/
σ =  shows that 

( 1, 1)
j,m j

m[ ; ] ( 1) ( m) ( )+ −′ ′λ − −λ +
+ +′ ′η −+ = − λ + −η

 

Pm,j+m λ | P
.  (181) 

The crucial point for our current discussion is that both indexes of the polynomial on the right 
are positive for o; 1+ +′λ = λ >  and 0−′λ < , which implies that the poly- 

nomial (181) in the reflected argument -η belong to the Xj-Jacobi OPS and, in particular, 
( 1, 1)
j,1 j[ ; ] ( 1) ( )+ −′ ′λ − −λ +

+ +′ ′−η −+ = − λ + η
 

P1,j+1 λ | P
.    (182) 

as asserted. It then directly follows from Proposition 5.4 in [42], with m=1, that each polynomial 
(182) under the constraint (152) has one zero between -1 and +1 and therefore the polynomial of order 
j+1 may not have more than j zeros larger than 1. This completes the proof of Proposition 1.□ 
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We are now ready to prove that the q-RSs (174) represent all the possible solutions of the 
Dirichlet problem of our interest. 

Theorem 5: The Dirichlet problem for the p-SLE (163) defined on the infinite positive interval [1,∞) does not 
have any solutions other than the eigenfunctions (174), assuming that the pole of the corresponding CSLE (35) 
at +1 is LP. 

Proof of Theorem 5: Since the corresponding q-RS does not have nodes in [1,∞), the Dirichlet. 

problem in question may not have solutions below the energy 0 o(* | )ε −+




λ . As the direct 
consequence of Proposition 1, we also assert that there may be no nodes between any two sequential 

eigenvalues n 1 o(* | )−ε −+




λ and n o(* | ).ε −+




λ  

However, compared with the proof presented by us for the X1-Jacobi OPS, a certain complication 
comes from the fact that there is only a finite number of the eigenfunctions expressible in terms of X1-
Jacobi polynomials. We thus need also to confirm that no negative eigenvalue exists above the largest 
eigenvalue in the sequence (175) under the constraint (152). 

Suppose that the given Dirichlet problem has a solution n o[ * | ]ψ η +/


; λ  at an energy 

n o(* | )ε +




λ . The RRZT with the TF ,1 o* [ ; ]++φ η λ


then converts the latter eigenfunction into the 

following q-RS of the p-SLE (143): 

o ,1 o ,1 o n
2[ ; ] [ ; ]W / [ ; ], [ | ]o{ 1 * }++ ++ψ η λ = ψ η λ ψ η λ ψ η +/ / / /η −

  



; λ
  (183) 

2 ,1 o n

,1 o

[ ; ] [ | ]1 d o
d[ ; ] 2

*

1

++

++

ψ η λ ψ η +η − / /= −
ηψ η λ/ η −







; λ

.   (184) 
Examination of the sum 

n2
o

[ | ]d o[ ; ] ( 1)
d 2

*

1

ψ η +/ψ η λ = − η −/ η η −





; λ

 

,1 o n
2 [ ; ] [ | ]o1 *+++ ψ η λ ψ η +/ /η −





; λld
   (185) 

reveals that each summand vanishes at the limit η → 1+, assuming that the pole the CSLE (35) at 
+1 lies in the LP region ( o;* 1+ >λ ). 

Next, the derivative appearing in the first summand must diminish at infinity faster 

than η-2 and therefore the summand vanishes in the limit η → ∞. Furthermore, keeping in mind 

that ,1 o[ ; ]++ψ η λ/


 is a quasi-rational function, one finds 

,1 o
2 [ ; ] |1| ++ψ η λ < ∞/

η→∞
η −



ldlim
,        (186) 

which assures that the second summand in (185) also vanishes at infinity. We conclude that the 
q-RS (183) of the p-SLE (143) satisfies the DBCs (146)-(147) and therefore represents an eigenfunction 
with an eigenvalue differing from any of eigenvalues (151). This result contradicts to the assertion 
that the latter represent the complete discrete energy spectrum of the given Dirichlet problem. We 
thus confirmed that the p-SLE (163) solved under the DBCs (165)-(166) may not have eigenfunctions 
other than (174). 

7. Liouville Potentials Shape-Invariant Under Second-Order DCTs 

To relate our approach to the conventional quantum-mechanical applications it is convenient to 
convert the CSLEs (1) and (35) by the gauge transformations 
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1
4o o[ ; ; ] [ ] [ ; ; ]η λ ε = η Φ η λ εΨ

 

ρ        (187) 
and respectively 

 
1

4o o[ ; ; | ] [ ] [ ; ; | ]η λ ε σ = η Φ η λ ε σΨ
 

ρ       (188) 
to the algebraic SLEs: 

( )1 1
2 2o o

d d[ ] V[ ; ] [ ] [ ; ; ] 0
d d

− 
η + ε − η λ η η λ ε = η η 

Ψ
 

ρ ρ
  (189) 

        (1 )ε= −ηsgn sgn  
and 

( )1 1
2 2o o

d d[ ] V[ ;* | ] [ ] [ ;* ; | ] 0
d d

− 
η + ε − η λ σ η η λ ε σ = η η 

Ψ
 

ρ ρ
 (190) 

        (1 )ε= −ηsgn sgn , 
defining the potentials 
 

1 1 1o2 2 2o o[ ]V[ ; ] [ ][ ] I [ ; ] [ ]{ }− −
η η λ = − η η η λ + η

 

Iρ ρ ρ
  (191) 

and 
1 1 1 1o2 2 2 2o o[ ]V[ ;* | ] : [ ] I [ ;* | ] [ ] [ ]{ }− − −

η η λ σ = − η η λ σ + η η
 

Iρ ρ ρ ρ    

           (192) 
via the general formula (108) with 

1
2[ ] [ ]−

η = η/p ρ .          (193) 

The change of variable (x)η determined by the first-order ODE 
1

2(x) [ (x)]−′η = ηρ          (194) 
converts each SLE into Schrödinger equation with the corresponding potential given by the 

conventional formulas [65]: 
2 o 1o o o 2V(x; ) : V[ (x); ] [ (x)] I [ (x); ] { (x), x}′λ = η λ = − η η λ − η

  

 (195) 
and 

2 o 1o o 2V[ (x);* | ] [ (x)] I [ (x);* | ] { (x), x}′η λ σ = − η η λ σ − η
 

,  (196) 
where the Schwarzian derivative is related to the generic function (109) via the elementary 

formula 

x
x x 2 x

η=η
η = − η η/ /Ip p

( )
{ ( ), } [ ( )] { [ ]}

�

.      (197) 
Substituting (4) and 

2 2
2

31|1 | |1 | (1 ) 14 1
{ }

 
−η −η = −η −  −η 

�
sgnI

    (198) 
into the right-hand side of (191) gives 

2 2 2 2
o; o; o; o;

o 2

1 ( )2V[ ; ] (1 ) .
2(1 )

+ − − +λ + λ − − λ −λ η
η λ = −η

−η
sgn



   (199) 
Setting 
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o; o;2A 1: + −− = λ + λ
, o; o;2B − += λ −λ

, o; o;: , :+ −α = λ β = λ
  (200) 

for |η| < 1    
or 

o; o;2A 1: ,+ −+ = λ + λ o; o;2B − += λ −λ
, o; o;: , :+ −α = λ β = −λ

 (201) 
for η > 1  
and making the change of variable 
η(x) = sin x            (202) 
or 
η(x) = cosh x            (203) 
on the intervals (-1,+1) or (1,∞) accordingly, we come to the Schrödinger equation with the ‘Scarf 

I’ potential in [8] and the ‘generalized PT’ potential in [9] (t-PT and h-PT potentials in our terms). 
The derived expression turns into the unified formula (18) in [10], with 

o; o;z(x) , C (1 ), , C ,+ −≡ η = −η α = λ β = λsgn
.    (204) 

However there are two lapses in Lévai et al.’s formula (19) describing the corresponding 
eigenfunctions. Namely, 1−η  must be changed for |1−η | and (what is even more important!) one 
must to distinguish between the classical Jacobi polynomials for |η| < 1 and the R-Jacobi polynomials 
converted to the Jacobi form via (157). We shall come back to this issue after introducing a similar 
representation for the Liouville potential (192). 

Replacing oλ


 for o*λ


 in (191) and subtracting the resultant function from (192), one finds 

{ }1 o o
o o o oV[ ;* | ] V[ ;* ] [ ] I [ ;* | ] I [ ;* ]−η λ σ = η λ − η η λ σ − η λ
   

ρ
 (205) 

or, making use of (36), 

o oV[ ;* | ] V[ ;* ]η λ σ = η λ
 

         (206) 

3

3 3

2
o

2
o o

1 1/ [e (* )]12sgn( 1) ( )
/ e (* ) 1 [ / e (* ) 1]

σ

σ σ

 − λ − η− + σ = ± 
η λ − η λ −  



 

. 
Setting 

o; o;2A 1: * * ,+ −− = λ + λ o; o;2B : * * ,− += λ − λ
     (207) 

o; o;: * , : * ,+ −α = λ β = λ 3 o
2A 1e (* )

2B
− −

λ =


 for |η| < 1    

or 

o; o;2A 1: * * 0,− ++ = λ − λ >
 o; o;2B : * * ,− += λ + λ

    (208) 

o; o;: * , : * ,+ −α = λ β = − λ 3 o
2A 1e (* )

2B
+ +

λ =


 for η > 1 

and making the change of variable (202) or (203) respectively, brings us to the potential (3.5) in 
[8] or accordingly (9) in [9]. 

Similarly, setting 

o; o;z(x) , C (1 ), * , C* ,+ −≡ η = −η α = λ β = λsgn
    (209) 

we come to the unified formula (21) for these two potentials in [10]. (Note that the title of the 
cited paper is misleading, since none of these potentials is shape-invariant in the conventional sense 
[5].) 

Keeping in mind that 
1( , ) ( , )− −β α = β αb b ,         (210) 

we conclude that 

3 oe (* ) ( , )σ λ ≡ β α


b           (211) 
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in both cases σ = + and σ = -. This important observation made by Lévai et al. [10] allowed these 
authors to represent the eigenfunctions of the Schrödinger equation with the potentials (206) in the 
uniform fashion, assuming that 1−η  in their formula (22) is replaced for |1−η | and (what is 
crucial for the current analysis) one makes a clear distinction between the X-orthogonal polynomial 
components of the q-RSs appearing in the right-hand side of the cited formula. Namely these 
polynomial components form the infinite X1-Jacobi OPS [14,47] for Quesne’s [8] rationally deformed 
t-PT potential and the finite EOP sequence composed of the RD sT of R-Jacobi polynomials for the 
BQR potential [9]. This fundamentally important clarification of the term ‘X1-Jacobi polynomials’ 
introduced by Yadav et al. [37] was thoroughly elucidated in my presentation in Prague [38], which 
was simply ignored in [10]. (Either no explication of the latter term was made in the just appearing 
study of Banerjee, Yadav et al. [66] on quasi-rational eigenfunctions of the Dirac equation with the 
potentials (206).) 

Finally, let us notice that the parameter swap 1
2B A↔ + discussed in [67] is 

equivalent to the interchange of the values of the ExpDiffs o;*λ


. As expected, the so 

called ‘new’ potential (14) in [67] has the pole on the infinite interval (1,∞) and as a result it is 
not quantized via X-orthogonal polynomials. 

8. Discussion 

One of the most important elements of the presented analysis is the use of RRZTs as a systematic 
tool for constructing new RCSLEs solvable in terms of quasi-rational functions. By converting each 
of the constructed RCSLEs to its ‘prime’ form [28], we re-formulated the associated Sturm-Liouville 
problem as the Dirichlet problem and then took advantage of the rigorous theorems proven by 
Gesztesy et al. [29] for eigenfunctions of generic SLEs solvable under DBCs. 

By requiring the eigenfunctions of all the prime SLEs to satisfy the DBCs we accurately 
confirmed that the given RRZ sT  of the exactly solvable JRef CSLE (1) are themselves exactly solvable 
in terms of infinite or finite EOP sequences, in contrast with the numerous discussions of this issue 
in the literature [7–10,14,68–71], where the exact solvability of the Sturm-Liouville problems under 
consideration in terms of X-orthogonal polynomials was taken for granted. While the Sturm-Liouville 
problem solvable via the X1-Jacobi OPS was scrupulously analyzed by Everitt [47], its counterpart on 
the infinite interval (1,∞) has escaped attention of mathematicians so far. 

The developed formalism was used to provide the rigorous mathematical basis for the unified 
description [10] of eigenfunctions of the Schrödinger equation with the Liouville potentials (206) 
solvable by infinite (σ = -) and finite (σ = +) EOP sequences. It was demonstrated that the finite 
subsequence of X-orthogonal polynomials discovered in [9] is composed of the RD sT of the R-Jacobi 
polynomials. 

The suggested approach provides the accurate mathematical basis for the conventional SUSY 
theory of rationally extended potentials utilized in [7–10]. It should be stressed that the renowned 
SUSY rules [5] for the changes in energy spectra due to DTs of the Schrödinger equation were 
originally formulated [72,73] for potentials with exponential tails at ±∞. The latter restriction forced 
the ODE under consideration to have the LP singularities at the quantization ends. It has been then 
extended by Sukumar [74] to radial potentials without proper treating the LC range of the centrifugal 
barrier. Since then the SUSY rules for the radial Schrödinger equation were copied without attentive 
examination of this non-trivial problem, with Gangopadhyaya et al.’s paper [75] and Chapter 12 in 
[76] as the only known-to-me exceptions. 

In [28] we presented the scrupulous analysis of the RRZTs of RCSLEs in case when the ExpDiffs 
for the poles at the origin lie within the LC range for either original or transformed CSLE and proved 
(making use of the corresponding prime SLEs solved under the DBCs) that that the RRZ sT of the 
eigenfunction do satisfy the DBCs unless the ExpDiffs lie within the LC range for both original or 
transformed CSLE. Since the RRZTs of this kind turn the centrifugal barriers into infinitely deep 
potential wells, the violation of the conventional SUSY rules in the latter case [51] may not seem very 
exciting. 
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In [1] we presented a more physical example of the breakdown of the conventional rules of the 
SUSY quantum mechanics for the scenario when the ExpDiff for the pole at the origin lies within the 
LC range only for the transformed RCSLE and as a result both initial and transformed potentials have 
centrifugal barriers at the origin. It was shown that this anomalous behavior of the transformed 
eigenfunctions was the direct manifestation of the fact that the first RRZT brought the quantum-
mechanical system into the LC region, while the sequential transformation kept the system in this 
region, making unapplicable the conventional rules. 

Let us mention once again that that the use of the DBCs allows one to select only the mutually 
orthogonal PFSs which is sufficient for quantum-mechanical applications. However, as an apparent 
setback of our approach, we were unable to pinpoint the X1-Jacobi polynomials with two negative 
indexes larger than -1 (which represent the polynomial components of mutually orthogonal non-
principal Frobenius solutions). It is very possible that the eigenfunction of the prime SLE (163) are 
accompanied by a finite set of similar mutually orthogonal non-principal Frobenius solutions formed 
by the RD sT of the R-Jacobi polynomials. 

By analogy with the quasi-orthogonality of the X1-Jacobi polynomials with the complex weight 
(134), one can extend the orthogonality relation (177) to the complex field provided that the complex 
indexes o;* ±λ of the EOPs are restricted by the condition o;* 0±λ >Re . Our conclusion concerning 

the quasi-orthogonality of the RD sT of the R-Jacobi polynomials with the complex weight (176) was 
inspired by the work of Chen and Srivastava [34], who extended the conventional orthogonality 
condition for both classical Jacobi and R-Jacobi polynomials to the complex field (see the integrals 
(4.3) and (4.9) in [34]). Indeed, by analogy with the derivation of the orthogonality relation (177) under 
the real field, its extension to the complex indexes o;* ±λ of the EOPs under the constraint 

o;* 0±λ >Re directly follows from the fact that the symplectic form 

j o j o[ ;* | ], [ ;* | ] :′ ψ η λ + ψ η λ + =/ / 
 

       (212) 

{ }2
j o j o( 1)W [ ;* | ], [ ;* | ] for 1{ ′η − ψ η λ + ψ η λ + η >/ /

 

 
vanishes for any pair of solutions of the prime SLE (163) solved under the DBCs (165) and (166), 

provided that the complex indexes o;* ±λ  have positive real parts: 

o;/2 * /2±−π λ < +π< arg         (213) and lie outside the 

real interval [1, ∞]. Representing (A37) as 
2 2| | | | ( *)( , ) 2| |

α − β + αβ
β α =

β−α

Imb
,       (214) 

we conclude that the third pole (34) of the CSLE (35) lies on the real axis iff 

o; o;* *+ −λ = λarg arg ,         (215) 

which gives 
|* | | * |o; o;(* ,* )o; o; | * | | * |o; o;

λ + λ− +λ λ =− + λ − λ− +
b

.      (216) 
More specifically, the third pole (34) of the CSLE (35) for σ= + is located on the negative semi-

axis if we choose 

o; o;|* | |* |+ −λ < λ .          (217) 

Note that the third pole always lies outside the real interval [-1,+1] for σ = -. 
It is very possible that the quasi-orthogonality relation (177) also holds for the first index within 

the interval (-1,0], but again our approach failed to address this issue. 
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Since the complex solutions in question are quasi-orthogonal (not orthogonal!), we doubt that 
they can represent the eigenfunctions of any properly formulated Sturm-Liouville problem and this 
was the main reason why this part of the discussion was removed from the main body. 

9. Conclusions 

The presented analysis provides the rigorous mathematical grounds for the so-called [10]] 
‘unified supersymmetric description’ of two double step shape-invariant [12] potentials [8,9] 
quantized by infinite and respectively finite X-orthogonal sequences of Heun polynomials. As 
demonstrated above there are several reasons for a separate examination of the X1-Jacobi DPSs and 
the corresponding infinite and finite subsets of the EOPs, before proceeding to the general case of the 
Xm-OPSs [41,42] and the finite EOP subsequences of the Xm-Jacobi DPSs [11]. 

First, the four Xm-Jacobi DPSs of series D, W, J1 and J2 for m > 1 merge into the two DPSs of 
series J and D for m=1. In particular, the Xm-DPSs of series J1 and J2 merge into the single X-DPS for 
m =1 which contains both X1-Jacobi OPS and the finite EOP sequences composed of the RD sT  of the 

R-Jacobi polynomials. As a result, the term ‘X1-Jacobi polynomials’, put forward by Yadav et al. [37] 
as the synonym for the X1-Jacobi DPS in our terms. has the unambiguous meaning, in contrast to the 
more equivocal epithet ‘Xm-Jacobi polynomials’ [70]. 

Secondly, the X1-Jacobi polynomials obey the additional symmetry relation (A38). Since all the 
polynomials forming the X1-Jacobi OPS have only one exceptional zero its location can be easily 
specified [46]. Furthermore one can compute asymptotics of the recurrence coefficients and 
investigate the limit of the corresponding Christoffel function [47]. 

Finally, both the X1-Jacobi DPSs are formed by Heun polynomials and therefore can be used as 
‘guinea pigs’ in the theory of polynomial solutions of the Heun equation. The fact that the 
transformed CSLE has only one extraneous pole also made it easier to study its location and to 
unambiguously avoid the cases when it lies inside the quantization interval. In particular one can 
readily prove the quasi-orthogonality of the complex polynomials obtained by the complexification 
of the Xm-Jacobi OPSs and the finite EOP subsets of Xm-Jacobi DPSs; however the elimination of the 
cases when at least one of the poles lies inside the quantization interval represents a more challenging 
problem. 
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Appendix A 

Rudjak-Zakhariev Transformation of Generic CSLE 

Let o[ ; ]τφ η λ


 be a nodeless solution of a CSLE 

2
o

o o2
d I [ ; ] [ ] [ ; ; ] 0
d

  + η λ + ε η Φ η λ ε = 
η  

 

ρ
      (A1) 

at the energy 

o( )ε τε λ


= ,           (A2) 
i.e., 

2
o

o o o2
d I [ ; ] ( ) [ ] [ ; ] 0
d

τ τ
  + η λ + ε λ η φ η λ = 

η  

  

ρ
.    (A3) 
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We define the Rudyak-Zahariev transformation of the given CSLE via the requirement that the 
function 

1
2

o
o

[ ]* [ ; ]
[ ; ]

−

τ
τ

η
φ η λ =

φ η λ
ρ�

�
          (A4) 

is the solution of the transformed CSLE: 
2

o
o o2

d I [ ; | ] [ ] [ ; ; ] 0
d

  + η λ τ + ε η Φ η λ ε = 
η  

 

ρ
      (A5) 

at the same energy (A2), i.e., 
2

o
o o o2

d I [ ; | ] ( ) [ ] * [ ; ] 0.
d

τ τ
  + η λ τ + ε λ η φ η λ = 

η  

  

ρ
 (A6) 

Representing both CSLEs (A3) and (A6) in the Riccati form: 

o 2
o o o oI [ ; ] [ ; ] [ ; ] ( ) [ ]

•

τ τ τη λ = − φ η λ − φ η λ − ε λ η
   

ld ld ρ  (A7) 
and 

o 2
o o o oI [ ; | ] : * [ ; ] * [ ; ] ( ) [ ],

•

τ τ τη λ τ = − φ η λ − φ η λ − ε λ η
   

ld ld ρ  (A8) 
subtracting one from another, and also taking into account that the logarithmic derivatives of 

the TF o[ ; ]τφ η λ


 and its reciprocal (A4) are related in the elementary fashion: 

1o o 2* [ ; ] [ ; ] [ ]τ τφ η λ = − φ η λ − ηld ld ldρ
� �

     (A9) 
one finds [24] 

o o o
o o

[ ; ]dI [ ; | ] I [ ; ] 2 [ ] { [ ]},
d [ ]

τφ η λ
η λ τ = η λ + η + η

η η



  ld
Jρ ρ

ρ   (A10) 
where the last summand represents the so-called [28] ‘universal correction’ defined via the 

generic formula 
d [z]1[z] : [z]2 dz [z]

f{f } f
f

=
ld

J .          (A11) 

Let o[ ; ]′τφ η λ


be another solution of the CSLE (A1) at an energy o( )′τε λ


: 

2
o

o o o2
d I [ ; ] ( ) [ ] [ ; ] 0
d

′ ′τ τ
  + η λ + ε λ η φ η λ = 

η  

  

ρ
.       (A12) 

Keeping in mind that the function 

o o o o[ ; | ] : * [ ; ]W{ [ ; ], [ ; ]}′ ′τ τ τ τφ η λ τ = φ η λ φ η λ φ η λ
   

 (A13) 
is the solution of the CSLE  

2
o

o o o2
d I [ ; | ] ( ) [ ] [ ; | ] 0
d

′ ′τ τ
  + η λ τ + ε λ η φ η λ τ = 

η  

  

ρ
, (A14) 

let us now consider the sequential RZT of the CSLE (A5) with the TF (A13). Substituting (A9), 
(A10), and (A11) into the RefPF 

o o
o oI [ ; | ; ] I [ ; ]′η λ τ τ = η λ +
 

 (A15) 

o o o* [ ; ] W{ [ ; ], [ ; ]}d2 [ ] { [ ]},
d [ ]

′τ τ τφ η λ + φ η λ φ η λ
η + η

η η

  

ρ ρ
ρ

ld ld
J
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we confirm that the sequential RZTs in question are equivalent to the second-order DCT of the 

CSLE (A1) with the seed functions o[ ; ]τφ η λ


 and o[ ; ]′τφ η λ


, namely, as originally brought to 
light by Schnizer and Leeb [25], 

o o o o
o o

W{ [ ; ], [ ; ]}dI [ ; | ; ] I [ ; ] [ ]
d [ ]

′τ τφ η λ φ η λ′η λ τ τ = η λ + η
η η

 

 

ρ
ρ

ld

. (A16) 
By combining 

o o o o o oW{ [ ; ], [ ; ]} [ ( ) ( )] [ ] [ ; ] [ ; ]
•

′ ′ ′τ τ τ τ τ τφ η λ φ η λ = ε λ − ε λ η φ η λ φ η λ
     

ρ . (A17) 

Appendix B 

Rectangular polynomial matrix with X-orthogonality along both rows and columns 
As it has been pointed to in [28], the Wronskian of two q-RSs of JRef CSLE can be written in the 

quasi-rational form 
1 ( ) 12m j m+ j+1W [ ; ], [ ; ] |1 | [ ; m j],{ } ℵ ℵ

ℵ

ℵ
+ +′λ λ

=±
′ ′φ η φ η = − η η∏

   

λ λ λ, ;λ ,D    

           (A18) 
with the polynomial component represented by the ‘polynomial determinant’ (PD): 

( , ) ( , )P ( ) P ( )m j
[ ; m j] :m+ j+1 ( , ) ( , )S ( ) S ( )m 1 j 1

+ − + −

+ − + −

′ ′λ λ λ λη η
′η =

′ ′λ λ λ λη η+ +

D λ, ;λ ,
 

,  (A19) 
where the second row is composed of the so-called [26–28] ‘supplementary Jacobi-seed 

polynomials’: 

( , ) ( , ) ( , )21 m mm 1 2S ( ) : [( 1)( 1) ( 1)( 1)]P ( ) ( 1) P ( ).
•α β α β α β

+ η = α + η+ + β+ η− η + η − η
 (A20) 

For 
′ ′= ±− − + +λ λ , λ = λ          

the PD vanishes at 1±  respectively: 

[ ; ,m; ,j] ( 1) [ ; ],m, j mm+ j+1 ′ ′ ′ ′ ′η ± = η η ±− + − + +


  λ , λ λ , λ λ |PD
 (A21) 

where 
( , ) ( , )[ ; ] : ( 1)W P ( ),P ( )m, j m m j{ }[ + − + −′ ′ ′ ′±λ λ λ λ′η ± = η± η η+





λ |P
 

( , ) ( , )2 P ( )P ( )mj ]+ − + −′ ′ ′ ′λ λ ±λ λ′+ η η



λ
. (A22) 

Examination of the polynomials (A22) reveals that [11] 

,[ ; ] [ ; ].− +′ ′ ′η ± ≡ − η ± ±


  λ | λ , λ |P Pm,j+m j j+m     (A23) 
Making use of the fourth and last of Gauss’s contiguous relations in [77], 

( , ) ( , ) ( 1, 1)
m m m( 1) P ( ) P ( ) ( m)P ( ),

•
+ − + − + −λ λ λ λ λ ± λη± η + λ η = λ + η

 

    

           (A24) 
one finds 

( , ) ( , )[ ; ] ( 1)P ( ) P ( )m, j m m j
•

+ − + −′ ′ ′ ′±λ λ λ λ′η ± = η± η η ++P λ |





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( 1, 1) ( , )( m)P ( )P ( ).m j
+ − + −′ ′ ′ ′±λ ± λ λ λ′λ − η η 



  (A25) 
Setting ,− +′ ′β = λ α = λ in (72) in [42] shows that 

( 1, 1)
m, j m m,m j

m[ ; ] ( 1) ( j) ( )P + −′ ′λ − λ +
+ − + + +′ ′ ′η λ λ +− = − λ + η



, |P
  (A26) 

or, making use of (61) for σ = +−/


, 
(* ,* )

m, j mm,m j
m(* j 1) ( ) ( 1) [ ;* * ]P + −λ λ

+ + − ++λ + + η = − η λ λ +−


−1, +1|P
. (A27) 

We conclude that he polynomials (A27) with 

o; o;* * , * *− − + +λ = λ = β λ = λ = α or 1, 1+ −λ = −α − λ = β−   (A28) 

must be mutually orthogonal with the weight (88) in the cited work.  
The two exceptional infinite polynomial sequences are interrelated by the interchange of the 

indexes accompanied by the change of the argument, namely, 
j m 1

m, j m m, j m[ ; ] ( ) [ ; ]+ +
+ − + + + −′ ′ ′ ′η λ λ −+ = − −η λ λ +−, | , |P P

.  (A29) 
Making use of (61) once again, but this time for σ = −+/



, we assert that the polynomials (A29) 
with 

o; o;* 1, * 1′λ = λ ± λ = λ −
   



,      (A30) 
are also mutually orthogonal with the weight 

* *o; o;

o; o; o; o;
* ,* ;m (* 1, * 1) 2

m

(1 ) (1 )W ( ) : (| | 1)
| P ( ) |

λ λ− +

+ − + −
λ λ λ − − λ −

+ η −η
η = η <

η



. (A31) 
Despite the mentioned interdependence, we, in contrast with [41,42], prefer to treat these two X-

OPSs separately and refer to them as being of series J1 and J2, in following the terminology suggested 
in [68]. It should bed however stressed that, contrary to the definition (2.3) of these two series in [68] 
with n=m, 

1m 0o; 2′λ = λ ≡ + + >− − h
, 

3+m 0o; 2′λ = λ ≡ − >+ + g
,     (J1) 

and 
3 10, m 0o; o;2 2m +> ≡ + + >− − +′ ′λ = λ ≡ + − λ = λ gh

    (J2) 
in our notation [51], the indexes of the Jacobi polynomials in the right-hand side of (A25) are 

independent of the polynomial degrees. 
If we set 

o; o;, 0′λ = λ λ = λ >
   



,       (A32) 
coupled with (A30), then the polynomials (A29) under the constraint (152) constitute the TRD s

of the R-Jacobi polynomials constructed using the classical Jacobi polynomials as the polynomial 
components of the corresponding quasi-rational TFs. As a result, they must be mutually orthogonal 
with the weight 

* o; o;

o; o;

*
o (* 1, * 1) 2

m

(1 ) (1 )[ ;* | m, ] :
| P ( ) |

− − +

+ −

λ λ

λ − − λ −
+ η −η

η −+ =
η



λW

.    (A33) 
On other hand, as the direct consequence of the symmetry relation (A23), each polynomial (after 

being converted to its monic form) coincides with the m-th monic polynomial from the Xj-Jacobi OPS 
of series J1. 

The main reason for distinguishing between the two X-OPSs is that the TRD s  
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of the R-Jacobi polynomials belong to the Xm-Jacobi OPS of series J1, whereas Gȯmez -Ullate et 
al. [41,42] happened to focus on the properties of the Xm-Jacobi OPS of series J2, referring to the latter 
simply as the Xm-Jacobi OPS. 

Appendix C 

Two alternative representations of of the X1-Jacobi polynomials 
In the separate publications [8] and [9] Quesne et al. introduced two alternative representations 

( , ) ( 1, 1)2( j) ( ) ( 1)P ( )j 1 jP α β α− β+β+ η = η+ η+


     (A34) 

( 1, 1) ( 1, 1)[ ( , )] ( 1) P ( ) ( 1)P ( )j j[ ]
• α− β+ α− β+− η− α β × η+ η + β+ ηb

 
and 

( , ) ( 1, 1)2( j) ( ) ( 1)P ( )j 1 jP α β α+ β−α + η = η− η+


     (A35) 

( 1, 1) ( 1, 1)[ ( , )] ( 1) P ( ) ( 1)P ( )j j[ ]
• α+ β− α+ β−− η− α β × η− η + α + ηb

 
for the polynomials ( , ) ( )j 1P α β η+



 and stated that they are both equivalent to the definition (56) 

of X1-Jacobi OPSs in [16]: 
( , ) ( , )P ( ) P ( )j j 1( , ) ( , )1( ) ( )P ( )j 1 j2 2j

b
P b

α β α βη − η−α β α βη ≡ − η− η ++ α +β+



, (A36) 
with 

( , ) : α +β
β α =

β−α
b ,          (A37) 

provided that one allows both indexes to take arbitrary real values. Note that X1-Jacobi 
polynomials defined via (56) in [14] obey the symmetry relation 

( , ) ( , )j 1( ) ( 1) ( )j 1 j 1P Pβ α α β+−η = − η+ +
 

.       (A38) 
The latter took a more complicated form after these polynomials were later re-defined according 

to the relations [41,42]: 
( (( , ;1) ( , ) ( , )

1 j 1,1 j j 1
j) )( ) ( ) ( )

j 1
P P Pβα β α β α β
+ + +

α + −α
η ≡ η = η

α + +

  

.    (A39) 
The two independent statements made in [8] and [9] have the important implications which 

were not properly appreciated in the literature. First this was the first (though implicit) instance of 
treating (A36) by Bagchi et al. [9] as the definition of the X1-Jacobi DPS rather than the X1-Jacobi OPS. 
Though the finite EOP sequence discovered by them obeyed the same three-term recurrence relations 
(A36) as the X1-Jacobi OPS [14], the cited authors were cautious enough not avoid the term ‘X1-Jacobi 
polynomials’ in this connection. 

The second vital implication of the mentioned statements is that the Xm-Jacobi DPSs of series J1 
and J2 [12, DPT] become identical for m=1. The main purpose of this Appendix is to explicitly validate 
this assertion. 

First, making use of (22), we can represent (A22) for m=1 as 
2 ( , )[ ; ] ( 1)P ( )1, j 1 j2

+ −′ ′λ λ′− η ± = η± η+′ ′±λ λ ++ −







λ |P
   (A40) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 November 2024 doi:10.20944/preprints202411.1232.v1

https://doi.org/10.20944/preprints202411.1232.v1


 32 

 

( , ) ( , )( , ) ( 1) P ( ) 2 P ( )1 j j[ ] [ ]
•

+ − + −′ ′ ′ ′λ λ λ λ′ ′ ′η−η λ ±λ η± η + η− +− ×



λ
. 

Setting 1, 1+ −′ ′λ = α − λ = β+  for = −+/
σ  or 1, 1+ −′ ′λ = α + λ = β−  for = +−/

σ and also 
taking into account (23), coupled with (A37), we can re-write (A34) or respectively (A35) as follows: 

1 11 1 1
α βη β+ α − −+ = β+ β−α η+ +



|P ( , )[ ; , ] ( j)( )P ( ),j j     (A41) 
and 

1 11 1 1
α β− η β− α + +− = α + β−α η+ +



P | ( , )[ ; , ] ( j)( ) ( ),j jP
    (A42) 

1 1 1
α β= α + + η+

( , )( j ) ( ),jP
.   (A43) 

It directly follows from the listed relations that the monic Xm-Jacobi DPSs of series J1 and J2 
coincide for m=1. 

To explicitly confirm this assertion, let us make use of the fourth and last of Gauss’s contiguous 
relations in [79], 

( 1, 1) ( 1, 1) ( , )( 1)P ( ) ( 1)P ( ) ( j 1)P ( )nj j
• α+ β− α+ β− α βη− η + α + η = α + + η     

           (A44) 
and 

( 1, 1) ( 1, 1) ( , )( 1)P ( ) ( 1)P ( ) ( j 1)P ( )j j j
• α− β+ α− β+ α βη+ η + β + η = β + + η

 (A45) 
to simplify (A34) and (A35) as follows 

( , ) ( 1, 1)2( j) ( ) (1 )P ( )j 1 jP α β α− β+β+ η = +η η −+


        

    
( , )( j 1)[ ( , )] P ( )j
α ββ+ + η− α β × ηb

  (A46) 
and 

( , ) ( 1, 1)2( j) ( ) ( 1)P ( )j 1 jP α β α+ β−α + η = η− η −+


        

    

( , )( j 1)[ ( , )] P ( )j
α βα + + η− α β × ηb

.  (A47) 
To proceed, let us first list two useful recursion relations 

( 1, 1)( 2 j)( 1)P ( )j
α+ β−α +β + η− η

      (A48) 
( , ) ( , )[( 2 j) ]P ( ) ( j)P ( )j j 1
α β α β= α +β + η−α −β η + α + η−   

and 
( 1, 1)( 2 j)( 1)P ( )j
α− β+α +β + η+ η

      (A49) 

[ ] ( , ) ( , )( 2 j) P ( ) 2( j)P ( )j j 1
α β α β= α +β + α +β + η η − β + η−  

which can be easily confirmed by re-writing (22.7.17) - (22.7.19) in [78] as 
( 1, 1) ( , ) ( 1, )( 1)P ( ) ( 1)P ( ) 2P ( )j j j
α− β+ α β α− βη+ η = η− η + η

   (A50) 
( 1, 1) ( , ) ( , 1)( 1)P ( ) ( 1)P ( ) 2P ( ),j j j
α+ β− α β α β−η− η = η+ η − η

    (A51) 
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( 1, ) ( , ) ( , )( 2 j)P ( ) ( j)P ( ) ( j)P ( ),j j j 1
α− β α β α βα +β + η = α +β + η − β + η−   (A52) 

and 
( , 1) ( , ) ( , )( 2 j)P ( ) ( j)P ( ) ( j)P ( )j j j 1
α β− α β α βα +β + η = α +β + η + α + η−

.   

           (A53) 
Substituting (A48) and (A49) into (A46) and (A47) respectively thus gives 

( , ) ( , )2( 2 j) ( ) [( 2 j) ]P ( ) / ( j)j 1 jP bα β α βα +β+ η = α +β+ −α −β η α ++


 
( , ) ( , )2P ( ) ( 2 j)( )P ( )j 1 j
α β α β− η − α +β+ η− η− b

   (A54) 
and 

[ ]( , ) ( , )2( 2 j) ( ) ( 2 j) P ( ) / ( j)j 1 jP bα β α βα +β+ η = α +β+ α +β+ η β++


 
( , ) ( , )2P ( ) ( 2 j)( )P ( ).j 1 j
α β α β− η − α +β+ η− η− b

  (A55) 
Making use of the elementary formulas 
( 2 j) 2( j)α +β+ −α −β = α +b b        (A56) 
and 

( 2 j) 2( j)α +β+ α +β+ = β+b b        (A57) 
then brings us back to (A20) for both instances (A34) and (A35) which completes the proof. 

Appendix D 

Intrinsic Interconnection Between D- and W-Eigenpolynomials 

Let us prove that the X1-Jacobi DPS of series D composed of the PDs 
( , ) ( , )P ( ) P ( )1 j

[ ; j] : ,j+2 ( , ) ( , )S ( ) S ( )2 j 1

+ − + −

+ − + −

λ λ −λ −λη η

η − =
λ λ −λ −λη η+

 

λ,1; λ,D

  (A58) 
are related to the Wronskians of Jacobi polynomials via the elementary formula [11]: 

j+2
4( j 2)[ ; 1 j]

j + −

+
η − = ×

−λ −λ

 

λ, ; λ,D
       (A59) 

( 2, 2) ( 2, 2)
1 j 2W P ( ),P ( ){ }.+ − + −−λ − −λ − −λ − −λ −

+η η
 

First, substituting 

( , ) ( , ) ( , )2 2
2 1 1S ( ) P ( ) ( 1) P ( ),[ ]

•
+ − + − + −λ λ λ λ λ λη = η + η − η

   (A60) 

( , ) ( , ) ( , ) ( , )2
1j 1 j jS ( ) P ( ) P ( ) ( 1) P ( )

•
+ − + − + − + −−λ −λ −λ −λ −λ −λ −λ −λ

+ η = η η + η − η
 

             (A61) 
into the second row of the PD (A58) and taking into account that 

( , ) ( , ) ( 1, 1)P ( ) P ( ) 2P ( )1 1 1
+ − + − + −−λ −λ λ λ −λ − −λ −η − η = η

,  (A62) 
one finds 

( , )[ ; j] P ( )1j+2
+ −λ λη − = η ×

 

λ,1; λ,D
      (A63) 
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( , ) ( 1, 1) ( , )2
1j j( 1) P ( ) 2P ( )P ( )[ ]

•
+ − + − + −−λ −λ −λ − −λ − −λ −λη − η + η η

 

( , ) ( , )2( 1) P ( )P ( ).1 j
•

+ − + −λ λ −λ −λ− η − η η
 

After multiplying the term in brackets by 1
2 ( j )+ −−λ −λ , we can re-write the resultant 

expression as the Jacobi operator acting on the Jacobi polynomial of degree j+1: 

( 1, 1) ( 1, 1) ( 1, 1)2( 1) P ( ) 2P ( )P ( )1j 1 j 1
•• •

+ − + − + −−λ − −λ − −λ − −λ − −λ − −λ −η − η + η η+ +  
( 1, 1)( j 1)( j )P ( )j 1

+ −−λ − −λ −= + − λ − λ η+ − + .  (A64) 
Similarly after multiplying the second summand in the right-hand side of (A63)by the same 

factor and taking advantage of the backward shift relation (E16) in [68]: 

( 1, 1) ( , ) ( 1, 1)2( 1)P ( ) 2P ( )P ( )1j 1 j 1
•

+ − + − + −−λ − −λ − λ λ −λ − −λ −η − η = η η ++ +    

 

( 2, 2)2( j 2)P ( ),j 2
+ −−λ − −λ −+ η+  (A65) 

we can re-write (A63) as 
1 ( j ) [ ; j] [( j 1)( j ) 2]2 j+2−λ −λ η − = + −λ −λ −λ −λ − ×+ − + − + −

 

λ,1; λ,D
 

( , ) ( 1, 1)P ( ) P ( )1 j 1
+ − + −λ λ −λ − −λ −η η+   

 

( , ) ( 2, 2)2( j 2)P ( )P ( )1 j 2
•

+ − + −λ λ −λ − −λ −− + η η+ .  (A66) 
Substituting 
( j 1)( j ) 2 ( j 2)( j 2 )+ − + − + −+ −λ −λ −λ −λ − = + − −λ −λ    (A67) 

and 

( 2, 2) ( 1, 1)1
j 2 j 12P ( ) ( j 1 )P ( )

•
+ − + −−λ − −λ − −λ − −λ −

+ −+ +η = − −λ −λ η
  (A68) 

into the first summand in (A63) and also taking into account that 
( , ) ( 2, 2)
1 1P ( ) P ( )+ − + −λ λ −λ − −λ −η ≡ η

,      (A69) 
we come to the sought-for interrelation (A59) between the PDs and polynomial Wronskians. 
In particular, substituting (A60) and (A61) into (A58) with j=0 and taking into account that 

( 1, 1) ( 1, 1)P ( ) P ( )1 1
+ − + −−λ − −λ − λ − λ −η ≡ − η

,    (A70) 
we can represent the resultant expression in the form of the Jacobi operator acting upon the 

second degree polynomial with the indexes 1±λ − : 

( 1, 1)21
22 2( 1) [ ; 1 0] ( 1) P ( )

••
+ −λ − λ −− + −λ + λ + η − = η − η +

 

D λ, ; λ,
 (A71) 

( 1, 1) ( 1, 1)2P ( )P ( )1 2
•

+ − + −λ − λ − λ − λ −η η
 

which gives 
( 1, 1)
22 [ ; 1 0] 4P ( ).+ −λ − λ −η − = − η

 

D λ, ; λ,
     (A72) 
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We thus conclude that the infinite sequence of the PDs (55) converted to their monic form starts 
from the monic Jacobi polynomial of the second degree. Setting side by side (A72) and (A59) with j=0 
gives 

( 1, 1) ( 2, 2) ( 2, 2)
2 1 2

8P ( ) W P ( ),P ( )
1

{ }+ − + − + −′ ′ ′ ′ ′ ′−λ − −λ − λ − λ − λ − λ −

+ −
η = − η η

′ ′λ + λ +  
(A73) 
Since the Wronskian of two classical Jacobi polynomials of sequential degrees ( 1)±′λ > may not 

have zeros between -1 and +1 [45] this must be also true for the Jacobi polynomials with negative 
indexes. We thus conclude that the corresponding q-RS can be used as the TF of the RDT to construct 
the X2-Jacobi OPS of series J3 [79]. Grandati and Bérard have proved this important observation for 
Jacobi polynomials of even degrees by using the disconjugacy theorem. Their proof can be 
independently confirmed based on our observation that the any Jacobi polynomial of even degree 
2m can be represented (up to a normalizing multiplier) as the Wronskian of m Jacobi polynomials of 
sequential degrees starting from the first-degree polynomial. 

Abbreviations 

ChExp  = characteristic exponent 
CSLE  = canonical Sturm-Liouville equation 
DBC  = Dirichlet boundary condition 
DCT  = Darboux-Crum transformation 
DCT   = Darboux-Crum transform 
EOP  = exceptional orthogonal polynomial 
ExpDiff  = exponent difference 
JRef   = Jacobi-reference 
LC  = limit circle 
LDT  = Liouville-Darboux transformation 
LP  = limit point 
ODE  = ordinary differential equation 
PF   = polynomial fraction 
PFS  = principal Frobenius solution 
p-SLE  = prime Sturm-Liouville equation 
h-PT  = hyperbolic Pöschl-Teller 
t-PT  = trigonometric Pöschl-Teller 
RCSLE  = rational CSLE 
RDCT  = rational Darboux-Crum transformation 
RDCT   = rational Darboux-Crum transform 
RDT  = rational Darboux transformation 
RDT   = rational Darboux transform 
restr-HRef  = restrictive Heun-reference 
R-Jacobi  = Romanovski-Jacobi 
RRZT  = rational Rudjak-Zakharov transformation 

TRRZ   = rational Rudjak-Zakharov transform 
RZT    = Rudjak-Zakharov transformation 
RZT     = Rudjak-Zakharov transform 
q-RS  = quasi-rational solution 
TF  = transformation function 
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