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Abstract

Semantic segmentation of 3D LiDAR point clouds is crucial for autonomous driving and urban
modeling, but requires extensive labeled data. Unsupervised domain adaptation from synthetic to
real data offers a promising solution, yet faces the challenge of negative transfer, particularly due to
context shifts between domains. This paper introduces Context-Aware Feature Adaptation, a novel
approach to mitigate negative transfer in 3D unsupervised domain adaptation. The proposed approach
disentangles object-specific and context-specific features, refines source context features through cross-
attention with target information, and adaptively fuses the results. We evaluate our approach on
challenging synthetic-to-real adaptation scenarios, demonstrating consistent improvements over state-
of-the-art domain adaptation methods with up to 7.9% improvement in classes subject to context
shift. Our comprehensive domain shift analysis reveals a positive correlation between context shift
magnitude and performance improvement. Extensive ablation studies and visualizations further
validate the efficacy in handling context shift for 3D semantic segmentation.

Keywords: UDA; 3D point clouds; domain shift; 3D semantic segmentation; negative transfer

1. Introduction
Semantic segmentation of outdoor mobile mapping point clouds is vital for applications like

autonomous driving and digital twins of cities. Supervised deep learning methods achieve strong
results but rely on large annotated datasets, which are costly and time-consuming to obtain. This has
led to exploring transfer learning from synthetic datasets with readily available labels [1,2]. However,
the domain shift between synthetic and real data introduces challenges, including sensor variations,
geographical differences, and class discrepancies in urban scenes, causing a generalization gap in
real-world scenarios. Unsupervised Domain Adaptation (UDA) methods have been proposed to
address this gap [3–7]. Despite progress, UDA methods face challenges like negative transfer (NT),
where irrelevant information from the source domain degrades target domain performance [8]. NT
arises from cross-domain context shifts, such as spatial and co-occurrence changes between classes.
For instance, in synthetic datasets, motorcycles may appear on roads, while in real-world data, they
might be parked on sidewalks or terrain, causing class confusion. UDA methods for 3D semantic
segmentation are commonly divided into self-training and adversarial. Self-training approaches may
suffer from error propagation [9], while adversarial methods can misalign features, losing domain-
specific context [10]. Current UDA efforts primarily focus on cross-domain transferability, often
transferring domain-specific features from the source to the target, exacerbating NT [8]. This paper
proposes Context-Aware Feature Adaptation (CAFA) to tackle NT caused by context shifts in 3D UDA.
CAFA selectively adapts context-specific features while preserving domain-invariant object features.
CAFA’s three-step process first disentangles object and context features, refines source context features
using target context via cross-attention, and fuses refined context features with object features. Our
contributions are:
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• A novel feature disentanglement technique for separating object-specific and context-specific
information in 3D point cloud data and a cross-attention mechanism for refining source context
features using target domain information.

• A flexible framework integrating various UDA techniques to enhance performance.
• A method to quantify context shift to enable an analytical evaluation of performance improve-

ments relative to context variability.
• Extensive experiments demonstrating our approach reduces NT and improves UDA performance

on challenging 3D semantic segmentation tasks.

2. Related Work
Unsupervised domain adaptation for 3D semantic segmentation. UDA for 3D semantic seg-

mentation enables knowledge transfer from labeled synthetic data to unlabeled real-world LiDAR
scans. The key challenge is context shift due to different class co-occurrences between domains.
Existing methods fall into adversarial [2,4,7,11–16] and self-training methods [3,5,6]. CycleGAN
[17] can be used for translating real Bird-Eye-View images (BEV) into synthetic BEVs obtained from
synthetic point clouds [11]. Zhao et al. [12] adversarially simulate LiDAR dropout noise on real data
using a synthetic dataset. Xiao et al. [2] decompose the synthetic-to-real gap into an appearance
component and a sparsity component and then align the synthetic and real feature distribution at
the input level and feature level. Yi et al. [13] propose to conduct UDA through the auxiliary task
of 3D surface completion to transfer knowledge between different LiDAR sensors. Yuan et al. [4]
propose a category-level adversarial alignment to translate point density between domains with an
adaptive adversarial loss reweighting and source-aware consistency loss. Li et al. [14] simulate the
pattern of target noise to bridge the domain gap using a learnable masking module. Self-training
methods use target pseudo-labels to bridge the domain gap. Saltori et al. [3] propose a self-training
approach that employs a semantic mixing strategy to augment the data and mitigate domain shift. Xiao
et al. [6] introduce LiDAR-specific augmentation through scene-level swapping and instance-level
rotation. Zhao et al. [5] construct a bridge domain through spatial, intensity, and semantic distribution
mixing. While some approaches tackle aspects of NT [7,14], they do not explicitly address context
shifts due to varying class co-occurrences. Current methods struggle to capture differing contextual
relationships between domains, leading to suboptimal feature transfer in complex urban environments.
Our proposed method addresses this gap with a novel context-aware feature disentanglement ap-
proach and cross-attention refinement, specifically designed to handle spatial dependencies and class
co-occurrence variations to mitigate NT caused by context shifts in 3D LiDAR segmentation.

Negative Transfer in UDA. The effectiveness of UDA methods can be compromised by NT, where
knowledge from the source domain harms target performance. NT often occurs when domains are
dissimilar [18] or when source models overfit to domain-specific features. This is problematic in out-
door mobile mapping point clouds, where context shifts between domains can occur due to complex
spatial relationships, class co-occurrences, and varying point densities across different environments.
NT mitigation approaches can be categorized into two main categories [8]: data transferability en-
hancement (DTE) and model transferability enhancement (MTE). DTE methods focus on enhancing
the quality of input instances or features. These include domain decomposition [19,20], which per-
forms UDA on subdomains by partitioning the source and target into different parts. For instance,
Zhu et al. [19] minimize class-wise discrepancy rather than global alignment. Intermediate domain
construction methods [21,22] bridge the domain gap through constructed intermediate domains. Other
DTE approaches include instance selection and weighting [23], and feature enhancement methods
such as batch spectral shrinkage [24] and adaptive channel weighting [25]. MTE approaches aim to
enhance model transferability. These include TransNorm [25], which adapts normalization statistics,
and parameter selection methods, such as TransPar [26], which identify and select transferable param-
eters from the source model. Parameter regularization methods, including co-tuning [27], side-tuning
[28], and concept-wise fine-tuning [29], also fall under the MTE category. However, these methods
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must explicitly address context shift, a critical factor for 3D point clouds due to the varying scene
compositions across different urban environments.

Our proposed method addresses the limitations of existing approaches in handling context
shift by introducing a context-aware feature disentanglement approach coupled with cross-attention
refinement. This allows for targeted adaptation of contextual features while preserving object-specific
information.

3. Materials and Methods
Our proposed approach explicitly handles contextual differences during the adaptation process

and is illustrated in Figure 1. We consider a set of source domain samples S = (Xs, Ys) and target
domain samples T = (Xt, Yt), Xs ∈ Rns×din ∼ Ps are source input points and Xt ∈ Rnt×din ∼ Pt

are target points. Ps and Pt denote source and target feature distributions respectively and din is the
number of input features. Ys ∈ Y , Y = {1, 2, ..., C} are source labels for C classes. ns and nt are the
number of source and target points respectively. The target domain shares the same classes as the
source domain; the target labels Yt are unknown.

Figure 1. Architecture of the proposed CAFA method. The pipeline illustrates the key components: feature
extraction, feature disentanglement, source context refinement using global target context, and feature fusion.
Blue paths represent source domain processing, orange paths represent target domain processing.

3.1. Context Aware Feature Adaptation

In the following sections, we detail each component of our proposed Context Aware Feature
Adaptation (CAFA) method.

3.1.1. Object and Context Feature Disentanglement

We decompose source and target features into object-specific and context-specific components to
adapt contextual information while preserving object-specific features. Features are extracted at two
abstraction levels through the backbone network F (.) as shown in Equation 1:

{Fs
l }

L
l=1 = F (Xs), (1)

where Fs
l ∈ Rns

l×dl are source features at level l, L = 2 is the number of levels, dl is the feature
dimension, and ns

l is the number of source points at level l. This applies to both source and target
domains. Source features are disentangled using two attention modules to generate context (Equation
2) and object attention maps (Equation 3) which modulate the features via element-wise multiplication
to produce context-specific (Equation 4) and object-specific features (Equation 5).

Ms
cont = σ(Acont(Fs

g)), (2)

Ms
obj = σ(Aobj(Fs

o )), (3)

Fs
cont = Ms

cont ⊙ Fs
g, (4)
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Fs
obj = Ms

obj ⊙ Fs
o , (5)

g and o denote abstraction levels (g ≤ o), Acont and Aobj are 1x1 convolutional layers, and σ is the
Softmax function. Lower levels (g) capture low-level context patterns, while higher levels (o) encode
abstract object information. Only context-specific features Ft

cont are extracted for the target domain to
guide source context refinement.

This disentanglement process uses multi-scale features and attention for a soft separation, allowing
shared information between object and context features. Unlike strict orthogonality constraints
(ineffective in our experiments), our method allows for soft disentanglement that maintains some
shared information between object and context features.

3.1.2. Source Context Feature Refinement

We use cross-attention to refine source context features using target domain information. The
process involves three steps:

Ccont
t =

1
nt

nt

∑
i=1

Ft
con, (6)

Qcont
t = A(Ccont

t ), (7)

Acont
s→t = σ(Qcont

t · Fs
cont), (8)

Fs→t
cont = Fs

cont ⊙ Acont
t→s, (9)

First, we compute the global target context (Equation 6) using Global Average Pooling. Next, we
compute a query context vector Qcont

t using a 1x1 convolutional layer A (Equation 7) that is then used
to calculate attention weights for the source context features (Equation 8). Finally, we refine source
context features using these attention weights through element-wise multiplication (Equation 9). This
mechanism allows the model to selectively focus on source context features relevant to the target
domain, and mitigate context shift effects.

3.1.3. Cross-Domain Feature Fusion

We fuse the refined source context features with the original source object features following
Equation 10:

Fs→t
o = ϕ([Fs→t

cont ; Fs
obj]) + γFs

o , (10)

ϕ is a learnable 1x1 convolutional layer and [; ] denotes channel-wise concatenation. A residual
connection with a learnable scalar γ (initialized small) allows the network to retain information from
the original representation and adjust its importance during training. This process aligns source
context features with the target domain while preserving important object-specific information for
segmentation.

Algorithm 1 synthesizes the main steps of the proposed approach.
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Algorithm 1 Context-Aware Feature Adaptation (CAFA)

Require: Source point cloud Xs, Target point cloud Xt, Backbone network F
Ensure: Adapted source features Fs→t

1: function DISENTANGLEFEATURES(X, F)
2: F1, F2 ← F(X) ▷ Extract multi-scale features
3: Mobj ← σ(Convobj(F2)) ▷ Object attention
4: Mcont ← σ(Convcont(F1)) ▷ Context attention
5: return Mobj ⊙ F2, Mcont ⊙ F1
6: end function
7: function CROSSATTENTIONREFINEMENT(Fs,cont, Ft,cont)
8: Ct ← 1

Nt
∑Nt

i=1 Fi
t,cont ▷ Global target context

9: A← σ(Ct · FT
s,cont) ▷ Cross-attention weights

10: return Fs,cont ⊙ A
11: end function
12: function FEATUREFUSION(Fcont, Fobj, Fs)
13: Ff used ← Conv f usion([Fcont; Fobj])
14: return Ff used + γFs ▷ γ: learnable parameter
15: end function
16: Fs,obj, Fs,cont ← DisentangleFeatures(Xs, F)
17: Ft,cont ← DisentangleFeatures(Xt, F)[2]
18: Fs→t,cont ← CrossAttentionRefinement(Fs,cont, Ft,cont)
19: Fs→t ← FeatureFusion(Fs→t,cont, Fs,obj, Fs)
20: return Fs→t

3.2. Relationship to Other Attention Mechanisms
3.2.1. Vector Attention

Vector self attention was introduced in Point Transformer [30] for a set of feature vectorsX = {xi}i

as :

yi = ∑
xj∈X

ρ
(
γ
((

φ(xi)− ψ(xj)
)
+ δ

))
⊙ α(xj) (11)

yi is the output feature. φ, ψ, and α are pointwise feature transformations, such as multilayer percep-
trons (MLPs) or linear projections. δ is a positional encoding function and γ is a mapping function (e.g.,
an MLP) that produces attention vectors for feature aggregation. The overall mechanism computes a
vector-valued weighted sum and allows each channel in yi to selectively aggregate information from
its neighbours as shown in Figure 2(b). In the proposed feature disentanglement module, each point
features are re-calibrated independently based solely on its own representation—essentially perform-
ing a self-modulation akin to squeeze-and-excitation [31], without explicitly aggregating information
from neighbouring points. This process is illustrated in Figure 2(c).
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(a) In Squeeze and Excitation, all the points are compressed spatially using global spatial pooling. The resulting
vector is used to compute an attention vector applied channel-wise to all the points indiscriminately.

(b) In Vector self attention, the neighbours of the two points are used to compute per-point attention vectors that
are then applied channel-wise.

(c) The feature vectors of each point are used to compute per-point attention vectors that are then applied
channel-wise.

Figure 2. Illustration of how the features of two points (highlighted in yellow) are calculated using : (a) Squeeze
and Excitation attention module. (b) Vector self attention. (c) Our proposed attention mechanism for object and
context feature refinement.

3.2.2. Squeeze-and-Excitation Module

The Squeeze and Excitation module [31] performs global average pooling to squeeze the spatial
dimension. The resulting vector is then fed through an MLP and a sigmoid function to produce
channel-wise weights which are applied for all spatial positions (Figure 2(a)). In our proposed source
context feature refinement module, the spatial dimension is squeezed but further used to compute
point-wise attention vectors for each target domain position.

3.3. Training Objective

Our method enhances existing UDA techniques by addressing NT and can integrate with various
UDA methods to improve performance. The overall training objective (Equation 13) includes the
cross-entropy loss on source data (Equation 12) and a UDA-specific loss LUDA, which depends on the
chosen UDA method (e.g., adversarial loss, self-training loss, or other domain alignment objectives):

Lce
s = − 1

ns

ns

∑
i=1

C

∑
c=1

1
[ŷ(c)i =c]

log [h(Fs→t
o )c

i ], (12)

L = Lce
s + LUDA, (13)

h is the classifier computed on the refined source features.
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4. Results
4.1. Datasets and Baselines
4.1.1. Datasets

We evaluate our method in a synthetic-to-real UDA setting, training on synthetic data and
adapting to real-world datasets. We align our validation split and training setup with previous works
[2,3]. The SynLiDAR dataset [2], created with Unreal Engine and a simulated 64-beam LiDAR, serves
as the source domain. We use SemanticPOSS [32] and SemanticKITTI [33] for target domains. Labels
are aligned into common sets: 13 classes for SynLiDAR to SemanticPOSS and 19 for SynLiDAR to
SemanticKITTI [2,3]. Segmentation performance is measured using mean Intersection over Union
(mIoU) [34].

4.1.2. Baselines and Training.

We compare our method against state-of-the-art 3D UDA methods and NT mitigation techniques.
For 3D UDA, we use PCAN [4], a density-guided adversarial method and CoSMix [3], a self-training
approach with cross-domain semantic mixing. To assess NT mitigation, we use DSAN [19], CWFT
[29], TransPar [26], and BSS [24] with each UDA method. We use MinkUNet32 [35] as the backbone
for point cloud semantic segmentation. The input voxel size is set to 0.05 m, and the implementation
is in PyTorch using a single NVIDIA Tesla V100 GPU. We pretrain on the source domain for ten
epochs using SGD (learning rate 0.01, momentum 0.9, batch size 4), this pretrained model serves as
the baseline. We initialize with pre-trained weights during adaptation and follow each baseline’s
original implementation and hyperparameters for a fair comparison. Our method sets the context
abstraction level to g = 1 (first network layer), and object-specific features o are from the last layer
before classification. All attention modules use 1x1 sparse convolution layers. We provide below more
details about the hyperparameters used for adaptation and training all the negative transfer methods
for both PCAN [4] (Table 1) and CosMix [3] (Table 2).

Table 1. Main hyperparameters for PCAN training.

Hyperparameter SemanticKITTI SemanticPOSS
Maximum Epochs 100000 100000
Entropy Threshold 0.05 0.05
Adversarial Loss Weight 0.001 0.001
Mean Teacher α 0.9999 0.9999
Voxel Size 0.05 0.05
Learning Rate (Generator) 2.5e-5 2.5e-4
Learning Rate (Discriminator) 1e-5 1e-4

Table 2. Main hyperparameters for CoSMix.

Hyperparameter SemanticKITTI SemanticPOSS
Voxel Size 0.05 0.05
Number of Points 80000 50000
Epochs 20 20
Train Batch Size 1 1
Optimizer SGD SGD
Learning Rate 0.001 0.001
Selection Percentage 0.5 0.5
Target Confidence Threshold 0.90 0.85
Mean Teacher α 0.9 0.99
Teacher update frequency 500 500

4.2. Feature Disentanglement Results

The object and context attention maps generated by our CAFA method are illustrated in Figure
3. As described in Section 3.1.1, these attention maps are computed at different abstraction levels
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within the network and confirm that the model learns a meaningful separation of object and context
features. In Figure 3, object attention maps indicate points that the model deems most important for
discriminating objects such as parts of cars and buildings and urban objects on sidewalks. On the other
hand, context attention maps highlight points that provide contextual cues, such as the surroundings
that help the model interpret the object in its setting (e.g. ground, cars, buildings, or other spatial
context).

(a) Example 1: Input Point Cloud (b) Example 2: Input Point Cloud

(c) Example 1: Object Attention Ma (d) Example 2: Object Attention Map

(e) Example 1: Context Attention Map (f) Example 2: Context Attention Map

Figure 3. Object and context attention maps for two example point clouds. (a,b) Input point clouds. (c,d) Object
attention maps highlighting object-specific features. Points relevant to objects are highlighted in green. (e,f)
Context attention maps emphasizing contextual information. Points important for scene context are highlighted
in green.
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4.3. Comparison with Previous Methods

We evaluate CAFA on two challenging UDA scenarios: SynLiDAR→ SemanticKITTI (Table 3)
and SynLiDAR→ SemanticPOSS (Table 4). We report the results in terms of mean Intersection over
the Union (mIoU).

Table 3. Adaptation results on SynLiDAR→ SemanticKITTI. The source corresponds to the model trained on the
source dataset. Results are reported in terms of mean Intersection over Union (mIoU).

Model ca
r

bik
e

m
ot

tru
ck

oth
er-

v

per
so

bcy
st

m
cls

t
ro

ad
par

k
sid

ew

oth
er-

g

build
fe

nce
veg

e
tru

nk
ter

ra
pole

tra
ff mIoU gain

Source 72.6 6.7 11.6 3.7 6.7 22.5 29.5 2.8 67.2 11.9 35.7 0.1 59.9 23.5 74.3 25.7 42.0 39.6 13.3 28.9 -
CoSMix [3] 83.6 10.2 14.4 8.8 15.2 27.4 23.5 0.7 77.4 17.4 43.6 0.3 55.1 24.5 72.7 44.8 40.8 45.3 19.8 32.9 +0.0
CoSMix + CWFT[29] 85.1 11.2 14.3 4.0 11.9 28.0 16.5 3.9 76.4 16.9 44.9 0.1 52.1 25.2 72.4 42.2 42.8 44.2 19.6 32.2 -0.7
CoSMix + DSAN[19] 84.6 1.8 15.0 5.1 10.7 33.5 26.9 2.7 76.6 18.8 44.2 0.2 61.0 30.8 74.3 41.8 39.6 42.9 24.8 33.4 +0.5
CoSMix + TransPar[26] 83.8 5.4 13.1 7.1 13.0 22.5 15.4 2.5 77.2 17.3 43.4 0.1 58.6 24.9 73.4 41.6 38.5 43.5 15.8 31.4 -1.5
CoSMix + BSS[24] 82.6 5.3 17.4 7.8 11.7 26.7 12.7 3.5 77.5 19.9 44.6 0.2 52.5 25.9 72.1 38.9 41.1 43.4 20.1 31.8 -1.2
CoSMix + CAFA (ours) 83.2 9.4 22.1 7.9 13.4 33.2 31.4 5.7 78.0 15.9 46.5 0.1 52.6 28.5 72.5 43.0 47.5 45.0 19.9 34.5 +1.6
PCAN [4] 85.6 16.2 27.4 9.9 10.4 28.4 64.2 2.9 77.1 13.9 50.3 0.1 67.4 19.4 75.9 41.4 47.7 40.8 21.7 36.9 +0.0
PCAN + CWFT[29] 86.6 17.0 25.7 10.9 10.1 30.6 60.1 2.7 77.4 12.8 50.1 0.1 64.9 23.3 74.7 43.6 46.5 42.7 22.8 37.0 +0.1
PCAN + DSan[19] 85.8 16.9 27.7 9.9 10.3 28.7 65.3 2.8 77.0 14.2 50.4 0.1 69.0 19.9 76.4 42.1 46.6 41.4 22.1 37.2 +0.3
PCAN + TransPar[26] 87.3 17.6 28.9 11.5 12.7 30.8 65.1 2.4 76.5 12.9 48.9 0.1 69.6 19.0 77.2 40.7 44.4 40.7 22.3 37.3 +0.4
PCAN + BSS[24] 86.0 17.0 28.1 10.5 11.6 26.9 65.9 3.3 77.2 13.9 50.3 0.1 68.1 19.4 76.2 41.2 47.4 40.7 22.9 37.2 +0.3
PCAN + CAFA (ours) 85.2 13.3 31.7 11.2 12.4 33.3 71.7 3.7 77.0 11.0 49.9 0.0 66.9 18.0 75.7 42.4 50.5 37.8 16.1 37.3 +0.4

Table 4. Adaptation results on SynLiDAR→ SemanticPOSS. The source corresponds to the model trained on the
source dataset. Results are reported in terms of mean Intersection over Union (mIoU).

Model
per

so
n

rid
er

ca
r

tru
nk

plan
ts

tra
ffi

c
pole

gar
bag

e

build
in

g

co
ne

fe
nce

bik
e

gro
u.

mIoU gain

Source 45.7 40.2 51.5 22.1 71.9 4.9 22.2 21.9 71.9 4.8 29.8 2.6 76.1 35.8 -
CoSMix [3] 55.3 52.4 47.6 43.5 72.0 13.7 40.9 35.4 67.7 30.2 35.3 5.6 81.3 44.0 +0.0
CoSMix + CWFT[29] 53.9 50.7 54.0 31.2 72.6 13.2 41.8 35.7 69.9 28.4 31.6 7.1 81.3 43.9 -0.1
CoSMix + DSAN[19] 52.8 51.5 51.6 35.9 70.8 13.3 38.2 36.9 62.7 31.8 33.0 4.8 79.1 43.3 -0.7
CoSMix + Transpar[26] 54.6 54.1 53.2 35.4 74.1 13.7 40.7 31.5 72.8 24.4 32.9 6.3 81.1 44.2 +0.2
CoSMix + BSS[24] 55.6 52.7 48.0 35.2 73.3 15.5 40.1 28.4 70.8 29.6 38.4 6.2 81.4 44.3 +0.3
CoSMix + CAFA (ours) 52.3 53.9 56.9 34.0 72.5 11.0 42.3 36.9 70.6 31.7 36.6 5.2 81.1 45.0 +1.0
PCAN [4] 60.9 52.3 60.1 41.2 74.5 18.0 35.0 23.9 74.8 8.0 38.7 12.3 79.3 44.6 +0.0
PCAN + CWFT[29] 59.7 51.5 59.1 40.9 74.0 17.6 35.0 24.8 74.4 8.7 40.2 11.3 79.2 44.3 -0.3
PCAN + DSAN[19] 62.3 50.3 60.7 41.3 74.9 13.3 36.9 21.4 75.4 1.9 42.7 9.9 77.6 43.7 -0.9
PCAN + TransPar[26] 64.0 55.2 60.4 42.8 74.5 16.3 36.1 19.9 74.3 4.5 40.9 15.4 79.9 44.9 +0.3
PCAN + BSS[24] 62.2 52.5 60.5 38.7 74.6 20.0 35.6 18.3 77.1 4.2 44.4 14.1 79.8 44.8 +0.2
PCAN + CAFA (ours) 64.4 54.0 63.9 40.9 74.1 17.7 36.0 25.2 76.0 3.2 45.5 10.7 79.7 45.5 +0.9

Overall Performance: CAFA consistently outperforms baseline UDA methods in both adaptation
scenarios. In SynLiDAR→ SemanticKITTI, it improves CoSMix by 1.6 mIoU to 34.5%, with notable
gains in "motorcycle" (+7.6%), "bicyclist" (+7.9%), and "terrain" (+6.7%), though slight decreases in
"car" (-0.4%) and "building" (-2.5%). Applied to PCAN, CAFA improves mIoU by 0.4 points, with
gains in "motorcycle" (+4.3%) and "bicyclist" (+7.5%), but drops in "traffic sign" (-5.6%). In SynLiDAR
to SemanticPOSS (Table 4), CAFA shows consistent improvements. Integrated with CoSMix, it gains
1.0 mIoU to reach 45.0%, improving "car" (+9.3%) and "pole" (+1.4%), though decreases in "person"
(-3.0%) and "traffic" (-2.7%). Applied to PCAN, CAFA adds 0.9 mIoU, with gains in "rider" (+1.7%) and
"building" (+1.2%), but drops in "traffic" (-0.3%) and "bike" (-1.6%).

Comparison with Negative Transfer Mitigation Methods: CAFA outperforms all other miti-
gation methods when applied to CoSMix on SynLiDAR→ SemanticKITTI, achieving 34.5% mIoU
versus 33.4% for the next best (DSAN). Some techniques (CWFT, GCR, TransPar, BSS) reduce CoSMix’s
performance, highlighting challenges in mitigating negative transfer in 3D segmentation. For PCAN
on SemanticKITTI, improvements are smaller; CAFA and TransPar achieve the highest mIoU (37.3%),
suggesting PCAN may be more robust, but CAFA still provides benefits. In SynLiDAR to Semantic-
POSS, CAFA again leads when applied to CoSMix, achieving 45.0% mIoU compared to 44.3% for BSS.
Applied to PCAN, CAFA reaches the highest mIoU (45.5%), with TransPar close at 44.9%. These results
demonstrate that CAFA consistently outperforms other negative transfer mitigation techniques across
UDA methods and datasets.
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4.4. Qualitative Analysis

We further illustrate how CAFA leverages target context by comparing segmentation out-
puts with baseline approaches. Figures 4 and 5 illustrate qualitative segmentation results for
SynLiDAR→SemanticPOSS and SynLiDAR→SemanticKITTI adaptations respectively, comparing
ground truth labels with predictions from CoSMix and our CAFA method.

(a) Ground Truth (b) CoSMix (c) Ours (CAFA)

(d) Ground Truth (e) CoSMix (f) Ours (CAFA)

Figure 4. Segmentation comparison on SynLiDAR→ SemanticPOSS. Two example scenes are shown, comparing
Ground Truth, CoSMix, and our CAFA method.
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(a) Ground Truth (b) CoSMix (c) Ours (CAFA)

(d) Ground Truth (e) CoSMix (f) Ours (CAFA)

(g) Ground Truth (h) CoSMix (i) Ours (CAFA)

Figure 5. Segmentation comparison on SynLiDAR→ SemanticKITTI. Three example scenes are shown, comparing
Ground Truth, CoSMix, and our CAFA method.

In Figure 4, classes such as buildings and fence show improved performance. Confusion
arises in these classes due to contextual similarities with other semantic categories. For instance,
buildings are frequently misclassified as vegetation, and fences are often mislabelled as vegetation
or cars. This is due to the higher co-occurrence of buildings with vegetation and vegetation with
tree trunks in SemanticPOSS. Consequently, a model might learn a misleading association linking
vegetation to trunks and at test time it may mislabel facade points as vegetation if trunk points are
nearby. Cars co-occur with vegetation and ground often in SynLiDAR. When a context shift makes
the model wrongly spot vegetation around a fence in SemanticPOSS, that same association can cause
fences to be mislabelled as cars. After CAFA, car, which is one of the classes showing the most context
shift in SemanticPOSS, shows less confusion with fences.

In Figure 5, CAFA effectively distinguishes between the classes terrain, sidewalk, and
other-ground, despite their frequent co-occurrence in SynLiDAR. Specifically, the high proximity of
other-ground to roads in SynLiDAR creates a spurious correlation, prompting simultaneous predic-
tions for these classes. After applying CAFA, the erroneous prediction of other-ground is significantly
reduced, which reflects its weaker association with the other surfaces in SemanticKITTI. Figure 5
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(i) demonstrates CAFA’s capability to distinguish trunk from person, a class affected by context
shift. In SynLiDAR, person frequently co-occurs with sidewalks, creating a strong correlation that
causes confusion when sidewalks are predicted nearby. CAFA mitigates this issue, resolving such
misclassifications even when sidewalks are still predicted in its neighbourhood.

Figure 6(b) illustrates the effectiveness of CAFA in handling context shifts. CAFA correctly
identifies the sidewalk beneath parked cars, a common scenario in the target domain but not the
source, while CoSMix misclassifies it as road. To understand this improvement, we visualize the points
contributing most to the class prediction using GradCAM [36]. CoSMix’s attention map (Figure 6(e))
shows that when predicting road, it focuses on a wide range of elements, including the cars themselves
and buildings. In contrast, CAFA’s attention map (Figure 6(d)) demonstrates a more refined focus.
When classifying the same area, CAFA concentrates on the cars and nearby urban objects commonly
found on sidewalks. This targeted attention indicates that CAFA has learned to associate these specific
elements with sidewalks in the target domain.

(a) Ground Truth Segmentation (b) CAFA’s Correct Sidewalk Prediction

(c) CoSMix’s Misclassification as Road (d) CAFA Attention Map for Sidewalk
Prediction

(e) CoSMix Attention Map for Road Prediction

Figure 6. Analysis of our approach in mitigating negative transfer for sidewalk segmentation.
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4.5. Ablation Study

To evaluate each component of our design, we conducted ablation studies aimed at clarifying the
impact of our specific architectural choices on SynLiDAR→ SemanticPOSS. Specifically, we explored
five key modifications:

Single-scale vs. Multi-scale Features: We investigated whether using single-scale features for
both object and context representations is sufficient, compared to our original multi-scale design.

Impact of different context representation: To determine whether performance gains result
primarily from integrating additional contextual information, we compared our approach to a baseline
employing single-domain self-attention for both source and target. We also benchmarked our context
modeling against the Global Context Reasoning (GCR) module proposed by Ma et al. [37], which
leverages channel similarity to construct graph nodes that are processed by Graph Convolutional
Networks (GCN).

Use of object features alone: To isolate the contribution of context alignment, we assessed
performance when classification relied solely on object features.

Fusion Strategy Evaluation: Finally, we evaluated the effectiveness of our fusion approach by
comparing it against a simpler alternative using direct summation of object and context representations.
We also analyze the impact of using a residual connection for gradual adaptation.

We summarize the results of our ablation studies in Table 5.

Table 5. Ablation study results on SynLiDAR→ SemanticPOSS.

Method mIoU ∆mIoU
CAFA (Full) 45.0 0.0
CAFA w/o fusion (simple summation) 44.3 -0.7
CAFA w/ single-scale features 44.1 -0.9
CAFA w/ object features only 44.6 -0.4
CAFA w/o residual connection 42.4 -2.8
CAFA w/ self-attention (source) 44.2 -0.8
CAFA w/ self-attention (target) 43.7 -1.3
CAFA w/ 3D context module [37] 43.2 -1.8

Multi-scale Feature Disentanglement: Using single-scale features results in a 0.9 mIoU drop,
confirming that multi-scale features capture richer contextual and object-specific information.

Cross-attention: Cross-domain context transfer outperforms single-domain context modeling.
Self-attention on source and target features decreases mIoU by 0.8% and 1.3%, respectively, and the
GCR module [37] also reduces performance, emphasizing the necessity of cross-attention to address
context shift.

Feature Fusion: Replacing adaptive fusion with simple summation reduces performance by 0.7
mIoU.

Context Features: Using only object features for classification decreases performance, which
highlights the value of integrating both context and object-specific features.

Residual Connection: Removing the residual connection in feature fusion caused a -2.8 mIoU
drop, showing its role in preserving original representations while gradually introducing target context
features.

4.6. Context Shift Performance Analysis

To evaluate CAFA’s efficacy in addressing context shift, we analyzed class-wise performance
improvements relative to context shift, quantified by the L1 distance between class co-occurrence
matrices of the source and target domains. Using balanced sampling (N = 5000 points per cloud), we
computed neighborhood class statistics to create normalized co-occurrence matrices. We sample points
from each domain and look at their neighborhood to determine how often each class co-occurs with
every other class. The frequency of these pairwise co-occurrences is then normalized and arranged
into a matrix. A high value in rowi, columnj means classi appears frequently near classj. Figure 7
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and 8 shows differences between source and target domains. For instance, SynLiDAR shows weaker
co-occurence between vehicles and drivable surfaces and classes such as car or person have
lower co-occurrence with environmental classes like building, vegetation, or sidewalk compared
to SemanticKITTI (Figure 8(b)). In SemanticPOSS, cars appear alongside environmental labels more
often than in SynLiDAR (Figure 7(b)).

(a) SynLiDAR Co-occurrence Matrix

(b) SemanticPOSS Co-occurrence Matrix

Figure 7. Co-occurrence matrices for source (SynLiDAR) and target domains. (a) shows the co-occurrence matrix
for SynLiDAR. (b) shows the co-occurrence matrix for SemanticPOSS. The observed differences result from the
distinct class mappings applied during the domain adaptation process.The color intensity represents the frequency
of co-occurrence between classes.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 June 2025 doi:10.20944/preprints202506.2332.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.2332.v1
http://creativecommons.org/licenses/by/4.0/


15 of 20

(a) SynLiDAR Co-occurrence Matrix

(b) SemanticKITTI Co-occurrence Matrix

Figure 8. Co-occurrence matrices for source (SynLiDAR) and target domains. (a) shows the co-occurrence matrix
for SynLiDAR. The observed differences result from the distinct class mappings applied during the domain
adaptation process. (b) shows the co-occurrence matrix for SemanticKITTI. The color intensity represents the
frequency of co-occurrence between classes.

The L1 distance provides a measure of context shift for each class, defined as the absolute
difference between its class occurrence distributions in the source and target domains. Specifically, it
corresponds to the sum of absolute differences between the rows representing class occurrences in the
co-occurence matrices, where each row characterizes a specific class’s occurence with other classes.
We plot context shift against performance improvement for CoSMix and PCAN on SemanticKITTI
and SemanticPOSS (Figure 9). Results show a positive correlation: classes with more significant shifts
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exhibit greater performance gains, as indicated by CAFA’s trend line (green), which consistently slopes
positively. In contrast, the best-performing NT method (purple) occasionally exhibits negative slopes,
highlighting CAFA’s ability to mitigate NT for high-shift classes. To validate further, we computed
mean mIoU for the top three high-shift classes in PCAN and CoSMix across UDA tasks (Table 6). CAFA
consistently outperforms other methods, achieving a 5.8 mIoU improvement on average compared to
1.4 for the best NT approach.

(a) SynLiDAR→ SemanticKITTI (CoSMix) (b) SynLiDAR→ SemanticKITTI (PCAN)

(c) SynLiDAR→ SemanticPOSS (CoSMix) (d) SynLiDAR→ SemanticPOSS (PCAN)

Figure 9. Class-wise performance gain (IoU difference) against context shift magnitude. X-axis: per class L1
distance between source/target co-occurrence matrices. Y-axis: IoU improvement. Each point represents a class;
trend lines show correlation between shift and performance gain.

To further illustrate how context shift affects adaptation, we highlight in Table 6 the top three
classes in each scenario with the largest co-occurrence mismatch, i.e. the greatest context shift,
across both PCAN and CoSMix on SynLiDAR → SemanticKITTI and SynLiDAR → SemanticPOSS
adaptations. Compared to both the baseline UDA methods (PCAN, CoSMix) and other negative
transfer mitigation approaches, CAFA consistently yields larger mIoU gains for these high-shift classes.
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For SynLiDAR → SemanticKITTI, CAFA achieves a gain of +4.4% in mIoU compared to +0.9% for
the best-performing NT method with PCAN. Similarly, for CoSMix, CAFA achieves a gain of +6.2%
compared to +3.8% for NT. For SynLiDAR → SemanticPOSS, CAFA achieves a gain of +10.6% in mIoU
compared to +0.1% for the best-performing NT method with PCAN. For CoSMix, CAFA achieves a
gain of +2.0% compared to +1.0% for NT.

Table 6. mIoU (%) for top 3 classes with greatest context shift for SynLiDAR→ SemanticKITTI and SynLiDAR →
SemanticPOSS

Dataset Class PCAN CoSMix

Baseline +NT +CAFA Baseline +NT +CAFA

SynLiDAR →
SemanticKITTI

person 28.4 30.8 33.3 27.4 33.47 33.18
bicyclist 64.2 65.1 71.7 23.4 26.89 31.36

motorcyclist 2.9 2.4 3.7 0.7 2.66 5.74
mIoU 31.8 32.7 36.2 17.2 21.0 23.4

SynLiDAR →
SemanticPOSS

Trunk 41.2 42.8 74.1 34.48 35.22 34.03
Car 60.1 60.4 40.9 47.57 48.02 56.94

Traffic-sign 18.0 16.3 36.0 13.65 15.54 10.96
mIoU 39.7 39.8 50.3 31.9 32.9 33.9

This analysis illustrates that targeting negative transfer due to context shift, is an effective way
to mitigate performance drops that occur when knowledge from the source domain is not directly
applicable in the target domain.

5. Discussion
The first component of CAFA is its ability to disentangle object-specific and context-specific

features. This separation is achieved through attention mechanisms at different abstraction levels as
opposed to rigid approaches that enforce strict orthogonality between features. This soft disentangle-
ment preserves useful shared information and allows for the selective adaptation of source context
features using the target domain. It also prevents the transfer of misleading contextual biases and
is supported by the performance improvements observed in our ablation studies and context shift
analysis.

To mitigate context shift, it’s crucial to have a method to quantify it and evaluate performance
improvements relative to context variability. Our quantitative analysis using normalized class co-
occurrence matrices to measure context shift shows a positive correlation between the magnitude of
context shift and segmentation performance gains. For example, as shown in Figure 9 and Table 6,
classes with high context shifts exhibit significant improvements in mIoU when CAFA is applied. These
results confirm our working hypothesis: when the degree of context mismatch between source and
target domains is large, incorporating target domain context into the adaptation process is particularly
beneficial. Our findings indicate that CAFA outperforms other mitigation strategies (e.g., DSAN,
CWFT, TransPar, BSS) by delivering higher mIoU gains, particularly for classes with significant context
mismatches.

From a practical standpoint, mitigating negative transfer in applications such as autonomous
driving, urban mapping, and robotics is essential for developing robust real-world systems. This
enables segmentation models to generalize better across varied urban environments—where the spatial
relationships between objects may differ significantly between the training and deployment domains.
The demonstrated positive correlation between context shift and performance improvement provides
a quantitative basis for future evaluation metrics and shows the importance of integrating context in
UDA for semantic segmentation .
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6. Conclusions
Our proposed method addresses negative transfer in unsupervised domain adaptation for 3D

LiDAR semantic segmentation. Disentangling object-specific and context-specific features and refining
source context features using target domain information effectively mitigates the impact of context
shift between domains. Our domain shift analysis, quantifying the relationship between class-wise
performance improvements and the degree of shift for each class, provides strong evidence for its
effectiveness. Furthermore, experimental results on challenging synthetic-to-real adaptation scenar-
ios consistently show performance improvements over state-of-the-art UDA methods and existing
negative transfer mitigation techniques.

However, our approach has some limitations. The proposed feature disentanglement relies on
a simple attention mechanism, which may only partially model complex contextual relationships in
some scenarios. Additionally, the method assumes a closed-set adaptation setting, which can limit
its applicability in real-world scenarios where new classes may appear in the target domain. Future
work could explore more sophisticated feature disentanglement techniques to improve object and
context information separation. Finally, extending the method to handle open-set and partial-domain
adaptation scenarios would also increase its practical utility.
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The following abbreviations are used in this manuscript:

UDA Unsupervised Domain Adaptation
NT Negative Transfer
MLP Multilayer Perceptron
mIoU mean Intersection over Union
BEV Bird-Eye-View images
DTE data transferability enhancement
MTE model transferability enhancement
SE-Net Squeeze-and-Excitation
SGD Stochastic Gradient Descent
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