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Abstract: In a previous work by the author it was shown that the Koopman-von Neumann formula- 1

tion of classical mechanics (KvN) exhibits quantum interference. As such it was there claimed that 2

KvN ought to be considered as a proper quantum mechanical theory in a similar sense as ordinary 3

non-relativistic quantum mechanics (OQM) is. In this article this claim is made manifest by showing 4

that KvN and OQM can be taken as merely inequivalent representations resulting from one and the 5

same quantization scheme. Of course, as the typical notion of quantization necessitates the canonical 6

commutation relations (CCR) to hold—which they do not in KvN —the concept needs to be properly 7

revised. To justify such a revision the typical reasons for necessitation the CCR—reductionism and 8

quantization as ’turning brackets to commutators’—are examined and found insufficient. 9

Keywords: Koopman-von Neumann formulation; quantization; reductionism; Groenewold-van 10

Hove theorem 11

1. Introduction 12

KvN [1,2] is typically deemed ’classical’ simply because in it the momentum P̂ and
position operators Q̂ commute. This in contrast to how it is in OQM where they satisfy the
CCR, [

P̂, Q̂
]
= ih̄. (1)

The claim is that KvN because of this cannot exhibit the hallmark quantum behaviour of
quantum interference [3]. Nonetheless, in a previous article by the author [4] the actual
validity of this claim was questioned and refuted. While it indeed is true that KvN cannot
account for quantum interference in the actual double-slit experiment as done with electrons
[3], it is not in this regard that quantum interference manifests in KvN. In [4] KvN was
identified as classical statistical mechanics. In doing so statistical equilibria |λ〉, correspond
to the eigenstates of the KvN generator of time evolution, i.e the Liouvillian L. It follows
that non-trivial superpositions of such,

∑
λ

cλ|λ〉, (2)

hence are non-equilibria, meaning that they are not time-invariant. In contrast, the corre-
sponding mixed state,

∑
λ

|cλ|2|λ〉〈λ|, (3)

to such a superposition (2) is time-invariant. This means that mixed states are distinguish- 13

able from pure ones—a characteristic quantum phenomenon—a manifestation of quantum 14

interference. Hence, if this is the criterion of ’quantumness’, then KvN is as ’quantum’ as 15

OQM. A point worth addressing here—which also may serve as a reason for wanting to 16

fit KvN into a proper quantization scheme—is that in typical introductions to KvN [5] the 17

formulation appears completely artificial, appearing more like a ’mathematical trick’. This 18

might give the impression that the supposed quantum interference effect in KvN in reality 19
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nothing more than a mathematical defect because the Hilbert space formalism of quantum 20

mechanics is not ’needed’ for classical statistical mechanics. However, strictly speaking 21

the Hilbert space formalism is not ’needed’ in OQM neither in order to express quantum 22

interference [6]. Hence this does not suffice as a dismissal of the in [4] suggested conclu- 23

sion—that the foundational issues of quantum mechanics has to do with the foundations of 24

probability in general—echoing the statements made by both Ballentine [7] and Koopman 25

[8] that there is no such thing as ’classical’ nor ’non-classical’ probability, just probability. 26

The purely probabilistic nature of quantum mechanics has been pushed before by the 27

author in [9] as well as by others [10,11], to mention but a few. In contrast to this view, 28

however, common ’folklore’ dictates that there is a such difference in notions of probability. 29

In classical statistical mechanics probability is taken as being ’classical’ and non-problematic 30

as Hamiltonian mechanics supposedly functions as a hidden-variable theory of classical 31

statistical mechanics. Probability is taken as non-problematic in this case because it can then 32

simply be interpreted as corresponding to a ’lack of knowledge’ or fluctuations in these 33

parameters constituting the phase space P of Hamiltonian mechanics. In contrast, no such 34

hidden-variable theory is supposed to exists for quantum mechanics as it violates Bell-type 35

inequalities, and hence probability supposedly cannot be interpreted in this way neihter. 36

In these terms, what was essentially shown in [4] was that Hamiltonian mechanics does 37

not function as a hidden-variable theory of classical statistical mechanics as the Liouvillian 38

L—taken as the observable of statistical equilibria—is not a function on the phase space. 39

In light of this, if not as a hidden-variable theory, then in what sense does Hamiltonian 40

mechanics relate to classical statistical mechanics? 41

In this article the idea put forth is that Hamiltonian mechanics relates to KvN the same
way that it does to OQM, i.e via quantization. Hence, in conjunction with the previous
article [4], KvN will have been put fourth as being equivalent to OQM both in terms of
quantization and in terms of interpretations of probability. Of course, this means that the
concept of quantization needs to be rethought. The typical view of quantization—in the
sense of Dirac [12]—is as ’turning brackets to commutators’,

{·, ·} 7→ − i
h̄
[·, ·], (4)

where {·, ·} denotes the Poisson bracket. In this sense quantization prohibits KvN as
resulting from it. The reason for asserting quantization as such is based on the analogous
structure between the classical equations of motion

dF
dt

= {F, H} (5)

and their quantum version,
dF̂
dt

= − i
h̄

[
F̂, Ĥ

]
, (6)

in addition to the CCR, leading to one speculate whether quantization possibly more gener- 42

ally corresponds to a unitary representation of the Poisson structure of HM. The upshot 43

of this is that would provide a natural—or ’canonical’ —connection between classical and 44

quantum physics, amongst other things, granting one the ability of interpreting the CCR as 45

a kind of ’quantum version’ of P being canonical conjugate tp Q in the classical Hamiltonian 46

mechanical sense. However, the Groenewold-van Hove theorem [13–15] shows that no 47

such unitary (irreducible) representation the Poisson algebra of the Hamiltonian mechanics 48

exists. This results suffices to disprove the thesis of the CCR being the quantum version 49

of canonical conjugancy, and hence the CCR cannot be taken as having to be enforced for 50

that reason. This opens up the door for a notion of quantization that also encompasses KvN. 51

In this article it will be suggested that quantization ought to be viewed in more generic 52

representation theoretic manner, in terms of which KvN and OQM correspond to merely 53

inequivalent representations of the same group theoretic structure. 54
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The structure of this article is as follows: In section 2 the overall structure of classical 55

mechanics will be presented. Particular emphasis it put on how Lagrangian and Hamil- 56

tonian mechanics relate to one another. The reason for presenting this is that canonical 57

quantization (CQ) in its formulation relies heavily on the ’going’ from Lagrangian to the 58

Hamiltonian mechanics while quantization often attempts at dealing with the generic 59

formulation of Hamiltonian mechanics which is completely independent of the Lagrangian 60

one. In that regard something like the Groenewold-van Hove theorem might not be that 61

surprising. In section 3 CQ is defined and it is shown that it cannot be considered in the 62

sense of Dirac as ’turning brackets to commutators’. This is done by proving an additional 63

theorem of the Groenewold-van Hove-type showing that Dirac’s view cannot capture the 64

essence CQ even if weakening from requiring a Poisson algebra representation to a Lie 65

algebra representation. Hence showing that even the most generous interpretation of CQ as 66

’brackets to commutators’ does not work. In section 4 the generic representation theoretic 67

view of quantization is presented and it will be shown that KvN and OQM merely corre- 68

spond to inequivalent representations of one and the same Hamiltonian dynamics. In this 69

section it will also be discussed how the conventional view of quantization—the supposed 70

necessity of the CCR—is tied to a reductionist view of physics, why a non-reductionist 71

hence should dismiss it and why the suggested revised concept of quantization ought to be 72

taken in non-reductionist scheme of physics. Lastly, in section 5, the arguments and claims 73

of the article are summarized. 74

2. The structure of modern classical mechanics 75

HM is in its formulation in terms of symplectic geometry a generalization of LM 76

[16]. Nonetheless, it is in the typical textbook [17] introduced as something one ’gets’ 77

from Lagrangian mechanics via a Legendre transform. This is all standard stuff, but we 78

will here recall how this story goes. It is instructive to do so because it is the author’s 79

impression that many seem to view CQ as something defined solely in terms of HM, 80

forgetting that the explicit canonical coordinates in which this is done are defined in terms 81

of a Lagrangian. This in contrast to Hamiltonian mechanics which has invariance under 82

canonical transformations as a fundamental symmetry. 83

2.1. From Lagrangian to Hamiltonian mechanics 84

Lagrangian mechanics occurs on the tangent bundle T M. For a point (Q, Q̇) ∈ T M,
Q̇ corresponds to spatial velocity and Q to spatial position. In Lagrangian mechanics the
dynamics is described by the Lagrangian function

L : T M → R, (7)

from which—by means of the principle of least action—one obtains the corresponding
equations of motion,

d
dt

∂L
∂Q̇

∣∣∣∣
(γ(t),γ̇(t))

=
∂L
∂Q

∣∣∣∣
(γ(t),γ̇(t)

, (8)

where
γ : R→M (9)

is the particle’s spatial path and γ̇ the derivative of that path. 85

One transitions to the Hamiltonian mechanics description by instead working on
the cotangent bundle T ∗M. For a point (P, Q) ∈ T ∗M, P corresponds to conjugate
momentum and Q to spatial position. Conjugate momentum is defined in terms of the
specific dynamics [17]—i.e in terms of the particular Lagrangian—as

P :=
∂L
∂Q̇

. (10)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2022                   doi:10.20944/preprints202211.0510.v1

https://doi.org/10.20944/preprints202211.0510.v1


4 of 15

In HM the dynamics is determined by means of the Hamiltonian,

H : T ∗M→ R, (11)

which one obtains by means of a Legendre transformation

H := P · Q̇− L. (12)

That H, as defined (12), indeed satisfies (11) follows from (8), and in turn Hamilton’s
equations of motion follow {

Ṗ = − ∂H
∂Q

Q̇ = ∂H
∂P

. (13)

Note that we hence have made the transition from Lagrangian to Hamiltonian mechanics 86

in terms of a selection of particular coordinates (P, Q). 87

The generic formulation of Hamiltonian mechanics is more specifically a geometric 88

formulation in terms of symplectic geometry [16,18]. That this is indeed so can be seen by 89

constructing the Poisson bracket on T ∗M in terms of the explicit coordinates (P, Q). Let 90

C∞(T ∗M) be the set of smooth function on T ∗M. 91

Definition 1. The Poisson bracket

{·, ·} : (F, G) ∈ C∞(T ∗M)× C∞(T ∗M) 7→ F, G ∈ C∞(T ∗M) (14)

is defined as

{F, G} :=
∂F
∂P

∂G
∂Q
− ∂F

∂Q
∂G
∂P

. (15)

The utility of the Poisson bracket is that there associated to it is a ’canonical’ symmetry,
i.e certain coordinate transformations under which it is invariant. Let

(P, Q) 7→ (P′(O, Q), Q′(P, Q)) (16)

be an arbitrary coordinate transformation to from the coordinates (P, Q) to the coordinates 92

(P′, Q′). Let {·, ·}′ denote an alternative Poisson bracket defined analogously to the original 93

one in Definition 1 but instead with respect to the coordinates (P′, Q′). 94

Definition 2. The coordinates (P′, Q′) are canonical coordinates and the coordinate transfor-
mation (16) is a canonical transformation if

{·, ·} = {·, ·}′. (17)

The following is a standard result [16]: 95

Theorem 1. (P′, Q′) are canonical coordinates if and only if

{P′, Q′} = 1. (18)

Now, Hamilton’s equations of motion (13) may be written in terms of the Poisson
bracket as {

Ṗ = {H, P}
Q̇ = {H, Q}

, (19)

and for any canonical coordinates (P′, Q′) we have{
Ṗ′ = {H, P′}
Q̇′ = {H, Q′}

, (20)
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i.e they are of the same form. We have hence found a (certain) coordinate invariant way of 96

expressing the equations of motion. 97

Remark 1. Note that there is a certain subgroup of canonical coordinates—the point transforma-
tions [17]—which are defined as

(P, Q) 7→ (P′(P, Q), Q′(Q)), (21)

where
P′i :=

∂L
∂Q̇′ i

. (22)

That these indeed are canonical coordinates follows by a direct calculation, having noted through the
chain rule that

P′i = ∑
j

∂Qj

∂Q′i

∣∣∣∣
Q′(Q)

Pj. (23)

Note furthermore that these form a particular subgroup of the group of canonical transformations, 98

the group of point transformations. 99

2.2. The Lagrangian mechanics-independent formulation of Hamiltonian mechanics 100

Note that the property of being canonical coordinates is still with respect to the 101

specific Lagrangian from which we constructed the Hamiltonian mechanical system, as the 102

construction of the Poisson bracket is still with respect to particular coordinates (P, Q), or 103

any point transformation of these. Hamiltonian mechanics has hence at this point not yet 104

been given a formulation that is completely indepedent of Lagrangian mechanics. The way 105

we get such an indepedent formulation is by finding an inherently coordinate invariant 106

way of defining the Poisson bracket. This is where Symplectic geometry [16] comes into 107

play. We will not present this in its fullness—for that the reader is referred elsewhere 108

[16,18]—here we will only reiterate how the general story goes, for that is all that is relevant 109

for our purposes. For us the relevance are the following key points and standard results: 110

• A Symplectic manifold is a differentiable manifold P equipped with closed non- 111

degenerate 2-form ω, called the symplectic form . 112

• Through the symplectic form one can associate to every function F ∈ C∞(P), a vector 113

field XF called the Hamiltonian vector field of F. 114

• One can then replace Definition 1 as the definition of the Poisson bracket by the definition

{F, G} := ω(XF, XG), (24)

for every F, G ∈ C∞(P). 115

• It follows that symplectic manifolds always are even-dimensional. 116

• Darboux’s theorem states that one can (locally) always find coordinates for which 117

the Poisson bracket—as defined by (24)—takes the form as in Definition 1. These 118

coordinates—called Darboux coordinates —are what in this generic formulation of 119

Hamiltonian mechanics correspond to canonical coordinates. 120

• The cotangent bundle—the structure upon which we constructed the previous La- 121

grangian mechanics-dependent formulation of Hamiltonian mechanics—is a particular 122

example of a symplectic manifold whose Poisson bracket as defined in terms of (24) is 123

identical with the one in terms of Definition 1. 124

• The dynamics corresponds a Hamiltonian flow

U : t ∈ R 7→ Ut ∈ Sympl(P), (25)

which is a group homomorphism where Sympl(P) is the group of symplectomor- 125

phisms on P—the diffeomorphisms on P that preserves its symplectic form. 126
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3. Canonical Quantization versus ’Turning brackets to commutators’ 127

In this section we will prove that CQ cannot even in the weakest possible sense be 128

characterized in the Diracian sense as ’turning brackets to commutators’. 129

3.1. Canonical Quantization 130

In the typical treatment of CQ it is implicit in its usage but often not emphasized 131

enough that the prescription is really explicitly defined in terms of the particular canonical 132

coordinates (P, Q). A notable exception to this is Gukow and Witten in [19], where it is also 133

stated that CQ even is dependent on the particular choice of coordinates. Here CQ will be 134

properly defined in this manner, making this potential coordinate dependence explicit. In 135

addition, by performing a CQ-type quantization with respect to another choice of canonical 136

coordinates it will be shown that that this yields an inequivalent quantum theory, and 137

hence that CQ indeed is coordinate dependent. 138

Definition 3. Let (T M, L) be a classical mechanical system described in terms of Lagrangian
mechanics with associated Lagrangian L. We canonically quantize this system by representing
the observables P and Q as quantum observables P̂ respectively Q̂ on some Hilbert space H such
that their respective spectra concurs with the range of possible values of their classical counter
parts—i.e R—and such that the CCR hold,[

P̂, Q̂
]
= ih̄. (26)

In addition, the generator of time evolution is set to be the operator

H
(

P̂, Q̂
)

, (27)

i.e the quantum Hamiltonian. The quantum Hamiltonian is furthermore interpreted as the 139

quantum observable of energy of the system. 140

Remark 2. As is well-known, it follows from the Stone-von Neumann theorem [20] that the 141

operators P̂ and Q̂ subjected to properties of CQ are uniquely defined up to a unitary equivalence. 142

Furthermore, given a classical observable F on T ∗M, its quantum counterpart is

F
(

P̂, Q̂
)

(28)

inheriting its interpretation from F. This is not only the case for the Hamiltonian H—as
explicitly stated in Definition (3)—but it is also the case for the quantum observable of
angular momentum. Of course, there is the well-known issue of the inherent ordering
ambiguities in the symbolic expressions (27) and more generically in (28). Based solely on
this, it is clear that Definition 3 is not proper in the sense of being mathematically rigorous.
However, it is ’proper enough’ with regards to our purposes here. The point here is not to
solve this issue of the ordering ambiguity but to point out that CQ occurs with respect to
particular preferred set of canonical coordinates. As previously noted in [19], if one chooses
to ’canonically quantize’ with respect to a different set of canonical coordinates (P′, Q′),
say, then it is not generically also true that[

P̂, Q̂
]
= ih̄. (29)

Consider for instance the simple harmonic oscillator having the Hamiltonian

Hosc(P, Q) =
1
2

P2 +
1
2

Q2. (30)
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We may perform a canonical transformation into action-angle coordinates (Θ, E), where

(P(Θ, E), Q(Θ, E)) =
(√

2E cos Θ,
√

2E sin Θ
)

. (31)

It is clear from this that E = Hosc(P, Q). Assuming that this transformation makes sense
also after CQ, we would then have

〈Em|
[

Hosc

(
P̂, Q̂

)
, Θ
(

P̂, Q̂
)]
|En〉 = (Em − En)〈Em|Θ

(
P̂, Q̂

)
|En〉, (32)

where |En〉 is a generic eigenstate of the quantum Hamiltonian. This means that the 143

quantized action-angle variables cannot satisfy the CCR. Hence the CCR cannot be taken 144

as ’quantum version’ of canonical coordinates as it is not analogous to the version of it in 145

Hamiltonian mechanics as given by Theorem 1. It also means that CQ does not possess 146

invariance under canonical transformations. 147

3.2. Quantization as ’turning brackets to commutators’ 148

In the textbook view quantization amounts to ’turning Poisson brackets into operator 149

commutators’. In its most generous interpretation this formalizes to the following notion of 150

quantization: 151

Definition 4. Consider a symplectic manifold P with induced Poisson algebra (C∞(P), {·, ·}).
A quantization Q of P is an irreducible unitary representation of a unital sub-Lie algebra g of
C∞(P) on to a some Hilbert spaceH, in the sense that Q(F) is self-adjoint for all F ∈ g and that

ih̄Q({F, G}) = [Q(F),Q(G)]. (33)

For convenience we will however set h̄ = 1 for the remainder of this section. 152

Indeed, the CQ of the simple harmonic oscillator corresponds to a quantization Q in
the sense of Definition 4. In this case the sub-Lie algebra of the Poisson algebra is spanned
by the observables P, Q, the unit function and Hosc—as defined by (30) —subject to the
relations: 

{P, Q} = 1
{Hosc, P} = −Q
{Hosc, Q} = P

, (34)

with the rest being zero. Then, because the operator

Q(Hosc)−
1
2
Q(P)2 − 1

2
Q(Q)2 (35)

commutes with Q(Hosc), Q(P) and Q(Q), and because the representation is irreducible,
we get from Schur’s lemma [21] that

Q(Hosc) =
1
2
Q(P)2 +

1
2
Q(Q)2 + c, (36)

where c ∈ R, as required for CQ. Of course, it works similarly for the free Hamiltonian or 153

the trivial Hamiltonian. 154

However, as we will show next, CQ does not generically correspond to a quantization
in the sense of Definition 4. We will show this by considering the particular Hamiltonian

Hc =
1
2

P2 +
Q3

3!
. (37)
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In this case we have: 
{P, Q} = 1

{Hc, P} = −Q2

2

{Hc, Q} = P

. (38)

So in contrast to (30) these relations do not close the algebra g. Hence one must add Q2 to g.
But it does not stop here. Because we in turn get

{Hc, Q2} = 2PQ, (39)

meaning that we must enforce PQ ∈ g, and so on. It is this occurrence of more such
elements that eventually leads to a contradiction, taken in conjuction with the requirement
of

Q(Hc) =
1
2
Q(P)2 +

Q(Q)

3!

3

+ C, (40)

for some constant C ∈ R, which is a necessity for Q to coincide with CQ. 155

Theorem 2. There does not exist a quantization Q such that (40) holds. 156

Proof. We prove this by showing that its existence would lead to a contradiction. Indeed,
if (40) holds, then we compute that

Q
(

Q2
)
=− 2i[Q(P),Q(Hc)]

=Q(Q)2
, (41)

and hence that

Q(PQ) =− i
[
Q(Hc),Q

(
Q2

2

)]
=Q(P)Q(Q) +

i
2

. (42)

In turn this can be used to calculate

Q
(

P2 − 1
2

Q3
)
=− i[Q(Hc),Q(PQ)]

=Q(P)2 − 1
2
Q(Q)3

(43)

and, in turn,

Q
(

2P2 +
3
2

Q3
)
=− i

[
Q
(

P2 − 1
2

Q3
)

,Q(PQ)

]
=Q(P)2 +

3
2
Q(Q)3

. (44)

From (43) and (44) we obtain that

Q
(

Q3
)
=

2
5
Q
(

2P2 +
3
2

Q3
)
− 4

5
Q
(

P2 − 1
2

Q3
)

=Q(Q)3
. (45)
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We can from (43) compute that

Q
(

PQ2
)
=− i

2
5

[
Q(Hc),Q

(
P2 − 1

2
Q3
)]

=Q(P)Q(Q)2 − iQ(Q)

. (46)

From (46) we can compute that

Q
(

2P2Q− 1
2

Q4
)
=− i

[
Q(Hc),Q

(
PQ2

)]
=2Q(P)2Q(Q)− 1

2
Q(Q)4 + 2iQ(P).

(47)

and from (43) and (46)

Q
(

4P2Q +
3
2

Q4
)
=− i

[
Q
(

P2 − 1
2

Q3
)

,Q
(

PQ2
)]

=4Q(P)2Q(Q) +
3
2
Q(Q)4 + 4iQ(P)

. (48)

From these two we then get that

Q
(

P2Q
)
=

3
10
Q
(

2P2Q− 1
2

Q4
)
+

1
10
Q
(

4P2Q +
3
2

Q4
)

=Q(P)2Q(Q) + iQ(P)
. (49)

From (47) we can compute that

Q
(

2P3 − 4PQ3
)
=− i

[
Q(Hc),Q

(
2P2Q− 1

2
Q4
)]

=2Q(P)3 − 4Q(P)Q(Q)3 + i6Q(Q)2.
(50)

and from (43) and (47) that

Q
(

4P3 + 2PQ3
)
=− i

[
Q
(

P2 − 1
2

Q3
)

,Q
(

2P2Q− 1
2

Q4
)]

=4Q(P)3 + 2Q(P)Q(Q)3 − i3Q(Q)2
. (51)

From these two we then get that

Q
(

P3
)
=

1
10
Q
(

2P3 − 4PQ3
)
+

2
10
Q
(

4P3 + 2PQ3
)

=Q(P)3
. (52)

Now, we have

− i
9

[
Q
(

P3
)

,Q
(

Q3
)]

=Q
(

P2Q2
)

=− i
3

[
Q
(

P2Q
)

,Q
(

PQ2
)]

.
(53)

However, we also have—because of (45) and (52)—that

− i
9

[
Q
(

P3
)

,Q
(

Q3
)]

=Q(P)2Q(Q)2 − 2iQ(P)Q(Q)− 2
3

, (54)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 November 2022                   doi:10.20944/preprints202211.0510.v1

https://doi.org/10.20944/preprints202211.0510.v1


10 of 15

and—because of (46) and (49)—that

− i
3

[
Q
(

P2Q
)

,Q
(

PQ2
)]

=Q(P)2Q(Q)2 − i
2
3
Q(P)Q(Q) +

1
3

. (55)

(53) together with (54) and (55) imply a contradiction, and hence the proof is completed. 157

From Theorem 2 it directly follows that: 158

Corollary 1. CQ does not correspond to a quantization in the sense of Definition 4. 159

Note that in Definition 4 g is a sub-Lie algebra rather than a sub-Poisson algebra. The 160

reason for excluding this case already form the start is that it has long been known that 161

no quantization in that sense exists either. This is the statement of the Groenewold-van 162

Hove theorem, whose proof also riles on showing that the same contradiction as in the 163

proof of Theorem 2 unavoidably occurs. The reason for here not simply sticking to the 164

the Groenewold-van Hove theorem is because we in subsection3 already had dismissed 165

that the full Poisson structure supposedly played a crucial role also after CQ. This as CQ 166

was shown to break the invariance under canonical transformations. This argument did 167

however not dispute the claim that, given fixed coordinates, CQ still works by ’turning 168

brackets to commutators’. In light of Corollary 1, however, we can safely say that ’turning 169

brackets to commutators’ is not how CQ works. 170

4. The need for a new perspective on quantization 171

In the context of classical statistical mechanics probability is typically seen as unprob- 172

lematic. The reason for this is that allegedly Hamiltonian mechanics corresponds to a 173

hidden-variable theory of it that tells us what is ’really going on’. As such it is then be- 174

lieved that probability safely can be interpreted as ’fluctuations’ or ’lack of knowledge’ 175

of the parameters in phase space. Bell’s theorem [22] addresses under what conditions a 176

certain type of hidden-variable theories can be said to exist. As nature seems to violate 177

these probabilistic conditions [23], probability does not generically seem to be so straight 178

forwardly interpretable in the above alledged ’unproblematic’ way. It is the claim of this ar- 179

ticle—based in previous work [4]—that classical statistical mechanics is a proper quantum 180

theory as it exhibits the hallmark quantum phenomenon of quantum interference. Included 181

in this claim is that probability in terms of classical statistical mechanics suffers the same 182

interpretational issues as it does in OQM. This is still, however, in contrast to Einstein’s 183

view [24], where the existence of a hidden-variable theory of OQM and one for classical 184

statistical mechanics is taken as a necessity. Here such a necessity does not exists. The 185

claim is that the ’unproblematic’ interpretation of probability does not work for classical 186

statistical mechanics neither. Rather, the conceptual change in going from Hamiltonian 187

mechanics to classical statistical mechanics is taken to be of similar kind as going from 188

Hamiltonian mechanics to OQM. This conceptual change is the introduction of probability. 189

This is what quantization is claimed to be about, translating deemed essential structures of 190

Hamiltonian mechanics into the formalism of quantum mechanics. Indeed, as mentioned 191

in the introduction, the observable L in KvN does not correspond to a random variable 192

on the phase space of Hamiltonian mechanics. Hence Hamiltonian mechanics cannot be 193

taken as a hidden-variable theory of classical statistical mechanics. Of course, this is not a 194

proof of a no-go theorem preventing the existence of a hidden-variable theory of classical 195

statistical mechanics but it is enough to show that Hamiltonian mechanics is not it. As 196

Hamiltonian mechanics is typically taken as the archetypical hidden-variable theory in this 197

regard, this not an inconsequential claim. Furthermore note that the occurrence of quantum 198

interference itself is not a dismissal of realism [6], hence it not implied here that classical 199

statistical mechanics is non-realist. 200

Note that quantization here hence has a different meaning than typical. Conventionally 201

it refers more to a means by which one enforces the CCR, taking these to be what corre- 202

sponds to ’the quantum condition’ [12]. As such the notion of quantization considered here 203
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is of a different form then, say, deformation quantization [26], where the enforcement of the 204

CCR is the whole point. There is however a disconnect between this ’quantum condition’ 205

and what constitutes ’the quantum’ with regards to quantum foundations, where emphasis 206

is put on Bell-typ theorems and quantum interference. In discussing these latter, one in 207

quantum foundations permit the usage of finite dimensional Hilbert spaces. The CCR, 208

however, necessitates infinite dimensional ones. Hence quantum foundations—at least as a 209

practise—is independent of the CCR as ’the quantum condition’. That KvN exhibits quan- 210

tum interference serves to stress this point of the non-centrality the CCR as ’the quantum 211

condition’ further, and thus also stressing the need for revising quantization. Closely tied to 212

this ’the CCR as the quantum condition’-view is also the reductionistic view of classical 213

physics as that which emerges at the h̄→ 0-limit of OQM. In this view it is this limit that 214

has actual physical contents, quantization merely being a formal process for ensuring that 215

such a limit exists. Technically speaking however, no generic such limit exists, it only exists 216

for certain states and Hamiltonians[27,28]. In contrast to this, quantization here is taken as 217

something having its own intrinsic physical meaning regardless of the alleged ’classical 218

limit’. Hence the notion of quantization argued for in this article should be seen in the light 219

of non-reductionistic views of physics [11,29,30,32–34]. 220

Remark 3. Of course, ona can dissreagrd this convenional practice of quantum foundations by 221

making this ’the CCR as the quantum condition’-view explicitly part of quantum mechanics [25], 222

but at the cost of dismissing central parts of research in quantum foundation. One can even speculate 223

whether, if really taking reductionism seriously, then quantum mechanics perhaps has to though of 224

in such a way that makes the CCR manifest. 225

More specifically, in this article it is suggested that quantization ought to be seen in 226

the sense of representation theory, that KvN and OQM relate to Hamiltonian mechanics in 227

a similar sense as elementary particles corresponds to irreducible representations of the 228

Poincaré group in the Wigner classification [35]. In fact, though this will not be the way 229

in which it is though of here, this analogy can be made more exact by noting that OQM 230

corresponds to a projective representation of the Galilean group [36] while KvN (essentially) 231

corresponding to an ordinary representation of the same group [37]. In fact Primas in [30] 232

makes this analogy manifest by considering (projective) representations of the Galilean 233

group as particles, which he refers to as ’Galileons’. Here, just as in the case of the Poincaré 234

group, the mass of the particle can be identified as a label of the irreducible representation. 235

The mass term corresponds to the central extension of the Galilean group, and hence it is by 236

definition zero in the case of non-projective representations. For Primas, mass is identified 237

as the the central extension, and hence he interprets the non-projective representation as 238

a Galileon with zeor mass, which hence goes counter to the identification of the same 239

representation as KvN made in [37]. There is however no a priori reason for mass to be 240

ontically identified as such. Though this identification of the mass follows naturally in the 241

case of projective representations, this is not so in the case of the non-projective one. Rather 242

this identification must then be carried over to the non-projective one. So there is really no 243

inconsistency in directly translating the Wigner classification to the Galilean group such 244

that KvN corresponds to merely a different ’particle’ than OQM. 245

Another sense in which KvN and OQM can be seen as merely inequivalent representa- 246

tions is as certain representations of the dynamics/Hamiltonian flow. Let us specify this 247

further. 248

Definition 5. Let U be a Hamiltonian flow associated with Hamiltonian function H on a phase
space P . Let (P, Q) be some choice of canonical coordinates and denote by H the function

H : (x, y) ∈ (P, Q)(P) 7→ H(x, y) (56)

such that
H = H ◦ (P, Q), (57)
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i.e H is the form H takes in terms of the coordinates (P, Q). A quantization of U with respect to
(P, Q) is a unitary representation

Ut 7→ Ût (58)

on a Hilbert spaceH such that

d
dt

∣∣∣∣
t=0

Ût P̂Û−t = −
∂H

∂y

∣∣∣∣
(P̂,Q̂)

(59)

and
d
dt

∣∣∣∣
t=0

ÛtQ̂Û−t =
∂H

∂x

∣∣∣∣
(P̂,Q̂)

, (60)

where P̂ and Q̂ are a self-adjoint operators whose respective spectrum conforms with the range of P 249

respectively Q. 250

Because of (58) we may apply Stone’s theorem [20] to conclude that there exists a
self-adjoint operator T̂—the generator of time-evolution—such that

i
[

T̂, P̂
]
= − ∂H

∂y

∣∣∣∣
(P̂,Q̂)

(61)

and

i
[

T̂, Q̂
]
=

∂H

∂x

∣∣∣∣
(P̂,Q̂)

, (62)

where we leave ordering ambiguities in P̂ and Q̂ aside for the moment. In the case of OQM
we have

T̂ = H
(

P̂, Q̂
)

(63)

and for KvN
T̂ = L. (64)

A sense in which KvN and OQM differ is that P̂ and Q̂ in OQM generate an irreducible
algebra, so that we may apply Schur’s lemma to conclude that H(P̂, Q̂) must be the unique
operator up to an additive constant satisfying (59) and (60). This because given any other
operator satisfying these relations T̂′, then the operator

T̂ − T̂′ (65)

must commute with both P̂ and Q̂, and hence

T̂ − T̂′ = c, (66)

for some constant c ∈ R. This is not the case for KvN where (59) and (60) only define T̂ up
to a function g(P̂, Q̂). This does however not mean that T̂ is ambiguous in KvN, because
by definition

Ûtψ := ψ ◦U−t, (67)

meaning that indeed (64) follows. Hence, in OQM (59) and (60) are necessary and sufficient 251

while in KvN they are only necessary. 252

Addressing the issue of the potential ordering ambiguity in the expression H(P̂, Q̂), 253

this issue is not as pathological here as it for other notions of quantization. For one thing 254

it is not here required that all such expressions—i.e classical observables—must be well- 255

defined by one and the same ordering rule, nor that all such expressions even need to 256

make sense quantum mechanically. Indeed, this is true conventionally as well, that not 257

all self-adjoint operators correspond to physically meaningful quantum observables. This 258

is indeed the purpose for introducing superselection rules [21,31] in the formalism of 259
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quantum mechanics. So even if it had been the case that every operator F(P̂, Q̂) made sense 260

as a self-adjoint operator, it is still not certain that they would have any physical meaning 261

because of that. On that point alone one could question whether the conventional view 262

of quantization as ’turning brackets to commutators’ (4) suitable from the start. In CQ a 263

priori only H(P̂, Q̂) really needs to be sensible. In the quantization sense of Definition (5) 264

this point is however made even more explicit. There existence of the representation Û 265

implies, in the case of OQM, that H(P̂, Q̂) must be a well-defined self-adjoint operator under 266

some ordering prescription. If H(P̂, Q̂) cannot be defined as a self-adjoint operator, then 267

the corresponding OQM representation does not exist. For the reductionist it is a potential 268

problem if a particular classical Hamiltonian would not permit a quantization, because this 269

would mean that it neither would be ultimately reducible to a quantum theory as some 270

h̄→ 0-limit, which is in conflict with the phrase ’quantum mechanics is more fundamental 271

than classical mechanics’. For a non-reductionist, however, this is not an issue, at least not 272

of the same kind. 273

The spacific type of reductionism considered here is really the so called ’physicit’s 274

reductionism’ [32]. This is the sense in which it is a necessity that the more fundamental 275

theory includes the less fundamental ona as a limiting case, e.g such as the non-relativistic 276

c → ∞-limit of special relativity and the (alleged) classical h̄ → 0-limit of OQM. Non- 277

reductionism here simply means the negation of this. Hence the issue of reductionism 278

presented in the former paragraph is by definition not an issue for non-reductionism. 279

This is however far from saying that non-reductionism is without its own issues. At least 280

naively, the physicit’s reductionism seems natural and intuitive and as such it is hard 281

to think of an alternative to it. In spite of this seeming naturalness, however, it should 282

not be taken as obvious that scientific theories can be put into a hierarchical structure of 283

that kind [30,33,38]. Considering that the conventional view of quantization is closely 284

linked to physicit’s reductionism, dismissing this necessitates a reexamination of what 285

quantization ought to correspond to. Here it has been suggested that quantization is a way 286

of manifesting fundamental physical principles rather than that manifestation being what 287

constitutes the ’fundamental’. More specifically, quantization has been attempted to be 288

identified as the representation theory of groups, the level of these groups being where 289

the fundamental physical principles lie. In this view OQM is no more fundamental than 290

KvN. Instead they merely correspond to different manifestation of the same fundamental 291

physical principles. In this case, the same dynamical law. One could speculate whether 292

in this regard KvN and OQM can be considered as different ’superselection sectors’ [31], 293

with h̄ corresponding to a ’superselectionobservable’. The particular values of h̄ in this 294

case interpreted in the similar sense as the ’classical limit’ h̄ → 0, i.e not as h̄ actually 295

taking on different values—as it is technically indeed a universal constant—but as it 296

being ’comparatively small’ with respect to other quantum numbers. More generally 297

however, leaving this particular speculation a side, in this view, representation theory is 298

promoted from merely something technical having great utility to something which is 299

intrinsically related to physics, i.e how physical theories interrelate to one-another in a 300

non-reductive manner. A proper meaning of non-reductionism has however not here been 301

suggested. All that has been suggested is that representation theory—and in turn quantum 302

mechanics—is a formalism of non-reductionism. In the author’s mind this similar in kind 303

to how the C∗-algebra relates to its representations in the framework of Relative onticity 304

[34], though whether this this is truly so is still an open question. More generally whether 305

this representation theoretic view can truly be but into proper ontology is also an open 306

question and a topic of further research. 307

5. Summary 308

Based on a previous result [4], KvN exhibits quantum interference and hance ought 309

to be considered as ’proper quantum mechanics’ in the same sense as OQM is. This claim 310

however goes counter to the common view that KvN is not proper quantum mechanics 311

as the CCR are not satisfied by it. In this common view the CCR are seen as part of 312
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the ’quantum condition’. It is in light of this that quantization typically is seen—as a 313

means of enforcing the CCR—and hence that quantization excludes KvN. This is the point 314

that was addressed in this article, reexamining the notion of quantization in way such 315

that KvN fits into it. The first part in doing so was showing that the relation between 316

Hamiltonian mechanics and OQM is not as natural as a textbook take on CQ might have 317

one believe. It was shown in section 3 that CQ cannot be seen in as ’turning brackets 318

to commutators’. Indeed, it has long been known that the OQM cannot simply be seen 319

as a unitary representation of the Poisson algebra of Hamiltonian mechanics, as implied 320

by the Groenewold-van Hove theorem. Here, however, an even stronger result was 321

shown in Theorem 2 —that CQ cannot even be identified as a certain type of Lie algebra 322

representation—dismissing even the arguably most generous interpretation of quantization 323

as ’turning brackets to commutators’. Given the central importance of the Poisson structure 324

for Hamiltonian mechanics it is hence hard to argue that OQM is naturally connected to it in 325

that regard. Another regard in which this alleged ’naturalness’ can be claimed to manifest 326

was addressed in section 4. This is the reductionist sense in which Hamiltonian mechanics 327

is not only believed to correspond to a certain special limit case of OQM—the h̄ → 0- 328

limit—but the existence of a such is even a necessity. Neither in this sense is the relation 329

between Hamiltonian mechanics and OQM as natural as is typically believed. For no 330

generic such limit exists. it only exists for particular states and Hamiltonians. On top of this 331

one can even question the validity of the general claim of the necessity of such a ’classical 332

limit’ of OQM in light of reductionism failing in general to characterize the hierarchy of 333

physical and scientific theories [30,33,38]. Hence it is highly non-trivial to claim that OQM is 334

’natural’ with respect to Hamiltonian mechanics even in this reductionistic regard. With this 335

in mind it was in section 4 suggested that quantization ought to be viewed more generally 336

in a representation theoretic sense. In particular OQM and KvN were both suggested to 337

be seen as certain unitary representations of the Hamiltonian flow with respect to a fixed 338

choice of canonical coordinates in terms of which the ’quantum version’ of Hamilton’s 339

equations of motion still hold—see Definition 5—just unitarily inequivalent such. The 340

general idea here is that the role and utility of representation theory in quantum mechanics 341

is not only important for technical reasons but that it in addition—and perhaps this could 342

turn out to be the reasons for it having such utility—has deeper meaning associated with it 343

reflecting how theories of physics interrelate to one another in a non-reductionistic view of 344

science. 345
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