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Abstract: In a previous work by the author it was shown that the Koopman-von Neumann formula- 1
tion of classical mechanics (KvN) exhibits quantum interference. As such it was there claimed that 2
KvN ought to be considered as a proper quantum mechanical theory in a similar sense as ordinary s
non-relativistic quantum mechanics (OQM) is. In this article this claim is made manifest by showing 4
that KvIN and OQM can be taken as merely inequivalent representations resulting from one and the s
same quantization scheme. Of course, as the typical notion of quantization necessitates the canonical
commutation relations (CCR) to hold—which they do not in KvN —the concept needs to be properly 7
revised. To justify such a revision the typical reasons for necessitation the CCR—reductionism and s
quantization as "turning brackets to commutators’—are examined and found insufficient. °

Keywords: Koopman-von Neumann formulation; quantization; reductionism; Groenewold-van 1o
Hove theorem 1

1. Introduction 12

KvN [1,2] is typically deemed ’classical’ simply because in it the momentum Pand
position operators Q commute. This in contrast to how it is in OQM where they satisfy the
CCR,

[ﬁ, Q} — ih. )
The claim is that KvIN because of this cannot exhibit the hallmark quantum behaviour of
quantum interference [3]. Nonetheless, in a previous article by the author [4] the actual
validity of this claim was questioned and refuted. While it indeed is true that KvN cannot
account for quantum interference in the actual double-slit experiment as done with electrons
[3], it is not in this regard that quantum interference manifests in KvN. In [4] KvN was
identified as classical statistical mechanics. In doing so statistical equilibria |A), correspond

to the eigenstates of the KvN generator of time evolution, i.e the Liouvillian L. It follows
that non-trivial superpositions of such,

Y calA), ()
)

hence are non-equilibria, meaning that they are not time-invariant. In contrast, the corre-
sponding mixed state,

;lcuzmw, €)

to such a superposition (2) is time-invariant. This means that mixed states are distinguish- 12
able from pure ones—a characteristic quantum phenomenon—a manifestation of quantum 1
interference. Hence, if this is the criterion of ‘quantumness’, then KvN is as ‘quantum” as s
OQM. A point worth addressing here—which also may serve as a reason for wanting to 16
fit KvN into a proper quantization scheme—is that in typical introductions to KvN [5] the 17
formulation appears completely artificial, appearing more like a ‘mathematical trick’. This s
might give the impression that the supposed quantum interference effect in KvNN in reality 1o
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nothing more than a mathematical defect because the Hilbert space formalism of quantum 20
mechanics is not ‘needed’ for classical statistical mechanics. However, strictly speaking 2
the Hilbert space formalism is not ‘'needed” in OQM neither in order to express quantum 22
interference [6]. Hence this does not suffice as a dismissal of the in [4] suggested conclu-  2s
sion—that the foundational issues of quantum mechanics has to do with the foundations of 24
probability in general—echoing the statements made by both Ballentine [7] and Koopman s
[8] that there is no such thing as ’classical’ nor 'non-classical” probability, just probability. 2
The purely probabilistic nature of quantum mechanics has been pushed before by the =7
author in [9] as well as by others [10,11], to mention but a few. In contrast to this view, s
however, common ‘folklore” dictates that there is a such difference in notions of probability. =e
In classical statistical mechanics probability is taken as being 'classical’ and non-problematic o
as Hamiltonian mechanics supposedly functions as a hidden-variable theory of classical = s
statistical mechanics. Probability is taken as non-problematic in this case because it can then a2
simply be interpreted as corresponding to a ‘lack of knowledge’ or fluctuations in these a3
parameters constituting the phase space P of Hamiltonian mechanics. In contrast, no such s
hidden-variable theory is supposed to exists for quantum mechanics as it violates Bell-type  ss
inequalities, and hence probability supposedly cannot be interpreted in this way neihter. 16
In these terms, what was essentially shown in [4] was that Hamiltonian mechanics does sz
not function as a hidden-variable theory of classical statistical mechanics as the Liouvillian  ss
L—taken as the observable of statistical equilibria—is not a function on the phase space. 3¢
In light of this, if not as a hidden-variable theory, then in what sense does Hamiltonian 4o
mechanics relate to classical statistical mechanics? a

In this article the idea put forth is that Hamiltonian mechanics relates to KvN the same
way that it does to OQM, i.e via quantization. Hence, in conjunction with the previous
article [4], KvN will have been put fourth as being equivalent to OQM both in terms of
quantization and in terms of interpretations of probability. Of course, this means that the
concept of quantization needs to be rethought. The typical view of quantization—in the
sense of Dirac [12]—is as "turning brackets to commutators’,

b =1l @

where {-,-} denotes the Poisson bracket. In this sense quantization prohibits KvN as
resulting from it. The reason for asserting quantization as such is based on the analogous
structure between the classical equations of motion

dF
—r ={FH) (5)
and their quantum version,
dF T~ ~
E - _ﬁ |: 7 :|/ (6)

in addition to the CCR, leading to one speculate whether quantization possibly more gener- 4=
ally corresponds to a unitary representation of the Poisson structure of HM. The upshot s
of this is that would provide a natural—or ’canonical’ —connection between classical and s
quantum physics, amongst other things, granting one the ability of interpreting the CCRas s
a kind of ‘quantum version’ of P being canonical conjugate tp Q in the classical Hamiltonian s
mechanical sense. However, the Groenewold-van Hove theorem [13-15] shows that no 47
such unitary (irreducible) representation the Poisson algebra of the Hamiltonian mechanics s
exists. This results suffices to disprove the thesis of the CCR being the quantum version 4
of canonical conjugancy, and hence the CCR cannot be taken as having to be enforced for  so
that reason. This opens up the door for a notion of quantization that also encompasses KvN. s
In this article it will be suggested that quantization ought to be viewed in more generic s
representation theoretic manner, in terms of which KvN and OQM correspond to merely  ss
inequivalent representations of the same group theoretic structure. 54
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The structure of this article is as follows: In section 2 the overall structure of classical s
mechanics will be presented. Particular emphasis it put on how Lagrangian and Hamil- e
tonian mechanics relate to one another. The reason for presenting this is that canonical s
quantization (CQ) in its formulation relies heavily on the ‘going’ from Lagrangian to the s
Hamiltonian mechanics while quantization often attempts at dealing with the generic s
formulation of Hamiltonian mechanics which is completely independent of the Lagrangian o
one. In that regard something like the Groenewold-van Hove theorem might not be that e
surprising. In section 3 CQ is defined and it is shown that it cannot be considered in the e
sense of Dirac as "turning brackets to commutators’. This is done by proving an additional s
theorem of the Groenewold-van Hove-type showing that Dirac’s view cannot capture the s
essence CQ even if weakening from requiring a Poisson algebra representation to a Lie s
algebra representation. Hence showing that even the most generous interpretation of CQ as s
"brackets to commutators” does not work. In section 4 the generic representation theoretic o
view of quantization is presented and it will be shown that KvN and OQM merely corre- s
spond to inequivalent representations of one and the same Hamiltonian dynamics. In this e
section it will also be discussed how the conventional view of quantization—the supposed 7
necessity of the CCR—is tied to a reductionist view of physics, why a non-reductionist 7.
hence should dismiss it and why the suggested revised concept of quantization ought tobe 7=
taken in non-reductionist scheme of physics. Lastly, in section 5, the arguments and claims 7
of the article are summarized. 74

2. The structure of modern classical mechanics 75

HM is in its formulation in terms of symplectic geometry a generalization of LM 7
[16]. Nonetheless, it is in the typical textbook [17] introduced as something one ‘gets” 7
from Lagrangian mechanics via a Legendre transform. This is all standard stuff, but we 7
will here recall how this story goes. It is instructive to do so because it is the author’s 7
impression that many seem to view CQ as something defined solely in terms of HM, o
forgetting that the explicit canonical coordinates in which this is done are defined in terms &
of a Lagrangian. This in contrast to Hamiltonian mechanics which has invariance under s
canonical transformations as a fundamental symmetry. 83

2.1. From Lagrangian to Hamiltonian mechanics 84

Lagrangian mechanics occurs on the tangent bundle 7M. For a point (Q, Q) € TM,
Q corresponds to spatial velocity and Q to spatial position. In Lagrangian mechanics the
dynamics is described by the Lagrangian function

L:TM =R, ()

from which—by means of the principle of least action—one obtains the corresponding
equations of motion,

4oL = ®
4t 0Ql Ay 9RlawA
where
y:R—-M )
is the particle’s spatial path and - the derivative of that path. o

One transitions to the Hamiltonian mechanics description by instead working on
the cotangent bundle 7*M. For a point (P,Q) € T*M, P corresponds to conjugate
momentum and Q to spatial position. Conjugate momentum is defined in terms of the
specific dynamics [17]—i.e in terms of the particular Lagrangian—as

b oL

=30 (10)
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In HM the dynamics is determined by means of the Hamiltonian,
H:T"M =R, (11)
which one obtains by means of a Legendre transformation
H:=P-Q-L. (12)

That H, as defined (12), indeed satisfies (11) follows from (8), and in turn Hamilton’s
equations of motion follow

p—_oH
7 (13)
Y
{Q =
Note that we hence have made the transition from Lagrangian to Hamiltonian mechanics =6
in terms of a selection of particular coordinates (P, Q). 87

The generic formulation of Hamiltonian mechanics is more specifically a geometric s
formulation in terms of symplectic geometry [16,18]. That this is indeed so can be seen by s
constructing the Poisson bracket on 7*M in terms of the explicit coordinates (P, Q). Let oo
C®(T*M) be the set of smooth function on 7* M. o1

Definition 1. The Poisson bracket
{,-}:(F,G) e C*(T*"M) xC®(T*M) — F,G € C®(T*M) (14)

is defined as
0F G  JF oG

{F.C}:= 3536 ~ 30 3" (15)

The utility of the Poisson bracket is that there associated to it is a ‘canonical’ symmetry,
i.e certain coordinate transformations under which it is invariant. Let

(P,Q) = (P'(0,Q),Q'(P,Q)) (16)

be an arbitrary coordinate transformation to from the coordinates (P, Q) to the coordinates o2
(P, Q). Let {-, -}’ denote an alternative Poisson bracket defined analogously to the original s
one in Definition 1 but instead with respect to the coordinates (P, Q’). 94

Definition 2. The coordinates (P', Q") are canonical coordinates and the coordinate transfor-
mation (16) is a canonical transformation if

=41 (17)
The following is a standard result [16]: o5

Theorem 1. (P’, Q") are canonical coordinates if and only if

{P,Q't=1 (18)
Now, Hamilton’s equations of motion (13) may be written in terms of the Poisson
bracket as
P={H,P
. { ’ , (19)
Q={HQ}

and for any canonical coordinates (P’, Q') we have

P’ ={H,P'} 20
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i.e they are of the same form. We have hence found a (certain) coordinate invariant way of e
expressing the equations of motion. 07

Remark 1. Note that there is a certain subgroup of canonical coordinates—the point transforma-
tions [17]—which are defined as

(P,Q) = (P'(P,Q),Q'(Q)), (21)
where 5
Pl = L (22)
0Q';

That these indeed are canonical coordinates follows by a direct calculation, having noted through the
chain rule that

20:
P = a—Qf P;. (23)
79l
Note furthermore that these form a particular subgroup of the group of canonical transformations, s
the group of point transformations. 99
2.2. The Lagrangian mechanics-independent formulation of Hamiltonian mechanics 100

Note that the property of being canonical coordinates is still with respect to the 10
specific Lagrangian from which we constructed the Hamiltonian mechanical system, as the =102
construction of the Poisson bracket is still with respect to particular coordinates (P, Q), or 103
any point transformation of these. Hamiltonian mechanics has hence at this point not yet 10s
been given a formulation that is completely indepedent of Lagrangian mechanics. The way  10s
we get such an indepedent formulation is by finding an inherently coordinate invariant 1o
way of defining the Poisson bracket. This is where Symplectic geometry [16] comes into 1o
play. We will not present this in its fullness—for that the reader is referred elsewhere 10
[16,18]—here we will only reiterate how the general story goes, for that is all that is relevant 100
for our purposes. For us the relevance are the following key points and standard results: 110

e A Symplectic manifold is a differentiable manifold P equipped with closed non- 11

degenerate 2-form w, called the symplectic form . 112
e  Through the symplectic form one can associate to every function F € C*(P), a vector 1
field X called the Hamiltonian vector field of F. 114
e  One can then replace Definition 1 as the definition of the Poisson bracket by the definition
{F,G} = w(Xp,XG), (24)
for every F,G € C®(P). 115
It follows that symplectic manifolds always are even-dimensional. 116

Darboux’s theorem states that one can (locally) always find coordinates for which 17
the Poisson bracket—as defined by (24)—takes the form as in Definition 1. These 11
coordinates—called Darboux coordinates —are what in this generic formulation of = 11e
Hamiltonian mechanics correspond to canonical coordinates. 120
e The cotangent bundle—the structure upon which we constructed the previous La- 1
grangian mechanics-dependent formulation of Hamiltonian mechanics—is a particular 122
example of a symplectic manifold whose Poisson bracket as defined in terms of (24) is 12
identical with the one in terms of Definition 1. 124
e  The dynamics corresponds a Hamiltonian flow

U:teR~— U € Sympl(P), (25)

which is a group homomorphism where Sympl(P) is the group of symplectomor- 12
phisms on P—the diffeomorphisms on P that preserves its symplectic form. 126
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3. Canonical Quantization versus "Turning brackets to commutators’ 127
In this section we will prove that CQ cannot even in the weakest possible sense be  12s
characterized in the Diracian sense as "turning brackets to commutators’. 120
3.1. Canonical Quantization 130

In the typical treatment of CQ it is implicit in its usage but often not emphasized 1
enough that the prescription is really explicitly defined in terms of the particular canonical 132
coordinates (P, Q). A notable exception to this is Gukow and Witten in [19], where itis also 133
stated that CQ even is dependent on the particular choice of coordinates. Here CQ will be 134
properly defined in this manner, making this potential coordinate dependence explicit. In 13
addition, by performing a CQ-type quantization with respect to another choice of canonical 136
coordinates it will be shown that that this yields an inequivalent quantum theory, and s
hence that CQ indeed is coordinate dependent. 138

Definition 3. Let (7 M, L) be a classical mechanical system described in terms of Lagrangian
mechanics with associated Lagrangian L. We canonically quantize this system by representing
the observables P and Q as quantum observables P respectively Q on some Hilbert space H such
that their respective spectra concurs with the range of possible values of their classical counter
parts—i.e R—and such that the CCR hold,

[1’5, Q] = ih. (26)
In addition, the generator of time evolution is set to be the operator
H(P,Q), (27)

i.e the quantum Hamiltonian. The quantum Hamiltonian is furthermore interpreted as the 3o
quantum observable of energy of the system. 140

Remark 2. As is well-known, it follows from the Stone-von Neumann theorem [20] that the 1a
operators P and Q subjected to properties of CQ are uniquely defined up to a unitary equivalence.  1a2

Furthermore, given a classical observable F on 7*M, its quantum counterpart is
F(P,Q) (28)

inheriting its interpretation from F. This is not only the case for the Hamiltonian H—as
explicitly stated in Definition (3)—but it is also the case for the quantum observable of
angular momentum. Of course, there is the well-known issue of the inherent ordering
ambiguities in the symbolic expressions (27) and more generically in (28). Based solely on
this, it is clear that Definition 3 is not proper in the sense of being mathematically rigorous.
However, it is “proper enough’ with regards to our purposes here. The point here is not to
solve this issue of the ordering ambiguity but to point out that CQ occurs with respect to
particular preferred set of canonical coordinates. As previously noted in [19], if one chooses
to “canonically quantize’ with respect to a different set of canonical coordinates (P/, Q’),
say, then it is not generically also true that

[13, Q} = ih. (29)
Consider for instance the simple harmonic oscillator having the Hamiltonian

Hose(P,Q) = 2P + 2 Q% (30)
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We may perform a canonical transformation into action-angle coordinates (©, E), where
(P(®,E),Q(®,E)) = (\/215 c0s @, v/2E sin@). (31)

It is clear from this that E = Hos(P, Q). Assuming that this transformation makes sense
also after CQ, we would then have

(En] [HOSC (13, Q),@(ﬁ, Q)} |En) = (Em — En)<Em|®(ﬁ, Q) |E,), (32)

where |E;) is a generic eigenstate of the quantum Hamiltonian. This means that the 1
quantized action-angle variables cannot satisfy the CCR. Hence the CCR cannot be taken 14
as ‘quantum version’ of canonical coordinates as it is not analogous to the version of it in 14
Hamiltonian mechanics as given by Theorem 1. It also means that CQ does not possess 146
invariance under canonical transformations. 147

3.2. Quantization as "turning brackets to commutators’ 148

In the textbook view quantization amounts to ‘turning Poisson brackets into operator s
commutators’. In its most generous interpretation this formalizes to the following notion of  1so
quantization: 151

Definition 4. Consider a symplectic manifold P with induced Poisson algebra (C®(P), {-,-}).
A quantization Q of P is an irreducible unitary representation of a unital sub-Lie algebra g of
C*®(P) on to a some Hilbert space H, in the sense that Q(F) is self-adjoint for all F € g and that

inQ({F,G}) = [Q(F), Q(G)]. (33)

For convenience we will however set 7t = 1 for the remainder of this section. 152
Indeed, the CQ of the simple harmonic oscillator corresponds to a quantization Q in

the sense of Definition 4. In this case the sub-Lie algebra of the Poisson algebra is spanned

by the observables P, Q, the unit function and Hys—as defined by (30) —subject to the

relations:
{P,Q} =1
{Hosc, P} - _Q s (34)
{HOSC/ Q} =P
with the rest being zero. Then, because the operator
1 2 1 2
Q(Hosc) - EQ(P> - EQ(Q) (35)

commutes with Q(Hosc), Q(P) and Q(Q), and because the representation is irreducible,
we get from Schur’s lemma [21] that

1Q(P)2 + %Q(Q)2 +c, (36)

Q(Hosc) = )

where ¢ € R, as required for CQ. Of course, it works similarly for the free Hamiltonian or 1ss
the trivial Hamiltonian. 154
However, as we will show next, CQ does not generically correspond to a quantization
in the sense of Definition 4. We will show this by considering the particular Hamiltonian
1 Q3

_ 2
He= P+ 3. (37)
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In this case we have:
{P,Q}t=1
2
{H,P}=-% . (38)
{HCI Q} =P

So in contrast to (30) these relations do not close the algebra g. Hence one must add Q? to g.
But it does not stop here. Because we in turn get

{H., Q*} =2PQ, (39)

meaning that we must enforce PQ € g, and so on. It is this occurrence of more such
elements that eventually leads to a contradiction, taken in conjuction with the requirement

of
1 3
o(He) =y + 22 ¢, 0
for some constant C € R, which is a necessity for Q to coincide with CQ. 185
Theorem 2. There does not exist a quantization Q such that (40) holds. 156

Proof. We prove this by showing that its existence would lead to a contradiction. Indeed,
if (40) holds, then we compute that

0(Q) =~ 2i[Q(P), Q(Ho)

(41)
=9(Q)
and hence that
QZ
Q(PQ) = —i{Q(Hc), Q(Zﬂ
. . (42)
=Q(P)Q(Q) + 3
In turn this can be used to calculate
o(r - 30*) =~ ilotH), Q(rQ)
2 X (43)
=Q(P)* - 5Q(Q)°
and, in turn,
ofs+30) - ol 1) arel
2 . 2 )
=Q(P)* +59(Q)°
From (43) and (44) we obtain that
3\ _2 2, 3.3\ 4 2 1.
Q(Q>_5Q(ZP +2Q> SQ(P ZQ). (45)

=0(Q)°
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We can from (43) compute that
2y _ 2 2 1.3
o(re?) = ~ig et o(P ~30") | (46)
=Q(P)Q(Q)* ~iQ(Q)
From (46) we can compute that
Q<2p2Q - ;Q‘l) = —i[o(H), 0(PQ?)]
(47)
~20(P?Q(Q) — 5 Q(Q)* +2iQ(P).
and from (43) and (46)
o(sr0+30t) =-ilo(r - 3¢°) o(re?)|
2 2 X . (48)
=4Q(P)*Q(Q) + 5 Q(Q)" +4Q(P)
From these two we then get that
24) _ 3 2~ 1 1 2+ 3t
o(r0) — 020 - 30*) + yo(4ra+ 3¢) »
=Q(P)*Q(Q) +iQ(P)
From (47) we can compute that
3 3y _ _ 2 _1 4
0(2p - 4pQ") = z[Q(HC),Q<2P Q- 10 )] 0
=20(P)’ - 4Q(P)Q(Q)* +i6Q(Q)*.
and from (43) and (47) that
3 3\ _ 2 1.3 2~ L
Q(4p —I-ZPQ)_—z{Q(P - 50 ),Q(zp Q- 30 )} -
=4Q(P)* +2Q(P)Q(Q)* - B(Q)*
From these two we then get that
_1 2 3
Q(P?) =-0(2P° —4PQ*) + 50 (4P +2PQ ) -
=Q(p)’
Now, we have
i
~50(P) e(@)] =o(re?)
i 2 2 3
=z lo(r*). o(re?)].
However, we also have—because of (45) and (52)—that
. ‘ 5
—512(P°). 2(@)] =a(Pre(Q ~2i0(P)2(Q) - 5, (54
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and—because of (46) and (49)—that
] 2 1
—312(PQ). 2(PQ?)] =2(PPQ(Q) ~i5Q(P)QQ) + 5. 55)

(53) together with (54) and (55) imply a contradiction, and hence the proof is completed. [  1s7

From Theorem 2 it directly follows that: 158
Corollary 1. CQ does not correspond to a quantization in the sense of Definition 4. 189

Note that in Definition 4 g is a sub-Lie algebra rather than a sub-Poisson algebra. The 1c0
reason for excluding this case already form the start is that it has long been known that 16
no quantization in that sense exists either. This is the statement of the Groenewold-van ez
Hove theorem, whose proof also riles on showing that the same contradiction as in the e
proof of Theorem 2 unavoidably occurs. The reason for here not simply sticking to the 1es
the Groenewold-van Hove theorem is because we in subsection3 already had dismissed 1es
that the full Poisson structure supposedly played a crucial role also after CQ. This as CQ 166
was shown to break the invariance under canonical transformations. This argument did 167
however not dispute the claim that, given fixed coordinates, CQ still works by ‘turning ies
brackets to commutators’. In light of Corollary 1, however, we can safely say that ‘turning  1e
brackets to commutators’ is not how CQ works. 170

4. The need for a new perspective on quantization 1

In the context of classical statistical mechanics probability is typically seen as unprob- 7
lematic. The reason for this is that allegedly Hamiltonian mechanics corresponds to a 173
hidden-variable theory of it that tells us what is ‘really going on’. As such it is then be- 174
lieved that probability safely can be interpreted as 'fluctuations” or ‘lack of knowledge’ i7s
of the parameters in phase space. Bell’s theorem [22] addresses under what conditions a 17
certain type of hidden-variable theories can be said to exist. As nature seems to violate 17
these probabilistic conditions [23], probability does not generically seem to be so straight = 17s
forwardly interpretable in the above alledged "unproblematic’ way. It is the claim of this ar- 17
ticle—based in previous work [4]—that classical statistical mechanics is a proper quantum  1s0
theory as it exhibits the hallmark quantum phenomenon of quantum interference. Included  1s:
in this claim is that probability in terms of classical statistical mechanics suffers the same s
interpretational issues as it does in OQM. This is still, however, in contrast to Einstein’s  1ss
view [24], where the existence of a hidden-variable theory of OQM and one for classical 1es
statistical mechanics is taken as a necessity. Here such a necessity does not exists. The 1es
claim is that the "unproblematic” interpretation of probability does not work for classical 1ss
statistical mechanics neither. Rather, the conceptual change in going from Hamiltonian ie
mechanics to classical statistical mechanics is taken to be of similar kind as going from s
Hamiltonian mechanics to OQM. This conceptual change is the introduction of probability. s
This is what quantization is claimed to be about, translating deemed essential structures of 100
Hamiltonian mechanics into the formalism of quantum mechanics. Indeed, as mentioned 10
in the introduction, the observable £ in KvN does not correspond to a random variable 102
on the phase space of Hamiltonian mechanics. Hence Hamiltonian mechanics cannot be 103
taken as a hidden-variable theory of classical statistical mechanics. Of course, thisisnota e
proof of a no-go theorem preventing the existence of a hidden-variable theory of classical 105
statistical mechanics but it is enough to show that Hamiltonian mechanics is not it. As 196
Hamiltonian mechanics is typically taken as the archetypical hidden-variable theory in this o7
regard, this not an inconsequential claim. Furthermore note that the occurrence of quantum  1es
interference itself is not a dismissal of realism [6], hence it not implied here that classical 100
statistical mechanics is non-realist. 200

Note that quantization here hence has a different meaning than typical. Conventionally zo:
it refers more to a means by which one enforces the CCR, taking these to be what corre-  zo:
sponds to "the quantum condition’ [12]. As such the notion of quantization considered here 203
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is of a different form then, say, deformation quantization [26], where the enforcement of the 204
CCR is the whole point. There is however a disconnect between this ‘quantum condition” 205
and what constitutes ‘the quantum’ with regards to quantum foundations, where emphasis 206
is put on Bell-typ theorems and quantum interference. In discussing these latter, one in 2o
quantum foundations permit the usage of finite dimensional Hilbert spaces. The CCR, =208
however, necessitates infinite dimensional ones. Hence quantum foundations—at least as a 200
practise—is independent of the CCR as "the quantum condition’. That KvIN exhibits quan- 2o
tum interference serves to stress this point of the non-centrality the CCR as "the quantum 21
condition” further, and thus also stressing the need for revising quantization. Closely tied to 212
this ‘the CCR as the quantum condition’-view is also the reductionistic view of classical 212
physics as that which emerges at the 71 — 0-limit of OQM. In this view it is this limit that 21
has actual physical contents, quantization merely being a formal process for ensuring that 21s
such a limit exists. Technically speaking however, no generic such limit exists, it only exists 216
for certain states and Hamiltonians[27,28]. In contrast to this, quantization here is taken as 217
something having its own intrinsic physical meaning regardless of the alleged "classical 21s
limit’. Hence the notion of quantization argued for in this article should be seen in the light 210
of non-reductionistic views of physics [11,29,30,32-34]. 220

Remark 3. Of course, ona can dissreagrd this convenional practice of quantum foundations by 22
making this ‘the CCR as the quantum condition’-view explicitly part of quantum mechanics [25], 222
but at the cost of dismissing central parts of research in quantum foundation. One can even speculate 223
whether, if really taking reductionism seriously, then quantum mechanics perhaps has to though of = 224
in such a way that makes the CCR manifest. 225

More specifically, in this article it is suggested that quantization ought to be seen in 226
the sense of representation theory, that KvN and OQM relate to Hamiltonian mechanics in 227
a similar sense as elementary particles corresponds to irreducible representations of the = 22s
Poincaré group in the Wigner classification [35]. In fact, though this will not be the way =2z
in which it is though of here, this analogy can be made more exact by noting that OQM 230
corresponds to a projective representation of the Galilean group [36] while KvN (essentially) =231
corresponding to an ordinary representation of the same group [37]. In fact Primas in [30] 232
makes this analogy manifest by considering (projective) representations of the Galilean =23
group as particles, which he refers to as ‘Galileons’. Here, just as in the case of the Poincaré 23
group, the mass of the particle can be identified as a label of the irreducible representation. =35
The mass term corresponds to the central extension of the Galilean group, and hence itis by 236
definition zero in the case of non-projective representations. For Primas, mass is identified 237
as the the central extension, and hence he interprets the non-projective representation as  2:s
a Galileon with zeor mass, which hence goes counter to the identification of the same =230
representation as KvN made in [37]. There is however no a priori reason for mass to be 240
ontically identified as such. Though this identification of the mass follows naturally in the = 2a
case of projective representations, this is not so in the case of the non-projective one. Rather s
this identification must then be carried over to the non-projective one. So there is really no 243
inconsistency in directly translating the Wigner classification to the Galilean group such 24
that KvN corresponds to merely a different "particle” than OQM. 245

Another sense in which KvN and OQM can be seen as merely inequivalent representa- zas
tions is as certain representations of the dynamics/Hamiltonian flow. Let us specify this 247
further. 248

Definition 5. Let U be a Hamiltonian flow associated with Hamiltonian function H on a phase
space P. Let (P, Q) be some choice of canonical coordinates and denote by H the function

H: (x,y) € (P,Q)(P) — H(x,y) (56)

such that
H=Ho(P,Q), (57)
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i.e His the form H takes in terms of the coordinates (P, Q). A quantization of U with respect to
(P, Q) is a unitary representation

Uy — Ut (58)

on a Hilbert space H such that

=| UpPU_,=- oH (59)

=0 WY1 (p,0)
and p 5
~ A H
— QU-t = o / (60)
dt|,_ ox (,0)

where P and Q are a self-adjoint operators whose respective spectrum conforms with the range of P 2as
respectively Q. 250

Because of (58) we may apply Stone’s theorem [20] to conclude that there exists a
self-adjoint operator T—the generator of time-evolution—such that

1] =-% (61)
Y1(pQ)
and 3
T A H
7.0 =5 (62)
*1(PQ)
where we leave ordering ambiguities in P and Q aside for the moment. In the case of OQM
we have R A
T= H(P, Q) (63)
and for KvN R
T=L (64)

A sense in which KvN and OQM differ is that P and @ in OQM generate an irreducible
algebra, so that we may apply Schur’s lemma to conclude that H(P, Q) must be the unique
operator up to an additive constant satisfying (59) and (60). This because given any other
operator satisfying these relations T', then the operator

~

T-T (65)
must commute with both P and Q, and hence
T-T =g, (66)

for some constant ¢ € R. This is not the case for KvN where (59) and (60) only define T up
to a function g(P, Q). This does however not mean that T is ambiguous in KvN, because
by definition R

Urp=yolly, (67)

meaning that indeed (64) follows. Hence, in OQM (59) and (60) are necessary and sufficient zs:
while in KvN they are only necessary. 252

Addressing the issue of the potential ordering ambiguity in the expression H(P, Q), 253
this issue is not as pathological here as it for other notions of quantization. For one thing  2sa
it is not here required that all such expressions—i.e classical observables—must be well- 2ss
defined by one and the same ordering rule, nor that all such expressions even need to 2se
make sense quantum mechanically. Indeed, this is true conventionally as well, that not 2s
all self-adjoint operators correspond to physically meaningful quantum observables. This 2ss
is indeed the purpose for introducing superselection rules [21,31] in the formalism of =zse
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quantum mechanics. So even if it had been the case that every operator F(P, Q) made sense  zs0
as a self-adjoint operator, it is still not certain that they would have any physical meaning 26
because of that. On that point alone one could question whether the conventional view  ze2
of quantization as "turning brackets to commutators’ (4) suitable from the start. InCQa zes
priori only H(P, Q) really needs to be sensible. In the quantization sense of Definition (5) zes
this point is however made even more explicit. There existence of the representation U  2es
implies, in the case of OQM, that H(P, Q) must be a well-defined self-adjoint operator under  zse
some ordering prescription. If H(P, Q) cannot be defined as a self-adjoint operator, then =ze
the corresponding OQM representation does not exist. For the reductionist it is a potential zes
problem if a particular classical Hamiltonian would not permit a quantization, because this =6
would mean that it neither would be ultimately reducible to a quantum theory as some 270
I — 0-limit, which is in conflict with the phrase ‘quantum mechanics is more fundamental 27
than classical mechanics’. For a non-reductionist, however, this is not an issue, at least not 272
of the same kind. 273

The spacific type of reductionism considered here is really the so called "physicit’s z7s
reductionism’ [32]. This is the sense in which it is a necessity that the more fundamental 27
theory includes the less fundamental ona as a limiting case, e.g such as the non-relativistic 27
¢ — oo-limit of special relativity and the (alleged) classical i — 0-limit of OQM. Non- 277
reductionism here simply means the negation of this. Hence the issue of reductionism 27
presented in the former paragraph is by definition not an issue for non-reductionism. 27
This is however far from saying that non-reductionism is without its own issues. Atleast zs0
naively, the physicit’s reductionism seems natural and intuitive and as such it is hard = ze:
to think of an alternative to it. In spite of this seeming naturalness, however, it should 2e2
not be taken as obvious that scientific theories can be put into a hierarchical structure of zes
that kind [30,33,38]. Considering that the conventional view of quantization is closely zss
linked to physicit’s reductionism, dismissing this necessitates a reexamination of what 2ss
quantization ought to correspond to. Here it has been suggested that quantization is a way  zss
of manifesting fundamental physical principles rather than that manifestation being what 2e7
constitutes the ‘fundamental’. More specifically, quantization has been attempted to be  2ss
identified as the representation theory of groups, the level of these groups being where  zs
the fundamental physical principles lie. In this view OQM is no more fundamental than 200
KvN. Instead they merely correspond to different manifestation of the same fundamental 2o
physical principles. In this case, the same dynamical law. One could speculate whether 2.2
in this regard KvN and OQM can be considered as different ‘superselection sectors’ [31], =zes
with 7 corresponding to a ‘superselectionobservable’. The particular values of /i in this 204
case interpreted in the similar sense as the ’classical limit" 1 — 0, i.e not as 7 actually 205
taking on different values—as it is technically indeed a universal constant—but as it 2o
being ‘comparatively small” with respect to other quantum numbers. More generally 2o
however, leaving this particular speculation a side, in this view, representation theory is zes
promoted from merely something technical having great utility to something which is 2
intrinsically related to physics, i.e how physical theories interrelate to one-another in a 00
non-reductive manner. A proper meaning of non-reductionism has however not here been = o
suggested. All that has been suggested is that representation theory—and in turn quantum o2
mechanics—is a formalism of non-reductionism. In the author’s mind this similar in kind 03
to how the C*-algebra relates to its representations in the framework of Relative onticity sos
[34], though whether this this is truly so is still an open question. More generally whether sos
this representation theoretic view can truly be but into proper ontology is also an open 06
question and a topic of further research. 307

5. Summary 308

Based on a previous result [4], KvN exhibits quantum interference and hance ought 300
to be considered as ‘proper quantum mechanics’ in the same sense as OQM is. This claim 310
however goes counter to the common view that KvN is not proper quantum mechanics s
as the CCR are not satisfied by it. In this common view the CCR are seen as part of s
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the ‘quantum condition’. It is in light of this that quantization typically is seen—as a 31
means of enforcing the CCR—and hence that quantization excludes KvN. This is the point = 31
that was addressed in this article, reexamining the notion of quantization in way such s
that KvN fits into it. The first part in doing so was showing that the relation between 16
Hamiltonian mechanics and OQM is not as natural as a textbook take on CQ might have =17
one believe. It was shown in section 3 that CQ cannot be seen in as turning brackets s
to commutators’. Indeed, it has long been known that the OQM cannot simply be seen 1
as a unitary representation of the Poisson algebra of Hamiltonian mechanics, as implied 2o
by the Groenewold-van Hove theorem. Here, however, an even stronger result was sz
shown in Theorem 2 —that CQ cannot even be identified as a certain type of Lie algebra s22
representation—dismissing even the arguably most generous interpretation of quantization s2s
as "turning brackets to commutators’. Given the central importance of the Poisson structure = szs
for Hamiltonian mechanics it is hence hard to argue that OQM is naturally connected toitin szs
that regard. Another regard in which this alleged 'naturalness’ can be claimed to manifest sz
was addressed in section 4. This is the reductionist sense in which Hamiltonian mechanics sz
is not only believed to correspond to a certain special limit case of OQM—the i — 0- 32s
limit—but the existence of a such is even a necessity. Neither in this sense is the relation 20
between Hamiltonian mechanics and OQM as natural as is typically believed. For no sso
generic such limit exists. it only exists for particular states and Hamiltonians. On top of this a1
one can even question the validity of the general claim of the necessity of such a ‘classical 332
limit” of OQM in light of reductionism failing in general to characterize the hierarchy of 33
physical and scientific theories [30,33,38]. Hence it is highly non-trivial to claim that OQM is s34
‘natural” with respect to Hamiltonian mechanics even in this reductionistic regard. With this 35
in mind it was in section 4 suggested that quantization ought to be viewed more generally s
in a representation theoretic sense. In particular OQM and KvN were both suggested to  ss7
be seen as certain unitary representations of the Hamiltonian flow with respect to a fixed = s3s
choice of canonical coordinates in terms of which the ‘quantum version” of Hamilton’s s
equations of motion still hold—see Definition 5—just unitarily inequivalent such. The 340
general idea here is that the role and utility of representation theory in quantum mechanics s
is not only important for technical reasons but that it in addition—and perhaps this could s
turn out to be the reasons for it having such utility—has deeper meaning associated with it a3
reflecting how theories of physics interrelate to one another in a non-reductionistic view of = 34
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The following abbreviations are used in this manuscript: 354
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CCR Canonical commutation relations

CQ Canonical quantization
KvN  Koopman-von Neumann formalism of classical mechanics
OQM  Ordinary non-relativistic quantum mechanics
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