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Abstract

This work presents a generalization and extension of previous results by incorporating weighted
integrals and a refined class of second-type (1, m)-convex functions. By utilizing classical inequalities,
such as those of Holder, Young and the Power mean, we establish new Hermite-Hadamard-type
inequalities. The findings offer a broader and more flexible analytical framework, enhancing existing
results in the literature. Potential applications of the developed inequalities are also explored.

Keywords: weighted integrals; integral inequalities; Hermite-Hadamard-type inequalities; fractional
derivatives

1. Introduction

In [? ], the following definitions were introduced.

Definition 1. Let h : [0,1] — R be a non-negative function, such that h # 0, and let ¢ : I = [0,400) —
[0, +c0). The function g is called (h, m)-convex modified of the first type on I if it satisfies

g(vpr +m(1 = 7)) <K (7)g(pa) +m(1 =1 (7))g(p2), ©)
forall pq, pp € Land vy € [0,1], where m € [0,1] and s € [—1,1].

Definition 2. Let h : [0,1] — R be a non-negative function, such that h # 0, and let ¢ : I = [0,4+00) —
[0, +00). The function g is called (h, m)-convex modified of the second type on I if it satisfies

g(vpr +m(1 — 7)) <K (7)g(p1) +m(1—h(7))g(p2), )
forall pq, pp € Land y € [0,1], where m € [0,1] and s € [—1,1].

Remark 1. Definitions ?? and ?? enable us to define set N, | [u1, 2], where py, i € 1, as the set of modified

(h, m)-convex functions, for which y(u1) > 0. Here are some convexity classes-special cases described by the

triple (h(vy),m,s):

1. (h(7),0,0),(v,0,1),(v,1,1) and (vy,0,s) we have, respectively, the increasing starshaped classic convex
on I and s—starshaped functions [? ].

2. (7,1,5)s € (0,1], then  is a s—convex (see [? ? ]) and for s € [—1,1] extended s—convex on I (see [?
D.

3. (v*,m,s) witha € (0,1), then ¢ is a s — («, m)—convex function on I [? ]. If & = 1, we will have

(s, m)-convex function on I ([? ]), but if m = 1, we get («,s)—convex function on 1 [? ? | and the last, if

s=1,we wlll have (&, m)—convex function on I [? ].

(h(7y), m,1), then ¢ is a variant of an (h, m)—convex function on I citeOAS2016.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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The weighted integral operators, which underpin our analysis are presented next ([? ? ]).

Adding a particular weight function to the definition of an integral operator is a new and generic
way to define an integral operator and start the process of generalizing a known result. This may be
done as follows:

Definition 3. (see [? ]) Let § € Lq[p1, p2) and let w : I — R be a continuous, positive function, whose first
derivative is integrable in the interior of 1. The weighted fractional integral operators are introduced as follows
(right and left, respectively):

w o X ,f yo—z
y;g(?() = /m w (P‘z — m)S(z)dZ/ X > M1, 3)
w (o z—
Ji8(x) —/)C w (ﬂz m>g(2)dz, X < Ha. 4)

Remark 2. The inclusion of the first derivative of the weight function w arises from the inherent nature of the
problem. Alternatively, the second derivative, or a higher-order derivative, can also be considered.

Remark 3. Examine particular examples of the weight function w' to better demonstrate the reach of
Definition ??:

(a) Setting w'(z) = 1 recovers the classical Riemann integral.

(b)  Choosing w'(z) = f_(;

(c) By selecting appropriate weight functions w', various fractional integral operators can be derived, such as

; leads to the Riemann-Liouville fractional integral.

the k-Riemann-Liouville integrals [? |, right-sided fractional integrals of a function g relative to another
function hon [uy, u| [? 1, and integral operators introduced in [? 2 2 ? |.

(d) Additional well-known integral operators, fractional or otherwise, can be retrieved as particular cases of the
above formulation. Interested readers may consult [? ? ].

The Caputo-Fabrizio definition’s main basic feature can be explained (cf. [? ]) with 0 < a < 1:

(;sz 1“8) (x) = ﬁg(x) + ﬁ /H T g(z) dz, 5)
(Frs.8) () = ;VI_(DSg(X) ~ ﬁ /X " o(2)dz, ©)

where M(«) is a normalization function, such that M(0) = M(1) = 1.

Caputo’s Fractional Derivative is well known, given by the expression ([? ]):

(§D3) 00 = = [ -2 "5 @) e @)

The idea comes from replacing the singular kernel (x — z) ~* in the Caputo fractional derivative,

given in formula (??), with the kernel exp [— “(%;Z)} .

In the paper [? ], the same authors proposed a more complete study of the operator (??) by
presenting the definition of the adapted fractional integral operator §© I%, when M(a) = 1.

(Fie) o0 =1 [few| -T2 s e ®

o

As one can notice, this definition shows a big resemblance to the classical Riemann-Liouville
fractional integral, as given by

(F138) 00 = 7 [ or =2 () e ©)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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In this work, we present some variants of the well-known Hermite-Hadamard inequality in the
context of (h, m)-convex functions of the second kind using weighted integral operators. Our results
include several well-known cases from the literature.

Definition 4. Let ¢ € Ly[pq, p2]. The Riemann—Liouville integrals RLI;‘i+ g and RLI;‘;_ g of order & > 0 are
1 2

defined as:
B 500 = 1 L (-2 sl
B 500 =y | G0 5@,

where T' () is the Gamma function.

2. Generalizations

Theorem 1. Let g: I C R — R be a differentiable mapping on 1°, uy, y € I° with py < po.
Let w : [0,1] — R be a continuous and positive function with first derivative integrable on (0,1). Suppose that
g is (h, m)-convex modified of the second type and LL, £2 € Dom(g), then it's true that

g(“;”) (w(1) —w(0)) <K (;) VZ 7_L 11];: (rﬂrl—:‘lP‘z)
en(1-n(3)) s ()
< hs(;) [g(lil)Nl +mg<y )Nz

+m<1—h<;>)s[g(ﬂz)N3+mg(£;l2)N4], (10

where r GNU{O}, N, = fo 'y)hstH)d'y, N, = fol w'(7) (1—h<:i—¥))sd'y,
+ + s
= o w (1) (mErJl)) dy and Ny = [g @' (7) ( h(m?rjl))) dy.
Proof. By means of the (I, m)-convexity of g with ¥ = 1, we have
VY (L (N ey
g< 5 > <h (2>g(x)+m(1 h(z g(m>, (11)

forx,y € I.
Substituting x = 2y + r+1 Tpzandy = 2 p, + r+1 Tuy in (22), we get

1
g(W)qS(z)g(:Huw 1#2)
1\\° r+y 1—7
enf1-n()) s(ie it e ) .

Multiplying both sides of (??) by w’(vy) and integrating over [0, 1], we obtain

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Rewriting the integrals, we find

g+
L, = —( r+l ) /;41 w' —ﬂﬁﬂm —X g(x)dx
M2 — M1 W}Lﬂz %ﬁ;iﬂ

[t N (THLE 2
a <V2—V1>]Vl+g< r+1 > (14)
T2+
m(r + 1)> 0 (Y~ m(r+1)
I,=(— o | L mr+) p
2 — ( Ho — M1 i;:llz:r]g n]j%r—fll) g(y) y
= M w M
N <1‘2—#1 ) ’:nzg<m(r+1) ' (15)
From (2?), (2?) and (??), it follows that
Bt 1 r+1 T, ru1 + U2
g( 2 )(w(l (2) 8 ( r1 )
m(ir+1)_, r?‘2+741>
YA N 16
( ( )) M2 — 1 Jﬂzg(m(r—l—l) (16)

Employing again the (h, m)-convexity of g, we obtain

! / 1-—
/Ow(’y)g(r-:lyy 1V2)d7<8(ﬂ1)N1+mg(y> 5. (17)
0 e m(r+1)#2 (r_|_1)V1 T = 8\H2)IN3 g 2 ) N4

By combining (??)—(??), we arrive at (??). O
Remark 4. Settings =m =1,r =0, h(z) = zand w'(z) = 1, we recover the classical Hermite-Hadamard
inequality.

Remark 5. Considering s, m, r and h(z) as in Remark ??, but with w'(z) = (a; we obtain the Theorem 2

of [? ].

Remark 6. Lettingm =1,n =0, h(z) = zand w'(z) = ?‘X(—a;, we have

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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8(”1?42) 1 Bl oy —z \ !
F@t1) = 2 pl@) Ju (Vz—Pll) 8lz)dz
1 b/ 5_ 1 )0&1
+ 25(ug — p1)T () /u <]42 i g(z)dz (19)
1| g(m) | 8(m) ! o .
< 3 | T T b 20 dZ]
1 8(2) gu) ' aa s
> |(a+s)@ I /0 2 (1-2) d21.
Utilizing Definition ?? in (2?), we find
g(ﬂl‘gﬂz> . o .
Ta+1) = 25(y2y1)"‘[ L 8(2) + qug(zﬁ)]
8(p) +g(m2) )| 1 2 1
<251r(04+1)< 2 ) N+S+a+s<12a+s>]' (20)

Multiplying the three terms by 25T (a 4 1) in (??), we complete (1) of [? .

Remark 7. Under the same assumptions as before, but with w'(z) = 1, we complete Theorem 2.1 of [? ].

Remark 8. Maintaining the previous assumptions, but considering w'(z) = %, we derive the Theorem 3
of [? ].

Remark 9. Under the conditions of Remark 22, but with w'(z) = e)(p(ai_gz), where ¢ = =&, we retrieve the
Theorem 3.1 of [? ].

Remark 10. Substituting w(z) = %, r=0,m=s=1and h(z) = z in the previous result, it leads to the
following inequality for the Riemann-Liouville fractional integral (it refers to Theorem 2 in [? ]):

g<7/ll ;’VZ) < 2(1;4(2“_"'7/{11))“ [RLIﬁZ_g(]“) + RLI$1+g(]l2):| < g(?’ll) ;g(VZ) )

Remark 11. Theorem 5 in [? ] (also see Theorem 1 in [? ]), which is based on k-Riemann—Liouville fractional
integrals, can be obtained from Theorem 22 by setting w(z) = zk, r =0, m = s = 1and h(z) = z.

The above results form the foundation for deriving other inequalities by using different types of
integral operators, as demonstrated in the following Remark.

Remark 12. We consider s-convex functions, 0 < « < 1, m = 1, h(z) = z, by putting r = 0 in (2?), and
choosing w'(z) = 1, we obtain:

zslg(m +uz> < 1 /”Zg(z) iz < 8tm) +8(2)
2 U2 — U1 Sy s+1

7

taking into account

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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1 12 _ M(a) 1—a o
i 894 = s 800 [, 808

+ s+ g [ s 2 eto .

Using the last two results, we can derive easily the Theorem 2.1 of [? ]. If additionally, s = 1, from the
above we can derive Theorem 2 of [? ].

Theorem 2. Let g, w, v, uy and yy as in the Theorem 22. If g’ € L1, pa), then

@/01[30(1—7) —w(7)lg’ (rilym + (1;1)112) dy

v g2 +J’E’M>-g(ﬂ1)

=+ 1] (@(0) - wlv) |m) + (L2 | - s el

Proof. Let us consider

[ o= g (T S ) ar

1—9 1 1—
_/ wld =7 ( +1” (r+1)m>d7_/o w(7>g< JJ:;Y’“ (r+¥>”2>
=T, —Ip. (22)

Integrating 7; by parts, we get

U1 — 2 r+1
r+1 b, +7 1 )
— 1-—- dy. 23
uz—m/ow( 7)g<r+1u1+r+1#z (23)
Making change of variable x = :’% M1+ (1;3)
_ r+1 B 7}!1—!—}!2)]
! Vl—llz[ (©)g(4) ( r+1
r+1 "H{’z — 1 r +r
_P‘z—m k2 +1M + 1y2>d7
r+1 ryl—l—yz r+1 _, ryl—i—yz)
_ _ T2 24
Vl—llz[w(o ( r+1 )] pe S\ e
Analogously for 7,, we can prove
r+1 ry1+y2>] r+1 _,
I = w(l —w(0 - . 25
2= g st w0 () - D et @)

From (??), (2?) and (2?), we have

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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1 , + 1—
/O (w1 —7) —w(y)g (:+r1y#1+ r+;yuz) dy
w+g(rﬂr1:1m>+1wr X o(ur)
_2(r+1) T+ o M ("51)
T (w(o)—w(l)){g(ﬂl)Jrg( P )] - 5 . (26)
Ha—t1 Hl

By multiplying both sides of (??) by , we get the desired result. O

Remark 13. Using convex functions, r = 0 and w(z) = z, in this way the Theorem 22 becomes the following
lemma:

Lemma 1. Let g be a real-valued function defined on a closed real interval [pq, yz| and differentiable on (py, p2).
If ¢’ € Li[p1, u2), then the following equality holds

+ 1 b —u
Sl tsln) 1 ey au= 120 10— 2y)g (g + (1 - ) d,
Ho — U1 Ja 0

which is Lemma 2.1 of [? ], one of the most important results in the Theory of Integral Inequalities.
Remark 14. Establishing r = 0 and w(z) = 2%, Lemma 2.1 of [? ] is derived for A, k > 0.

Theorem 3. Let g, w, r, 1 and py be defined as before. Suppose that || is (h, m)-convex modified of the
second type, the following inequality holds

+8(Wr1:1m) + J%M) ~g(m)
r+

(r+1) w(l) —w(0) — 5

< B LI (o) Wi+ 1g (12) W2, (27)

W= [ o= - w2 ar,

w2 = [ ot =) - wnl(1-n(" _ﬂ)) ay.

Proof. By using Lemma (??) and the (h, m)-convexity of g, we have

where

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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v g2 +J‘€M)fg(m)
(r+ 1) w(1) — w(0) — Ak

2

po —p1 [ o (T 1—9
<=3 /OIW(l 7) W(7)|g<r+1u1+—r+1#z>‘dv

S@[Ig’(m)l/ollwl—v)— ik (57 )

+|g’<uz>|/ol|w<1—fy>—w<7>|(1—h(jj’{))sdv]

= 12 (1) W I () W),

The proof is finished. O

Remark 15. Assuming the same conditions as in Remark (2?) and invoking Lemma (??), we recover Theorem

220f[? ].
Remark 16. Under the same assumptions of the remark (2?), we retrieve Theorem 6 of [? ].

Theorem 4. Let g, w, n, py and py be defined as before. Suppose that g is (h, m)-convex modified of the second
type and £, I2 € Dom(g), then it is true that

o(M 1) ) —wo) < [hﬁ G

2 (10(3)) Wy ()]

where

N, =/01w’(7)h5(%)d% sz/olw’(v)(l—h(%))sd%
No= [ (T Y, N4=/Olw%w(l—h(”njn"))sdv-

Proof. By means of the (h, m)-convexity of g with ¥ = 1, we have

(e12) v EJanleon()) o2
forx,y € I.

Substituting x = Tpq + =Ly and y = Lpp + =2y in (22), we get

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Hi+ s(IN\ (7 n—v
s(#3%) <# (3o -5
Y (v n—y
+m<1—h<§>> g(%ﬂrl- o ﬂl)- (30)
Multiplying both sides of (??) by w’(y) and integrating over [0, 1], we obtain
+ s(1\ [1
o(M51) ) —wo) < (3) [ (T + )by
1\ 1, Y n—q
+m(1—h(§> /Ow('y)g<%ﬂz+ p P‘l)d'Y
=hn ! Ly+m(1—h ! SL 31
= 5 )k m 5 4 31)

Rewriting the integrals, we find

n (=Dipti Y=
J— n / —
L3__(ﬂz—y1)/yz w(m yz)g(x)dx
_ n 12 - x
B <]/12 — ]/t1> ["*1)1424#41 w < to—i )g(X) dx

n

n w
B <V2 — MW >J<(”—1)52+y1 )+g(]42)/ (32)

N (uzm—nm) Z(U ot ) - <%) 33

mn

From (2?)—(2?), it follows that

o( M5 ) i) - w(o) < ﬁ[hS(é)Jz’Mng(uz)
+m<1—h(%>)51?’w)g<%>]. (34)

Employing again the (11, m)-convexity of g, we get

/01 w' (y )g< M1 + }42) dy < g(pu1)Np + mg( )Nz, (35)
/01 w’('Y)g(%VZ + nm—nlyyl) dy < g(ﬂ >N3 + mg(%)N4, (36)

By combining (??)-(??), we arrive at (2?). O

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.0395.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 September 2025 d0i:10.20944/preprints202509.0395.v1

10 of 22
Remark 17. Specializing to the case g convex, w(z) = z and n = 1, it yields the celebrated Hermite—
Hadamard’s inequality.
Remark 18. Considering n = 1, we get a new result for (h, m)-convex functions modified of the second type.

Remark 19. If g is a convex function and n = 1, by setting w'(z) = z* 1 with a > 0, we derive expression
(2.1) of Theorem 2 (see [? ]).
Indeed, applying Theorem ??, we obtain

1 [+ 1 . . A+ <l

According to Definition ??, we have

1 H1 =+ VZ) < 1 [/VZ a—1 #2 a—1
- - dz + - d
(M) < g L e @z [ =2 gl

< 8(1) +8(pa)
- 20

Given that T'(«) is well-defined for « > 0, it follows that

ptp al («) 1o - Lo -
$(27%) = 2y s g [
< 8(m) +8p2)
= 2

From Definition ??, we conclude, that

MK a+1) w « g(u1) +g(pa)
g ( B 2) = 20— )e [RH_g(n) + R g () | < SELZ SR

Remark 20. With w(z) = %, m=s=1,r=2and h(z) = z, the previous result simplifies to Theorem 4
in[?].

For s-convex functions, using w(z) = % and n = 1, we recover Theorem 2.1 from [? ]. Additionally,
Theorem 3 in [? ], for w(z) = z*, provides further results. In this work, Theorem 5 for m-convex functions is
also established under similar conditions and can be easly derived.

Remark 21. By assigningn = m = s = 1 and h(z) = z in (2?), which corresponds to working with convex

functions and choosing w'(z) = #{kl@(), the left-hand side yields

M1 +.”2 1 1 o 1253 g(z) i
g< 2 )B(a)Fk(a) : 2y — 1) ¥ lkB(a)l"k(oc) /m (z— ) ¢ d

& e g(2)
kB(a)Ty(a) /ul (4o —2)' ¥ dz]'

+

g<#1+#2)2(#2—#1)c’: < a /“2 3(2) 2
j

2 ) BWha) = BB@N® by (o) F
o e g2)
+ kB(oc)l”k(a) /141 (‘uz — z) —% dz. 57)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Adding the term ﬁ(g(yl) +g(p2)) on both sides of (2?) and considering thatg(’“;”z) < g(yl);g(””,

we obtain

o(27) [zg&_rf(l))k * %(_;)] <AB I o) AP IS, g(n). (38)

A similar approach applied to the right-hand side of (??), gives

1 P w2 g(z) o m2 g(z)
2(py — )k [kB(“)Fk(“) /m (z—up) 'k =t kB ()T () /m (o —z)' "k dz}

1 g(p1) +8(u2)
§B<a>rk<«x>< 2 )

Multiplying both sides by 2(pz — py) %, adding (113(—5) (g(p1) +g(m2)) and rearranging terms, we arrive at
ABpa AB [ 201 — )k (1—a) | (g(m) +8(a)
I]41+g(l’12) + I]/lzfg(‘ul) < [ B((X)rk(ﬂé) + B(D&) 2 . (39)

By combining (2?) and (2?), we obtain a relation that closely resembles Theorem 6 in [? ]. Moreover, setting
k = 1 in this expression yields a result comparable to Proposition 2.1 in [? ].
Remark 22. Theorem 7 of [? ] can be established by takingm = s =1, n = 2 and w'(z) = 251,

Lemma 2. Let g, w, n, jiy and pip be defined as before. If §' € L[y, po), then

/Olw(?’) [g'(zyl—kuyz) _g/<ly2+(”+7)yl>] i

n n n
= - o [W(O)(g(m) +g(2)) —w(1) <<%y1 + @m) +g<%m L = Wm))]
n 2
i <#2 - m) [J(zyﬁwyz)*g(’”) “(zmw;wm)g(ul)]. (40)
Proof. Let

1 _ 1 _
/O w(y)g (%m + wﬂg doy —/0 w(y)g' (%uz + @m) dy =13 - 14 (41)

n=y
n

By integrating 73 by parts and making a change in the variables x = 1 + 12, we have after

some computations

I3 [w(O)g(ﬂz) - W(l)g(%m + - ; 7#2)} + < . >21w Lo +8(m2). (42)

- Ho — M1 o — 1) " (Em+S )

Analogously for 74, we get

[w(1)8<%142 + 2 ; 7m) - w(O)g(uz)} + (m f ;41)2]z(uzm+'mm)*g(”1)' (43)
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From (??) and (??), it follows (??). O
Remark 23. By setting n = 2 and w(z) = z* with « > 0, the Lemma 3 is derived from [? ].
A
k

Remark 24. Lemma 3.1 in [? ] may be derived by settingm = s =1, n = 2 and w'(z) = zk.

Remark 25. By adopting a strategy similar to that utilized in Lemma (2?), we establish a comparable result
concerning the midpoint of the interval.

Lemma 3. Let g be a real-valued function defined on a closed real interval [y, p2], differentiable on (u1, p2)
and w' is an integrable function on [py, pa). If §' € Ly [p1, p2|, then the following equality holds

ey 2o s( 15 12) - s(R ) e (M )
S [’?mmg (™) (g8 (W)]
B o (R ) (IR R

forr e NU{0}.

Below we present some remarks that show the breadth and generality of (??).

Remark 26. By setting w(z) = z% and r = 0, we recover the Lemma 2.1 of [? ]. A similar result can be
obtained very easily, for the k-Riemann-Liouville Integral of [? ].

Remark 27. Letting w(z) = z and r = 0, we find a result new in the framework of Riemann integral

F‘l"‘VZ)_ 1 - z)dz

g( 2 V2—V1/141 8(2)

wo—pp ! i M1t 2 _ it B
== /()W(v)[g <72 +(1 v)m) ( > +( v)uz)]dv

Remark 28. Considering w(z) to be a linear function, but different for Iy and I, and r = 0, we get

]1_/01(7—A1)g( it +(1 —'r)m) d’Y_/Ol('y—Az)g,(’Ym_;m—I—(l—fy)yz) d,

where

/\1/ )\2 < R/

! rty it
o /

! rtym -t
_ /

From here we obtain

2-M—Ay (p+pa | Aglu) +ug(pa) 1 /“2 M2
5 g( 5 + > pr— g(u)du—i4 L
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Given that
+ ! +
/(7 M) ( Haea —V)PH)dW:/O(1—7—}\1)3’(wl+(1—v)m2V2>d%

we retrieve Lemma 2.1 of [? ].
Remark 29. Readers will have no difficulty in proving, in a similar manner, the following result:

Lemma 4. Let g be a real function defined on some closed real interval [y, up|, differentiable on (uy, pi2) and
w' is an integrable function on [y, ua). If §' € L1[p1, pa|, then we find the following equality

npy+ 1512 npp+ 11312
g<1n+12 +8| e
) 2

L py8ta) ;8(#2) + (0

n+1

1 nuy + Pt Ny + Pt
+ |18 1 S +)Y g 0 S
Mo —pp |71 n+1 2 n+1

_ = [t (ntymtp  1—o \  (ntyp+p

forn e N.

Result that completes Lemma 2.1 of [? ]. Of course, Remarks, similar to those presented above, can be
derived.

Theorem 5. Let g, w, n, py and py be defined as before. If |¢'| is (h, m)-convex modified of the second type,
then it is true that
(m
o)l +

where L is the left-hand side of (22), W3 = fol w(y)h® (L) dy and Wy = fol w(y)(1—h(%)) dy.

2w @

IL| < (|8 ()| + |8" (42) ) W3 + m(

Proof. From Lemma ??, by employing the properties of the modulus, we obtain

< [ e [[g (L + s+ (T + Ly )

Utilizing the convexity property of |g’|, we get
(2
¢ ()

o (5 ) [ < (s e 0(3)

¢ ("5t ) <))l G e ()l el
Summing the last two inequalities, we have

g< i+ #z)‘ gl<n;7V1+Zﬂz)‘

<1 (; il e+ w(1-n()) (9 G+ D

Taking into account the accepted notations, we obtain (??). The proof is completed. O

4

and
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Remark 30. If we consider the usual class of convex functions and n = 2, then from Theorem ??, we obtain

< ()| + I8 G)) [ wimar

Here, if we take w(z) = z, then we get Theorem 2.2 from [? ] and Theorem 5 from [? ]. If we choose
w(z) = (1 — z), then we have Theorem 2.2 in [? ], and if w(z) = z*, then we get the inequality from [Remark
of Theorem 1, for w(z) = (1 —z)*]1 [? ].

Remark 31. By adopting a strategy similar to that utilized in Theorem (2?) and by employing Lemma (2?), we
establish a comparable result concerning the midpoint of the interval.

Theorem 6. Let g : [y, o] — R be a differentiable function on (uq, pa), such that ' € Ly[pq, ua). If || is
(h, m)-convex modified of the second type and L, 2 Dom(|¢’|), then the following inequality holds:

(3 el () [+l (52

|L(w, 8,11, p2,m)| < 2|8

where

L(w,g, 11, Y2, 1) =
- i e (32) o () (i)

1 w (r+2)u +rpn w rur + (r +2)uz
R l’(%‘g( i) gyt (M)

Hy =/01w(7)h5<:+TY>d%
Hy = /01 w(7y) [1 —h(;i¥>]sd7.

Corollary 1. Under the assumptions of Theorem ??,

7

1. Ifwe choose m = 1, then we derive the following inequality

|L(w, g, 11, m2,7)| < 2|8

+
(”1 yz)‘ﬂ + (I8 ()] + 18 (12)]) Ha,

H1 and H; are as before.
2. Ifs=m=1,then

|L(w,8, p1, p2,7)| < 2|8

'<—y1 > m‘) ‘”m + (18" (ua) | + 18/ (m2) ) Ha (1),

where

He,:/olww}h(:i’ly)d'r, H4=/01w(7) {1—;1(::'{)}17.

3. Ifwetake w(z) =z,v =0,and s = m = 1, we get the following inequality, new for the Riemann Integral
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+ H2 + 1

(11512 - [Tedz <2 (H 72| [ any)dy
2 1 2 0
1
(18 )| + I8 @) [ 21— h()an.
o

4. Puttingw'(z) = = 0, readers will have no difficulty in obtaining a new inequality for the

I(a+1)
Riemann—Liouville integral.

Remark 32. The generality of this result can be easily verified since, for different notions of convexity contained
in our Definition ??, with different values of r and for different kernels w', new results can be derived under
those conditions from Theorem ??.

Theorem 7. Let g,g', w, 1, pz and n as in the Theorem (2?). Suppose that |¢'|7 is (h, m)-convex modified of
the second type and EL, £2 € Dom(|g'|7), then the inequality below is satisfied

m

¢ (12) ")+ (1) B8y

(')’

1
where p,q > 1, U is the right-hand side of equation (2?), W5 = (fol wP (7y) d’y) " Hy = fol he (L) dy
and Hy = fol (1—=h(1))dy.

Ul < ”;“wélog’(wnl +m

Proof. By adapting the approach used in the Theorem (??) but by employing Holder’s inequality
instead, we arrive at

” g’(ZﬂﬁWﬂz)‘d’H/olw(v)

< ’”;m(/olwf’('r)dv)pK/ol g’(ZulJr(";W)uz)
+ </01 8/<ZV2+(71;7)V1> qd"r)q}

< BEws l(lg’(m)qul +mlg'(52) ’qHz)é + (180" Hy -+ m

8/(Zﬂz+ WM)’M]

1
q q
d’y)

uj<tein [ [ )

1
(M1 q q
o))
Therefore, the desired result has been established. [

Remark 33. If w(z) = z" and g is convex, we obtain the inequality to the Theorem 6 presented in [? |

227 (w+1) | gy RL H1t 2
K I'zmzm)*g(?‘lH I?m;uzyg(m) _3<2>

1 1 1
ctmpn (1 NPT Gl BIgT ()TN (18T ()l 3lg (k)TN
- 4 ap+1 4 4 4 4

1

- 4 \7

< BB () g )+l )
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Remark 34. Ifw(z) =4z, 9 = p—;l and g is convex, we get an inequality similar to the Theorem 2.3 presented
in[?]

_P_

1 p1 p1 -1
e e B [ C e ’
Mo —H1Jm 2 - 16 p+1 4 4
r

+(mwﬁf+mwm7>“m

4 4

Remark 35. Ultilizing a procedure parallel to that applied in Theorem (??) and invoking Lemma (??), we obtain
an equivalent statement pertaining to the midpoint of the interval:

Theorem 8. Let g : |1, pa] — R be differentiable function on (p1, pp) such that ¢’ € Ly[uy, ua). If |¢'|" is
(h, m)-convex modified of the second type and £L, L2 € Dom(|g’|") then it's true that:

|£(w, 8, 1, 2, 1) (46)
< gestowe [ (22) s (i (8 ]
et nemie ]

with 3+ 31 =1, Hs = [ h*(E4)dt, He = [y (1= h(£E)) dt and Ws defined as before.

qH5+m<

qH5—|—m(

Corollary 2. Under the assumptions of Theorem ??,

1. Choosing m = 1, then we obtain the following inequality

[ M1+ M2
¢("")

|£(wlg,}l1,]12, r)|
1
H2 — 1 !
< 2 P wP
4(r+1)2 (/() (t)dt>

+[

1
q

q7'l5 + (|8I(V1) |q>7'[6}

=
——
L

2. Ifs=m=1then

|L(w, 8, 11, pa, 7)| < m</01 w”(t)dt>’1’
) { {g(w) q/ol}’CIi)dH!g’<m>!q/ol<1_h<:ﬂ>)dt}é
+[g'<14142rﬂz) q/olh(:jrri)d”|g’(ﬂz)\q/01(1_hCii))dt]%}.

3. Bearing in mind Corollary ??, items 3 and 4, we can derive new inequalities for Riemann and Riemann-

Liouville integrals, respectively.

Theorem 9. Let g, ¢, w, u1, po, n, W3 and Wy be as in the Lemma (2?). Suppose that |¢'|1 is (h, m)-convex
modified of the second type and L1, £2 € Dom(|g'|7) then the following result emerges
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Y.

1
_ 9 ! 1
vl < Wﬂ’“w6[<|g’<m>|ﬂw3+m (5] w4> + <|g'<yz>|qw3+mg’(’;;)| W4>

|

Proof. Employing Lemma (??), triangle inequality, Power mean inequality and the definition (??) for
|g|7, we obtain

1-1
where g > 1, Wg = (fol w(7y) d’y) 7 and U is defined as before.

Ul < P‘z;m /Olw(v) lg’(Zm + (";ﬂyz> —g’(Zszr (n;ﬂm) dy
< @ [/01 w(7) g’(Zm + (n;r”uz) ‘ dy + /01 w(7) g’(Zﬂz + (n;v)m) ‘ dvl

==

Y (n—2)
8<nV1+ " yz)

)]

¢(12)'w)

- i
< @ (/Olww) dv) qd7>
1
+ ( | o

< B, [<|g'<m>|ﬂw3+m

l(/olwm

& (n—17)
g(n#2+ " #1)

1

() |

= =

+ (Ig’(#z)lf’wﬁm

Hence, the proof is finished. [

Remark 36. Theorem 8 in [? ] follows as a consequence when the parameters m, s, n and the function w' are
selected as in Remark (2?).

Remark 37. In light of Theorem (2?) and Lemma (2?), we similarly obtain a result for the midpoint of the
interval:

Theorem 10. Let ¢ : [u1, ua] — R be a differentiable function on (1, pa), such that ¢’ € Ly[uq, ua]. If |'|"
is (h, m)-convex modified of the second type with q > 1 and £, L2 € Dom(|g'|"), then it is true that

po—pm (1 =
20,8112 < ([ i) @)

4(r+1)2
()]

Alk(e3)
(e eneye )

where Hy and H, are defined above in Theorem (2?).

q?'[l +m(

qu +m(

Theorem 11. Let g, ¢, w, py, 42, n, p, q, U, Hy and Hy be as defined in the preceding result. Suppose that
|g’|7 is (h, m)-convex modified of the second type and L1, £2 € Dom(|g'|7), then it is true that

m
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— H
Ul < B Wy o (1) 7+ 19 ()l =+ o

(G

SENT|

where Wy = 2 f 7) dvy.

Proof. Following a similar line of reasoning as in Theorem (??) but replacing the key inequality with

that of Young, we get
Vz ! (n—7) ! (v (n—7)
U] < u1+7uz d7+/ w(y)|8' | —p2+——Fm )| dy

n 0 n n
r(x (=7 |

<lezil wh(7) /1 g (G + 5 ) dy

p 0 q
q
1] (Lpp+ ¢
( o) "
<k w7+(|g'<u1>|‘f+|g’<m>|q)5+m( () g () B2 .
- on q m m q

This concludes the proof. [J

Remark 38. If we consider the usual class of convex functions and n = 2, then from (2?) we obtain

2(Ws)?

18" ()l + 18" (k2)|”

Ul <
q

_|_

Here, if we take w(z) = z, then we get

H2 1+ p2 2 I8’ (u1)|" + 18 ()|
/m g(z)dz_g< 2 )'SP(P+1)+ q '

Remark 39. By building upon the method employed in Theorem (??) and drawing on Lemma (2?), we derive a
parallel result concerning the midpoint of the interval.

Theorem 12. Let g : [u1, Ha] — R be a differentiable function on (1, pz) such that ¢’ € Li[u1, u2]. If |¢'|7 is
(h, m)-convex modified of the second type with % + % = land L, £2 € Dom(|g'|"), then

Sl ) < L2 Parars 2o (102) oy, )
(e Gl s () e

holds, where Hs and He are defined above in Theorem ??2.
Remark 40. The Remark ?? remains valid in these results.

Remark 41. Readers will have no difficulty in formulating the corresponding corollaries to Theorems (2?)
and (2?).
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3. Conclusions

This work focuses on the generalization and extension of existing results related to integral
inequalities. The main results and contributions are Theorem 7, Theorem 17, Theorem 19, Theorem 21,
and Theorem 25, which establish new inequalities for (/, m)-convex functions of second type using
weighted integral operators. It also provides remarks showing how these new results generalize or
connect with existing theorems in the literature by establishing specific parameters for s, m, h, and the
weighting function w'.

In essence, we consider this work to contribute significantly to the theory of convex functions
by providing a more generalized and flexible framework for Hermite-Hadamard-type inequalities
through the introduction of weighted integrals and refined classes of (h, m)-convex functions.
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