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Article 

Description of the Electron in the Electromagnetic 
Field: The Dirac type Equation and the Equation for 
the Wave Function in Spinor Coordinate Space 
Pavel Gorev 

Candidate of Technical Sciences, Nizhny Novgorod, Russia; pppay7733@yahoo.com 

Abstract: Physical processes are usually described using four-dimensional vector quantities - coordinate 
vector, momentum vector, current vector. But at the fundamental level they are characterized by spinors - 
coordinate spinors, momentum spinors, spinor wave functions. The propagation of fields and their interaction 
takes place at the spinor level, and since each spinor uniquely corresponds to a certain vector, the results of 
physical processes appear before us in vector form. For example, the relativistic Schrödinger equation and the 
Dirac equation are formulated by means of coordinate vectors, momentum vectors and quantum operators 
corresponding to them. In the Schrödinger equation the wave function is represented by a single complex 
quantity, in the Dirac equation a step forward is taken and the wave function is a spinor with complex 
components, but still coordinates and momentum are vectors. For a closed description of nature using only 
spinor quantities, it is necessary to have an equation similar to the Dirac equation in which momentum, 
coordinates and operators are spinors. It is such an equation that is presented in this paper. Using the example 
of the interaction between an electron and an electromagnetic field, we can see that the spinor equation contains 
more detailed information about the interaction than the vector equations. This is not new for quantum 
mechanics, since it describes interactions using complex wave functions, which cannot be observed directly, 
and only when measured goes to probabilities in the form of squares of the moduli of the wave functions. In 
the same way spinor quantities are not observable, but they completely determine observable vectors. In 
Section 2 of the paper, we analyze the quadratic form for an arbitrary four-component complex vector based 
on Pauli matrices. The form is invariant with respect to Lorentz transformations including any rotations and 
boosts. The invariance of the form allows us to construct on its basis an equation for a free particle combining 
the properties of the relativistic wave equation and the Dirac equation. For an electron in the presence of an 
electromagnetic potential it is shown that taking into account the commutation relations between the 
momentum and coordinate components allows us to obtain from this equation the known results describing 
the interactions of the electron spin with the electric and magnetic field. In section 3 of the paper this quadratic 
form is expressed through momentum spinors, which makes it possible to obtain an equation for the spinor 
wave function in spinor coordinate space by replacing the momentum spinor components by partial derivative 
operators on the corresponding coordinate spinor component. Section 4 presents a modification of the theory 
of the path integral, which consists in considering the path integral in the spinor coordinate space. The 
Lagrangian densities for the scalar field and for the electron field, along with their corresponding propagators, 
are presented. An equation of motion for the electron is proposed that is relativistically invariant, in contrast 
to the Dirac equation, which lacks this invariance. This novel equation permitted the construction of a 
relativistically invariant procedure for the second quantization of the fermion field in spinor coordinate space. 

Keywords: relativistic wave equation; Dirac equation; Pauli matrices; Schrödinger equation; second 
quantization; path integral 

 

1. Introduction 

Nowadays, the interest to study applications of the Dirac equation to different situations and to 
find out the conditions of its generalization is not weakening. In particular, in [1] new versions of an 
extended Dirac equation and the associated Clifford algebra are presented. In [2] a study of the 
Schrödinger-Dirac covariant equation in the presence of gravity, where the non-commuting gamma 
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matrices become space-time-dependent, is carried out. In [3] an idea is discussed that the visible 
properties of the electron, including rest mass and magnetic moment, are determined by a massless 
charge spinning at light speed within a Compton domain. In [4] some aspects of conformal rescaling 
in detail are explored and the role of the "quantum" potential is discussed as a natural consequence 
of non-inertial motion and is not exclusive to the quantum domain. Author establishes the 
fundamental importance of conformal symmetry, in which rescaling of the rest mass plays a vital 
role. Thus, the basis for a radically new theory of quantum phenomena based on the process of mass-
energy flow is proposed. In [5] author have derived the covariant fourth-order/one-function 
equivalent of the Dirac equation for the general case of an arbitrary set of γ-matrices. 

Supporting these search aspirations, in our work we propose a deeper understanding of the 
Dirac equation with an emphasis on the direct use of the principles of symmetry and invariance to 
Lorentz transformations. For the first time we present a formulation of the Dirac and Schrödinger 
equations in spinor coordinate space. 

2. Generalized Dirac Type Equation 

Let us introduce notations, which will be used further on. The speed of light and the rationalized 
Planck’s constant will be considered as unity. 

Pauli matrices 𝜎଴ = ቀ1 00 1ቁ      𝜎ଵ = ቀ0 11 0ቁ      𝜎ଶ = ቀ0 −𝑖𝑖 0 ቁ      𝜎ଷ = ቀ1 00 −1ቁ 

Matrices constructed from Pauli matrices 𝑆଴ = ൬𝜎଴ 00 𝜎଴ ൰    𝑆ଵ = ൬𝜎ଵ 00 𝜎ଵ ൰    𝑆ଶ = ൬𝜎ଶ 00 𝜎ଶ ൰    𝑆ଷ = ൬𝜎ଷ 00 𝜎ଷ ൰ 

A vector of matrices 𝐒𝐓 ≡ (𝑆ଵ, 𝑆ଶ, 𝑆ଷ) 
A set of arbitrary complex numbers and a vector of its three components 𝖃𝐓 ≡ (𝑋଴,𝑋ଵ,𝑋ଶ,𝑋ଷ) 𝐗𝐓 ≡ (𝑋ଵ,𝑋ଶ,𝑋ଷ) 
Let us define a 2×2 matrix of Lorentz transformations given by the set of real rotation angles (𝛼ଵ,𝛼ଶ,𝛼ଷ) and boosts (𝛽ଵ,𝛽ଶ,𝛽ଷ) 𝑛 = 𝑒𝑥𝑝 ൬−12 𝑖𝛼ଵ𝜎ଵ൰ 𝑒𝑥𝑝 ൬12𝛽ଵ𝜎ଵ൰ 𝑒𝑥𝑝 ൬−12 𝑖𝛼ଶ𝜎ଶ൰ 𝑒𝑥𝑝 ൬12𝛽ଶ𝜎ଶ൰ 𝑒𝑥𝑝 ൬−12 𝑖𝛼ଷ𝜎ଷ൰ 𝑒𝑥𝑝 ൬12𝛽ଷ𝜎ଷ൰ 

and a similar 4×4 transformation matrix 𝑁 = 𝑒𝑥𝑝 ൬−12 𝑖𝛼ଵ𝑆ଵ൰ 𝑒𝑥𝑝 ൬12𝛽ଵ𝑆ଵ൰ 𝑒𝑥𝑝 ൬−12 𝑖𝛼ଶ𝑆ଶ൰ 𝑒𝑥𝑝 ൬12𝛽ଶ𝑆ଶ൰ 𝑒𝑥𝑝 ൬−12 𝑖𝛼ଷ𝑆ଷ൰ 𝑒𝑥𝑝 ൬12𝛽ଷ𝑆ଷ൰ 

We also define a 4×4 matrix of Lorentz transformations 𝛬, where μ and ν take values 0,1,2,3  𝛬 ఔఓ = 12 Tr[𝜎ఓ𝑛𝜎ఔ𝑛ற]  
which can also be written explicitly using the 4×4 matrices of turn generators (𝑅ଵ,𝑅ଶ,𝑅ଷ) and boosts (𝐾ଵ,𝐾ଶ,𝐾ଷ) 𝛬 = 𝑒𝑥𝑝(𝛼ଵ𝑅ଵ)𝑒𝑥𝑝(𝛽ଵ𝐾ଵ)𝑒𝑥𝑝(𝛼ଶ𝑅ଶ)𝑒𝑥𝑝(𝛽ଶ𝐾ଶ)𝑒𝑥𝑝(𝛼ଷ𝑅ଷ)𝑒𝑥𝑝(𝛽ଷ𝐾ଷ) 

Let's define a 4×4 matrix 𝑀ଶ = (𝑆଴𝑋଴ − 𝑆ଵ𝑋ଵ − 𝑆ଶ𝑋ଶ − 𝑆ଷ𝑋ଷ)(𝑆଴𝑋଴ + 𝑆ଵ𝑋ଵ + 𝑆ଶ𝑋ଶ + 𝑆ଷ𝑋ଷ) = (𝑆଴𝑋଴ − 𝐒𝐓𝐗)(𝑆଴𝑋଴ + 𝐒𝐓𝐗)= 𝑆଴𝑋଴𝑆଴𝑋଴ − 𝑆ଵ𝑋ଵ𝑆ଵ𝑋ଵ − 𝑆ଶ𝑋ଶ𝑆ଶ𝑋ଶ − 𝑆ଷ𝑋ଷ𝑆ଷ𝑋ଷ + 𝑆଴𝑋଴(𝑆ଵ𝑋ଵ + 𝑆ଶ𝑋ଶ + 𝑆ଷ𝑋ଷ)− 𝑆ଵ𝑋ଵ(𝑆଴𝑋଴ + 𝑆ଶ𝑋ଶ + 𝑆ଷ𝑋ଷ) − 𝑆ଶ𝑋ଶ(𝑆଴𝑋଴ + 𝑆ଵ𝑋ଵ + 𝑆ଷ𝑋ଷ) − 𝑆ଷ𝑋ଷ(𝑆଴𝑋଴ + 𝑆ଵ𝑋ଵ + 𝑆ଶ𝑋ଶ) 
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In fact, we consider a quaternion with complex coefficients, which we multiply by its conjugate 

quaternion (due to the complexity of the coefficients, these are biquaternions, but we still use 

quaternionic conjugation, without complex conjugation). 

Let us subject the set of complex numbers to the Lorentz transformation 𝖃ᇱ = 𝛬𝖃 

Let us write a relation whose validity for an arbitrary set of complex numbers can be checked 

directly (𝑆଴𝑋଴ᇱ − 𝑆ଵ𝑋ଵᇱ − 𝑆ଶ𝑋ଶᇱ − 𝑆ଷ𝑋ଷᇱ)(𝑆଴𝑋଴ᇱ + 𝑆ଵ𝑋ଵᇱ + 𝑆ଶ𝑋ଶᇱ + 𝑆ଷ𝑋ଷᇱ)= (𝑆଴𝑋଴ − 𝑆ଵ𝑋ଵ − 𝑆ଶ𝑋ଶ − 𝑆ଷ𝑋ଷ)(𝑆଴𝑋଴ + 𝑆ଵ𝑋ଵ + 𝑆ଶ𝑋ଶ + 𝑆ଷ𝑋ଷ) = 𝑀ଶ 
The matrix 𝑀ଶ in the simplest case is diagonal with equal complex elements on the diagonal 

equal to the square of the length of the vector 𝖃 in the metric of Minkowski space, which we denote 𝑚ଶ. Both 𝑀ଶ and 𝑚ଶ do not change under any rotations and boosts, in physical applications the 
invariance of 𝑚ଶ  is usually used, in particular, for the four-component momentum vector this 
quantity is called the square of mass. 

Since the matrices 𝐒  anticommutate with each other, for a vector 𝖃  whose components 
commute with each other, we have just the simplest case with a diagonal matrix with 𝑚ଶ on the 
diagonal. But if the components of vector 𝖃 do not commute, the matrix 𝑀ଶ already has a more 
complex structure and carries additional physical information compared to 𝑚ଶ. For example, the 
vector 𝖃 may include the electron momentum vector and the electromagnetic potential vector. The 
four-component potential vector is a function of the four-dimensional coordinates of Minkowski 
space. The components of the four-component momentum do not commute with the components of 
the coordinate vector, respectively, and the coordinate function does not commute with the 
momentum components, and their commutator is expressed through the partial derivative of this 
function by the corresponding coordinate. If the components of the vector 𝖃 do not commute, the 
matrix 𝑀ଶ will no longer be invariant with respect to Lorentz transformations. 

Suppose that the complex numbers we consider commute with all matrices, and note that the 
squares of all matrices are equal to the unit 4×4 matrix I  𝑀ଶ = (𝑋଴𝑋଴ − 𝑋ଵ𝑋ଵ − 𝑋ଶ𝑋ଶ − 𝑋ଷ𝑋ଷ)𝐼 + (𝑆ଵ𝑋଴𝑋ଵ + 𝑆ଶ𝑋଴𝑋ଶ + 𝑆ଷ𝑋଴𝑋ଷ)− (𝑆ଵ𝑋ଵ𝑋଴ + 𝑆ଵ𝑆ଶ𝑋ଵ𝑋ଶ + 𝑆ଵ𝑆ଷ𝑋ଵ𝑋ଷ) − (𝑆ଶ𝑋ଶ𝑋଴ + 𝑆ଶ𝑆ଵ𝑋ଶ𝑋ଵ + 𝑆ଶ𝑆ଷ𝑋ଶ𝑋ଷ)− (𝑆ଷ𝑋ଷ𝑋଴ + 𝑆ଷ𝑆ଵ𝑋ଷ𝑋ଵ + 𝑆ଷ𝑆ଶ𝑋ଷ𝑋ଶ)= (𝑋଴𝑋଴ − 𝑋ଵ𝑋ଵ − 𝑋ଶ𝑋ଶ − 𝑋ଷ𝑋ଷ)𝐼 + 𝑆ଵ(𝑋଴𝑋ଵ − 𝑋ଵ𝑋଴) + 𝑆ଶ(𝑋଴𝑋ଶ − 𝑋ଶ𝑋଴) + 𝑆ଷ(𝑋଴𝑋ଷ− 𝑋ଷ𝑋଴) − (𝑆ଵ𝑆ଶ𝑋ଵ𝑋ଶ + 𝑆ଵ𝑆ଷ𝑋ଵ𝑋ଷ) − (𝑆ଶ𝑆ଵ𝑋ଶ𝑋ଵ + 𝑆ଶ𝑆ଷ𝑋ଶ𝑋ଷ) − (𝑆ଷ𝑆ଵ𝑋ଷ𝑋ଵ + 𝑆ଷ𝑆ଶ𝑋ଷ𝑋ଶ)= (𝑋଴𝑋଴ − 𝑋ଵ𝑋ଵ − 𝑋ଶ𝑋ଶ − 𝑋ଷ𝑋ଷ)𝐼 + 𝑆ଵ(𝑋଴𝑋ଵ − 𝑋ଵ𝑋଴) + 𝑆ଶ(𝑋଴𝑋ଶ − 𝑋ଶ𝑋଴) + 𝑆ଷ(𝑋଴𝑋ଷ− 𝑋ଷ𝑋଴) − (𝑆ଵ𝑆ଶ𝑋ଵ𝑋ଶ + 𝑆ଶ𝑆ଵ𝑋ଶ𝑋ଵ) − (𝑆ଶ𝑆ଷ𝑋ଶ𝑋ଷ + 𝑆ଷ𝑆ଶ𝑋ଷ𝑋ଶ) − (𝑆ଷ𝑆ଵ𝑋ଷ𝑋ଵ + 𝑆ଵ𝑆ଷ𝑋ଵ𝑋ଷ)= (𝑋଴𝑋଴ − 𝑋ଵ𝑋ଵ − 𝑋ଶ𝑋ଶ − 𝑋ଷ𝑋ଷ)𝐼 + 𝑆ଵ(𝑋଴𝑋ଵ − 𝑋ଵ𝑋଴) + 𝑆ଶ(𝑋଴𝑋ଶ − 𝑋ଶ𝑋଴) + 𝑆ଷ(𝑋଴𝑋ଷ− 𝑋ଷ𝑋଴) − (𝑆ଵ𝑆ଶ𝑋ଵ𝑋ଶ + 𝑆ଶ𝑆ଵ𝑋ଵ𝑋ଶ + 𝑆ଶ𝑆ଵ(𝑋ଶ𝑋ଵ − 𝑋ଵ𝑋ଶ))− (𝑆ଶ𝑆ଷ𝑋ଶ𝑋ଷ + 𝑆ଷ𝑆ଶ𝑋ଶ𝑋ଷ + 𝑆ଷ𝑆ଶ(𝑋ଷ𝑋ଶ − 𝑋ଶ𝑋ଷ))− (𝑆ଷ𝑆ଵ𝑋ଷ𝑋ଵ + 𝑆ଵ𝑆ଷ𝑋ଷ𝑋ଵ + 𝑆ଵ𝑆ଷ(𝑋ଵ𝑋ଷ − 𝑋ଷ𝑋ଵ)) 

Taking into account anticommutative properties of matrices and expressions for their pairwise 

products we obtain  

 𝑀ଶ = (𝑋଴𝑋଴ − 𝑋ଵ𝑋ଵ − 𝑋ଶ𝑋ଶ − 𝑋ଷ𝑋ଷ)𝐼 + 𝑆ଵ(𝑋଴𝑋ଵ − 𝑋ଵ𝑋଴) + 𝑆ଶ(𝑋଴𝑋ଶ − 𝑋ଶ𝑋଴) + 𝑆ଷ(𝑋଴𝑋ଷ −𝑋ଷ𝑋଴) − 𝑆ଶ𝑆ଵ(𝑋ଶ𝑋ଵ − 𝑋ଵ𝑋ଶ) − 𝑆ଷ𝑆ଶ(𝑋ଷ𝑋ଶ − 𝑋ଶ𝑋ଷ) − 𝑆ଵ𝑆ଷ(𝑋ଵ𝑋ଷ − 𝑋ଷ𝑋ଵ) = (𝑋଴𝑋଴ − 𝑋ଵ𝑋ଵ − 𝑋ଶ𝑋ଶ −𝑋ଷ𝑋ଷ)𝐼 + 𝑆ଵ(𝑋଴𝑋ଵ − 𝑋ଵ𝑋଴) + 𝑆ଶ(𝑋଴𝑋ଶ − 𝑋ଶ𝑋଴) + 𝑆ଷ(𝑋଴𝑋ଷ − 𝑋ଷ𝑋଴) + 𝑖𝑆ଷ(𝑋ଶ𝑋ଵ − 𝑋ଵ𝑋ଶ) + 𝑖𝑆ଵ(𝑋ଷ𝑋ଶ −𝑋ଶ𝑋ଷ) + 𝑖𝑆ଶ(𝑋ଵ𝑋ଷ − 𝑋ଷ𝑋ଵ) = (𝑋଴𝑋଴ − 𝑋ଵ𝑋ଵ − 𝑋ଶ𝑋ଶ − 𝑋ଷ𝑋ଷ)𝐼 + 𝑆ଵ(𝑋଴𝑋ଵ − 𝑋ଵ𝑋଴) + 𝑖𝑆ଵ(𝑋ଷ𝑋ଶ − 𝑋ଶ𝑋ଷ) +𝑆ଶ(𝑋଴𝑋ଶ − 𝑋ଶ𝑋଴) + 𝑖𝑆ଶ(𝑋ଵ𝑋ଷ − 𝑋ଷ𝑋ଵ) + 𝑆ଷ(𝑋଴𝑋ଷ − 𝑋ଷ𝑋଴) + 𝑖𝑆ଷ(𝑋ଶ𝑋ଵ − 𝑋ଵ𝑋ଶ) 
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Consider the case when 𝖃  is the sum of the momentum vector and the electromagnetic 

potential vector, which is a function of coordinates 𝖃 = ₱ + ₳ ₱𝑻 ≡ (𝑃଴,𝑃ଵ,𝑃ଶ,𝑃ଷ) ₳𝑻 ≡ (𝐴଴,𝐴ଵ,𝐴ଶ,𝐴ଷ) 𝐏𝑻 ≡ (𝑃ଵ,𝑃ଶ,𝑃ଷ) 𝐀𝑻 ≡ (𝐴ଵ,𝐴ଶ,𝐴ଷ) 

 𝑀ଶ = 𝐼[(𝑃଴ + 𝐴଴)(𝑃଴ + 𝐴଴) − (𝑃ଵ + 𝐴ଵ)(𝑃ଵ + 𝐴ଵ) − (𝑃ଶ + 𝐴ଶ)(𝑃ଶ + 𝐴ଶ) − (𝑃ଷ + 𝐴ଷ)(𝑃ଷ + 𝐴ଷ)] +𝑆ଵ[(𝑃଴ + 𝐴଴)(𝑃ଵ + 𝐴ଵ) − (𝑃ଵ + 𝐴ଵ)(𝑃଴ + 𝐴଴)] + 𝑖𝑆ଵ[(𝑃ଷ + 𝐴ଷ)(𝑃ଶ + 𝐴ଶ) − (𝑃ଶ + 𝐴ଶ)(𝑃ଷ + 𝐴ଷ)] +𝑆ଶ[(𝑃଴ + 𝐴଴)(𝑃ଶ + 𝐴ଶ) − (𝑃ଶ + 𝐴ଶ)(𝑃଴ + 𝐴଴)] + 𝑖𝑆ଶ[(𝑃ଵ + 𝐴ଵ)(𝑃ଷ + 𝐴ଷ) − (𝑃ଷ + 𝐴ଷ)(𝑃ଵ + 𝐴ଵ)] +𝑆ଷ[(𝑃଴ + 𝐴଴)(𝑃ଷ + 𝐴ଷ) − (𝑃ଷ + 𝐴ଷ)(𝑃଴ + 𝐴଴)] + 𝑖𝑆ଷ[(𝑃ଶ + 𝐴ଶ)(𝑃ଵ + 𝐴ଵ) − (𝑃ଵ + 𝐴ଵ)(𝑃ଶ + 𝐴ଶ)] 
For now, we'll stick with the Heisenberg approach, that is, we will consider the components of 

the momentum vector 𝑃଴,𝑃ଵ,𝑃ଶ,𝑃ଷ  as operators for which there are commutation relations with 
coordinates or coordinate functions such as 𝐴଴,𝐴ଵ,𝐴ଶ,𝐴ଷ. In this approach, the operators do not have 
to act on any wave function.  

Taking into account the commutation relations of the components of the momentum vector and 
the coordinate vector, the commutator of the momentum component and the coordinate function is 
expressed through the derivative of this function by the corresponding coordinate, e.g. [(𝑃ଶ + 𝐴ଶ)(𝑃ଵ + 𝐴ଵ) − (𝑃ଵ + 𝐴ଵ)(𝑃ଶ + 𝐴ଶ)] = 𝑃ଶ𝐴ଵ − 𝐴ଵ𝑃ଶ − (𝑃ଵ𝐴ଶ − 𝐴ଶ𝑃ଵ) = −𝑖 𝜕𝐴ଵ𝜕𝑥ଶ − ൬−𝑖 𝜕𝐴ଶ𝜕𝑥ଵ൰ 

As a result, we obtain 𝑀ଶ = 𝐼[(𝑃଴ + 𝐴଴)(𝑃଴ + 𝐴଴) − (𝑃ଵ + 𝐴ଵ)(𝑃ଵ + 𝐴ଵ) − (𝑃ଶ + 𝐴ଶ)(𝑃ଶ + 𝐴ଶ) − (𝑃ଷ + 𝐴ଷ)(𝑃ଷ + 𝐴ଷ)]+ 𝑆ଵ ൤−𝑖 𝜕𝐴ଵ𝜕𝑥଴ + 𝑖 𝜕𝐴଴𝜕𝑥ଵ൨ + 𝑖𝑆ଵ ൤−𝑖 𝜕𝐴ଶ𝜕𝑥ଷ + 𝑖 𝜕𝐴ଷ𝜕𝑥ଶ൨ + 𝑆ଶ ൤−𝑖 𝜕𝐴ଶ𝜕𝑥଴ + 𝑖 𝜕𝐴଴𝜕𝑥ଶ൨+ 𝑖𝑆ଶ ൤−𝑖 𝜕𝐴ଷ𝜕𝑥ଵ + 𝑖 𝜕𝐴ଵ𝜕𝑥ଷ൨ + 𝑆ଷ ൤−𝑖 𝜕𝐴ଷ𝜕𝑥଴ + 𝑖 𝜕𝐴଴𝜕𝑥ଷ൨ + 𝑖𝑆ଷ ൤−𝑖 𝜕𝐴ଵ𝜕𝑥ଶ + 𝑖 𝜕𝐴ଶ𝜕𝑥ଵ൨= 𝐼[(𝑃଴ + 𝐴଴)(𝑃଴ + 𝐴଴) − (𝑃ଵ + 𝐴ଵ)(𝑃ଵ + 𝐴ଵ) − (𝑃ଶ + 𝐴ଶ)(𝑃ଶ + 𝐴ଶ)− (𝑃ଷ + 𝐴ଷ)(𝑃ଷ + 𝐴ଷ)] − 𝑖𝑆ଵ ൤𝜕𝐴ଵ𝜕𝑥଴ − 𝜕𝐴଴𝜕𝑥ଵ൨ + 𝑆ଵ ൤𝜕𝐴ଶ𝜕𝑥ଷ − 𝜕𝐴ଷ𝜕𝑥ଶ൨ − 𝑖𝑆ଶ ൤𝜕𝐴ଶ𝜕𝑥଴ − 𝜕𝐴଴𝜕𝑥ଶ൨+ 𝑆ଶ ൤𝜕𝐴ଷ𝜕𝑥ଵ − 𝜕𝐴ଵ𝜕𝑥ଷ൨ − 𝑖𝑆ଷ ൤𝜕𝐴ଷ𝜕𝑥଴ − 𝜕𝐴଴𝜕𝑥ଷ൨ + 𝑆ଷ ൤𝜕𝐴ଵ𝜕𝑥ଶ − 𝜕𝐴ଶ𝜕𝑥ଵ൨=  𝐼[(𝑃଴ + 𝐴଴)(𝑃଴ + 𝐴଴) − (𝑃ଵ + 𝐴ଵ)(𝑃ଵ + 𝐴ଵ) − (𝑃ଶ + 𝐴ଶ)(𝑃ଶ + 𝐴ଶ)− (𝑃ଷ + 𝐴ଷ)(𝑃ଷ + 𝐴ଷ)] − 𝑖𝑆ଵ𝐹଴ଵ + 𝑆ଵ𝐹ଷଶ − 𝑖𝑆ଶ𝐹଴ଶ + 𝑆ଶ𝐹ଵଷ − 𝑖𝑆ଷ𝐹଴ଷ + 𝑆ଷ𝐹ଶଵ=  𝐼[(𝑃଴ + 𝐴଴)(𝑃଴ + 𝐴଴) − (𝑃ଵ + 𝐴ଵ)(𝑃ଵ + 𝐴ଵ) − (𝑃ଶ + 𝐴ଶ)(𝑃ଶ + 𝐴ଶ)− (𝑃ଷ + 𝐴ଷ)(𝑃ଷ + 𝐴ଷ)] − 𝑖𝑆ଵ𝐸௫ + 𝑆ଵ𝐵௫ − 𝑖𝑆ଶ𝐸௬ + 𝑆ଶ𝐵௬ − 𝑖𝑆ଷ𝐸௭ + 𝑆ଷ𝐵௭ 
where 𝐹ఓఔ = 𝜕ఓ𝐴ఔ − 𝜕ఔ𝐴ఓ 𝜕ఓ ≡ 𝜕𝜕𝑥ఓ 

𝐹ఓఔ = ⎝⎜
⎛ 0  𝐸௫−𝐸௫  0 𝐸௬ 𝐸௭−𝐵௭ 𝐵௬−𝐸௬   𝐵௭−𝐸௭  −𝐵௬ 0 −𝐵௫𝐵௫ 0 ⎠⎟

⎞
 

As a result, we have the expression 
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 𝑀ଶ = 𝐼[(𝑃଴ + 𝐴଴)(𝑃଴ + 𝐴଴) − (𝑃ଵ + 𝐴ଵ)(𝑃ଵ + 𝐴ଵ) − (𝑃ଶ + 𝐴ଶ)(𝑃ଶ + 𝐴ଶ) − (𝑃ଷ + 𝐴ଷ)(𝑃ଷ + 𝐴ଷ)] +𝐒𝐓𝐁 − 𝑖𝐒𝐓𝐄 𝐁𝐓 ≡ (𝐵௫,𝐵௬,𝐵௭) ≡ (𝐵ଵ,𝐵ଶ,𝐵ଷ) 𝐄𝐓 ≡ (𝐸௫,𝐸௬,𝐸௭)  ≡ (𝐸ଵ,𝐸ଶ,𝐸ଷ) 

Similarly, it can be shown that (𝑆଴𝑃଴ − 𝑆ଵ𝑃ଵ − 𝑆ଶ𝑃ଶ − 𝑆ଷ𝑃ଷ)(𝑆଴𝐴଴ + 𝑆ଵ𝐴ଵ + 𝑆ଶ𝐴ଶ + 𝑆ଷ𝐴ଷ)+ (𝑆଴𝐴଴ − 𝑆ଵ𝐴ଵ − 𝑆ଶ𝐴ଶ − 𝑆ଷ𝐴ଷ)(𝑆଴𝑃଴ + 𝑆ଵ𝑃ଵ + 𝑆ଶ𝑃ଶ + 𝑆ଷ𝑃ଷ)= 2𝐼(𝑃଴𝐴଴ − 𝑃ଵ𝐴ଵ − 𝑃ଶ𝐴ଶ − 𝑃ଷ𝐴ଷ) + 𝐒𝐓𝐁 − 𝑖𝐒𝐓𝐄 

The matrix 

 𝑀ଶ − ሼ𝐒𝐓𝐁 − 𝑖𝐒𝐓𝐄ሽ = 𝐼ሼ(𝑃଴ + 𝐴଴)(𝑃଴ + 𝐴଴) − (𝑃ଵ + 𝐴ଵ)(𝑃ଵ + 𝐴ଵ) − (𝑃ଶ + 𝐴ଶ)(𝑃ଶ + 𝐴ଶ) − (𝑃ଷ +𝐴ଷ)(𝑃ଷ + 𝐴ଷ)ሽ ≡ 𝐼𝑑ଶ 

does not change under Lorentz transformations involving any rotations and boosts. 𝐼𝑑ଶ = ൫𝑆଴(𝑃଴ + 𝐴଴) − 𝑆ଵ(𝑃ଵ + 𝐴ଵ) − 𝑆ଶ(𝑃ଶ + 𝐴ଶ) − 𝑆ଷ(𝑃ଷ + 𝐴ଷ)൯൫𝑆଴(𝑃଴ + 𝐴଴) + 𝑆ଵ(𝑃ଵ + 𝐴ଵ)+ 𝑆ଶ(𝑃ଶ + 𝐴ଶ) + 𝑆ଷ(𝑃ଷ + 𝐴ଷ)൯ − ሼ𝐒𝐓𝐁 − 𝑖𝐒𝐓𝐄ሽ= ൫𝑆଴(𝑃଴ + 𝐴଴) − 𝐒𝐓(𝐏 + 𝐀)൯൫𝑆଴(𝑃଴ + 𝐴଴) + 𝐒𝐓(𝐏 + 𝐀)൯ − ሼ𝐒𝐓𝐁 − 𝑖𝐒𝐓𝐄ሽ 
Taking into account the electron charge we have 𝖃 = ₱ − 𝑒₳ 𝐼𝑑ଶ = ൫𝑆଴(𝑃଴ − 𝑒𝐴଴) − 𝐒𝐓(𝐏 − 𝑒𝐀)൯൫𝑆଴(𝑃଴ − 𝑒𝐴଴) + 𝐒𝐓(𝐏 − 𝑒𝐀)൯ + 𝑒ሼ𝐒𝐓𝐁 − 𝑖𝐒𝐓𝐄ሽ 
Let us summarize our consideration. There is a correlation 𝐼𝑑ଶ = 𝑀ଶ + 𝑒ሼ𝐒𝐓𝐁 − 𝑖𝐒𝐓𝐄ሽ 
where 𝑀ଶ ≡ ൫𝑆଴(𝑃଴ − 𝑒𝐴଴) − 𝐒𝐓(𝐏 − 𝑒𝐀)൯൫𝑆଴(𝑃଴ − 𝑒𝐴଴) + 𝐒𝐓(𝐏 − 𝑒𝐀)൯ 𝐼𝑑ଶ ≡ 𝐼ሼ(𝑃଴ − 𝑒𝐴଴)ଶ − (𝑃ଵ − 𝑒𝐴ଵ)ଶ − (𝑃ଶ − 𝑒𝐴ଶ)ଶ − (𝑃ଷ − 𝑒𝐴ଷ)ଶሽ=  𝐼[(𝑃଴ − 𝑒𝐴଴)(𝑃଴ − 𝑒𝐴଴) − (𝑃ଵ − 𝑒𝐴ଵ)(𝑃ଵ − 𝑒𝐴ଵ) − (𝑃ଶ − 𝑒𝐴ଶ)(𝑃ଶ − 𝑒𝐴ଶ)− (𝑃ଷ − 𝑒𝐴ଷ)(𝑃ଷ − 𝑒𝐴ଷ)] =  𝐼[(𝑃଴ − 𝑒𝐴଴)(𝑃଴ − 𝑒𝐴଴) − (𝐏 − 𝑒𝐀)𝑻(𝐏 − 𝑒𝐀)]= 𝐼ሼ(𝑃଴ − 𝑒𝐴଴)ଶ − (𝐏 − 𝑒𝐀)ଶሽ 
Let's analyze the obtained equality 𝑀ଶ = 𝐼𝑑ଶ − 𝑒ሼ𝐒𝐓𝐁 − 𝑖𝐒𝐓𝐄ሽ 
Note that the quantity 𝑑ଶ is invariant to the Lorentz transformations irrespective of whether 

the momentum and field components commute or not. To solve this equation, we have to make 
additional simplifications. For example, to arrive at an equation similar to the Dirac equation, we 
must equate 𝑀ଶ with the matrix 𝐼𝑚ଶ, where 𝑚ଶ is the square of the mass of a free electron. Then 𝐼𝑚ଶ = 𝐼𝑑ଶ − 𝑒ሼ𝐒𝐓𝐁 − 𝑖𝐒𝐓𝐄ሽ 𝐼𝑑ଶ − 𝐼𝑚ଶ − 𝑒ሼ𝐒𝐓𝐁 − 𝑖𝐒𝐓𝐄ሽ = 0 𝐼ሼ(𝑃଴ − 𝑒𝐴଴)ଶ − (𝐏 − 𝑒𝐀)ଶሽ −  𝐼𝑚ଶ − 𝑒ሼ𝐒𝐓𝐁 − 𝑖𝐒𝐓𝐄ሽ = 0 

With this substitution the generalized equation almost coincides with the equation [6], formula 
(43.25), the difference is that there is a plus sign before 𝑒𝐒𝐓𝐁, and instead of 𝑖𝐒𝐓𝐄 there is 𝑖𝛂𝐓𝐄, in 
which the matrices 𝛂 have the following form 𝛂𝐓 ≡ (𝛼ଵ,𝛼ଶ,𝛼ଷ) 𝛼ଵ = ൬0 𝜎ଵ𝜎ଵ 0 ൰    𝛼ଶ = ൬0 𝜎ଶ𝜎ଶ 0 ൰    𝛼ଷ = ൬0 𝜎ଷ𝜎ଷ 0 ൰ 

A similar equation is given by Dirac in [7], Para. 76, Equation 24]; he does not use the matrices 𝛂, only the matrices 𝐒, but the signs of the contributions of the magnetic and electric fields are the 
same.  
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Along with the original form  𝑀ଶ = ൫𝑆଴(𝑃଴ − 𝑒𝐴଴) − 𝐒𝐓(𝐏 − 𝑒𝐀)൯൫𝑆଴(𝑃଴ − 𝑒𝐴଴) + 𝐒𝐓(𝐏 − 𝑒𝐀)൯ = 𝑑ଶ − 𝑒ሼ𝐒𝐓𝐁 − 𝑖𝐒𝐓𝐄ሽ 
it is possible to consider the form with a different order of the factors. It can be shown that this 

leads to a change in the sign of the electric field contribution 𝑀ଶ = ൫𝑆଴(𝑃଴ − 𝑒𝐴଴) + 𝐒𝐓(𝐏 − 𝑒𝐀)൯൫𝑆଴(𝑃଴ − 𝑒𝐴଴) − 𝐒𝐓(𝐏 − 𝑒𝐀)൯ = 𝑑ଶ − 𝑒ሼ𝐒𝐓𝐁 + 𝑖𝐒𝐓𝐄ሽ 
Since 𝐼𝑑ଶ, unlike 𝑀ଶ, is invariant to Lorentz transformations, it would be logical to replace it by 𝐼𝑚ଶ. At least both these matrices are diagonal, and in the case of a weak field their diagonal elements 

are close. Nevertheless, the approach based on the Dirac equation leads to solutions consistent with 
experiment. 

The matrix 𝑀ଶ in the general case has complex elements and is not diagonal, and in the Dirac 
equations instead of it is substituted the product of the unit matrix by the square of mass 𝑚ଶ, the 
physical meaning of such a substitution is not obvious. Apparently it is implied that it is the square 
of the mass of a free electron. But the square of the length of the sum of the lengths of the electron 
momentum vectors and the electromagnetic potential vector is not equal to the sum of the squares of 
the lengths of these vectors, that is, it is not equal to the square of the mass of the electron, even if the 
square of the length of the potential vector were zero. But, for example, in the case of an electrostatic 
central field, even the square of the length of one potential vector is not equal to zero. Therefore, it is 
difficult to find a logical justification for using the mass of a free electron in the Dirac equation in the 
presence of an electromagnetic field. Due to the noted differences, the solutions of the generalized 
equation can differ from the solutions arising from the Dirac equation. 

In the case when there is a constant magnetic field directed along the z-axis, we can write down 𝐴଴ = 0        𝐴ଵ = −12𝐵ଷ𝑥ଶ         𝐴ଶ = 12𝐵ଷ𝑥ଵ      𝐴ଷ = 0 (𝑆଴𝑃଴)ଶ − 𝑀ଶ − (𝐏 − 𝑒𝐀)𝑻(𝐏 − 𝑒𝐀)𝐼 − 𝑒𝑆ଷ𝐵ଷ = 0 (𝑆଴𝑃଴)ଶ − 𝑀ଶ − (𝑃ଵ − 𝑒𝐴ଵ)(𝑃ଵ − 𝑒𝐴ଵ)𝐼 − (𝑃ଶ − 𝑒𝐴ଶ)(𝑃ଶ − 𝑒𝐴ଶ)𝐼 − 𝑒𝑆ଷ𝐵ଷ = 0 (𝑆଴𝑃଴)ଶ − 𝑀ଶ − 𝑃଴ଶ𝐼 − 𝑃ଷଶ𝐼 − 𝑃ଵଶ − (𝑒𝐴ଵ)ଶ − 𝑃ଶଶ − (𝑒𝐴ଶ)ଶ + 𝑒 12𝐵ଷ(𝑥ଵ 𝑃ଶ − 𝑥ଶ𝑃ଵ + 𝑥ଵ 𝑃ଶ − 𝑥ଶ𝑃ଵ)− 𝑒𝑆ଷ𝐵ଷ = 0 𝑃଴ଶ𝐼 − 𝑀ଶ − 𝑃଴ଶ𝐼 − 𝑃ଷଶ𝐼 − 𝑃ଵଶ𝐼 − (𝑒𝐴ଵ)ଶ𝐼 − 𝑃ଶଶ𝐼 − (𝑒𝐴ଶ)ଶ𝐼 + 𝑒𝐵ଷ(𝑥ଵ 𝑃ଶ − 𝑥ଶ𝑃ଵ)𝐼 − 𝑒𝑆ଷ𝐵ଷ = 0 

𝐼൫−𝑃ଵଶ − 𝑃ଶଶ − 𝑃ଷଶ − (𝑒𝐴ଵ)ଶ − (𝑒𝐴ଶ)ଶ൯𝐼 − 𝑀ଶ − 𝑒𝐵ଷ ൮𝐿ଷ + 1 00 𝐿ଷ − 1 0          00          00           00           0 𝐿ଷ + 1 00 𝐿ଷ − 1൲ = 0 

Here (𝑥ଵ 𝑃ଶ − 𝑥ଶ𝑃ଵ) ≡ 𝐿ଷ. Only when the field is directed along the z-axis, the matrix 𝑀ଶ is 
diagonal and real because the third Pauli matrix is diagonal and real. And if the field is weak, 𝑀ଶ 
can be approximated by the 𝑚ଶ𝐼  matrix. This is probably why it is customary to illustrate the 
interaction of electron spin with the magnetic field by choosing its direction along the z-axis. In any 
other direction 𝑀ଶ is not only non-diagonal, but also complex, so that it is difficult to justify the use 
of 𝑚ଶ𝐼. 

When the influence of the electromagnetic field was taken into account, no specific 
characteristics of the electron were used. When deriving a similar result using the Dirac equation, it 
is assumed that since the electron equation is used, the result is specific to the electron. In our case 
Pauli matrices and commutation relations are used, apparently these two assumptions or only one of 
them characterize the properties of the electron, distinguishing it from other particles with non-zero 
masses. 

The proposed equation echoes the Dirac equation, at least from it one can obtain the same 
formulas for the interaction of spin and electromagnetic field as with the Dirac equation, and in the 
absence of a field the proposed equation is invariant to the Lorentz transformations. In contrast, to 
prove the invariance of the Dirac equation even in the absence of a field, the infinitesimal Lorentz 
transformations are used, but the invariance at finite angles of rotations and boosts is not 
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demonstrated. The proof of invariance of the Dirac equation is based on the claim that a combination 
of rotations at finite angles can be represented as a combination of infinitesimal rotations. But this is 
true only for rotations or boosts around one axis, and if there are at least two axes, this statement is 
not true because of non-commutability of Pauli matrices, which are generators of rotations, so that 
the exponent of the sum is not equal to the product of exponents if the sum includes generators of 
rotations or boosts around different axes. By a direct check we can verify that the invariance of the 
Dirac equation takes place at any combination of rotations, but only under the condition of zero 
boosts, i.e., only in a rest frame of reference, any boost violates the invariance. 

A test case for any theory is the model of the central electrostatic field used in the description of 
the hydrogen atom, in which the components of the vector potential are zero (𝑆଴(𝑃଴ − 𝑒𝐴଴) − 𝐒𝐓𝐏)(𝑆଴(𝑃଴ − 𝑒𝐴଴) + 𝐒𝐓𝐏) = 𝐼ൣ(𝑃଴ − 𝑒𝐴଴)ଶ − 𝑃ଵଶ − 𝑃ଶଶ − 𝑃ଷଶ൧ + 𝑖𝑒𝐒𝐓𝐄 

If again we equate the left part with 𝐼𝑚ଶ, we obtain 𝐼ൣ(𝑃଴ − 𝑒𝐴଴)ଶ − 𝑃ଵଶ − 𝑃ଶଶ − 𝑃ଷଶ൧ −  𝐼𝑚ଶ + 𝑖𝑒𝐒𝐓𝐄 = 0 𝐼ൣ(𝑃଴ − 𝑒𝐴଴)ଶ − 𝑃ଵଶ − 𝑃ଶଶ − 𝑃ଷଶ −  𝑚ଶ൧ − 𝑖𝑒 ൬𝑆ଵ 𝜕𝐴଴𝜕𝑥ଵ + 𝑆ଶ 𝜕𝐴଴𝜕𝑥ଶ + 𝑆ଷ 𝜕𝐴଴𝜕𝑥ଷ൰ = 0 

Introducing the notations (𝐴଴ ≡ 𝜑(𝑟) = 𝑄/𝑟, 𝑃଴ ≡ 𝐸, 𝑟 = 1/ ඥ𝑥ଵ ଶ + 𝑥ଶ ଶ + 𝑥ଷ ଶ), we obtain 𝐼 ቈ൬𝐸 − 𝑒𝑄𝑟 ൰ଶ − 𝑃ଵଶ − 𝑃ଶଶ − 𝑃ଷଶ −  𝑚ଶ቉ − 𝑖𝑒 ቆ𝑆ଵ 𝜕𝜑(𝑟)𝜕𝑥ଵ + 𝑆ଶ 𝜕𝜑(𝑟)𝜕𝑥ଶ + 𝑆ଷ 𝜕𝜑(𝑟)𝜕𝑥ଷ ቇ = 0 

𝐼 ቈ൬𝐸 − 𝑒𝑄𝑟 ൰ଶ − 𝑃ଵଶ − 𝑃ଶଶ − 𝑃ଷଶ −  𝑚ଶ቉ + 𝑖 𝑒𝑄𝑟ଷ (𝑆ଵ𝑥ଵ + 𝑆ଶ𝑥ଶ + 𝑆ଷ𝑥ଷ ) = 0 

If we substitute operators acting on the wave function instead of momentum components into 
the equation, we obtain a generalized analog of the relativistic Schrödinger equation, in which the 
wave function has four components and changes as a spinor under Lorentz transformations. Using 
the substitutions 𝑃଴ → 𝑖 𝜕𝜕𝑡        𝑃ଵ → −𝑖 𝜕𝜕𝑥ଵ      𝑃ଶ → −𝑖 𝜕𝜕𝑥ଶ       𝑃ଷ → −𝑖 𝜕𝜕𝑥ଷ 

the equation for the four-component wave function 𝛙 before all transformations has the form  ൭𝑆଴ ൬ 𝜕𝜕𝑡 − 𝑒𝐴଴൰ + 𝐒𝐓(𝛁 − 𝑒𝐀)൱൭𝑆଴ ൬ 𝜕𝜕𝑡 − 𝑒𝐴଴൰ − 𝐒𝐓(𝛁 − 𝑒𝐀)൱𝛙 + 𝑀ଶ𝛙 = 0 

and after transformations ቄ൫𝑆଴(𝑃଴ − 𝑒𝐴଴)൯ଶ − (𝐏 − 𝑒𝐀)𝟐𝐼 − 𝑒𝐒𝐓𝐁 + 𝑖𝑒𝐒𝐓𝐄ቅ𝛙 = 𝑀ଶ𝛙 

Once again, note that the matrix 𝑀ଶ is not diagonal and real. 
All the above deductions are also valid when replacing 4×4 matrices 𝑆ఓ by 2×2 matrices 𝜎ఓ, 

since their commutative and anticommutative properties are the same. The corresponding 
generalized equation is of the form ൫𝜎଴(𝑃଴ − 𝑒𝐴଴)൯ଶ − 𝑀ଶ − (𝐏 − 𝑒𝐀)𝟐𝐼 − 𝑒𝛔𝐓𝐁 + 𝑖𝑒𝛔𝐓𝐄 = 0 
where  𝛔𝐓 ≡ (𝜎ଵ,𝜎ଶ,𝜎ଷ) 

and the equation for the now two-component wave function looks like ൭𝜎଴ ൬ 𝜕𝜕𝑡 − 𝑒𝐴଴൰ + 𝛔𝐓(𝛁 − 𝑒𝐀)൱൭𝜎଴ ൬ 𝜕𝜕𝑡 − 𝑒𝐴଴൰ − 𝛔𝐓(𝛁 − 𝑒𝐀)൱𝛙 + 𝑀ଶ𝛙 = 0 

In deriving his equation, Dirac [7], paragraph 74 noted that as long as we are dealing with 
matrices with two rows and columns, we cannot obtain a representation of more than three 
anticommuting quantities; to represent four anticommuting quantities, he turned to matrices with 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 July 2024                   doi:10.20944/preprints202401.1032.v4

https://doi.org/10.20944/preprints202401.1032.v4


 8 

 

four rows and columns. In our case, however, three anticommuting matrices are sufficient, so the 
wave function can also be two-component. Dirac also explains that the presence of four components 
results in twice as many solutions, half of which have negative energy. In the case of a two-component 
wave function, however, no negative energy solutions are obtained. Particles with negative energy 
in this case also exist, but they are described by the same equation in which the signs of all four 
matrices 𝑆 or 𝜎 are reversed. 

One would seem to expect similar results from other representations of the momentum operator, 

e.g., [6], formula (24.15)] 𝜔଴ = ൭1 0 00 1 00 0 1൱      𝜔ଵ = 1√2൭0 1 01 0 10 1 0൱      𝜔ଶ = 1√2൭0 −𝑖 0𝑖 0 −𝑖0 𝑖 0 ൱      𝜔ଷ = ൭1 0 00 0 00 0 −1൱ 

under the assumption that this representation can describe a particle with spin one. But this 
expectation is not justified, since the last three matrices do not anticommutate, and therefore the 
quadratic form constructed on their basis is not invariant under Lorentz transformations. 

Let's see what happens to 𝑀ଶ when we change the sign of the matrices. When changing the sign 
of 𝑆଴ we have 𝑀ଶ = [−𝑆଴𝑃଴ − (𝐒 ∙ 𝐏)][−𝑆଴𝑃଴ + (𝐒 ∙ 𝐏)] = [𝑆଴𝑃଴ + (𝐒 ∙ 𝐏)][𝑆଴𝑃଴ − (𝐒 ∙ 𝐏)] 

swapping the places of the multipliers. The multipliers do not necessarily commute, so 𝑀ଶ is 
not invariant with respect to the change of sign of 𝑆଴, which can be interpreted as a reflection in time. 
The same picture of invariance absence we have at the sign change of matrices 𝐒, i.e. at spatial 
reflection 𝑀ଶ = [𝑆଴𝑃଴ + (𝐒 ∙ 𝐏)][𝑆଴𝑃଴ − (𝐒 ∙ 𝐏)] 

If we change the signs of all matrices at once, we have 𝑀ଶ = [−𝑆଴𝑃଴ + (𝐒 ∙ 𝐏)][−𝑆଴𝑃଴ − (𝐒 ∙ 𝐏)] = [𝑆଴𝑃଴ − (𝐒 ∙ 𝐏)][𝑆଴𝑃଴ + (𝐒 ∙ 𝐏)] 
i.e. invariance. The physical interpretation of this case can be given by taking into account the 

change of signs of the matrices in equation ൫−𝑆଴(𝑃଴ − 𝑒𝐴଴)൯ଶ − 𝑀ଶ − (𝐏 − 𝑒𝐀)𝟐𝐼 − 𝑒(−𝐒𝐓𝐁) + 𝑖𝑒(−𝐒𝐓𝐄) = 0 
which can be rewritten as ൫𝑆଴((−𝑃଴) − (−𝑒)𝐴଴)൯ଶ − 𝑀ଶ − (𝐏 − 𝑒𝐀)𝟐𝐼 − (−𝑒)𝐒𝐓𝐁 + 𝑖(−𝑒)𝐒𝐓𝐄 = 0 

it can be interpreted as an equation for a particle with negative energy and positive charge, i.e. 
for the positron. Thus, the generalized equation with matrices 𝑆଴, 𝑆ଵ, 𝑆ଶ, 𝑆ଷ describes a particle, and 
with matrices −𝑆଴,−𝑆ଵ,−𝑆ଶ,−𝑆ଷ an antiparticle. However, in the next section of the paper another 
approach is described in which we do not have to deal with negative energy, it is positive for all 
particles, and the difference between particles and antiparticles consist in a different sign of their 
mass. And the mass in the generally accepted sense is simply equal to its modulus. 

If one consistently adheres to the Heisenberg approach and does not involve the notion of wave 
function, it is not very clear how to search for solutions of the presented equations. The Schrödinger 
approach with finding the eigenvalues of the 𝑀ଶmatrix and their corresponding eigenfunctions can 
help here.  ቄ൫𝑆଴(𝑃଴ − 𝑒𝐴଴)൯ଶ − (𝐏 − 𝑒𝐀)𝟐𝐼 − 𝑒𝐒𝐓𝐁 + 𝑖𝑒𝐒𝐓𝐄ቅ𝛙 = 𝑀ଶ𝛙 

In the left-hand side are the operators acting on the wave function, and in the right-hand side is 
a constant matrix on which the wave function is simply multiplied. This equality must be satisfied 
for all values of the four-dimensional coordinates (𝑡, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) at once. Then 𝑀ଶ is not fixed but can 
take a set of possible values, finding all these values is the goal of solving the equation. 

Thus, we have arrived at an equation containing a matrix 𝑀ଶ which is non-diagonal, complex 
and in general depends on the coordinates (𝑡, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ). After the standard procedure of separating 
the time and space variables, we can go to a stationary equation in which there will be no time 
dependence, but the dependence the matrix 𝑀ଶ on the coordinates will remain. It is possible to 
ignore the dependence of 𝑀ଶ on the coordinates and its non-diagonality and simply replace this 
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matrix by a unit matrix with a coefficient in the form of the square of the free electron mass. Then the 
equation will give solutions coinciding with those of the Dirac equation. But this solution can be 
considered only approximate and the question remains how far we depart from strict adherence to 
the principle of invariance with respect to Lorentz transformations and how far we deviate from the 
hypothetical true solution, which is fully consistent with this principle. To find this solution, we need 
to approach this equation without simplifying assumptions and look for a set of solutions, each of 
which represents an eigenvalue matrix 𝑀ଶ of arbitrary form and its corresponding four-component 
eigenfunction. 

When searching for solutions, one can try to use two equations ൭𝑆଴ ൬ 𝜕𝜕𝑡 − 𝑒𝐴଴൰ + 𝐒𝐓(𝛁 − 𝑒𝐀)൱൭𝑆଴ ൬ 𝜕𝜕𝑡 − 𝑒𝐴଴൰ − 𝐒𝐓(𝛁 − 𝑒𝐀)൱𝛙 + 𝑀ଶ𝛙 = 0 

൭𝑆଴ ൬ 𝜕𝜕𝑡 − 𝑒𝐴଴൰ − 𝐒𝐓(𝛁 − 𝑒𝐀)൱൭𝑆଴ ൬ 𝜕𝜕𝑡 − 𝑒𝐴଴൰ + 𝐒𝐓(𝛁 − 𝑒𝐀)൱𝛙 + 𝑀ଶ𝛙 = 0 

successively applying the operators with first order derivatives included in them to the 
eigenfunctions already found, similarly as described in Schrödinger's work [8]. 

3. Equation for the Spinor Coordinate Space 

Let us return to the set of arbitrary complex numbers, for simplicity we will call it a vector 𝖃𝐓 ≡ (𝔛଴,𝔛ଵ,𝔛ଶ,𝔛ଷ) 

Let us consider in connection with it arbitrary four-component complex spinors 𝐩𝐓 ≡ (𝑝଴,𝑝ଵ,𝑝ଶ,𝑝ଷ) 𝖝𝟏𝐓 ≡ (𝔵1଴, 𝔵1ଵ, 𝔵1ଶ, 𝔵1ଷ) 𝖝𝟐𝐓 ≡ (𝔵2଴, 𝔵2ଵ, 𝔵2ଶ, 𝔵2ଷ) 
Among all possible vectors, let us select a set of such vectors for which there is a representation 

of components through arbitrary complex spinors 𝔛ఓ = 12 𝖝𝟏ற𝑆ఓ𝖝𝟐  
and there is another way to calculate them 𝔛ఓ = 12𝑇𝑟[𝖝𝟏𝖝𝟐ற𝑆ఓ]  

Further we will assume that both spinors are identical, then the vector constructed from them is 𝐏𝐓 ≡ (𝑃଴,𝑃ଵ,𝑃ଶ,𝑃ଷ) 
has real components, and we will assume that this is the electron momentum vector constructed 

from the complex momentum spinor 𝐩   𝑃ఓ = 12𝐩ற𝑆ఓ𝐩  
𝑃ఓ = 12𝑇𝑟[𝐩𝐩ற𝑆ఓ]  

Consider the complex quantity 

𝐩𝑻𝛴ெெ𝐱 = (𝑝଴,𝑝ଵ,𝑝ଶ,𝑝ଷ)ቌ 0 1−1 0  0 00 0  0  00 0 0 1−1 0ቍቌ
𝑥଴𝑥ଵ𝑥ଶ𝑥ଷቍ = (𝑝଴,𝑝ଵ,𝑝ଶ,𝑝ଷ)ቌ 𝑥ଵ−𝑥଴𝑥ଷ−𝑥ଶቍ= 𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ 

where we introduce one more complex spinor, which in the future we will give the meaning of 
the complex coordinate spinor 𝐱𝐓 ≡ (𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) 
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and 

𝛴ெெ = ൬𝜎ெ 00 𝜎ெ ൰ = ቌ 0 1−1 0  0 00 0  0  00 0 0 1−1 0ቍ    𝜎ெ = ቀ 0 1−1 0ቁ 

Coordinate vector of the four-dimensional Minkowski space  𝐗𝐓 ≡ (𝑋଴,𝑋ଵ,𝑋ଶ,𝑋ଷ) 

is obtained from the coordinate spinor by the same formulas 𝑋ఓ = 12 𝐱ற𝑆ఓ𝐱  
𝑋ఓ = 12𝑇𝑟[𝐱𝐱ற𝑆ఓ]  

Thus, the vector in the Minkowski space is not a set of four arbitrary real numbers, but only such 
that are the specified bilinear combinations of components of completely arbitrary complex spinors 𝑋଴ = 12 (𝑥଴തതത𝑥଴ + 𝑥ଵതതത𝑥ଵ + 𝑥ଶതതത𝑥ଶ + 𝑥ଷതതത𝑥ଷ) 

𝑋ଵ = 12 (𝑥଴തതത𝑥ଵ + 𝑥ଵതതത𝑥଴ + 𝑥ଶതതത𝑥ଷ + 𝑥ଷതതത𝑥ଶ) 

𝑋ଶ = 12 (−𝑖𝑥଴തതത𝑥ଵ + 𝑖𝑥ଵതതത𝑥଴ − 𝑖𝑥ଶതതത𝑥ଷ + 𝑖𝑥ଷതതത𝑥ଶ) 

𝑋ଷ = 12 (𝑥଴തതത𝑥଴ − 𝑥ଵതതത𝑥ଵ + 𝑥ଶതതത𝑥ଶ − 𝑥ଷതതത𝑥ଷ) 

Accordingly, the components of the vector in Minkowski space are interdependent, from this 
dependence automatically follow the relations of the special theory of relativity between space and 
time. For the same reason, the coordinates of Minkowski space cannot serve as independent variables 
in the equations.  From the commutative properties of 𝑆ఓ  matrices, which are generators of 
rotations and boosts with respect to which the length of vectors is invariant, quantum mechanics 
automatically follows. Indeed, the commutation relations between the components of momenta are 
related to the noncommutativity of rotations in some way, and from them the commutation relations 
between the components of coordinates and momenta are directly deduced. And from these relations 
the differential equations are derived. 

And since we do not doubt the truth of the theory of relativity and quantum mechanics, we 
cannot doubt the reality of spinor space, which by means of the simplest arithmetic operations 
generates our space and time. 

The quantity 𝐩𝑻𝛴ெெ𝐱 is invariant under the Lorentz transformation simultaneously applied to 
the momentum and coordinate spinor, which automatically transforms both corresponding vectors 
as well 𝐩ᇱ = 𝑁𝐩 𝑃ᇱఓ = 12𝑇𝑟[𝐩ᇱ𝐩ᇱற𝑆ఓ]  

𝑃ᇱఓ = 12𝐩ᇱற𝑆ఓ𝐩ᇱ  𝐏ᇱ = 𝛬𝐏 𝐱ᇱ = 𝑁𝐱 𝑋ᇱఓ = 12𝑇𝑟[𝐱ᇱ𝐱ᇱற𝑆ఓ]  
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𝑋ᇱఓ = 12 𝐱ᇱற𝑆ఓ𝐱ᇱ  𝐗ᇱ = 𝛬𝐗 

This quantity does not change for any combination of turns and boosts 𝐩ᇱ𝑻𝛴ெெxᇱ = 𝐩𝑻𝛴ெெ𝐱 
Accordingly, the exponent     𝑒𝑥𝑝(𝐩𝑻𝛴ெெ𝐱) = 𝑒𝑥𝑝(𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ) 

characterizes the propagation process of a plane wave in spinor space with phase invariant to 
Lorentz transformations. 

Let us apply the differential operator to the spinor analog of a plane wave 

൬ 𝜕𝜕𝑥ଵ 𝜕𝜕𝑥ଶ − 𝜕𝜕𝑥଴ 𝜕𝜕𝑥ଷ൰ 𝑒𝑥𝑝(𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ)= (𝑝଴(−𝑝ଷ) − (−𝑝ଵ)𝑝ଶ) 𝑒𝑥𝑝(𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ) == (𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ) 𝑒𝑥𝑝(𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ) 

Applying this operator at another definition of the phase gives the same eigenvalue 

൬ 𝜕𝜕𝑥ଵ 𝜕𝜕𝑥ଶ − 𝜕𝜕𝑥଴ 𝜕𝜕𝑥ଷ൰ 𝑒𝑥𝑝(𝑝଴𝑥଴ + 𝑝ଵ𝑥ଵ + 𝑝ଶ𝑥ଶ + 𝑝ଷ𝑥ଷ) = (𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ) 𝑒𝑥𝑝(𝑝଴𝑥଴ + 𝑝ଵ𝑥ଵ + 𝑝ଶ𝑥ଶ + 𝑝ଷ𝑥ଷ) 

that is, two different eigenfunctions correspond to this eigenvalue, but in the second case the 
phase in the exponent is not invariant with respect to the Lorentz transformation, so we will use the 
first definition.  

Since    (𝑝଴,𝑝ଵ)𝐓   and   (𝑝ଶ,𝑝ଷ)𝐓    
are complex spinors, which, under the transformation 𝐩ᇱ = 𝑁𝐩 = ቀ𝑛 00 𝑛ቁ𝐩 

is affected by the same matrix 𝑛, then the complex quantity 𝑚 ≡ 𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ 
is invariant under the action on the momentum spinor 𝐩 of the transformation 𝑁. 𝑚 is an 

eigenvalue of the differential operator, and the plane wave is the corresponding m eigenfunction, 
which is a solution of the equation ൬ 𝜕𝜕𝑥ଵ 𝜕𝜕𝑥ଶ − 𝜕𝜕𝑥଴ 𝜕𝜕𝑥ଷ൰𝜓(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = 𝑚 𝜓(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) 

Here 𝜓(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) denotes the complex function of complex spinor coordinates.  
When substantiating the Schrödinger equation for a plane wave in four-dimensional vector 

space, an assumption is made (further confirmed in the experiment) about its applicability to an 
arbitrary wave function. Let us make a similar assumption about the applicability of the reduced 
spinor equation to an arbitrary function of spinor coordinates, that is, we will consider this equation 
as universal and valid for all physical processes. 

Let us clarify that by the derivative on a complex variable from a complex function we here 
understand the derivative from an arbitrary stepped complex function using the formula that is valid 
at least for any integer degrees 𝜕𝑧௞𝜕𝑧  = 𝑘𝑧௞ିଵ 
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In particular, this is true for the exponential function, which is an infinite power series. 
It is not by chance that we denote the eigenvalue by the symbol m, because if we form the 

momentum vector from the momentum spinor 𝐩 included in the expression for the plane wave 𝑃ఓ = 12𝐩ற𝑆ఓ𝐩  
then for the square of its length the following equality will be satisfied 𝑃଴ଶ − 𝑃ଵଶ − 𝑃ଶଶ − 𝑃ଷଶ = 𝑚ഥ𝑚 = 𝑚ଶ 

That is the square of the modulus m has the sense of the square of the mass of a free particle, 
which is described by a plane wave in spinor space as well as by a plane wave in vector space. For 
the momentum spinor of a fermionic type particle having in the rest frame the following form   𝐩் = (𝑝଴,𝑝ଵ,𝑝ଵതതത,−𝑝଴തതത) 
quantity  𝑚 = 𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ = 𝑝ଵ𝑝ଵതതത + 𝑝଴𝑝଴തതത 

is real and not equal to zero, and for the bosonic-type momentum spinor having in the rest frame 
the following form 𝐩் = (𝑝଴,𝑝ଵ,𝑝଴,𝑝ଵ) 

it is zero 𝑚 = 𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ = 𝑝ଵ𝑝଴ − 𝑝଴𝑝ଵ = 0 

i.e., the boson satisfies the plane wave equation in spinor space with zero eigenvalue. 
For the momentum spinor of a fermion-type particle we can consider another form in the rest 

system 𝐩் = (𝑝଴,𝑝ଵ,−𝑝ଵതതത,𝑝଴തതത) 

then the mass will be real and negative 𝑚 = 𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ = −𝑝ଵ𝑝ଵതതത − 𝑝଴𝑝଴തതത 
This particle with negative mass can be treated as an antiparticle, and in the rest frame its energy 

is equal to its mass modulo, but it is always positive 𝑃଴ = 12𝐩ற𝑆଴𝐩 = 12 (𝑝଴തതത𝑝଴ + 𝑝ଵതതത𝑝ଵ + (−𝑝ଵ)(−𝑝ଵതതത) + 𝑝଴𝑝଴തതത) = 12 (𝑝଴തതത𝑝଴ + 𝑝ଵതതത𝑝ଵ + 𝑝ଵ𝑝ଵതതത+ 𝑝଴𝑝଴തതത) 

To describe the behavior of an electron in the presence of an external electromagnetic field, it is 
common practice to add the electromagnetic potential vector to its momentum vector. We use the 
same approach at the spinor level and to each component of the momentum spinor of the electron 
we add the corresponding component of the electromagnetic potential spinor. For simplicity, the 
electron charge is equal to unity. 

Further we need an expression for the commutation relation between the components of the 
momentum spinor, to which is added the corresponding component of the electromagnetic potential 
spinor, which is a function of the spinor coordinates ൫𝑝଴ + 𝑎଴(𝑥ଵ, 𝑥ଶ)൯൫𝑝ଵ + 𝑎ଵ(𝑥ଵ, 𝑥ଶ)൯ − ൫𝑝ଵ + 𝑎ଵ(𝑥ଵ, 𝑥ଶ)൯൫𝑝଴ + 𝑎଴(𝑥ଵ, 𝑥ଶ)൯ 
Let us replace the momenta by differential operators  𝑝଴ → 𝜕𝜕𝑥ଵ       𝑝ଵ → − 𝜕𝜕𝑥଴       𝑝ଶ → 𝜕𝜕𝑥ଷ        𝑝ଷ → − 𝜕𝜕𝑥ଶ 

and find the commutation relation 
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൝൭ 𝜕𝜕𝑥ଵ + 𝑎଴(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)൱൭− 𝜕𝜕𝑥଴ + 𝑎ଵ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)൱
− ൭− 𝜕𝜕𝑥଴ + 𝑎ଵ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)൱൭ 𝜕𝜕𝑥ଵ + 𝑎଴൫(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)൯൱ൡ𝜓(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)
= 𝜕𝜕𝑥ଵ (𝑎ଵ𝜓) − 𝑎଴ 𝜕𝜓𝜕𝑥଴ + 𝜕𝜕𝑥଴ (𝑎଴𝜓) − 𝑎ଵ 𝜕𝜓𝜕𝑥ଵ= 𝜕𝑎ଵ𝜕𝑥ଵ 𝜓 + 𝑎ଵ 𝜕𝜓𝜕𝑥ଵ − 𝑎଴ 𝜕𝜓𝜕𝑥଴ + 𝜕𝑎଴𝜕𝑥଴ 𝜓 + 𝑎଴ 𝜕𝜓𝜕𝑥଴ − 𝑎ଵ 𝜕𝜓𝜕𝑥ଵ = 𝜕𝑎ଵ𝜕𝑥ଵ 𝜓 + 𝜕𝑎଴𝜕𝑥଴ 𝜓= ቊ𝜕𝑎ଵ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝜕𝑥ଵ + 𝜕𝑎଴(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝜕𝑥଴ ቋ  𝜓(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) 

Thus (𝑝଴ + 𝑎଴)(𝑝ଵ + 𝑎ଵ) − (𝑝ଵ + 𝑎ଵ)(𝑝଴ + 𝑎଴) = 𝜕𝑎ଵ𝜕𝑥ଵ + 𝜕𝑎଴𝜕𝑥଴ 

Let us apply the proposed equation to analyze the wave function of the electron in a centrally 
symmetric electric field, this model is used to describe the hydrogen-like atom. For the components 
of the vector potential of a centrally symmetric electric field it is true that 𝐴଴ = 12𝐚ற𝑆଴𝐚 = 12 (𝑎଴തതത𝑎଴ + 𝑎ଵതതത𝑎ଵ + 𝑎ଶതതത𝑎ଶ + 𝑎ଷതതത𝑎ଷ) = 1𝑅 

𝐴ଵ = 12𝐚ற𝑆ଵ𝐚 = 12 (𝑎଴തതത𝑎ଵ + 𝑎ଵതതത𝑎଴ + 𝑎ଶതതത𝑎ଷ + 𝑎ଷതതത𝑎ଶ) = 0 

𝐴ଶ = 12 𝐚ற𝑆ଶ𝐚 = 12 (−𝑖𝑎଴തതത𝑎ଵ + 𝑖𝑎ଵതതത𝑎଴ − 𝑖𝑎ଶതതത𝑎ଷ + 𝑖𝑎ଷതതത𝑎ଶ) = 0 

𝐴ଷ = 12𝐚ற𝑆ଷ𝐚 = 12 (𝑎଴തതത𝑎଴ − 𝑎ଵതതത𝑎ଵ + 𝑎ଶതതത𝑎ଶ − 𝑎ଷതതത𝑎ଷ) = 0 𝑎଴തതത𝑎଴ + 𝑎ଶതതത𝑎ଶ = 𝑎ଵതതത𝑎ଵ + 𝑎ଷതതത𝑎ଷ 𝑎଴തതത𝑎଴ + 𝑎ଶതതത𝑎ଶ = 1𝑅 𝑎଴തതത𝑎ଵ + 𝑎ଶതതത𝑎ଷ = 𝑎ଵതതത𝑎଴ + 𝑎ଷതതത𝑎ଶ 12 (𝑎଴തതത𝑎ଵ + 𝑎ଵതതത𝑎଴ + 𝑎ଶതതത𝑎ଷ + 𝑎ଷതതത𝑎ଶ) = 𝑎଴തതത𝑎ଵ + 𝑎ଶതതത𝑎ଷ = 0 𝑎଴തതത𝑎ଵ = −𝑎ଶതതത𝑎ଷ 𝑎଴തതത = 𝑖𝑎ଶതതത 𝑎଴ = −𝑖𝑎ଶ 𝑎଴തതത𝑎଴ + 𝑎ଶതതത𝑎ଶ =  𝑖𝑎ଶതതത ∗ (−𝑖𝑎ଶ) + 𝑎ଶതതത𝑎ଶ = 2𝑎ଶതതത𝑎ଶ = 2𝑎ଶଶ = 1𝑅 

As a result, it is possible to accept 𝑎଴ = − 𝑖√2𝑅           𝑎ଵ = 1√2𝑅           𝑎ଶ = 1√2𝑅            𝑎ଷ = − 𝑖√2𝑅 

𝑎଴തതത𝑎ଵ =  𝑖 1√2𝑅 1√2𝑅 = 𝑖2𝑅 

𝑎ଶതതത𝑎ଷ = 1√2𝑅 ൬−𝑖 1√2𝑅൰ = − 𝑖2𝑅 
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𝑅 = ඥ𝑋ଵଶ + 𝑋ଶଶ + 𝑋ଷଶ =
ඨ൬ଵଶ (𝑥଴തതത𝑥ଵ + 𝑥ଵഥ 𝑥଴ + 𝑥ଶതതത𝑥ଷ + 𝑥ଷതതത𝑥ଶ)൰ଶ + ൬ଵଶ (−𝑖𝑥଴തതത𝑥ଵ + 𝑖𝑥ଵഥ 𝑥଴ − 𝑖𝑥ଶതതത𝑥ଷ + 𝑖𝑥ଷതതത𝑥ଶ)൰ଶ + ൬ଵଶ (𝑥଴തതത𝑥଴ − 𝑥ଵഥ 𝑥ଵ + 𝑥ଶതതത𝑥ଶ − 𝑥ଷതതത𝑥ଷ)൰ଶ=
ඨ൬ଵଶ (𝑥଴തതത𝑥ଵ + 𝑥ଵഥ 𝑥଴ + 𝑥ଶതതത𝑥ଷ + 𝑥ଷതതത𝑥ଶ)൰ଶ − ൬ଵଶ (−𝑥଴തതത𝑥ଵ + 𝑥ଵഥ 𝑥଴ − 𝑥ଶതതത𝑥ଷ + 𝑥ଷതതത𝑥ଶ)൰ଶ + ൬ଵଶ (𝑥଴തതത𝑥଴ − 𝑥ଵഥ 𝑥ଵ + 𝑥ଶതതത𝑥ଶ − 𝑥ଷതതത𝑥ଷ)൰ଶ 

We are looking for a solution of the spinor equation; we do not consider the electron's spin yet ൬ 𝜕𝜕𝑥ଵ 𝜕𝜕𝑥ଶ − 𝜕𝜕𝑥଴ 𝜕𝜕𝑥ଷ൰𝜑(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = 𝑚 𝜑(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) 

This equation can be interpreted in another way.  

Let us take the invariant expression (𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ) = 𝑚 

And let's do the substitution 𝑝଴ → 𝜕𝜕𝑥ଵ + 𝑎଴(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)       𝑝ଵ → − 𝜕𝜕𝑥଴ + 𝑎ଵ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) 

𝑝ଶ → 𝜕𝜕𝑥ଷ + 𝑎ଶ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)        𝑝ଷ → − 𝜕𝜕𝑥ଶ + 𝑎ଷ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) 

൜൬− 𝜕𝜕𝑥଴ + 𝑎ଵ൰ ൬ 𝜕𝜕𝑥ଷ + 𝑎ଶ൰ − ൬ 𝜕𝜕𝑥ଵ + 𝑎଴൰ ൬− 𝜕𝜕𝑥ଶ + 𝑎ଷ൰ൠ𝜑 = 𝑚𝜑 

We will consider this equation as an equation for determining the eigenvalues of 𝑚 and the 
corresponding eigenfunctions 

 − డడ௫బ డడ௫య 𝜑 + డడ௫భ డడ௫మ 𝜑 + ቀ− డ௔మడ௫బ − డ௔యడ௫భቁ𝜑 − 𝑎ଶ డఝడ௫బ + 𝑎ଵ డఝడ௫య − 𝑎ଷ డఝడ௫భ + 𝑎଴ డఝడ௫మ + (𝑎ଵ𝑎ଶ − 𝑎଴𝑎ଷ)𝜑 =𝑚𝜑 𝑎଴ = − 𝑖√2𝑅           𝑎ଵ = 1√2𝑅           𝑎ଶ = 1√2𝑅            𝑎ଷ = − 𝑖√2𝑅 

𝑎ଵ𝑎ଶ − 𝑎଴𝑎ଷ = 12𝑅 + 12𝑅 = 1𝑅 

−𝜕𝑎ଶ𝜕𝑥଴ − 𝜕𝑎ଷ𝜕𝑥ଵ = − 1√2 𝜕𝜕𝑥଴ ൬ 1√𝑅൰ + 𝑖 1√2 𝜕𝜕𝑥ଵ ൬ 1√𝑅൰ = − 1√2 𝜕𝜕𝑥଴ ൬ 1√𝑅ଶర ൰ + 𝑖 1√2 𝜕𝜕𝑥ଵ ൬ 1√𝑅ଶర ൰
= − 1√2൭−14 1(𝑅ଶ)ହସ൱ 𝜕𝜕𝑥଴ (𝑅ଶ) + 𝑖 1√2൭−14 1(𝑅ଶ)ହସ൱ 𝜕𝜕𝑥ଵ (𝑅ଶ) =
= 1√2൭14 1(𝑅ଶ)ହସ൱ ൤ 𝜕𝜕𝑥଴ (𝑅ଶ) − 𝑖 𝜕𝜕𝑥ଵ (𝑅ଶ)൨ = 1൫√2𝑅൯ହ ൤ 𝜕𝜕𝑥଴ (𝑅ଶ) − 𝑖 𝜕𝜕𝑥ଵ (𝑅ଶ)൨ 

𝑅 = ට𝑋ଵଶ + 𝑋ଶଶ + 𝑋ଷଶ
= ඨቆ12 (𝑥଴തതത𝑥ଵ + 𝑥ଵഥ 𝑥଴ + 𝑥ଶതതത𝑥ଷ + 𝑥ଷതതത𝑥ଶ)ቇଶ − ቆ12 (−𝑥଴തതത𝑥ଵ + 𝑥ଵഥ 𝑥଴ − 𝑥ଶതതത𝑥ଷ + 𝑥ଷതതത𝑥ଶ)ቇଶ + ቆ12 (𝑥଴തതത𝑥଴ − 𝑥ଵഥ 𝑥ଵ + 𝑥ଶതതത𝑥ଶ − 𝑥ଷതതത𝑥ଷ)ቇଶ 
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𝜕𝜕𝑥଴ (𝑅ଶ) = 𝜕𝜕𝑥଴ ൭ቆ12 (𝑥଴തതത𝑥ଵ + 𝑥ଵതതത𝑥଴ + 𝑥ଶതതത𝑥ଷ + 𝑥ଷതതത𝑥ଶ)ቇଶ − ቆ12 (−𝑥଴തതത𝑥ଵ + 𝑥ଵതതത𝑥଴ − 𝑥ଶതതത𝑥ଷ + 𝑥ଷതതത𝑥ଶ)ቇଶ
+ ቆ12 (𝑥଴തതത𝑥଴ − 𝑥ଵതതത𝑥ଵ + 𝑥ଶതതത𝑥ଶ − 𝑥ଷതതത𝑥ଷ)ቇଶ൱
= 14൭2(𝑥଴തതത𝑥ଵ + 𝑥ଵതതത𝑥଴ + 𝑥ଶതതത𝑥ଷ + 𝑥ଷതതത𝑥ଶ) 𝜕𝜕𝑥଴ (𝑥଴തതത𝑥ଵ + 𝑥ଵതതത𝑥଴ + 𝑥ଶതതത𝑥ଷ + 𝑥ଷതതത𝑥ଶ)
− 2(−𝑥଴തതത𝑥ଵ + 𝑥ଵതതത𝑥଴ − 𝑥ଶതതത𝑥ଷ + 𝑥ଷതതത𝑥ଶ) 𝜕𝜕𝑥଴ (−𝑥଴തതത𝑥ଵ + 𝑥ଵതതത𝑥଴ − 𝑥ଶതതത𝑥ଷ + 𝑥ଷതതത𝑥ଶ)
+ 2(𝑥଴തതത𝑥଴ − 𝑥ଵതതത𝑥ଵ + 𝑥ଶതതത𝑥ଶ − 𝑥ଷതതത𝑥ଷ) 𝜕𝜕𝑥଴ (𝑥଴തതത𝑥଴ − 𝑥ଵതതത𝑥ଵ + 𝑥ଶതതത𝑥ଶ − 𝑥ଷതതത𝑥ଷ)൱
= 14 (2(𝑥଴തതത𝑥ଵ + 𝑥ଵതതത𝑥଴ + 𝑥ଶതതത𝑥ଷ + 𝑥ଷതതത𝑥ଶ)𝑥ଵതതത − 2(−𝑥଴തതത𝑥ଵ + 𝑥ଵതതത𝑥଴ − 𝑥ଶതതത𝑥ଷ + 𝑥ଷതതത𝑥ଶ)𝑥ଵതതത+ 2(𝑥଴തതത𝑥଴ − 𝑥ଵതതത𝑥ଵ + 𝑥ଶതതത𝑥ଶ − 𝑥ଷതതത𝑥ଷ)𝑥଴തതത)= 12 ൫(𝑥଴തതത𝑥ଵ + 𝑥ଵതതത𝑥଴ + 𝑥ଶതതത𝑥ଷ + 𝑥ଷതതത𝑥ଶ)𝑥ଵതതത − (−𝑥଴തതത𝑥ଵ + 𝑥ଵതതത𝑥଴ − 𝑥ଶതതത𝑥ଷ + 𝑥ଷതതത𝑥ଶ)𝑥ଵതതത+ (𝑥଴തതത𝑥଴ − 𝑥ଵതതത𝑥ଵ + 𝑥ଶതതത𝑥ଶ − 𝑥ଷതതത𝑥ଷ)𝑥଴തതത൯= 12 ൫(𝑥଴തതത𝑥ଵ + 𝑥ଶതതത𝑥ଷ)𝑥ଵതതത − (−𝑥଴തതത𝑥ଵ − 𝑥ଶതതത𝑥ଷ)𝑥ଵതതത + (𝑥଴തതത𝑥଴ − 𝑥ଵതതത𝑥ଵ + 𝑥ଶതതത𝑥ଶ − 𝑥ଷതതത𝑥ଷ)𝑥଴തതത൯
= 12 ൫(𝑥଴തതത𝑥ଵ + 𝑥ଶതതത𝑥ଷ)𝑥ଵതതത + (𝑥଴തതത𝑥ଵ + 𝑥ଶതതത𝑥ଷ)𝑥ଵതതത + (𝑥଴തതത𝑥଴ − 𝑥ଵതതത𝑥ଵ + 𝑥ଶതതത𝑥ଶ − 𝑥ଷതതത𝑥ଷ)𝑥଴തതത൯
= 12 ൫(𝑥଴തതത𝑥ଵ + 𝑥ଶതതത𝑥ଷ)𝑥ଵതതത + (𝑥ଶതതത𝑥ଷ)𝑥ଵതതത + (𝑥଴തതത𝑥଴ + 𝑥ଶതതത𝑥ଶ − 𝑥ଷതതത𝑥ଷ)𝑥଴തതത൯
= 12 (𝑥଴തതത𝑥ଵ𝑥ଵതതത + 2𝑥ଶതതത𝑥ଷ𝑥ଵതതത + (𝑥଴തതത𝑥଴ + 𝑥ଶതതത𝑥ଶ − 𝑥ଷതതത𝑥ଷ)𝑥଴തതത)
= 12 (2𝑥ଶതതത𝑥ଷ𝑥ଵതതത − 2𝑥ଷതതത𝑥ଷ𝑥଴തതത + (𝑥଴തതത𝑥଴ + 𝑥ଵ𝑥ଵതതത + 𝑥ଶതതത𝑥ଶ + 𝑥ଷതതത𝑥ଷ)𝑥଴തതത)
= 12 (2𝑥ଷ(𝑥ଶതതത𝑥ଵതതത − 𝑥ଷതതത𝑥଴തതത) + (𝑥଴തതത𝑥଴ + 𝑥ଵ𝑥ଵതതത + 𝑥ଶതതത𝑥ଶ + 𝑥ଷതതത𝑥ଷ)𝑥଴തതത)
= 12 (2𝑥ଷ(𝑥ଶതതത𝑥ଵതതത − 𝑥ଷതതത𝑥଴തതത) + (𝑥଴തതത𝑥଴ + 𝑥ଵ𝑥ଵതതത + 𝑥ଶതതത𝑥ଶ + 𝑥ଷതതത𝑥ଷ)𝑥଴തതത) 𝜕𝜕𝑥ଵ (𝑅ଶ) = 12 ൫(𝑥଴തതത𝑥ଵ + 𝑥ଵതതത𝑥଴ + 𝑥ଶതതത𝑥ଷ + 𝑥ଷതതത𝑥ଶ)𝑥଴തതത + (−𝑥଴തതത𝑥ଵ + 𝑥ଵതതത𝑥଴ − 𝑥ଶതതത𝑥ଷ + 𝑥ଷതതത𝑥ଶ)𝑥଴തതത− (𝑥଴തതത𝑥଴ − 𝑥ଵതതത𝑥ଵ + 𝑥ଶതതത𝑥ଶ − 𝑥ଷതതത𝑥ଷ)𝑥ଵതതത൯= 12 ൫(𝑥ଵതതത𝑥଴ + 𝑥ଷതതത𝑥ଶ)𝑥଴തതത + (𝑥ଵതതത𝑥଴ + 𝑥ଷതതത𝑥ଶ)𝑥଴തതത − (𝑥଴തതത𝑥଴ − 𝑥ଵതതത𝑥ଵ + 𝑥ଶതതത𝑥ଶ − 𝑥ଷതതത𝑥ଷ)𝑥ଵതതത൯
= 12 (𝑥ଵതതത𝑥଴𝑥଴തതത + 2𝑥ଷതതത𝑥ଶ𝑥଴തതത + (𝑥ଵതതത𝑥ଵ − 𝑥ଶതതത𝑥ଶ + 𝑥ଷതതത𝑥ଷ)𝑥ଵതതത)
= 12 (2𝑥ଶ(𝑥ଷതതത𝑥଴തതത − 𝑥ଶതതത𝑥ଵതതത) + (𝑥଴𝑥଴തതത + 𝑥ଵതതത𝑥ଵ + 𝑥ଶതതത𝑥ଶ + 𝑥ଷതതത𝑥ଷ)𝑥ଵതതത) 

Let's introduce the notations 𝑥ଶതതത𝑥ଵതതത − 𝑥ଷതതത𝑥଴തതത ≡ 𝑙 
this quantity does not change under rotations and boosts and is some analog of the interval 

defined for Minkowski space and 
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12 (𝑥଴𝑥଴തതത + 𝑥ଵതതത𝑥ଵ + 𝑥ଶതതത𝑥ଶ + 𝑥ଷതതത𝑥ଷ) ≡ 𝑡 
this quantity represents time in four-dimensional vector space.  

An interesting fact is that time is always a positive quantity. As an assumption it can be noted 
that since we observe that time value goes forward, i.e. the value of t grows, and it is possible only 
due to scaling of all components of spinor space, such scaling leads to increase of distance between 
any two points of Minkowski space. As a result, with the passage of time the Minkowski space should 
expand, herewith at first relatively quickly, and then more and more slowly. ൤ 𝜕𝜕𝑥଴ (𝑅ଶ) − 𝑖 𝜕𝜕𝑥ଵ (𝑅ଶ)൨

= 12 (2𝑥ଷ(𝑥ଶതതത𝑥ଵതതത − 𝑥ଷതതത𝑥଴തതത) + (𝑥଴തതത𝑥଴ + 𝑥ଵ𝑥ଵതതത + 𝑥ଶതതത𝑥ଶ + 𝑥ଷതതത𝑥ଷ)𝑥଴തതത)
− 𝑖 12 (2𝑥ଶ(𝑥ଷതതത𝑥଴തതത − 𝑥ଶതതത𝑥ଵതതത) + (𝑥଴𝑥଴തതത + 𝑥ଵതതത𝑥ଵ + 𝑥ଶതതത𝑥ଶ + 𝑥ଷതതത𝑥ଷ)𝑥ଵതതത)
= 𝑥ଷ(𝑥ଶതതത𝑥ଵതതത − 𝑥ଷതതത𝑥଴തതത) + 12 (𝑥଴തതത𝑥଴ + 𝑥ଵ𝑥ଵതതത + 𝑥ଶതതത𝑥ଶ + 𝑥ଷതതത𝑥ଷ)𝑥଴തതത − 𝑖𝑥ଶ(𝑥ଷതതത𝑥଴തതത − 𝑥ଶതതത𝑥ଵതതത)
− 𝑖 12 (𝑥଴𝑥଴തതത + 𝑥ଵതതത𝑥ଵ + 𝑥ଶതതത𝑥ଶ + 𝑥ଷതതത𝑥ଷ)𝑥ଵതതത = 𝑥ଷ𝑙 + 𝑡𝑥଴തതത + 𝑖𝑥ଶ𝑙 − 𝑖𝑡𝑥ଵതതത= 𝑙(𝑥ଷ + 𝑖𝑥ଶ) + 𝑡(𝑥଴തതത − 𝑖𝑥ଵതതത) 

As a result, we have an equation for determining the eigenvalues of m and their corresponding 
eigenfunctions 𝜑(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) ൬− 𝜕𝜕𝑥଴ 𝜕𝜕𝑥ଷ + 𝜕𝜕𝑥ଵ 𝜕𝜕𝑥ଶ൰𝜑 + 1√2𝑅 ൬− 𝜕𝜑𝜕𝑥଴ + 𝜕𝜑𝜕𝑥ଷ + 𝑖 𝜕𝜑𝜕𝑥ଵ − 𝑖 𝜕𝜑𝜕𝑥ଶ൰ + 1൫√2𝑅൯ହ ൫𝑙(𝑥ଷ + 𝑖𝑥ଶ) + 𝑡(𝑥଴തതത − 𝑖𝑥ଵതതത)൯𝜑

+ 1𝑅𝜑 = 𝑚𝜑 

Instead of looking for solutions to this equation directly, we can first try substituting already 
known solutions to the Schrödinger equation for the hydrogen-like atom. If 𝜑(𝑋଴,𝑋ଵ,𝑋ଶ,𝑋ଷ) is one 
of these solutions, we need to find its derivatives over all spinor components  𝜕𝜑𝜕𝑥µ = 𝜕𝜑𝜕𝑋ఔ 𝜕𝑋ఔ𝜕𝑥µ  

𝑋଴ = 12 (𝑥଴തതത𝑥଴ + 𝑥ଵതതത𝑥ଵ + 𝑥ଶതതത𝑥ଶ + 𝑥ଷതതത𝑥ଷ) 

𝑋ଵ = 12 (𝑥଴തതത𝑥ଵ + 𝑥ଵതതത𝑥଴ + 𝑥ଶതതത𝑥ଷ + 𝑥ଷതതത𝑥ଶ) 

𝑋ଶ = 12 (−𝑖𝑥଴തതത𝑥ଵ + 𝑖𝑥ଵതതത𝑥଴ − 𝑖𝑥ଶതതത𝑥ଷ + 𝑖𝑥ଷതതത𝑥ଶ) 

𝑋ଷ = 12 (𝑥଴തതത𝑥଴ − 𝑥ଵതതത𝑥ଵ + 𝑥ଶതതത𝑥ଶ − 𝑥ଷതതത𝑥ଷ) 

For example 𝜕𝜑𝜕𝑥଴ = 𝜕𝜑𝜕𝑋଴ 𝑥଴തതത2 + 𝜕𝜑𝜕𝑋ଵ 𝑥ଵതതത2 + 𝜕𝜑𝜕𝑋ଶ 𝑖𝑥ଵതതത2 + 𝜕𝜑𝜕𝑋ଷ 𝑥଴തതത2  

Let’s pay attention to the shift in priorities. In the Schrödinger equation one looks for energy 
eigenvalues, while here it is proposed to look for mass eigenvalues, it seem more natural to us. The 
mass of a free particle is an invariant of the Lorentz transformations, and in the bound state the mass 
of the particle has a discrete series of allowed values, each of which corresponds to an energy 
eigenvalue, and the eigenfunction of these eigenvalues is the same. But these energy eigenvalues are 
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not the same as the energy eigenvalues of the Schrödinger equation, because the equations are 
different. When an electron absorbs a photon, their spinors sum up and the mass of the electron 
changes. If the new mass coincides with some allowed value, the electron enters a new state. The kay 
idea here is the assumption that the interaction of spinors occurs simply by summing them. 

The advantages of considering physical processes in spinor coordinate space may not be limited 
to electrodynamics. It may turn out, for example, that the spinor space is not subject to curvature 
under the influence of matter, as it takes place in the general theory of relativity for the vector 
coordinate space. On the contrary, it can be assumed that it is when the components of vector 
coordinate space are computed from the coordinate spinor that the momentum spinor with a 
multiplier of the order of the gravitational constant is added to this spinor. This results in a warp that 
affects other massive bodies. 

To account for the electron spin, we will further represent the electron wave function as a four-
component spinor function of four-component spinor coordinates 

𝛙(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = ⎝⎛
𝜓଴(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝜓ଵ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝜓ଶ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝜓ଷ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)⎠⎞ = ቌ𝑢଴𝑢ଵ𝑢ଶ𝑢ଷቍ𝜑(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) 

where the coefficients 𝑢ఓ are complex quantities independent of coordinates. In fact, as shown 
at the end of the paper, the wave function is a linear combination of such right-hand sides with 
operator coefficients. 
We will search for the solution of the wave equation considered in the first part of this paper (𝑆଴𝑃଴ − 𝑆ଵ𝑃ଵ − 𝑆ଶ𝑃ଶ − 𝑆ଷ𝑃ଷ)(𝑆଴𝑃଴ + 𝑆ଵ𝑃ଵ + 𝑆ଶ𝑃ଶ + 𝑆ଷ𝑃ଷ)𝛙 = 𝑀ଶ𝛙 

Let's express the left part through the components of the momentum spinor 

𝑃ఓ = 12𝐩ற𝑆ఓ𝐩  
𝑃଴ = 12𝐩ற𝑆଴𝐩 = 12 (𝑝଴തതത,𝑝ଵതതത,𝑝ଶതതത,𝑝ଷതതത)ቌ 1   00   1  0   00   0  0   00   0 1   00   1ቍ  ቌ𝑝଴𝑝ଵ𝑝ଶ𝑝ଷቍ = 12 (𝑝଴തതത,𝑝ଵതതത,𝑝ଶതതത,𝑝ଷതതത) ቌ𝑝଴𝑝ଵ𝑝ଶ𝑝ଷቍ= 12 (𝑝଴തതത𝑝଴ + 𝑝ଵതതത𝑝ଵ + 𝑝ଶതതത𝑝ଶ + 𝑝ଷതതത𝑝ଷ) 

𝑃ଵ = 12𝐩ற𝑆ଵ𝐩 = 12 (𝑝଴തതത,𝑝ଵതതത,𝑝ଶതതത,𝑝ଷതതത)ቌ0   11    0  0   00   0  0   00   0 0   11    0ቍ  ቌ𝑝଴𝑝ଵ𝑝ଶ𝑝ଷቍ = 12 (𝑝଴തതത,𝑝ଵതതത,𝑝ଶതതത,𝑝ଷതതത) ቌ𝑝ଵ𝑝଴𝑝ଷ𝑝ଶቍ= 12 (𝑝଴തതത𝑝ଵ + 𝑝ଵതതത𝑝଴ + 𝑝ଶതതത𝑝ଷ + 𝑝ଷതതത𝑝ଶ) 

𝑃ଶ = 12𝐩ற𝑆ଶ𝐩 = 12 (𝑝଴തതത,𝑝ଵതതത,𝑝ଶതതത,𝑝ଷതതത)ቌ0 −𝑖𝑖    0  0   00   0  0   00   0 0 −𝑖𝑖    0ቍ  ቌ𝑝଴𝑝ଵ𝑝ଶ𝑝ଷቍ = 12 (𝑝଴തതത,𝑝ଵതതത,𝑝ଶതതത,𝑝ଷതതത) ൮−𝑖𝑝ଵ𝑖𝑝଴−𝑖𝑝ଷ𝑖𝑝ଶ ൲= 12 (−𝑖𝑝଴തതത𝑝ଵ + 𝑖𝑝ଵതതത𝑝଴ − 𝑖𝑝ଶതതത𝑝ଷ + 𝑖𝑝ଷതതത𝑝ଶ) 

𝑃ଷ = 12𝐩ற𝑆ଷ𝐩 = 12 (𝑝଴തതത,𝑝ଵതതത,𝑝ଶതതത,𝑝ଷതതത)ቌ1   00   −1  0   00   0  0   00   0 1   00  −1ቍ  ቌ𝑝଴𝑝ଵ𝑝ଶ𝑝ଷቍ = 12 (𝑝଴തതത,𝑝ଵതതത,𝑝ଶതതത,𝑝ଷതതത) ቌ 𝑝଴−𝑝ଵ𝑝ଶ−𝑝ଷቍ= 12 (𝑝଴തതത𝑝଴ − 𝑝ଵതതത𝑝ଵ + 𝑝ଶതതത𝑝ଶ − 𝑝ଷതതത𝑝ଷ) 
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𝑃଴ − 𝑃ଷ = 12 (𝑝଴തതത𝑝଴ + 𝑝ଵതതത𝑝ଵ + 𝑝ଶതതത𝑝ଶ + 𝑝ଷതതത𝑝ଷ) − 12 (𝑝଴തതത𝑝଴ − 𝑝ଵതതത𝑝ଵ + 𝑝ଶതതത𝑝ଶ − 𝑝ଷതതത𝑝ଷ)
= 12 (𝑝଴തതത𝑝଴ + 𝑝ଵതതത𝑝ଵ + 𝑝ଶതതത𝑝ଶ + 𝑝ଷതതത𝑝ଷ − 𝑝଴തതത𝑝଴ + 𝑝ଵതതത𝑝ଵ − 𝑝ଶതതത𝑝ଶ + 𝑝ଷതതത𝑝ଷ)
= 12 (𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ + 𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ) = 𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ 

𝑃଴ + 𝑃ଷ = 12 (𝑝଴തതത𝑝଴ + 𝑝ଵതതത𝑝ଵ + 𝑝ଶതതത𝑝ଶ + 𝑝ଷതതത𝑝ଷ) + 12 (𝑝଴തതത𝑝଴ − 𝑝ଵതതത𝑝ଵ + 𝑝ଶതതത𝑝ଶ − 𝑝ଷതതത𝑝ଷ) = 𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ 

−𝑃ଵ + 𝑖𝑃ଶ = −12 (𝑝଴തതത𝑝ଵ + 𝑝ଵതതത𝑝଴ + 𝑝ଶതതത𝑝ଷ + 𝑝ଷതതത𝑝ଶ) + 𝑖 12 (−𝑖𝑝଴തതത𝑝ଵ + 𝑖𝑝ଵതതത𝑝଴ − 𝑖𝑝ଶതതത𝑝ଷ + 𝑖𝑝ଷതതത𝑝ଶ)
= 12 (𝑝଴തതത𝑝ଵ + 𝑝ଵതതത𝑝଴ + 𝑝ଶതതത𝑝ଷ + 𝑝ଷതതത𝑝ଶ + 𝑝଴തതത𝑝ଵ − 𝑝ଵതതത𝑝଴ + 𝑝ଶതതത𝑝ଷ − 𝑝ଷതതത𝑝ଶ)
= 12 (𝑝଴തതത𝑝ଵ + 𝑝ଶതതത𝑝ଷ + 𝑝଴തതത𝑝ଵ + 𝑝ଶതതത𝑝ଷ) = 𝑝଴തതത𝑝ଵ + 𝑝ଶതതത𝑝ଷ 

−𝑃ଵ − 𝑖𝑃ଶ = −12 (𝑝଴തതത𝑝ଵ + 𝑝ଵതതത𝑝଴ + 𝑝ଶതതത𝑝ଷ + 𝑝ଷതതത𝑝ଶ) − 𝑖 12 (−𝑖𝑝଴തതത𝑝ଵ + 𝑖𝑝ଵതതത𝑝଴ − 𝑖𝑝ଶതതത𝑝ଷ + 𝑖𝑝ଷതതത𝑝ଶ)
= 12 (𝑝଴തതത𝑝ଵ + 𝑝ଵതതത𝑝଴ + 𝑝ଶതതത𝑝ଷ + 𝑝ଷതതത𝑝ଶ − 𝑝଴തതത𝑝ଵ + 𝑝ଵതതത𝑝଴ − 𝑝ଶതതത𝑝ଷ + 𝑝ଷതതത𝑝ଶ)
= 12 (𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ + 𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ) = 𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ 𝑆଴𝑃଴ − 𝑆ଵ𝑃ଵ − 𝑆ଶ𝑃ଶ − 𝑆ଷ𝑃ଷ

= ቌ1   00    1  0   00   0  0   00   0 1   00   1ቍ𝑃଴ − ቌ0   11    0  0   00   0  0   00   0 0   11    0ቍ𝑃ଵ − ቌ0 −𝑖𝑖    0  0   00   0  0   00   0 0 −𝑖𝑖    0ቍ𝑃ଶ
− ቌ1   00   −1  0   00   0  0   00   0 1   00  −1ቍ𝑃ଷ = ൮ 𝑃଴ −  𝑃ଷ  −𝑃ଵ + 𝑖𝑃ଶ−𝑃ଵ − 𝑖𝑃ଶ    𝑃଴ + 𝑃ଷ  0   00   0  0   00   0 𝑃଴ − 𝑃ଷ  −𝑃ଵ + 𝑖𝑃ଶ−𝑃ଵ − 𝑖𝑃ଶ   𝑃଴ + 𝑃ଷ ൲ =
= ൮𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ 𝑝଴തതത𝑝ଵ + 𝑝ଶതതത𝑝ଷ𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ    𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ  0   00   0  0   00   0 𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ 𝑝଴തതത𝑝ଵ + 𝑝ଶതതത𝑝ଷ𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ    𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ൲ 

𝑆଴𝑃଴ + 𝑆ଵ𝑃ଵ + 𝑆ଶ𝑃ଶ + 𝑆ଷ𝑃ଷ
= ቌ1   00    1  0   00   0  0   00   0 1   00   1ቍ𝑃଴ + ቌ0   11    0  0   00   0  0   00   0 0   11    0ቍ𝑃ଵ + ቌ0 −𝑖𝑖    0  0   00   0  0   00   0 0 −𝑖𝑖    0ቍ𝑃ଶ
+ ቌ1   00   −1  0   00   0  0   00   0 1   00  −1ቍ𝑃ଷ = ൮ 𝑃଴ + 𝑃ଷ 𝑃ଵ − 𝑖𝑃ଶ𝑃ଵ + 𝑖𝑃ଶ    𝑃଴ − 𝑃ଷ  0   00   0  0   00   0 𝑃଴ + 𝑃ଷ 𝑃ଵ − 𝑖𝑃ଶ𝑃ଵ + 𝑖𝑃ଶ    𝑃଴ − 𝑃ଷ൲
= ൮ 𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ −𝑝଴തതത𝑝ଵ − 𝑝ଶതതത𝑝ଷ−𝑝ଵതതത𝑝଴ − 𝑝ଷതതത𝑝ଶ    𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ  0   00   0  0   00   0 𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ −𝑝଴തതത𝑝ଵ − 𝑝ଶതതത𝑝ଷ−𝑝ଵതതത𝑝଴ − 𝑝ଷതതത𝑝ଶ    𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ൲ 

Let's distinguish the direct products of vectors in these matrices 
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𝑆଴𝑃଴ + 𝑆ଵ𝑃ଵ + 𝑆ଶ𝑃ଶ + 𝑆ଷ𝑃ଷ = ൮ 𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ −𝑝଴തതത𝑝ଵ − 𝑝ଶതതത𝑝ଷ−𝑝ଵതതത𝑝଴ − 𝑝ଷതതത𝑝ଶ    𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ  0   00   0  0   00   0 𝑃଴ + 𝑃ଷ 𝑃ଵ − 𝑖𝑃ଶ𝑃ଵ + 𝑖𝑃ଶ   𝑃଴ − 𝑃ଷ൲
= ൮ 𝑝଴തതത𝑝଴ −𝑝଴തതത𝑝ଵ−𝑝ଵതതത𝑝଴    𝑝ଵതതത𝑝ଵ  0   00   0  0   00   0 𝑝଴തതത𝑝଴ −𝑝଴തതത𝑝ଵ−𝑝ଵതതത𝑝଴    𝑝ଵതതത𝑝ଵ൲ + ൮ 𝑝ଶതതത𝑝ଶ −𝑝ଶതതത𝑝ଷ−𝑝ଷതതത𝑝ଶ    𝑝ଷതതത𝑝ଷ  0   00   0  0   00   0 𝑝ଶതതത𝑝ଶ −𝑝ଶതതത𝑝ଷ−𝑝ଷതതത𝑝ଶ    𝑝ଷതതത𝑝ଷ൲ 

= ൮−𝑝଴തതത𝑝ଵതതത00 ൲ (−𝑝଴,𝑝ଵ, 0,0) + ൮ 0 0−𝑝଴തതത𝑝ଵതതത ൲ (0,0,−𝑝଴,𝑝ଵ) + ൮−𝑝ଶതതത𝑝ଷതതത00 ൲ (−𝑝ଶ,𝑝ଷ, 0,0) + ൮ 0 0−𝑝ଶതതത𝑝ଷതതത ൲ (0,0,−𝑝ଶ,𝑝ଷ) 

𝑆଴𝑃଴ − 𝑆ଵ𝑃ଵ − 𝑆ଶ𝑃ଶ − 𝑆ଷ𝑃ଷ = ൮𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ  𝑝଴തതത𝑝ଵ + 𝑝ଶതതത𝑝ଷ𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ    𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ  0   00   0  0   00   0 𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ  𝑝଴തതത𝑝ଵ + 𝑝ଶതതത𝑝ଷ𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ    𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ൲
= ൮𝑝ଵതതത𝑝ଵ  𝑝଴തതത𝑝ଵ𝑝ଵതതത𝑝଴   𝑝଴തതത𝑝଴  0   00   0  0   00   0 𝑝ଵതതത𝑝ଵ  𝑝଴തതത𝑝ଵ𝑝ଵതതത𝑝଴   𝑝଴തതത𝑝଴൲ + ൮𝑝ଷതതത𝑝ଷ  𝑝ଶതതത𝑝ଷ𝑝ଷതതത𝑝ଶ   𝑝ଶതതത𝑝ଶ  0   00   0  0   00   0 𝑝ଷതതത𝑝ଷ  𝑝ଶതതത𝑝ଷ𝑝ଷതതത𝑝ଶ   𝑝ଶതതത𝑝ଶ൲
= ⎝⎛

𝑝ଵ𝑝ଵതതത − [𝑝ଵ𝑝ଵതതത − 𝑝ଵതതത𝑝ଵ] 𝑝ଵ𝑝଴തതത − [𝑝ଵ𝑝଴തതത − 𝑝଴തതത𝑝ଵ]𝑝଴𝑝ଵതതത  − [𝑝଴𝑝ଵതതത − 𝑝ଵതതത𝑝଴]   𝑝଴𝑝଴തതത − [𝑝଴𝑝଴തതത − 𝑝଴തതത𝑝଴]  0   00   0  0   00   0 𝑝ଵ𝑝ଵതതത − [𝑝ଵ𝑝ଵതതത − 𝑝ଵതതത𝑝ଵ] 𝑝ଵ𝑝଴തതത − [𝑝ଵ𝑝଴തതത − 𝑝଴തതത𝑝ଵ]𝑝଴𝑝ଵതതത  − [𝑝଴𝑝ଵതതത − 𝑝ଵതതത𝑝଴]   𝑝଴𝑝଴തതത − [𝑝଴𝑝଴തതത − 𝑝଴തതത𝑝଴]⎠⎞
+ ⎝⎛

𝑝ଷ𝑝ଷതതത − [𝑝ଷ𝑝ଷതതത − 𝑝ଷതതത𝑝ଷ] 𝑝ଷ𝑝ଶതതത − [𝑝ଷ𝑝ଶതതത − 𝑝ଶതതത𝑝ଷ]𝑝ଶ𝑝ଷതതത  − [𝑝ଶ𝑝ଷതതത − 𝑝ଷതതത𝑝ଶ]   𝑝ଶ𝑝ଶതതത − [𝑝ଶ𝑝ଶതതത − 𝑝ଶതതത𝑝ଶ]  0   00   0  0   00   0 𝑝ଷ𝑝ଷതതത − [𝑝ଷ𝑝ଷതതത − 𝑝ଷതതത𝑝ଷ] 𝑝ଷ𝑝ଶതതത − [𝑝ଷ𝑝ଶതതത − 𝑝ଶതതത𝑝ଷ]𝑝ଶ𝑝ଷതതത  − [𝑝ଶ𝑝ଷതതത − 𝑝ଷതതത𝑝ଶ]   𝑝ଶ𝑝ଶതതത − [𝑝ଶ𝑝ଶതതത − 𝑝ଶതതത𝑝ଶ]⎠⎞ 

= ቌ𝑝ଵ 𝑝଴00 ቍ (𝑝ଵതതത,𝑝଴തതത, 0,0) + ቌ 0 0𝑝ଵ𝑝଴ቍ (0,0,𝑝ଵതതത,𝑝଴തതത)
−⎝⎛

[𝑝ଵ𝑝ଵതതത − 𝑝ଵതതത𝑝ଵ] [𝑝ଵ𝑝଴തതത − 𝑝଴തതത𝑝ଵ][𝑝଴𝑝ଵതതത − 𝑝ଵതതത𝑝଴]   [𝑝଴𝑝଴തതത − 𝑝଴തതത𝑝଴]  0   00   0  0   00   0 [𝑝ଵ𝑝ଵതതത − 𝑝ଵതതത𝑝ଵ] [𝑝ଵ𝑝଴തതത − 𝑝଴തതത𝑝ଵ][𝑝଴𝑝ଵതതത − 𝑝ଵതതത𝑝଴]   [𝑝଴𝑝଴തതത − 𝑝଴തതത𝑝଴]⎠⎞
+ ቌ𝑝ଷ 𝑝ଶ00 ቍ (𝑝ଷതതത,𝑝ଶതതത, 0,0) + ቌ 0 0𝑝ଷ𝑝ଶቍ (0,0,𝑝ଷതതത,𝑝ଶതതത)
−⎝⎛

[𝑝ଷ𝑝ଷതതത − 𝑝ଷതതത𝑝ଷ] [𝑝ଷ𝑝ଶതതത − 𝑝ଶതതത𝑝ଷ][𝑝ଶ𝑝ଷതതത − 𝑝ଷതതത𝑝ଶ]   [𝑝ଶ𝑝ଶതതത − 𝑝ଶതതത𝑝ଶ]  0   00   0  0   00   0 [𝑝ଷ𝑝ଷതതത − 𝑝ଷതതത𝑝ଷ] [𝑝ଷ𝑝ଶതതത − 𝑝ଶതതത𝑝ଷ][𝑝ଶ𝑝ଷതതത − 𝑝ଷതതത𝑝ଶ]   [𝑝ଶ𝑝ଶതതത − 𝑝ଶതതത𝑝ଶ]⎠⎞ 

Let's introduce the notations 

൮−𝑝଴തതത𝑝ଵതതത00 ൲ (−𝑝଴,𝑝ଵ, 0,0) + ൮ 0 0−𝑝଴തതത𝑝ଵതതത ൲ (0,0,−𝑝଴,𝑝ଵ) + ൮−𝑝ଶതതത𝑝ଷതതത00 ൲ (−𝑝ଶ,𝑝ଷ, 0,0) + ൮ 0 0−𝑝ଶതതത𝑝ଷതതത ൲ (0,0,−𝑝ଶ,𝑝ଷ) ≡ 𝑆ା 

ቌ𝑝ଵ 𝑝଴00 ቍ (𝑝ଵതതത,𝑝଴തതത, 0,0) + ቌ 0 0𝑝ଵ𝑝଴ቍ (0,0,𝑝ଵതതത,𝑝଴തതത) + ቌ𝑝ଷ 𝑝ଶ00 ቍ (𝑝ଷതതത,𝑝ଶതതത, 0,0) + ቌ 0 0𝑝ଷ𝑝ଶቍ (0,0,𝑝ଷതതത,𝑝ଶതതത) ≡ 𝑆ି 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 July 2024                   doi:10.20944/preprints202401.1032.v4

https://doi.org/10.20944/preprints202401.1032.v4


 20 

 

⎝⎛
[𝑝ଵ𝑝ଵതതത − 𝑝ଵതതത𝑝ଵ] [𝑝ଵ𝑝଴തതത − 𝑝଴തതത𝑝ଵ][𝑝଴𝑝ଵതതത − 𝑝ଵതതത𝑝଴]   [𝑝଴𝑝଴തതത − 𝑝଴തതത𝑝଴]  0   00   0  0   00   0 [𝑝ଵ𝑝ଵതതത − 𝑝ଵതതത𝑝ଵ] [𝑝ଵ𝑝଴തതത − 𝑝଴തതത𝑝ଵ][𝑝଴𝑝ଵതതത − 𝑝ଵതതത𝑝଴]   [𝑝଴𝑝଴തതത − 𝑝଴തതത𝑝଴]⎠⎞

+ ⎝⎛
[𝑝ଷ𝑝ଷതതത − 𝑝ଷതതത𝑝ଷ] [𝑝ଷ𝑝ଶതതത − 𝑝ଶതതത𝑝ଷ][𝑝ଶ𝑝ଷതതത − 𝑝ଷതതത𝑝ଶ]   [𝑝ଶ𝑝ଶതതത − 𝑝ଶതതത𝑝ଶ]  0   00   0  0   00   0 [𝑝ଷ𝑝ଷതതത − 𝑝ଷതതത𝑝ଷ] [𝑝ଷ𝑝ଶതതത − 𝑝ଶതതത𝑝ଷ][𝑝ଶ𝑝ଷതതത − 𝑝ଷതതത𝑝ଶ]   [𝑝ଶ𝑝ଶതതത − 𝑝ଶതതത𝑝ଶ]⎠⎞ ≡ 𝐾 

Let us substitute differential operators instead of spinor components 𝑝଴ → 𝜕𝜕𝑥ଵ  ≡ 𝜕ଵ     𝑝ଵ → − 𝜕𝜕𝑥଴ ≡ −𝜕଴      𝑝ଶ → 𝜕𝜕𝑥ଷ  ≡ 𝜕ଷ      𝑝ଷ → − 𝜕𝜕𝑥ଶ ≡ −𝜕ଶ 

𝑝଴തതത → 𝜕[ ]ഥ𝜕𝑥ଵതതത ≡ 𝜕ଵദ      𝑝ଵതതത → − 𝜕[ ]ഥ𝜕𝑥଴തതത ≡ −𝜕଴തതത      𝑝ଶതതത → 𝜕[ ]ഥ𝜕𝑥ଷതതത ≡ 𝜕ଷതതത       𝑝ଷതതത → −𝜕[ ]ഥ𝜕𝑥ଶതതത ≡ −𝜕ଶതതത 
Then the quantities included in the wave equation  (𝑆ି − 𝐾)𝑆ା𝛙(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = 𝑀ଶ𝛙(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) 

will have the form 

𝑆ି = ൮−𝜕଴𝜕ଵ00 ൲൫−𝜕଴തതത,𝜕ଵദ, 0,0൯ + ൮ 0 0−𝜕଴𝜕ଵ ൲ ൫0,0,−𝜕଴തതത,𝜕ଵദ൯ + ൮−𝜕ଶ 𝜕ଷ00 ൲൫−𝜕ଶതതത,𝜕ଷതതത, 0,0൯ + ൮ 0 0−𝜕ଶ𝜕ଷ ൲ ൫0,0,−𝜕ଶതതത,𝜕ଷതതത൯ 
𝑆ା = ൮−𝜕ଵദ−𝜕଴തതത00 ൲ (−𝜕ଵ,−𝜕଴, 0,0) + ൮ 0 0−𝜕ଵദ−𝜕଴തതത൲ (0,0,−𝜕ଵ,−𝜕଴) + ൮−𝜕ଷതതത−𝜕ଶതതത00 ൲ (−𝜕ଷ,−𝜕ଶ, 0,0)

+ ൮ 0 0−𝜕ଷതതത−𝜕ଶതതത൲ (0,0,−𝜕ଷ,−𝜕ଶ) 

𝐾 =
= ⎝⎜
⎛ 𝜕଴𝜕଴തതത − 𝜕଴തതത𝜕଴ (−𝜕଴)𝜕ଵദ− 𝜕ଵദ(−𝜕଴)𝜕ଵ൫−𝜕଴തതത൯ − ൫−𝜕଴തതത൯𝜕ଵ  𝜕ଵ𝜕ଵദ− 𝜕ଵദ𝜕ଵ  0   00   0  0   00   0 𝜕଴𝜕଴തതത − 𝜕଴തതത𝜕଴ (−𝜕଴)𝜕ଵദ− 𝜕ଵദ(−𝜕଴)𝜕ଵ൫−𝜕଴തതത൯ − ൫−𝜕଴തതത൯𝜕ଵ  𝜕ଵ𝜕ଵദ− 𝜕ଵദ𝜕ଵ ⎠⎟

⎞

+ ⎝⎜
⎛ 𝜕ଶ𝜕ଶതതത − 𝜕ଶതതത𝜕ଶ (−𝜕ଶ)𝜕ଷതതത − 𝜕ଷതതത(−𝜕ଶ)𝜕ଷ൫−𝜕ଶതതത൯ − ൫−𝜕ଶതതത൯𝜕ଷ  𝜕ଷ𝜕ଷതതത − 𝜕ଷതതത𝜕ଷ  0   00   0  0   00   0 𝜕ଶ𝜕ଶതതത − 𝜕ଶതതത𝜕ଶ (−𝜕ଶ)𝜕ଷതതത − 𝜕ଷതതത(−𝜕ଶ)𝜕ଷ൫−𝜕ଶതതത൯ − ൫−𝜕ଶതതത൯𝜕ଷ  𝜕ଷ𝜕ଷതതത − 𝜕ଷതതത𝜕ଷ ⎠⎟

⎞
 

Let us consider the case of a free particle and represent the electron field as a four-component 
spinor function of four-component spinor coordinates 

𝛙(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = ⎝⎛
𝜓଴(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝜓ଵ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝜓ଶ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝜓ଷ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)⎠⎞ = ቌ𝑢଴𝑢ଵ𝑢ଶ𝑢ଷቍ𝜑(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) 

For a free particle, the components of the momentum spinor commute with each other, so all 
components of the matrix 𝐾 are zero.  

Let us use the model of a plane wave in spinor space  
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𝜑(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = 𝑒𝑥𝑝(𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ) 

Substituting the plane wave solution into the differential equation, we obtain the algebraic equation 

𝑆ି𝑆ା ቌ𝑢଴𝑢ଵ𝑢ଶ𝑢ଷቍ𝜑(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = 𝑀ଶ ቌ𝑢଴𝑢ଵ𝑢ଶ𝑢ଷቍ𝜑(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) 

𝑆ି ൞൮−𝑝଴തതത𝑝ଵതതത00 ൲ (−𝑝଴𝑢଴ + 𝑝ଵ𝑢ଵ) + ൮ 0 0−𝑝଴തതത𝑝ଵതതത ൲ (−𝑝଴𝑢ଶ + 𝑝ଵ𝑢ଷ) + ൮−𝑝ଶതതത𝑝ଷതതത00 ൲ (−𝑝ଶ𝑢଴ + 𝑝ଷ𝑢ଵ)
+ ൮ 0 0−𝑝ଶതതത𝑝ଷതതത ൲ (−𝑝ଶ𝑢ଶ + 𝑝ଷ𝑢ଷ)ൢ𝜑(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = 𝑚ଶ ቌ𝑢଴𝑢ଵ𝑢ଶ𝑢ଷቍ𝜑(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) 

ቐቌ𝑝ଵ 𝑝଴00 ቍ (𝑝ଵതതത,𝑝଴തതത, 0,0) + ቌ 0 0𝑝ଵ𝑝଴ቍ (0,0,𝑝ଵതതത,𝑝଴തതത) + ቌ𝑝ଷ 𝑝ଶ00 ቍ (𝑝ଷതതത,𝑝ଶതതത, 0,0) + ቌ 0 0𝑝ଷ𝑝ଶቍ (0,0,𝑝ଷതതത,𝑝ଶതതത)ቑ 

൞൮−𝑝଴തതത𝑝ଵതതത00 ൲ (−𝑝଴𝑢଴ + 𝑝ଵ𝑢ଵ) + ൮ 0 0−𝑝଴തതത𝑝ଵതതത ൲ (−𝑝଴𝑢ଶ + 𝑝ଵ𝑢ଷ) + ൮−𝑝ଶതതത𝑝ଷതതത00 ൲ (−𝑝ଶ𝑢଴ + 𝑝ଷ𝑢ଵ)
+ ൮ 0 0−𝑝ଶതതത𝑝ଷതതത ൲ (−𝑝ଶ𝑢ଶ + 𝑝ଷ𝑢ଷ)ൢ𝜑(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = 𝑀ଶ ቌ𝑢଴𝑢ଵ𝑢ଶ𝑢ଷቍ𝜑(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) 

ቐቌ𝑝ଵ 𝑝଴00 ቍ (𝑝ଵതതത,𝑝଴തതത, 0,0) + ቌ 0 0𝑝ଵ𝑝଴ቍ (0,0,𝑝ଵതതത,𝑝଴തതത) + ቌ𝑝ଷ 𝑝ଶ00 ቍ (𝑝ଷതതത,𝑝ଶതതത, 0,0) + ቌ 0 0𝑝ଷ𝑝ଶቍ (0,0,𝑝ଷതതത,𝑝ଶതതത)ቑ 

൞൮−𝑝଴തതത𝑝ଵതതത00 ൲ (−𝑝଴𝑢଴ + 𝑝ଵ𝑢ଵ) + ൮ 0 0−𝑝଴തതത𝑝ଵതതത ൲ (−𝑝଴𝑢ଶ + 𝑝ଵ𝑢ଷ) + ൮−𝑝ଶതതത𝑝ଷതതത00 ൲ (−𝑝ଶ𝑢଴ + 𝑝ଷ𝑢ଵ)
+ ൮ 0 0−𝑝ଶതതത𝑝ଷതതത ൲ (−𝑝ଶ𝑢ଶ + 𝑝ଷ𝑢ଷ)ൢ = 𝑀ଶ ቌ𝑢଴𝑢ଵ𝑢ଶ𝑢ଷቍ 
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ቐቌ𝑝ଵ 𝑝଴00 ቍ (−𝑝ଵതതത𝑝଴തതത + 𝑝଴തതത𝑝ଵതതത)(−𝑝଴𝑢଴ + 𝑝ଵ𝑢ଵ) + ቌ𝑝ଷ 𝑝ଶ00 ቍ (−𝑝ଷതതത𝑝଴തതത + 𝑝ଶതതത𝑝ଵതതത)(−𝑝଴𝑢଴ + 𝑝ଵ𝑢ଵ)
+ ቌ 0 0𝑝ଵ𝑝଴ቍ (−𝑝ଵതതത𝑝଴തതത + 𝑝଴തതത𝑝ଵതതത)(−𝑝଴𝑢ଶ + 𝑝ଵ𝑢ଷ) + ቌ 0 0𝑝ଷ𝑝ଶቍ (−𝑝ଷതതത𝑝଴തതത + 𝑝ଶതതത𝑝ଵതതത)(−𝑝଴𝑢ଶ + 𝑝ଵ𝑢ଷ)
+ ቌ𝑝ଵ 𝑝଴00 ቍ (−𝑝ଵതതത𝑝ଶതതത + 𝑝଴തതത𝑝ଷതതത)(−𝑝ଶ𝑢଴ + 𝑝ଷ𝑢ଵ) + ቌ𝑝ଷ 𝑝ଶ00 ቍ (−𝑝ଷതതത𝑝ଶതതത + 𝑝ଶതതത𝑝ଷതതത)(−𝑝ଶ𝑢଴ + 𝑝ଷ𝑢ଵ)
+ ቌ 0 0𝑝ଵ𝑝଴ቍ (−𝑝ଵതതത𝑝ଶതതത + 𝑝଴തതത𝑝ଷതതത)(−𝑝ଶ𝑢ଶ + 𝑝ଷ𝑢ଷ) + ቌ 0 0𝑝ଷ𝑝ଶቍ (−𝑝ଷതതത𝑝ଶതതത + 𝑝ଶതതത𝑝ଷതതത)(−𝑝ଶ𝑢ଶ + 𝑝ଷ𝑢ଷ)ቑ
= 𝑀ଶ ቌ𝑢଴𝑢ଵ𝑢ଶ𝑢ଷቍ 

Let us take into account the commutativity of the momentum components, besides, let us 

introduce the notations −𝑝ଷതതത𝑝଴തതത + 𝑝ଶതതത𝑝ଵതതത ≡ 𝑚ഥ        − 𝑝ଵതതത𝑝ଶതതത + 𝑝଴തതത𝑝ଷതതത ≡ −𝑚ഥ        
for the quantities which are invariant under any rotations and boosts, then we obtain 

ቐቌ𝑝ଷ 𝑝ଶ00 ቍ𝑚ഥ(−𝑝଴𝑢଴ + 𝑝ଵ𝑢ଵ) + ቌ 0 0𝑝ଷ𝑝ଶቍ𝑚ഥ(−𝑝଴𝑢ଶ + 𝑝ଵ𝑢ଷ) + ቌ𝑝ଵ 𝑝଴00 ቍ (−𝑚ഥ)(−𝑝ଶ𝑢଴ + 𝑝ଷ𝑢ଵ)
+ ቌ 0 0𝑝ଵ𝑝଴ቍ (−𝑚ഥ)(−𝑝ଶ𝑢ଶ + 𝑝ଷ𝑢ଷ)ቑ = 𝑀ଶ ቌ𝑢଴𝑢ଵ𝑢ଶ𝑢ଷቍ 

 

൞𝑢଴ ቌ−ቌ𝑝ଷ 𝑝ଶ00 ቍ𝑚ഥ𝑝଴ + ቌ𝑝ଵ 𝑝଴00 ቍ𝑚ഥ𝑝ଶቍ + 𝑢ଵ ⎝⎛ቌ
𝑝ଷ 𝑝ଶ00 ቍ𝑚ഥ𝑝ଵ − ቌ𝑝ଵ 𝑝଴00 ቍ𝑚ഥ𝑝ଷ⎠⎞ + 𝑢ଶ ቌ−ቌ 0 0𝑝ଷ𝑝ଶቍ𝑚ഥ𝑝଴ + ቌ 0 0𝑝ଵ𝑝଴ቍ𝑚ഥ𝑝ଶቍ

+ 𝑢ଷ ⎝⎛ቌ
0 0𝑝ଷ𝑝ଶቍ𝑚ഥ𝑝ଵ − ቌ 0 0𝑝ଵ𝑝଴ቍ𝑚ഥ𝑝ଷ⎠⎞ൢ = 𝑀ଶ ቌ𝑢଴𝑢ଵ𝑢ଶ𝑢ଷቍ 

 

ቐ𝑢଴𝑚ഥ ቌ𝑝ଵ𝑝ଶ − 𝑝ଷ𝑝଴ 𝑝଴𝑝ଶ − 𝑝ଶ𝑝଴00 ቍ+ 𝑢ଵ𝑚ഥ ቌ𝑝ଷ𝑝ଵ − 𝑝ଵ𝑝ଷ 𝑝ଶ𝑝ଵ − 𝑝଴𝑝ଷ00 ቍ + 𝑢ଶ𝑚ഥ ቌ 0 0𝑝ଵ𝑝ଶ−𝑝ଷ𝑝଴𝑝଴𝑝ଶ − 𝑝ଶ𝑝଴ቍ + 𝑢ଷ𝑚ഥ ቌ 0 0𝑝ଷ𝑝ଵ − 𝑝ଵ𝑝ଷ𝑝ଶ𝑝ଵ − 𝑝଴𝑝ଷቍቑ
= 𝑀ଶ ቌ𝑢଴𝑢ଵ𝑢ଶ𝑢ଷቍ 

Additionally, introducing notation for Lorentz invariant quantities 𝑝ଵ𝑝ଶ − 𝑝ଷ𝑝଴ ≡ 𝑚      𝑝ଶ𝑝ଵ − 𝑝଴𝑝ଷ ≡ 𝑚 

we obtain 
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ቐ𝑢଴𝑚ഥ ቌ𝑚000ቍ + 𝑢ଵ𝑚ഥ ቌ 0 𝑚00 ቍ + 𝑢ଶ𝑚ഥ ቌ0 0𝑚0ቍ + 𝑢ଷ𝑚ഥ ቌ0 00𝑚ቍቑ = 𝑚ଶ ቌ𝑢଴𝑢ଵ𝑢ଶ𝑢ଷቍ 

൞𝑢଴ ൮𝑚ଶ000 ൲ + 𝑢ଵ ቌ 0 𝑚ଶ00 ቍ + 𝑢ଶ ൮ 0 0𝑚ଶ0 ൲ + 𝑢ଷ ቌ 0 00𝑚ଶቍൢ = 𝑚ଶ ቌ𝑢଴𝑢ଵ𝑢ଶ𝑢ଷቍ 

൮𝑚ଶ  0 0   𝑚ଶ  0     0 0        0  0    0 0      0 𝑚ଶ   0 0   𝑚ଶ൲ቌ
𝑢଴𝑢ଵ𝑢ଶ𝑢ଷቍ = 𝑀ଶ ቌ𝑢଴𝑢ଵ𝑢ଶ𝑢ଷቍ 

We see that in the case of a plane wave in spinor space, the matrix in the left part of the equation 
is diagonal and remains so at any rotations and boosts, the diagonal element also does not change. 

In this case we can consider the matrix 𝑀ଶ  in the right part to be diagonal with the same 
elements on the diagonal 𝑚ଶ, then the equation can be rewritten as an equation for the problem of 
finding eigenvalues and eigenfunctions 𝑆ି𝑆ା𝛙(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = 𝑚ଶ𝐼𝛙(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) 𝑆ି𝑆ା𝛙(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = 𝑚ଶ𝛙(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) 

Let us compare our equation with the Dirac equation [6], formula (43.16)] 

൮ 𝑃଴ + 𝑀  0 0    𝑃଴ + 𝑀  𝑃ଷ   𝑃ଵ − 𝑖𝑃ଶ𝑃ଵ + 𝑖𝑃ଶ   −𝑃ଷ  𝑃ଷ   𝑃ଵ − 𝑖𝑃ଶ𝑃ଵ + 𝑖𝑃ଶ   −𝑃ଷ 𝑃଴ − 𝑀  00   𝑃଴ −𝑀 ൲ቌ𝑢଴𝑢ଵ𝑢ଶ𝑢ଷቍ = 0 

In the rest frame of reference, the three components of momentum are zero and the equation is 
simplified 

൮𝑃଴ + 𝑀      0 0    𝑃଴ + 𝑀  0              00               0  0              00               0 𝑃଴ − 𝑀      00   𝑃଴ −𝑀൲ቌ
𝑢଴𝑢ଵ𝑢ଶ𝑢ଷቍ = 0 

That is, in the rest frame the Dirac equation and the spinor equation analyzed by us look 
identically and contain a diagonal matrix. The corresponding problem on eigenvalues and 
eigenvectors of these matrices has degenerate eigenvalues, which correspond to the linear space of 
eigenfunctions. In this space, one can choose an orthogonal basis of linearly independent functions, 
and this choice is quite arbitrary. For example, in [9], formula (2.127)], solutions in the form of plane 
waves in the vector space have been proposed for the Dirac equation in the rest frame 𝑢௜(0) 𝑒𝑥𝑝(−𝑖𝑀𝑡) 𝑣௜(0) 𝑒𝑥𝑝(+𝑖𝑀𝑡) 

and the following spinors are chosen as basis vectors 

𝑢ଵ(0) = ቌ1000ቍ     𝑢ଶ(0) = ቌ0100ቍ      𝑣ଵ(0) = ቌ0010ቍ       𝑣ଶ(0) = ቌ0001ቍ 

For transformation to a moving coordinate system in [9], formula (2.133)] the following formula 

is used 𝜓௜(𝑋) = 𝑢௜(𝑃) 𝑒𝑥𝑝(−𝑖𝑃𝑋) 𝜓௜(𝑋) = 𝑣௜(𝑃) 𝑒𝑥𝑝(+𝑖𝑃𝑋) 

where 
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𝑢ଵ(𝑃) = ඨ𝑃଴ + 𝑀2𝑀 ⎝⎜
⎜⎛

10𝑃ଷ𝑃଴ + 𝑀𝑃ଵ + 𝑖𝑃ଶ𝑃଴ + 𝑀⎠⎟
⎟⎞    𝑢ଶ(𝑃) = ඨ𝑃଴ + 𝑀2𝑀 ⎝⎜

⎜⎛
10𝑃ଵ − 𝑖𝑃ଶ𝑃଴ + 𝑀−𝑃ଷ𝑃଴ + 𝑀⎠⎟

⎟⎞    𝑣ଵ(𝑃) = ඨ𝑃଴ + 𝑀2𝑀 ⎝⎜
⎜⎛

𝑃ଷ𝑃଴ + 𝑀𝑃ଵ + 𝑖𝑃ଶ𝑃଴ + 𝑀10 ⎠⎟
⎟⎞     

𝑣ଶ(𝑃) = ඨ𝑃଴ + 𝑀2𝑀 ⎝⎜
⎜⎛
𝑃ଵ − 𝑖𝑃ଶ𝑃଴ + 𝑀−𝑃ଷ𝑃଴ + 𝑀01 ⎠⎟

⎟⎞ 

The basis spinors form a complete system, that is, any four-component complex spinor can be 
represented as their linear combination and this arbitrary spinor will be a solution to the problem on 
eigenvalues and eigenfunctions in a resting coordinate system. The choice of the given particular 
basis has disadvantages, because if to find a four-dimensional current vector from any of these basis 
functions 𝑗ఓ = 12 ൫𝑢ଵ(0)൯ற𝑆ఓ𝑢ଵ(0)  
then this current in the rest frame of reference 𝐣𝐓 = ൬12 , 0,0, 12൰ 

has non-zero components, and the square of the length of the current vector is zero. It turns out that 
a resting electron creates a current, which contradicts physical common sense. Since we have freedom 
of choice of the basis, it is reasonable to choose the spinor for the wave function as some set of 
momentum spinor components, for example 

𝑢(0) = ට𝑒𝑚ቌ 𝑝ଶ−𝑝ଷ𝑝଴−𝑝ଵቍ 

The proportionality factor is chosen so that in the rest frame the zero component of the current 
is equal to the charge of, for example, an electron or a positron. If the momentum spinor in the rest 
frame has the form 𝐩𝐓 = (𝑝଴,𝑝ଵ,𝑝ଵതതത,−𝑝଴തതത) 

then the momentum vector in this rest frame of reference will be  𝐏𝐓 = (𝑚, 0,0,0) 

and the current vector  𝐣𝐓 = (𝑒, 0,0,0) 

The same momentum vector in the rest frame of reference can be obtained from different spinors, e.g, 

𝐩𝟏 = ቌ1001ቍ      𝐩𝟐 = ቌ0110ቍ      𝐩𝟑 = ቌ−1001 ቍ     𝐩𝟒 = ቌ 0−110 ቍ              𝐏 = ቌ1000ቍ 

after a 30-degree boost along the z-axis we get 

𝐩𝟏 = ቌ1.299000.77 ቍ      𝐩𝟐 = ቌ 00.771.2990 ቍ      𝐩𝟑 = ቌ−1.299000.77 ቍ     𝐩𝟒 = ቌ 0−0.771.2990 ቍ              𝐏 = ቌ 1.14000.548ቍ 
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After scaling the spinors by the factorට௘௠, similar relations are true for the current vector. Thus, 

electrons can have the same momentum and current vector but different spinors, i.e., they are 
characterized by different spins. As it is supposed, the electron here has two physical degrees of 
freedom, since in a rest frame of reference one can choose the components 𝑝଴ and 𝑝ଵ to be real. 

Thus defined spinor wave function for a free particle is invariant to Lorentz transformations, 
since in this case the mass of electron 𝑚 = 𝑝ଵ𝑝ଶ − 𝑝ଷ𝑝଴, its charge and the phase of the plane spinor 
wave 𝑒𝑥𝑝(𝐩𝑻𝛴ெெ𝐱) = 𝑒𝑥𝑝(𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ) 
do not change at rotations and boosts. The matrix on the left side of the equation does not change 
either, remaining diagonal with 𝑚ଶ on the diagonal. 

It is logical to use the same considerations when choosing the basis for the wave function of the 
photon, whose mass, i.e., the eigenvalues of the wave function equation, are also degenerate and thus 
equal to zero. In this case, the choice of the proportionality factor between the spinor of the wave 
function and the momentum spinor is not so obvious, one can, for example, consider the option of 

𝑢(0) = √𝑒ቌ 𝑝ଶ−𝑝ଷ−𝑝ଶ𝑝ଷ ቍ 

For a fermion, which can be an electron or a positron in the rest frame takes place p୘ =(p଴, pଵ, pଵതതത,−p଴തതത), so the quantity  𝑚 = 𝑝ଵ𝑝ଶ − 𝑝ଷ𝑝଴ = 𝑝ଵ𝑝ଵതതത + 𝑝଴തതത𝑝଴ 
which, unlike the mass M in the Dirac equation, is complex in the general case, is also real for 

the fermion and can be positive for the electron or negative for the positron. The charge is 
proportional to the mass with a minus sign, since the electron charge is considered negative and the 
positron positive. For simplicity it is possible to consider the mass of the electron as negative and that 
of the positron as positive, then the charge will be proportional to the mass without changing the 
sign. 

For the momentum spinor of a boson, such as a photon, it is true that 𝐩𝐓 = (𝑝଴,𝑝ଵ,𝑝଴,𝑝ଵ), so its 

mass is zero 𝑚 = 𝑝ଵ𝑝ଶ − 𝑝ଷ𝑝଴ = 𝑝ଵ𝑝଴ − 𝑝ଵ𝑝଴ = 0 
The given constructions are not abstract, but describe the physical reality, since the results of the 

processes occurring in the spinor space are displayed in the Minkowski vector space. In particular, 
the momentum vector corresponding to the momentum spinor has the following parameters    𝑃ఓ = 12𝑇𝑟[𝐩𝐩ற𝑆ఓ]  
the square of the length is equal to the square of the mass of the electron or positron  𝑃଴ଶ − 𝑃ଵଶ − 𝑃ଶଶ − 𝑃ଷଶ = 𝑚ଶ 
And to the spinor wave function 𝛙(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) at some point in spinor space corresponds the 

vector wave function 𝚿(𝑋଴,𝑋ଵ,𝑋ଶ,𝑋ଷ) 𝛹ఓ = 12𝑇𝑟[𝛙𝛙ற𝑆ఓ]  
(which for a plane wave coincides with the current vector), taking its value in the corresponding point 
of physical space with coordinates 𝑋ఓ = 12𝑇𝑟[𝐱𝐱ற𝑆ఓ]  

The vector wave function 𝚿 can be compared in meaning to the square of the modulus of the 
conventional scalar wave function, in particular 𝛹଴ is equal to this square and has the meaning of 
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probability. The conventional scalar wave function itself is closer in meaning to the spinor wave 
function considered here, they both have complex values, and the four-component wave functions 
of the electron have in both cases the same meaning.  

The arbitrary choice of the basis of the linear space of the eigenvectors of the matrix takes place 
only for a free particle. In the general case the matrix K is not zero, the wave equation has no solution 
in the form of plane waves in spinor space and ceases to be invariant with respect to Lorentz 
transformations, and the eigenvalues become nondegenerate. 

We propose to extend the scope of applicability of the presented equation consisting of 
differential operators in the form of partial derivatives on the components of coordinate spinors with 
a nonzero matrix K (𝑆ି − 𝐾)𝑆ା𝛙(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = 𝑀ଶ𝛙(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) 
not only to the case of a plane wave, but to any situation in general. This transition is analogous to 
the transition from the application of the Schrödinger equation to a plane wave in vector space to its 
application in a general situation. The legitimacy of such transitions should be confirmed by the 
results of experiments. 

This equation will be called the equation for the spinor wave function defined on the spinor 
coordinate space. Here the matrix 𝑀ଶ is, generally speaking, neither diagonal nor real, but it does 
not depend on the coordinates and is determined solely by the parameters of the electromagnetic 
field. Only in the case of a plane wave it is diagonal and has on the diagonal the square of the mass 
of the free particle. We can try to simplify the problem and require that the matrix 𝑀ଶ is diagonal 
with the same elements on the diagonal 𝑚ଶ, then the equation can be rewritten in the form of the 
equation for the problem of search of eigenvalues and eigenfunctions for any quantum states (𝑆ି − 𝐾)𝑆ା𝛙(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = 𝑚ଶ𝛙(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) 

This approach is pleasant in the Dirac equation, where the mass is fixed and equated to the mass 
of a free particle, and at the same time results giving good agreement with experiment are obtained. 

We are of the opinion that the spinor equation is more fundamental than the relativistic 
Schrödinger and Dirac equations, it is not a generalization of them, it is a refinement of them, because 
it describes nature at the spinor level, and hence is more precise and detailed than the equations for 
the wave function defined on the vector space.  

Let us consider the proposed equation for the special case when the particle is in an external 
electromagnetic field, which we will also represent by a four-component spinor function at a point of 
the spinor coordinate space 

𝐚(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = ⎝⎛
𝑎଴(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝑎ଵ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝑎ଶ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝑎ଷ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)⎠⎞ 

We will apply to the wave function of the electron the operators corresponding to the 
components of the momentum spinor, putting for simplicity the electron charge equal to unity 𝑝଴ → 𝜕𝜕𝑥ଵ + 𝑎଴(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)               𝑝ଵ → − 𝜕𝜕𝑥଴ + 𝑎ଵ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) 

𝑝ଶ → 𝜕𝜕𝑥ଷ + 𝑎ଶ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)               𝑝ଷ → − 𝜕𝜕𝑥ଶ + 𝑎ଷ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) 

𝑝଴തതത → 𝜕[ ]ഥ𝜕𝑥ଵതതത + 𝑎଴(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)തതതതതതതതതതതതതതതതതതതതത                    𝑝ଵതതത → − 𝜕[ ]ഥ𝜕𝑥଴തതത + 𝑎ଵ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)തതതതതതതതതതതതതതതതതതതതത       
𝑝ଶതതത → 𝜕[ ]ഥ𝜕𝑥ଷതതത + 𝑎ଶ(𝑥଴,𝑥ଵ, 𝑥ଶ, 𝑥ଷ)തതതതതതതതതതതതതതതതതതതതത                     𝑝ଷതതത → − 𝜕[ ]ഥ𝜕𝑥ଶതതത + 𝑎ଷ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)തതതതതതതതതതതതതതതതതതതതത       

Note that the electromagnetic potential vector can be calculated from the electromagnetic 
potential spinor by the standard formula 
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𝐴ఓ = 12𝐚ற𝑆ఓ𝐚  
The advantage of the spinor description over the vector description is that instead of summing 

up the components of the momentum and electromagnetic potential vectors as is usually done 𝑃ఓ + 𝐴ఓ = 12𝐩ற𝑆ఓ𝐩 + 12𝐚ற𝑆ఓ𝐚  
now we sum the spinor components and then the resulting vector is  12 (𝐩 + 𝐚)ற𝑆ఓ(𝐩 + 𝐚) = 12𝐩ற𝑆ఓ𝐩 + 12𝐩ற𝑆ఓ𝐚 + 12𝐚ற𝑆ఓ𝐩 + 12𝐚ற𝑆ఓ𝐚 

in addition to the usual momentum and field vectors, contains an additional term 12𝐩ற𝑆ఓ𝐚+ 12𝐚ற𝑆ఓ𝐩 

taking real values and describing the mutual influence of the fields of the electron and photon. 
After the addition of the electromagnetic field the components of the momentum spinor do not 

commute, the corresponding commutators are found above ൜൬ 𝜕𝜕𝑥ଵ + 𝑎଴൰ ൬− 𝜕𝜕𝑥଴ + 𝑎ଵ൰ − ൬− 𝜕𝜕𝑥଴ + 𝑎ଵ൰ ൬ 𝜕𝜕𝑥ଵ + 𝑎଴൰ൠ𝜑 = ൜𝜕𝑎ଵ𝜕𝑥ଵ + 𝜕𝑎଴𝜕𝑥଴ൠ𝜑 

൜൬ 𝜕𝜕𝑥ଷ + 𝑎ଶ൰ ൬− 𝜕𝜕𝑥ଶ + 𝑎ଷ൰ − ൬− 𝜕𝜕𝑥ଶ + 𝑎ଷ൰ ൬ 𝜕𝜕𝑥ଷ + 𝑎ଶ൰ൠ𝜑 = ൜𝜕𝑎ଷ𝜕𝑥ଷ + 𝜕𝑎ଶ𝜕𝑥ଶൠ𝜑 

Let's find commutators for other operators 

ቊቆ𝜕[ ]ഥ𝜕𝑥ଵതതത + 𝑎଴തതതቇ ቆ− 𝜕[ ]ഥ𝜕𝑥଴തതത + 𝑎ଵതതതቇ − ቆ− 𝜕[ ]ഥ𝜕𝑥଴തതത + 𝑎ଵതതതቇ ቆ𝜕[ ]ഥ𝜕𝑥ଵതതത + 𝑎଴തതതቇቋ𝜑
= ቆ𝜕[ ]ഥ𝜕𝑥ଵതതത + 𝑎଴തതതቇቆ− 𝜕[ ]ഥ𝜕𝑥଴തതത + 𝑎ଵതതതቇ𝜑 − ቆ− 𝜕[ ]ഥ𝜕𝑥଴തതത + 𝑎ଵതതതቇ ቆ𝜕[ ]ഥ𝜕𝑥ଵതതത + 𝑎଴തതതቇ𝜑 =
= ቆ𝜕[ ]ഥ𝜕𝑥ଵതതത + 𝑎଴തതതቇ ൬− 𝜕𝜑ത𝜕𝑥଴തതത + 𝑎ଵതതത𝜑൰ − ቆ− 𝜕[ ]ഥ𝜕𝑥଴തതത + 𝑎ଵതതതቇ ൬𝜕𝜑ത𝜕𝑥ଵതതത + 𝑎଴തതത𝜑൰
= 𝜕[ ]ഥ𝜕𝑥ଵതതത ൬− 𝜕𝜑ത𝜕𝑥଴തതത൰ + 𝑎଴തതത𝑎ଵതതത𝜑 + 𝜕[ ]ഥ𝜕𝑥ଵതതത (𝑎ଵതതത𝜑) + 𝑎଴തതത ൬− 𝜕𝜑ത𝜕𝑥଴തതത൰ + 𝜕[ ]ഥ𝜕𝑥଴തതത ൬𝜕𝜑ത𝜕𝑥ଵതതത൰ − 𝑎ଵതതത𝑎଴തതത𝜑 + 𝜕[ ]ഥ𝜕𝑥଴തതത (𝑎଴തതത𝜑)
− 𝑎ଵതതത 𝜕𝜑ത𝜕𝑥ଵതതത = 𝜕[ ]ഥ𝜕𝑥ଵതതത (𝑎ଵതതത𝜑) + 𝑎଴തതത ൬− 𝜕𝜑ത𝜕𝑥଴തതത൰ + 𝜕[ ]ഥ𝜕𝑥଴തതത (𝑎଴തതത𝜑) − 𝑎ଵതതത 𝜕𝜑ത𝜕𝑥ଵതതത= 𝜕𝜑ത𝜕𝑥ଵതതത 𝑎ଵതതത + 𝜕𝑎ଵതതതതതത𝜕𝑥ଵതതത 𝜑 + 𝑎଴തതത ൬− 𝜕𝜑ത𝜕𝑥଴തതത൰ + 𝜕𝜑ത𝜕𝑥଴തതത 𝑎଴തതത + 𝜕𝑎଴തതതതതത𝜕𝑥଴തതത 𝜑 − 𝑎ଵതതത 𝜕𝜑ത𝜕𝑥ଵതതത = 𝜕𝑎ଵതതതതതത𝜕𝑥ଵതതത 𝜑 + 𝜕𝑎଴തതതതതത𝜕𝑥଴തതത 𝜑= ൜𝜕𝑎ଵ𝜕𝑥ଵതതത + 𝜕𝑎଴𝜕𝑥଴തതതൠ 𝜑 
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ቊ൬ 𝜕𝜕𝑥ଵ + 𝑎଴൰ቆ− 𝜕[ ]ഥ𝜕𝑥଴തതത + 𝑎ଵതതതቇ − ቆ− 𝜕[ ]ഥ𝜕𝑥଴തതത + 𝑎ଵതതതቇ ൬ 𝜕𝜕𝑥ଵ + 𝑎଴൰ቋ𝜑
= ൬ 𝜕𝜕𝑥ଵ + 𝑎଴൰ ቆ− 𝜕[ ]ഥ𝜕𝑥଴തതത + 𝑎ଵതതതቇ𝜑 − ቆ− 𝜕[ ]ഥ𝜕𝑥଴തതത + 𝑎ଵതതതቇ ൬ 𝜕𝜕𝑥ଵ + 𝑎଴൰𝜑 =
= ൬ 𝜕𝜕𝑥ଵ + 𝑎଴൰ ൬− 𝜕𝜑ത𝜕𝑥଴തതത + 𝑎ଵതതത𝜑൰ − ቆ− 𝜕[ ]ഥ𝜕𝑥଴തതത + 𝑎ଵതതതቇ ൬𝜕𝜑𝜕𝑥ଵ + 𝑎଴𝜑൰
= 𝜕𝜕𝑥ଵ ൬− 𝜕𝜑ത𝜕𝑥଴തതത൰ + 𝑎଴𝑎ଵതതത𝜑 + 𝜕𝜕𝑥ଵ (𝑎ଵതതത𝜑) + 𝑎଴ ൬− 𝜕𝜑ത𝜕𝑥଴തതത൰ + 𝜕[ ]ഥ𝜕𝑥଴തതത ൬𝜕𝜑𝜕𝑥ଵ൰ − 𝑎ଵതതത𝑎଴𝜑 + 𝜕[ ]ഥ𝜕𝑥଴തതത (𝑎଴𝜑)
− 𝑎ଵതതത 𝜕𝜑𝜕𝑥ଵ = 𝜕𝜕𝑥ଵ (𝑎ଵതതത𝜑) + 𝑎଴ ൬− 𝜕𝜑ത𝜕𝑥଴തതത൰ + 𝜕[ ]ഥ𝜕𝑥଴തതത (𝑎଴𝜑) − 𝑎ଵതതത 𝜕𝜑𝜕𝑥ଵ= 𝜕𝜑𝜕𝑥ଵ 𝑎ଵതതത + 𝜕𝑎ଵതതത𝜕𝑥ଵ 𝜑 + 𝑎଴ ൬− 𝜕𝜑ത𝜕𝑥଴തതത൰ + 𝜕𝜑ത𝜕𝑥଴തതത 𝑎଴ + 𝜕𝑎଴തതത𝜕𝑥଴തതത 𝜑 − 𝑎ଵതതത 𝜕𝜑ത𝜕𝑥ଵതതത = 𝜕𝑎ଵതതത𝜕𝑥ଵ 𝜑 + 𝜕𝑎଴തതത𝜕𝑥଴തതത 𝜑= ൜𝜕𝑎ଵതതത𝜕𝑥ଵ + 𝜕𝑎଴തതത𝜕𝑥଴തതതൠ 𝜑 

Further we will use these and analogous relations 

൜൬ 𝜕𝜕𝑥ଵ + 𝑎଴൰ ൬− 𝜕𝜕𝑥଴ + 𝑎ଵ൰ − ൬− 𝜕𝜕𝑥଴ + 𝑎ଵ൰ ൬ 𝜕𝜕𝑥ଵ + 𝑎଴൰ൠ𝜑 = ൜𝜕𝑎ଵ𝜕𝑥ଵ + 𝜕𝑎଴𝜕𝑥଴ൠ𝜑 

ቊ൬ 𝜕𝜕𝑥ଵ + 𝑎଴൰ ቆ− 𝜕[ ]ഥ𝜕𝑥଴തതത + 𝑎ଵതതതቇ − ቆ− 𝜕[ ]ഥ𝜕𝑥଴തതത + 𝑎ଵതതതቇ ൬ 𝜕𝜕𝑥ଵ + 𝑎଴൰ቋ𝜑 = ൜𝜕𝑎ଵതതത𝜕𝑥ଵ + 𝜕𝑎଴തതത𝜕𝑥଴തതതൠ 𝜑 

ቊ൬− 𝜕𝜕𝑥଴ + 𝑎ଵ൰ ቆ𝜕[ ]ഥ𝜕𝑥ଵതതത + 𝑎଴തതതቇ − ቆ𝜕[ ]ഥ𝜕𝑥ଵതതത + 𝑎଴തതതቇ ൬− 𝜕𝜕𝑥଴ + 𝑎ଵ൰ቋ𝜑 = ൜−𝜕𝑎଴തതത𝜕𝑥଴ − 𝜕𝑎ଵതതത𝜕𝑥ଵതതതൠ 𝜑 

ቊ൬− 𝜕𝜕𝑥଴ + 𝑎ଵ൰ ቆ− 𝜕[ ]ഥ𝜕𝑥଴തതത + 𝑎ଵതതതቇ − ቆ− 𝜕[ ]ഥ𝜕𝑥଴തതത + 𝑎ଵതതതቇ ൬− 𝜕𝜕𝑥଴ + 𝑎ଵ൰ቋ𝜑 = ൜൬−𝜕𝑎ଵതതത𝜕𝑥଴൰ + 𝜕𝑎ଵതതത𝜕𝑥଴തതതൠ 𝜑 

ቊ൬ 𝜕𝜕𝑥ଵ + 𝑎଴൰ ቆ𝜕[ ]ഥ𝜕𝑥ଵതതത + 𝑎଴തതതቇ − ቆ𝜕[ ]ഥ𝜕𝑥ଵതതത + 𝑎଴തതതቇ ൬ 𝜕𝜕𝑥ଵ + 𝑎଴൰ቋ𝜑 = ൜൬𝜕𝑎଴തതത𝜕𝑥ଵ൰ − 𝜕𝑎଴തതത𝜕𝑥ଵതതതൠ 𝜑 

ቊቆ𝜕[ ]ഥ𝜕𝑥ଵതതത + 𝑎଴തതതቇ ቆ− 𝜕[ ]ഥ𝜕𝑥଴തതത + 𝑎ଵതതതቇ − ቆ− 𝜕[ ]ഥ𝜕𝑥଴തതത + 𝑎ଵതതതቇ ቆ𝜕[ ]ഥ𝜕𝑥ଵതതത + 𝑎଴തതതቇቋ𝜑 = ൜𝜕𝑎ଵ𝜕𝑥ଵതതത + 𝜕𝑎଴𝜕𝑥଴തതതൠ 𝜑 

൭−ቆ− 𝜕[ ]ഥ𝜕𝑥଴തതത + 𝑎ଵതതതቇ ቆ𝜕[ ]ഥ𝜕𝑥ଵതതത + 𝑎଴തതതቇ+ ቆ𝜕[ ]ഥ𝜕𝑥ଵതതത + 𝑎଴തതതቇ ቆ− 𝜕[ ]ഥ𝜕𝑥଴തതത + 𝑎ଵതതതቇ൱𝜑 = ቊ𝜕𝑎ଵ𝜕𝑥ଵതതതതതതതത + 𝜕𝑎଴𝜕𝑥଴തതതതതതതതቋ𝜑 

Let's solve the equation (𝑆ି − 𝐾)𝑆ା𝛙(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = 𝑀ଶ𝛙(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) 

(𝑆ି − 𝐾)𝑆ା ⎝⎛
𝜓଴(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝜓ଵ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝜓ଶ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝜓ଷ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)⎠⎞ = 𝑀ଶ⎝⎛

𝜓଴(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝜓ଵ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝜓ଶ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝜓ଷ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)⎠⎞ 

𝑆ି = ൮−𝜕଴ + 𝑎ଵ 𝜕ଵ + 𝑎଴00 ൲ቀ൫−𝜕଴തതത + 𝑎ଵതതത൯, ൫𝜕ଵദ + 𝑎଴തതത൯, 0,0ቁ + ൮ 0 0−𝜕଴ + 𝑎ଵ𝜕ଵ + 𝑎଴ ൲ቀ0,0, ൫−𝜕଴തതത + 𝑎ଵതതത൯, ൫𝜕ଵദ + 𝑎଴തതത൯ቁ
+ ൮−𝜕ଶ + 𝑎ଷ 𝜕ଷ + 𝑎ଶ00 ൲ቀ൫−𝜕ଶതതത + 𝑎ଷതതത൯, ൫𝜕ଷതതത + 𝑎ଶതതത൯, 0,0ቁ + ൮ 0 0−𝜕ଶ + 𝑎ଷ𝜕ଷ + 𝑎ଶ ൲ቀ0,0൫−𝜕ଶതതത + 𝑎ଷതതത൯൫𝜕ଷതതത + 𝑎ଶതതത൯ቁ 
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𝑆ା = ⎝⎛
−൫𝜕ଵദ + 𝑎଴തതത൯൫−𝜕଴തതത + 𝑎ଵതതത൯00 ⎠⎞ (− (𝜕ଵ + 𝑎଴), (−𝜕଴ + 𝑎ଵ), 0,0) + ⎝⎛

0 0−൫𝜕ଵദ + 𝑎଴തതത൯൫−𝜕଴തതത + 𝑎ଵതതത൯⎠⎞൫0,0,− (𝜕ଵ + 𝑎଴)଴, (−𝜕଴ + 𝑎ଵ)൯
+ ⎝⎛

−൫𝜕ଷതതത + 𝑎ଶതതത൯൫−𝜕ଶതതത + 𝑎ଷതതത൯00 ⎠⎞ (−(𝜕ଷ + 𝑎ଶ), (−𝜕ଶ + 𝑎ଷ), 0,0)
+ ⎝⎛

0 0−൫𝜕ଷതതത + 𝑎ଶതതത൯൫−𝜕ଶതതത + 𝑎ଷതതത൯⎠⎞൫0,0,−(𝜕ଷ + 𝑎ଶ), (−𝜕ଶ + 𝑎ଷ)൯ 
𝐾 =
= ⎝⎜
⎛ (𝜕଴ − 𝑎ଵ)൫𝜕଴തതത − 𝑎ଵതതത൯ − ൫𝜕଴തതത − 𝑎ଵതതത൯(𝜕଴ − 𝑎ଵ) (−𝜕଴ + 𝑎ଵ)൫𝜕ଵഥ + 𝑎଴തതത൯ − ൫𝜕ଵഥ + 𝑎଴തതത൯(−𝜕଴ + 𝑎ଵ)(𝜕ଵ + 𝑎଴)൫−𝜕଴തതത + 𝑎ଵതതത൯ − ൫−𝜕଴തതത + 𝑎ଵതതത൯(𝜕ଵ + 𝑎଴)   (𝜕ଵ + 𝑎଴)൫𝜕ଵഥ + 𝑎଴തതത൯ − ൫𝜕ଵഥ + 𝑎଴തതത൯(𝜕ଵ + 𝑎଴)  0   00   0  0   00   0 [𝑝ଵ𝑝ଵഥ − 𝑝ଵഥ 𝑝ଵ] [𝑝ଵ𝑝଴തതത − 𝑝଴തതത𝑝ଵ][𝑝଴𝑝ଵഥ − 𝑝ଵഥ 𝑝଴] [𝑝଴𝑝଴തതത − 𝑝଴തതത𝑝଴]⎠⎟

⎞
+ ⎝⎜
⎛ (𝜕ଶ − 𝑎ଷ)൫𝜕ଶതതത − 𝑎ଷതതത൯ − ൫𝜕ଶതതത − 𝑎ଷതതത൯(𝜕ଶ − 𝑎ଷ) (−𝜕ଶ + 𝑎ଷ)൫𝜕ଷതതത + 𝑎ଶതതത൯ − ൫𝜕ଷതതത + 𝑎ଶതതത൯(−𝜕ଶ + 𝑎ଷ)(𝜕ଷ + 𝑎ଶ)൫−𝜕ଶതതത + 𝑎ଷതതത൯ − ൫−𝜕ଶതതത + 𝑎ଷതതത൯(𝜕ଷ + 𝑎ଶ)   (𝜕ଷ + 𝑎ଶ)൫𝜕ଷതതത + 𝑎ଶതതത൯ − ൫𝜕ଷതതത + 𝑎ଶതതത൯(𝜕ଷ + 𝑎ଶ)  0   00   0  0   00   0 [𝑝ଷ𝑝ଷതതത − 𝑝ଷതതത𝑝ଷ] [𝑝ଷ𝑝ଶതതത − 𝑝ଶതതത𝑝ଷ][𝑝ଶ𝑝ଷതതത − 𝑝ଷതതത𝑝ଶ]   [𝑝ଶ𝑝ଶതതത − 𝑝ଶതതത𝑝ଶ]⎠⎟

⎞ 

=
⎝⎜
⎜⎜⎜
⎜⎛−

𝜕𝑎ଵതതത𝜕𝑥଴ + 𝜕𝑎ଵതതത𝜕𝑥଴തതത −𝜕𝑎଴തതത𝜕𝑥଴ − 𝜕𝑎ଵതതത𝜕𝑥ଵതതത𝜕𝑎ଵതതത𝜕𝑥ଵ + 𝜕𝑎଴തതത𝜕𝑥଴തതത  𝜕𝑎଴തതത𝜕𝑥ଵ − 𝜕𝑎଴തതത𝜕𝑥ଵതതത  0   00   0
  0   00   0 −𝜕𝑎ଵതതത𝜕𝑥଴ + 𝜕𝑎ଵതതത𝜕𝑥଴തതത −𝜕𝑎଴തതത𝜕𝑥଴ − 𝜕𝑎ଵതതത𝜕𝑥ଵതതത𝜕𝑎ଵതതത𝜕𝑥ଵ + 𝜕𝑎଴തതത𝜕𝑥଴തതത  𝜕𝑎଴തതത𝜕𝑥ଵ − 𝜕𝑎଴തതത𝜕𝑥ଵതതത ⎠⎟

⎟⎟⎟
⎟⎞

 

+
⎝⎜
⎜⎜⎜
⎜⎛−

𝜕𝑎ଷതതത𝜕𝑥ଶ + 𝜕𝑎ଷതതത𝜕𝑥ଶതതത −𝜕𝑎ଶതതത𝜕𝑥ଶ − 𝜕𝑎ଷതതത𝜕𝑥ଷതതത𝜕𝑎ଷതതത𝜕𝑥ଷ + 𝜕𝑎ଶതതത𝜕𝑥ଶതതത  𝜕𝑎ଶതതത𝜕𝑥ଷ − 𝜕𝑎ଶതതത𝜕𝑥ଷതതത  0   00   0
  0   00   0 −𝜕𝑎ଷതതത𝜕𝑥ଶ + 𝜕𝑎ଷതതത𝜕𝑥ଶതതത −𝜕𝑎ଶതതത𝜕𝑥ଶ − 𝜕𝑎ଷതതത𝜕𝑥ଷതതത𝜕𝑎ଷതതത𝜕𝑥ଷ + 𝜕𝑎ଶതതത𝜕𝑥ଶതതത  𝜕𝑎ଶതതത𝜕𝑥ଷ − 𝜕𝑎ଶതതത𝜕𝑥ଷതതത ⎠⎟

⎟⎟⎟
⎟⎞
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𝑆ା𝛙 = ⎝⎛
−൫𝜕ଵദ + 𝑎଴തതത൯൫−𝜕଴തതത + 𝑎ଵതതത൯00 ⎠⎞ (− (𝜕ଵ + 𝑎଴)𝜓଴ + (−𝜕଴ + 𝑎ଵ)𝜓ଵ)

+ ⎝⎛
0 0−൫𝜕ଵദ + 𝑎଴തതത൯൫−𝜕଴തതത + 𝑎ଵതതത൯⎠⎞ (−(𝜕ଵ + 𝑎଴)𝜓ଶ + (−𝜕଴ + 𝑎ଵ)𝜓ଷ)

+ ⎝⎛
−൫𝜕ଷതതത + 𝑎ଶതതത൯൫−𝜕ଶതതത + 𝑎ଷതതത൯00 ⎠⎞ (−(𝜕ଷ + 𝑎ଶ)𝜓଴ + (−𝜕ଶ + 𝑎ଷ)𝜓ଵ)

+ ⎝⎛
0 0−൫𝜕ଷതതത + 𝑎ଶതതത൯൫−𝜕ଶതതത + 𝑎ଷതതത൯⎠⎞ (−(𝜕ଷ + 𝑎ଶ)𝜓ଶ + (−𝜕ଶ + 𝑎ଷ)𝜓ଷ) 

Since the second factor 𝑆ା in the left-hand side of the equation has a simpler structure than the 
first factor, perhaps as a first step we should find the eigenvalues and eigenfunctions of the equation 𝑆ା𝛙(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = 𝑀ଶ𝛙(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) 

and use them when solving the equation as a whole. 

𝑆ି𝑆ା𝛙 =
⎩⎪⎪
⎨⎪
⎪⎧ ൮−𝜕଴ + 𝑎ଵ 𝜕ଵ + 𝑎଴00 ൲ቀ൫−𝜕଴തതത + 𝑎ଵതതത൯, ൫𝜕ଵദ + 𝑎଴തതത൯, 0,0ቁ + ൮ 0 0−𝜕଴ + 𝑎ଵ𝜕ଵ + 𝑎଴ ൲ቀ0,0, ൫−𝜕଴തതത + 𝑎ଵതതത൯, ൫𝜕ଵദ + 𝑎଴തതത൯ቁ

+൮−𝜕ଶ + 𝑎ଷ 𝜕ଷ + 𝑎ଶ00 ൲ቀ൫−𝜕ଶതതത + 𝑎ଷതതത൯, ൫𝜕ଷതതത + 𝑎ଶതതത൯, 0,0ቁ + ൮ 0 0−𝜕ଶ + 𝑎ଷ𝜕ଷ + 𝑎ଶ ൲ቀ0,0, ൫−𝜕ଶതതത + 𝑎ଷതതത൯൫𝜕ଷതതത + 𝑎ଶതതത൯ቁ⎭⎪⎪
⎬⎪
⎪⎫

 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧ ⎝⎛

−൫𝜕ଵഥ + 𝑎଴തതത൯൫−𝜕଴തതത + 𝑎ଵതതത൯00 ⎠⎞൭−  ൬𝜕𝜓଴𝜕𝑥ଵ + 𝑎଴𝜓଴൰ + ൬−𝜕𝜓ଵ𝜕𝑥଴ + 𝑎ଵ𝜓ଵ൰൱ + ⎝⎛
0 0−൫𝜕ଵഥ + 𝑎଴തതത൯൫−𝜕଴തതത + 𝑎ଵതതത൯⎠⎞൭−൬

𝜕𝜓ଶ𝜕𝑥ଵ + 𝑎଴𝜓ଶ൰ + ൬−𝜕𝜓ଷ𝜕𝑥଴ + 𝑎ଵ𝜓ଷ൰൱
+⎝⎛

−൫𝜕ଷതതത + 𝑎ଶതതത൯൫−𝜕ଶതതത + 𝑎ଷതതത൯00 ⎠⎞൭−൬𝜕𝜓଴𝜕𝑥ଷ + 𝑎ଶ𝜓଴൰ + ൬−𝜕𝜓ଵ𝜕𝑥ଶ + 𝑎ଷ𝜓ଵ൰൱ + ⎝⎛
0 0−൫𝜕ଷതതത + 𝑎ଶതതത൯൫−𝜕ଶതതത + 𝑎ଷതതത൯⎠⎞൭−൬

𝜕𝜓ଶ𝜕𝑥ଷ + 𝑎ଶ𝜓ଶ൰ + ൬−𝜕𝜓ଷ𝜕𝑥ଶ + 𝑎ଷ𝜓ଷ൰൱⎭⎪⎪⎪
⎬⎪
⎪⎪⎫
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= ൞൮−𝜕଴ + 𝑎ଵ 𝜕ଵ + 𝑎଴00 ൲ቀ−൫−𝜕଴തതത + 𝑎ଵതതത൯൫𝜕ଵദ + 𝑎଴തതത൯ + ൫𝜕ଵദ + 𝑎଴തതത൯൫−𝜕଴തതത + 𝑎ଵതതത൯ቁ ൭−  ൬𝜕𝜓଴𝜕𝑥ଵ + 𝑎଴𝜓଴൰ + ൬𝜕𝜓ଵ𝜕𝑥଴ + 𝑎ଵ𝜓ଵ൰൱
+ ൮−𝜕ଶ + 𝑎ଷ 𝜕ଷ + 𝑎ଶ00 ൲ቀ−൫−𝜕ଶതതത + 𝑎ଷതതത൯൫𝜕ଵദ + 𝑎଴തതത൯ + ൫𝜕ଷതതത + 𝑎ଶതതത൯൫−𝜕଴തതത + 𝑎ଵതതത൯ቁ ൭−  ൬𝜕𝜓଴𝜕𝑥ଵ + 𝑎଴𝜓଴൰
+ ൬−𝜕𝜓ଵ𝜕𝑥଴ + 𝑎ଵ𝜓ଵ൰൱
+ ൮ 0 0−𝜕଴ + 𝑎ଵ𝜕ଵ + 𝑎଴ ൲ ቀ−൫−𝜕଴തതത + 𝑎ଵതതത൯൫𝜕ଵദ + 𝑎଴തതത൯ + ൫𝜕ଵദ + 𝑎଴തതത൯൫−𝜕଴തതത + 𝑎ଵതതത൯ቁ ൭−  ൬𝜕𝜓ଶ𝜕𝑥ଵ + 𝑎଴𝜓ଶ൰
+ ൬−𝜕𝜓ଷ𝜕𝑥଴ + 𝑎ଵ𝜓ଷ൰൱
+ ൮ 0 0−𝜕ଶ + 𝑎ଷ 𝜕ଷ + 𝑎ଶ ൲ ቀ−൫−𝜕ଶതതത + 𝑎ଷതതത൯൫𝜕ଵദ + 𝑎଴തതത൯ + ൫𝜕ଷതതത + 𝑎ଶതതത൯൫−𝜕଴തതത + 𝑎ଵതതത൯ቁ ൭−  ൬𝜕𝜓ଶ𝜕𝑥ଵ + 𝑎଴𝜓ଶ൰
+ ൬𝜕𝜓ଷ𝜕𝑥଴ + 𝑎ଵ𝜓ଷ൰൱
+ ൮−𝜕଴ + 𝑎ଵ𝜕ଵ + 𝑎଴00 ൲ቀ−൫−𝜕଴തതത + 𝑎ଵതതത൯൫𝜕ଷതതത + 𝑎ଶതതത൯ + ൫𝜕ଵദ + 𝑎଴തതത൯൫−𝜕ଶതതത + 𝑎ଷതതത൯ቁ ൭−  ൬𝜕𝜓଴𝜕𝑥ଷ + 𝑎ଶ𝜓଴൰
+ ൬−𝜕𝜓ଵ𝜕𝑥ଶ + 𝑎ଷ𝜓ଵ൰൱
+ ൮−𝜕ଶ + 𝑎ଷ 𝜕ଷ + 𝑎ଶ00 ൲ቀ−൫−𝜕ଶതതത + 𝑎ଷതതത൯൫𝜕ଷതതത + 𝑎ଶതതത൯ + ൫𝜕ଷതതത + 𝑎ଶതതത൯൫−𝜕ଶതതത + 𝑎ଷതതത൯ቁ൭−  ൬𝜕𝜓଴𝜕𝑥ଷ + 𝑎ଶ𝜓଴൰
+ ൬−𝜕𝜓ଵ𝜕𝑥ଶ + 𝑎ଷ𝜓ଵ൰൱
+ ൮− 0 0𝜕଴ + 𝑎ଵ𝜕ଵ + 𝑎଴൲ቀ−൫−𝜕଴തതത + 𝑎ଵതതത൯൫𝜕ଷതതത + 𝑎ଶതതത൯ + ൫𝜕ଵദ + 𝑎଴തതത൯൫−𝜕ଶതതത + 𝑎ଷതതത൯ቁ ൭−  ൬𝜕𝜓ଶ𝜕𝑥ଷ + 𝑎ଶ𝜓ଶ൰
+ ൬−𝜕𝜓ଷ𝜕𝑥ଶ + 𝑎ଷ𝜓ଷ൰൱
+ ൮ 0 0−𝜕ଶ + 𝑎ଷ 𝜕ଷ + 𝑎ଶ ൲ ቀ−൫−𝜕ଶതതത + 𝑎ଷതതത൯൫𝜕ଷതതത + 𝑎ଶതതത൯ + ൫𝜕ଷതതത + 𝑎ଶതതത൯൫−𝜕ଶതതത + 𝑎ଷതതത൯ቁ൭−  ൬𝜕𝜓ଶ𝜕𝑥ଷ + 𝑎ଶ𝜓ଶ൰
+ ൬−𝜕𝜓ଷ𝜕𝑥ଶ + 𝑎ଷ𝜓ଷ൰൱ൢ 
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𝑆ି𝑆ା𝛙 = ൞൮−𝜕଴ + 𝑎ଵ𝜕ଵ + 𝑎଴00 ൲൬𝜕𝑎ଵ𝜕𝑥ଵതതത + 𝜕𝑎଴𝜕𝑥଴തതത൰൭−  ൬𝜕𝜓଴𝜕𝑥ଵ + 𝑎଴𝜓଴൰ + ൬−𝜕𝜓ଵ𝜕𝑥଴ + 𝑎ଵ𝜓ଵ൰൱
+ ൮−𝜕ଶ + 𝑎ଷ 𝜕ଷ + 𝑎ଶ00 ൲ቀ−൫−𝜕ଶതതത + 𝑎ଷതതത൯൫𝜕ଵദ + 𝑎଴തതത൯ + ൫𝜕ଷതതത + 𝑎ଶതതത൯൫−𝜕଴തതത + 𝑎ଵതതത൯ቁ ൭−  ൬𝜕𝜓଴𝜕𝑥ଵ + 𝑎଴𝜓଴൰
+ ൬−𝜕𝜓ଵ𝜕𝑥଴ + 𝑎ଵ𝜓ଵ൰൱
+ ൮ 0 0−𝜕଴ + 𝑎ଵ𝜕ଵ + 𝑎଴ ൲൬𝜕𝑎ଵ𝜕𝑥ଵതതത + 𝜕𝑎଴𝜕𝑥଴തതത൰൭−  ൬𝜕𝜓ଶ𝜕𝑥ଵ + 𝑎଴𝜓ଶ൰ + ൬−𝜕𝜓ଷ𝜕𝑥଴ + 𝑎ଵ𝜓ଷ൰൱
+ ൮ 0 0−𝜕ଶ + 𝑎ଷ 𝜕ଷ + 𝑎ଶ ൲ቀ−൫−𝜕ଶതതത + 𝑎ଷതതത൯൫𝜕ଵദ + 𝑎଴തതത൯ + ൫𝜕ଷതതത + 𝑎ଶതതത൯൫−𝜕଴തതത + 𝑎ଵതതത൯ቁ ൭−  ൬𝜕𝜓ଶ𝜕𝑥ଵ + 𝑎଴𝜓ଶ൰
+ ൬−𝜕𝜓ଷ𝜕𝑥଴ + 𝑎ଵ𝜓ଷ൰൱
+ ൮−𝜕଴ + 𝑎ଵ𝜕ଵ + 𝑎଴00 ൲ቀ−൫−𝜕଴തതത + 𝑎ଵതതത൯൫𝜕ଷതതത + 𝑎ଶതതത൯ + ൫𝜕ଵദ + 𝑎଴തതത൯൫−𝜕ଶതതത + 𝑎ଷതതത൯ቁ ൭−  ൬𝜕𝜓଴𝜕𝑥ଷ + 𝑎ଶ𝜓଴൰
+ ൬−𝜕𝜓ଵ𝜕𝑥ଶ + 𝑎ଷ𝜓ଵ൰൱
+ ൮−𝜕ଶ + 𝑎ଷ 𝜕ଷ + 𝑎ଶ00 ൲൬𝜕𝑎ଷ𝜕𝑥ଷതതത + 𝜕𝑎ଶ𝜕𝑥ଶതതത൰ ൭−  ൬𝜕𝜓଴𝜕𝑥ଷ + 𝑎ଶ𝜓଴൰ + ൬−𝜕𝜓ଵ𝜕𝑥ଶ + 𝑎ଷ𝜓ଵ൰൱
+ ൮ 0 0−𝜕଴ + 𝑎ଵ𝜕ଵ + 𝑎଴ ൲ ቀ−൫−𝜕଴തതത + 𝑎ଵതതത൯൫𝜕ଷതതത + 𝑎ଶതതത൯ + ൫𝜕ଵദ + 𝑎଴തതത൯൫−𝜕ଶതതത + 𝑎ଷതതത൯ቁ ൭−  ൬𝜕𝜓ଶ𝜕𝑥ଷ + 𝑎ଶ𝜓ଶ൰
+ ൬−𝜕𝜓ଷ𝜕𝑥ଶ + 𝑎ଷ𝜓ଷ൰൱
+ ൮ 0 0−𝜕ଶ + 𝑎ଷ 𝜕ଷ + 𝑎ଶ ൲൬𝜕𝑎ଷ𝜕𝑥ଷതതത + 𝜕𝑎ଶ𝜕𝑥ଶതതത൰ ൭−  ൬𝜕𝜓ଶ𝜕𝑥ଷ + 𝑎ଶ𝜓ଶ൰ + ൬−𝜕𝜓ଷ𝜕𝑥ଶ + 𝑎ଷ𝜓ଷ൰൱ൢ − 

Let's calculate the expressions included in the equation 

ቀ−൫−𝜕ଶതതത + 𝑎ଷതതത൯൫𝜕ଵദ + 𝑎଴തതത൯ + ൫𝜕ଷതതത + 𝑎ଶതതത൯൫−𝜕଴തതത + 𝑎ଵതതത൯ቁ𝜑 = ൫𝜕ଷതതത + 𝑎ଶതതത൯൫−𝜕଴തതത + 𝑎ଵതതത൯𝜑 − ൫−𝜕ଶതതത + 𝑎ଷതതത൯൫𝜕ଵദ + 𝑎଴തതത൯𝜑
= ൫𝜕ଷതതത + 𝑎ଶതതത൯ ൬− 𝜕𝜑ത𝜕𝑥଴തതത + 𝑎ଵതതത𝜑൰ − ൫−𝜕ଶതതത + 𝑎ଷതതത൯ ൬𝜕𝜑ത𝜕𝑥ଵതതത + 𝑎଴തതത𝜑൰ 

= 𝜕ଷതതത ൬− 𝜕𝜑ത𝜕𝑥଴തതത൰ + 𝜕ଷതതത(𝑎ଵതതത𝜑) + 𝑎ଶതതത ൬− 𝜕𝜑ത𝜕𝑥଴തതത൰ + 𝑎ଶതതത𝑎ଵതതത𝜑 + 𝜕ଶതതത ൬𝜕𝜑ത𝜕𝑥ଵതതത൰ − ൫−𝜕ଶതതത൯(𝑎଴തതത𝜑) − 𝑎ଷതതത 𝜕𝜑ത𝜕𝑥ଵതതത − 𝑎ଷതതത𝑎଴തതത𝜑 
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= 𝜕ଷതതത ൬− 𝜕𝜑ത𝜕𝑥଴തതത൰ + 𝜕𝑎ଵ𝜕𝑥ଷതതത 𝜑 − 𝑎ଶതതത 𝜕𝜑ത𝜕𝑥଴തതത + 𝑎ଶതതത𝑎ଵതതത𝜑 + 𝜕ଶതതത ൬𝜕𝜑ത𝜕𝑥ଵതതത൰ + 𝑎଴തതത 𝜕𝜑ത𝜕𝑥ଶതതത + 𝜕𝑎଴𝜕𝑥ଶതതത 𝜑 − 𝑎ଷതതത 𝜕𝜑ത𝜕𝑥ଵതതത − 𝑎ଷതതത𝑎଴തതത𝜑
= 𝜕ଶതതത ൬𝜕𝜑ത𝜕𝑥ଵതതത൰ − 𝜕ଷതതത ൬𝜕𝜑ത𝜕𝑥଴തതത൰ + ൤𝜕𝑎ଵ𝜕𝑥ଷതതത + 𝜕𝑎଴𝜕𝑥ଶതതത൨𝜑 + 𝑎ଵതതത 𝜕𝜑ത𝜕𝑥ଷതതത − 𝑎ଶതതത 𝜕𝜑ത𝜕𝑥଴തതത + 𝑎଴തതത 𝜕𝜑ത𝜕𝑥ଶതതത − 𝑎ଷതതത 𝜕𝜑ത𝜕𝑥ଵതതത+ (𝑎ଶതതത𝑎ଵതതത − 𝑎ଷതതത𝑎଴തതത)𝜑 

Let us consider the situation when the electromagnetic potential can be described by a plane 

wave in spinor space 

𝐚(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = ⎝⎛
𝑎଴(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝑎ଵ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝑎ଶ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)𝑎ଷ(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)⎠⎞ = ቌ𝑢௔଴𝑢௔ଵ𝑢௔ଶ𝑢௔ଷቍ𝜑௔ = ቌ𝑢௔଴𝑢௔ଵ𝑢௔ଶ𝑢௔ଷቍ𝑒𝑥𝑝(𝑝௔଴𝑥ଵ − 𝑝௔ଵ𝑥଴ + 𝑝௔ଶ𝑥ଷ − 𝑝௔ଷ𝑥ଶ) 

൜൬− 𝜕𝜕𝑥଴ + 𝑎ଵ൰ ൬ 𝜕𝜕𝑥ଷ + 𝑎ଶ൰ − ൬ 𝜕𝜕𝑥ଵ + 𝑎଴൰ ൬− 𝜕𝜕𝑥ଶ + 𝑎ଷ൰ൠ𝜑
= − 𝜕𝜕𝑥଴ 𝜕𝜕𝑥ଷ 𝜑 + 𝜕𝜕𝑥ଵ 𝜕𝜕𝑥ଶ 𝜑 + ൬−𝜕𝑎ଶ𝜕𝑥଴ − 𝜕𝑎ଷ𝜕𝑥ଵ൰𝜑 − 𝑎ଶ 𝜕𝜑𝜕𝑥଴ + 𝑎ଵ 𝜕𝜑𝜕𝑥ଷ − 𝑎ଷ 𝜕𝜑𝜕𝑥ଵ + 𝑎଴ 𝜕𝜑𝜕𝑥ଶ+ (𝑎ଵ𝑎ଶ − 𝑎଴𝑎ଷ)𝜑= − 𝜕𝜕𝑥଴ 𝜕𝜕𝑥ଷ 𝜑 + 𝜕𝜕𝑥ଵ 𝜕𝜕𝑥ଶ 𝜑 + (𝑢௔ଶ𝑝௔ଵ − 𝑢௔ଷ𝑝௔଴)𝜑௔𝜑 − 𝑢௔ଶ𝜑௔ 𝜕𝜑𝜕𝑥଴ − 𝑢௔ଵ𝜑௔ 𝜕𝜑𝜕𝑥ଶ+ 𝑢௔ଷ𝜑௔ 𝜕𝜑𝜕𝑥଴ + 𝑢௔଴𝜑௔ 𝜕𝜑𝜕𝑥ଷ + (𝑢௔ଵ𝑢௔ଶ − 𝑢௔଴𝑢௔ଷ)𝜑௔ଶ𝜑 

൜൬ 𝜕𝜕𝑥ଵ + 𝑎଴൰ ൬ 𝜕𝜕𝑥ଷ + 𝑎ଶ൰ − ൬ 𝜕𝜕𝑥ଷ + 𝑎ଶ൰ ൬ 𝜕𝜕𝑥ଵ + 𝑎଴൰ൠ𝜑 = ൜𝜕𝑎ଶ𝜕𝑥ଵ − 𝜕𝑎଴𝜕𝑥ଷൠ𝜑 = (𝑢௔ଶ𝑝௔଴ − 𝑢௔଴𝑝௔ଶ)𝜑௔𝜑 

When the electromagnetic potential is represented by a plane wave, the field created by a 
charged particle is not taken into account, so this model adequately describes only the situation when 
the electromagnetic field is strong enough and the influence of the particle charge can be neglected.  

It would be interesting in this context to consider for the presented spinor model the case of a 
centrally symmetric electric field and to find solutions of the spinor wave equation for the hydrogen-
like atom, taking into account the presence of spin at the electron. For such a model we can take 𝑎଴ = −𝑖 ଵ√ଶோ          𝑎ଵ = ଵ√ଶோ        𝑎ଶ = ଵ√ଶோ        𝑎ଷ = −𝑖 ଵ√ଶோ 

𝑅 = ඨቆ12 (𝑥଴തതത𝑥ଵ + 𝑥ଵഥ 𝑥଴ + 𝑥ଶതതത𝑥ଷ + 𝑥ଷതതത𝑥ଶ)ቇଶ − ቆ12 (−𝑥଴തതത𝑥ଵ + 𝑥ଵഥ 𝑥଴ − 𝑥ଶതതത𝑥ଷ + 𝑥ଷതതത𝑥ଶ)ቇଶ + ቆ12 (𝑥଴തതത𝑥଴ − 𝑥ଵഥ 𝑥ଵ + 𝑥ଶതതത𝑥ଶ − 𝑥ଷതതത𝑥ଷ)ቇଶ 

As mentioned above, we can substitute into the equation the already known exact solutions of 
the Dirac equation for the hydrogen-like atom by expressing the components of the coordinate vector 
and derivatives on them through the components of the coordinate spinor and derivatives on them. 
It is likely that the solution of the Dirac equation would not make the spinor equation an identity; it 
would be evidence that more arbitrary assumptions are made in the Dirac equation than in the spinor 
equation, and that the latter claims to be a better description of nature. 

We can also consider the case of a constant magnetic field directed along the z-axis 𝐴଴ = 0        𝐴ଵ = −12𝐵ଷ𝑋ଶ         𝐴ଶ = 12𝐵ଷ𝑋ଵ      𝐴ଷ = 0 

𝑋ଵ = 12 (𝑥଴തതത𝑥ଵ + 𝑥ଵതതത𝑥଴ + 𝑥ଶതതത𝑥ଷ + 𝑥ଷതതത𝑥ଶ) 

𝑋ଶ = 12 (−𝑖𝑥଴തതത𝑥ଵ + 𝑖𝑥ଵതതത𝑥଴ − 𝑖𝑥ଶതതത𝑥ଷ + 𝑖𝑥ଷതതത𝑥ଶ) 
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𝐴ଵ = 12 (𝑎଴തതത𝑎ଵ + 𝑎ଵതതത𝑎଴ + 𝑎ଶതതത𝑎ଷ + 𝑎ଷതതത𝑎ଶ) 

𝐴ଶ = 12 (−𝑖𝑎଴തതത𝑎ଵ + 𝑖𝑎ଵതതത𝑎଴ − 𝑖𝑎ଶതതത𝑎ଷ + 𝑖𝑎ଷതതത𝑎ଶ) 

𝐴଴ = 12 (𝑎଴തതത𝑎଴ + 𝑎ଵതതത𝑎ଵ + 𝑎ଶതതത𝑎ଶ + 𝑎ଷതതത𝑎ଷ) 

𝐴ଷ = 12 (𝑎଴തതത𝑎଴ − 𝑎ଵതതത𝑎ଵ + 𝑎ଶതതത𝑎ଶ − 𝑎ଷതതത𝑎ଷ) 

Let's say 𝑎଴ = 𝑖𝑥ଵതതതඥ𝐵ଷ/2          𝑎ଵ = −𝑥଴തതതඥ𝐵ଷ/2 𝑎ଶ = 𝑖𝑥ଷതതതඥ𝐵ଷ/2          𝑎ଷ = −𝑥ଶതതതඥ𝐵ଷ/2 𝐴ଵ = 14𝐵ଷ(𝑖𝑥ଵ𝑥଴തതത − 𝑖𝑥଴തതത𝑥ଵ + 𝑖𝑥ଷതതത𝑥ଶ − 𝑖𝑥ଶതതത𝑥ଷ) = − 12𝐵ଷ𝑋ଶ 

𝐴ଶ = 14𝐵ଷ(𝑥ଵതതത𝑥଴ + 𝑥଴തതത𝑥ଵ + 𝑥ଷതതത𝑥ଶ + 𝑥ଶതതത𝑥ଷ) = 12𝐵ଷ𝑋ଵ  
𝐴଴ = 14𝐵ଷ(𝑥ଵ𝑥ଵതതത + 𝑥଴𝑥଴തതത + 𝑥ଷ𝑥ଷതതത + 𝑥ଶ𝑥ଶതതത) = 12𝐵ଷ𝑡 𝐴ଷ = 14𝐵ଷ(𝑥ଵ𝑥ଵതതത − 𝑥଴𝑥଴തതത + 𝑥ଷ𝑥ଷതതത − 𝑥ଶ𝑥ଶതതത) = 12𝐵ଷ𝑋ଷ  

We see that the scalar potential 𝐴଴ grows with time, but does not depend on spatial coordinates, 
and the vector potential does not depend on time, so that there is no electric field. In this case 

𝐾 =
⎝⎜
⎜⎜⎜
⎜⎛−

𝜕𝑎ଵതതത𝜕𝑥଴ + 𝜕𝑎ଵതതത𝜕𝑥଴തതത −𝜕𝑎଴തതത𝜕𝑥଴ − 𝜕𝑎ଵതതത𝜕𝑥ଵതതത𝜕𝑎ଵതതത𝜕𝑥ଵ + 𝜕𝑎଴തതത𝜕𝑥଴തതത  𝜕𝑎଴തതത𝜕𝑥ଵ − 𝜕𝑎଴തതത𝜕𝑥ଵതതത  0   00   0
  0   00   0 −𝜕𝑎ଵതതത𝜕𝑥଴ + 𝜕𝑎ଵതതത𝜕𝑥଴തതത −𝜕𝑎଴തതത𝜕𝑥଴ − 𝜕𝑎ଵതതത𝜕𝑥ଵതതത𝜕𝑎ଵതതത𝜕𝑥ଵ + 𝜕𝑎଴തതത𝜕𝑥଴തതത  𝜕𝑎଴തതത𝜕𝑥ଵ − 𝜕𝑎଴തതത𝜕𝑥ଵതതത ⎠⎟

⎟⎟⎟
⎟⎞

+
⎝⎜
⎜⎜⎜
⎜⎛−

𝜕𝑎ଷതതത𝜕𝑥ଶ + 𝜕𝑎ଷതതത𝜕𝑥ଶതതത −𝜕𝑎ଶതതത𝜕𝑥ଶ − 𝜕𝑎ଷതതത𝜕𝑥ଷതതത𝜕𝑎ଷതതത𝜕𝑥ଷ + 𝜕𝑎ଶതതത𝜕𝑥ଶതതത  𝜕𝑎ଶതതത𝜕𝑥ଷ − 𝜕𝑎ଶതതത𝜕𝑥ଷതതത  0   00   0
  0   00   0 −𝜕𝑎ଷതതത𝜕𝑥ଶ + 𝜕𝑎ଷതതത𝜕𝑥ଶതതത −𝜕𝑎ଶതതത𝜕𝑥ଶ − 𝜕𝑎ଷതതത𝜕𝑥ଷതതത𝜕𝑎ଷതതത𝜕𝑥ଷ + 𝜕𝑎ଶതതത𝜕𝑥ଶതതത  𝜕𝑎ଶതതത𝜕𝑥ଷ − 𝜕𝑎ଶതതത𝜕𝑥ଷതതത ⎠⎟

⎟⎟⎟
⎟⎞ = 

= ඨ𝐵ଷ2 ቌ 1 00 −𝑖  0   00   0  0   00   0 1    00 −𝑖 ቍ + ඥ𝐵ଷ/2ቌ 1 00 −𝑖  0   00   0  0   00   0 1 00 −𝑖 ቍ = ඥ2𝐵ଷ ቌ 1 00 −𝑖  0   00   0  0   00   0 1    00 −𝑖 ቍ 

The equation considered up to now is rather cumbersome, therefore we would like to have a 
simpler and compact relativistic invariant equation for the fermion, taking into account the presence 
of a half-integer spin. Such equation really exists, its derivation is given in section 4 of the paper. Here 
we will give its form for the electron in the presence of the electromagnetic field ൫𝑆ோ + 𝑆ோതതത + 𝑆ோ + 𝑆ோതതത − 4(𝑚 + 𝑚ഥ)𝐼൯𝛗(𝐱) = 0 

where 
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𝑆ோ = ൮−(−𝜕ଶ + 𝑎ଷ)−(𝜕ଷ + 𝑎ଶ)(−𝜕଴ + 𝑎ଵ)(𝜕ଵ + 𝑎଴) ൲ ((𝜕ଵ + 𝑎଴),−(−𝜕଴ + 𝑎ଵ), (𝜕ଷ + 𝑎ଶ),−(−𝜕ଶ + 𝑎ଷ))
−൮−(−𝜕଴ + 𝑎ଵ)−(𝜕ଵ + 𝑎଴)(−𝜕ଶ + 𝑎ଷ)(𝜕ଷ + 𝑎ଶ) ൲൫(𝜕ଷ + 𝑎ଶ),−(−𝜕ଶ + 𝑎ଷ), (𝜕ଵ + 𝑎଴),−(−𝜕଴ + 𝑎ଵ)൯ 

+൮(−𝜕଴ + 𝑎ଵ)(𝜕ଵ + 𝑎଴)(−𝜕ଶ + 𝑎ଷ)(𝜕ଷ + 𝑎ଶ) ൲൫(𝜕ଷ + 𝑎ଶ),−(−𝜕ଶ + 𝑎ଷ),−(𝜕ଵ + 𝑎଴), (−𝜕଴ + 𝑎ଵ)൯
− ൮(−𝜕ଶ + 𝑎ଷ)(𝜕ଷ + 𝑎ଶ)(−𝜕଴ + 𝑎ଵ)(𝜕ଵ + 𝑎଴) ൲൫(𝜕ଵ + 𝑎଴),−(−𝜕଴ + 𝑎ଵ),−(𝜕ଷ + 𝑎ଶ), (−𝜕ଶ + 𝑎ଷ)൯ 

𝑆ோ = ൮ (𝜕ଵ + 𝑎଴)−(−𝜕଴ + 𝑎ଵ)(𝜕ଷ + 𝑎ଶ)−(−𝜕ଶ + 𝑎ଷ)൲ (−(−𝜕ଶ + 𝑎ଷ),−(𝜕ଷ + 𝑎ଶ), (−𝜕଴ + 𝑎ଵ), (𝜕ଵ + 𝑎଴))
−൮ (𝜕ଷ + 𝑎ଶ)−(−𝜕ଶ + 𝑎ଷ)(𝜕ଵ + 𝑎଴)−(−𝜕଴ + 𝑎ଵ)൲ (−(−𝜕଴ + 𝑎ଵ),−(𝜕ଵ + 𝑎଴), (−𝜕ଶ + 𝑎ଷ), (𝜕ଷ + 𝑎ଶ)) 

+൮ (𝜕ଷ + 𝑎ଶ)−(−𝜕ଶ + 𝑎ଷ)−(𝜕ଵ + 𝑎଴)(−𝜕଴ + 𝑎ଵ) ൲ ((−𝜕଴ + 𝑎ଵ), (𝜕ଵ + 𝑎଴), (−𝜕ଶ + 𝑎ଷ), (𝜕ଷ + 𝑎ଶ))
−൮ (𝜕ଵ + 𝑎଴)−(−𝜕଴ + 𝑎ଵ)−(𝜕ଷ + 𝑎ଶ)(−𝜕ଶ + 𝑎ଷ) ൲ ((−𝜕ଶ + 𝑎ଷ), (𝜕ଷ + 𝑎ଶ), (−𝜕଴ + 𝑎ଵ), (𝜕ଵ + 𝑎଴)) 

In general case electric and magnetic fields are expressed through partial derivatives of 
components of the vector potential by components of the space vector. We also can find the 
expression through these fields for the derivatives of the spinor components of the electromagnetic 
potential by the components of the coordinate spinor. To do this, we first find all derivatives  𝜕𝐴ఊ𝜕𝑥µ = 𝜕𝐴ఊ𝜕𝑋ఔ 𝜕𝑋ఔ𝜕𝑥µ  

then express the components of the vector potential through the components of the spinor potential, 
substitute the components of the electric and magnetic fields instead of the derivatives of the 
components of the vector potential by the components of the coordinate vector, and then find the 
required derivatives from the resulting system of linear equations. 

From general considerations taking into account the substitutions 

𝑝଴തതത → 𝜕[ ]ഥ𝜕𝑥ଵതതത           𝑝ଵതതത → −𝜕[ ]ഥ𝜕𝑥଴തതത 
it is possible to write the commutation relations for the components of the momentum spinor and 
functions from the components of the coordinate spinor 𝜕[𝜑]തതതത𝜕𝑥ଵതതത = 1𝑐 [𝜑,𝑝଴തതത] = 1𝑐 (𝜑𝑝଴തതത − 𝑝଴തതത𝜑) 

[𝑥ଵ,𝑝଴തതത] = (𝑥ଵ𝑝଴തതത − 𝑝଴തതത𝑥ଵ) = 𝑐 𝜕𝑥ଵതതത𝜕𝑥ଵതതത = 𝑐 [𝑥ଵതതത,𝑝଴] = (𝑥ଵതതത𝑝଴ − 𝑝଴𝑥ଵതതത) = 𝑐̅ 
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𝜕[𝜑]തതതത𝜕𝑥଴തതത = − 1𝑑 [𝜑,𝑝ଵതതത] = − 1𝑑 (𝜑𝑝ଵതതത − 𝑝ଵതതത𝜑) 

[𝑥଴,𝑝ଵതതത] = (𝑥଴𝑝ଵതതത − 𝑝ଵതതത𝑥଴) = −𝑑 𝜕𝑥଴തതത𝜕𝑥଴തതത = −𝑑 [𝑥଴തതത,𝑝ଵ] = (𝑥଴തതത𝑝ଵ − 𝑝ଵ𝑥଴തതത) = −𝑑̅ 
All other combinations commute with each other. The constant coefficients c and d possibly 

include a minus sign, an imaginary unit and some degree of the rationalized Planck’s constant. Their 
values can be determined using known commutation relations for vector components, e.g. 𝑋ଵ𝑃ଵ −  𝑃ଵ𝑋ଵ = 𝑖ћ 

and using expressions of vector components through spinor components 𝑋ଵ𝑃ଵ −  𝑃ଵ𝑋ଵ = (𝑥଴തതത, 𝑥ଵതതത) ቀ0 11 0ቁ ቀ𝑥଴𝑥ଵቁ (𝑝଴തതത,𝑝ଵതതത) ቀ0 11 0ቁ ቀ𝑝଴𝑝ଵቁ − (𝑝଴തതത,𝑝ଵതതത) ቀ0 11 0ቁ ቀ𝑝଴𝑝ଵቁ (𝑥଴തതത, 𝑥ଵതതത) ቀ0 11 0ቁ ቀ𝑥଴𝑥ଵቁ= (𝑥଴തതത, 𝑥ଵതതത) ቀ𝑥ଵ𝑥଴ቁ (𝑝଴തതത,𝑝ଵതതത) ቀ𝑝ଵ𝑝଴ቁ − (𝑝଴തതത,𝑝ଵതതത) ቀ𝑝ଵ𝑝଴ቁ (𝑥଴തതത, 𝑥ଵതതത) ቀ𝑥ଵ𝑥଴ቁ= (𝑥଴തതത𝑥ଵ + 𝑥ଵതതത𝑥଴)(𝑝଴തതത𝑝ଵ + 𝑝ଵതതത𝑝଴) − (𝑝଴തതത𝑝ଵ + 𝑝ଵതതത𝑝଴)(𝑥଴തതത𝑥ଵ + 𝑥ଵതതത𝑥଴)= 𝑥଴തതത𝑥ଵ𝑝଴തതത𝑝ଵ + 𝑥଴തതത𝑥ଵ𝑝ଵതതത𝑝଴ + 𝑥ଵതതത𝑥଴𝑝଴തതത𝑝ଵ + 𝑥ଵതതത𝑥଴𝑝ଵതതത𝑝଴ − 𝑝଴തതത𝑝ଵ𝑥଴തതത𝑥ଵ − 𝑝଴തതത𝑝ଵ𝑥ଵതതത𝑥଴ − 𝑝ଵതതത𝑝଴𝑥଴തതത𝑥ଵ− 𝑝ଵതതത𝑝଴𝑥ଵതതത𝑥଴= (𝑥଴തതത𝑥ଵ𝑝଴തതത𝑝ଵ − 𝑝଴തതത𝑝ଵ𝑥଴തതത𝑥ଵ) + (𝑥଴തതത𝑥ଵ𝑝ଵതതത𝑝଴ − 𝑝ଵതതത𝑝଴𝑥଴തതത𝑥ଵ) + (𝑥ଵതതത𝑥଴𝑝଴തതത𝑝ଵ − 𝑝଴തതത𝑝ଵ𝑥ଵതതത𝑥଴)+ (𝑥ଵതതത𝑥଴𝑝ଵതതത𝑝଴ − 𝑝ଵതതത𝑝଴𝑥ଵതതത𝑥଴) 𝑥଴തതത𝑥ଵ𝑝଴തതത𝑝ଵ − 𝑝଴തതത𝑝ଵ𝑥଴തതത𝑥ଵ = 𝑥଴തതത(𝑝଴തതത𝑥ଵ + 𝑐)𝑝ଵ − 𝑝଴തതത൫𝑥଴തതത𝑝ଵ + 𝑑̅൯𝑥ଵ = 𝑥଴തതത𝑝଴തതത𝑥ଵ𝑝ଵ + 𝑐𝑥଴തതത𝑝ଵ − 𝑝଴തതത𝑥଴തതത𝑝ଵ𝑥ଵ − 𝑑̅𝑝଴തതത𝑥ଵ= 𝑥଴തതത𝑝଴തതത𝑥ଵ𝑝ଵ − 𝑥଴തതത𝑝଴തതത𝑥ଵ𝑝ଵ + 𝑐𝑥଴തതത𝑝ଵ − 𝑑̅𝑝଴തതത𝑥ଵ = 𝑐𝑥଴തതത𝑝ଵ − 𝑑̅𝑝଴തതത𝑥ଵ 𝑥ଵതതത𝑥଴𝑝ଵതതത𝑝଴ − 𝑝ଵതതത𝑝଴𝑥ଵതതത𝑥଴ = 𝑥ଵതതത(𝑝ଵതതത𝑥଴ − 𝑑)𝑝଴ − 𝑝ଵതതത(𝑥ଵതതത𝑝଴ − 𝑐̅)𝑥଴ = 𝑥ଵതതത𝑝ଵതതത𝑥଴𝑝଴ − 𝑑𝑥ଵതതത𝑝଴ − 𝑝ଵതതത𝑥ଵതതത𝑝଴𝑥଴ + 𝑐̅𝑝ଵതതത𝑥଴= 𝑥ଵതതത𝑝ଵതതത𝑥଴𝑝଴ − 𝑥ଵതതത𝑝ଵതതത𝑥଴𝑝଴ + 𝑐̅𝑝ଵതതത𝑥଴ − 𝑑𝑥ଵതതത𝑝଴ = 𝑐̅𝑝ଵതതത𝑥଴ − 𝑑𝑥ଵതതത𝑝଴ 𝑥଴തതത𝑥ଵ𝑝ଵതതത𝑝଴ − 𝑝ଵതതത𝑝଴𝑥଴തതത𝑥ଵ = 𝑥଴തതത𝑝ଵതതത𝑥ଵ𝑝଴ − 𝑝ଵതതത𝑝଴𝑥଴തതത𝑥ଵ = 𝑝ଵതതത𝑥଴തതത𝑥ଵ𝑝଴ − 𝑝ଵതതത𝑝଴𝑥଴തതത𝑥ଵ = 𝑝ଵതതത𝑥଴തതത𝑝଴𝑥ଵ − 𝑝ଵതതത𝑝଴𝑥଴തതത𝑥ଵ= 𝑝ଵതതത𝑝଴𝑥଴തതത𝑥ଵ − 𝑝ଵതതത𝑝଴𝑥଴തതത𝑥ଵ = 0 𝑥ଵതതത𝑥଴𝑝଴തതത𝑝ଵ − 𝑝଴തതത𝑝ଵ𝑥ଵതതത𝑥଴ = 𝑥ଵതതത𝑥଴𝑝଴തതത𝑝ଵ − 𝑝଴തതത𝑝ଵ𝑥ଵതതത𝑥଴ = 𝑝଴തതത𝑥ଵതതത𝑥଴𝑝ଵ − 𝑝଴തതത𝑝ଵ𝑥ଵതതത𝑥଴ = 𝑝଴തതത𝑝ଵ𝑥ଵതതത𝑥଴ − 𝑝଴തതത𝑝ଵ𝑥ଵതതത𝑥଴ = 0 𝑋ଵ𝑃ଵ −  𝑃ଵ𝑋ଵ = (𝑥଴തതത𝑥ଵ𝑝଴തതത𝑝ଵ − 𝑝଴തതത𝑝ଵ𝑥଴തതത𝑥ଵ) + (𝑥ଵതതത𝑥଴𝑝ଵതതത𝑝଴ − 𝑝ଵതതത𝑝଴𝑥ଵതതത𝑥଴) = 𝑐𝑥଴തതത𝑝ଵ − 𝑑̅𝑝଴തതത𝑥ଵ + 𝑐̅𝑝ଵതതത𝑥଴ − 𝑑𝑥ଵതതത𝑝଴= 𝑐൫𝑝ଵ𝑥଴തതത − 𝑑̅൯ − 𝑑̅(𝑥ଵ𝑝଴തതത − 𝑐) + 𝑐̅(𝑥଴𝑝ଵതതത + 𝑑) − 𝑑(𝑝଴𝑥ଵതതത + 𝑐̅)= 𝑐𝑝ଵ𝑥଴തതത − 𝑐𝑑̅ − 𝑑̅𝑥ଵ𝑝଴തതത + 𝑑̅𝑐 + 𝑐̅𝑥଴𝑝ଵതതത + 𝑐̅𝑑 − 𝑑𝑝଴𝑥ଵതതത  − 𝑑𝑐̅= 𝑐𝑝ଵ𝑥଴തതത − 𝑑̅𝑥ଵ𝑝଴തതത + 𝑐̅𝑥଴𝑝ଵതതത − 𝑑𝑝଴𝑥ଵതതത  
Let's return to the relations 𝑃଴ଶ − 𝑃ଵଶ − 𝑃ଶଶ − 𝑃ଷଶ = 𝑚ഥ𝑚 = 𝑚ଶ 𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ = 𝑚  𝑝ଵതതത𝑝ଶതതത − 𝑝଴തതത𝑝ଷതതത = 𝑚ഥ  (𝑝ଵതതത𝑝ଶതതത − 𝑝଴തതത𝑝ଷതതത)(𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ) = 𝑚ഥ𝑚 = 𝑚ଶ 

In this form they are equivalent, but if an external field is added, a difference arises, since in one 

case the field is added at the vector level and in the other at the spinor level (𝑃଴ − 𝐴଴)ଶ − (𝑃ଵ − 𝐴ଵ)ଶ − (𝑃ଶ − 𝐴ଶ)ଶ − (𝑃ଷ − 𝐴ଷ)ଶ = 𝑚ଶ ൫(𝑝ଵ − 𝑎ଵ)തതതതതതതതതതതത(𝑝ଶ − 𝑎ଶ)തതതതതതതതതതതത − (𝑝଴ − 𝑎଴)(𝑝ଷ − 𝑎ଷ)തതതതതതതതതതതതതതതതതതതതതതതത൯((𝑝ଵ − 𝑎ଵ)(𝑝ଶ − 𝑎ଶ) − (𝑝଴ − 𝑎଴)(𝑝ଷ − 𝑎ଷ)) = 𝑚ଶ 

These relations correspond to differential equations including the relativistic Schrödinger 

equation 
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ቆ 𝜕ଶ𝜕𝑋଴ଶ − 𝜕ଶ𝜕𝑋ଵଶ − 𝜕ଶ𝜕𝑋ଶଶ − 𝜕ଶ𝜕𝑋ଷଶቇ𝜑(𝑋଴,𝑋ଵ,𝑋ଶ,𝑋ଷ) = 𝑚ଶ𝜑(𝑋଴,𝑋ଵ,𝑋ଶ,𝑋ଷ) 

൬ 𝜕𝜕𝑥ଵ 𝜕𝜕𝑥ଶ − 𝜕𝜕𝑥଴ 𝜕𝜕𝑥ଷ൰𝜑(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = 𝑚 𝜑(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) 

ቆ𝜕[ ]ഥ𝜕𝑥ଵതതത 𝜕[ ]ഥ𝜕𝑥ଶതതത − 𝜕[ ]ഥ𝜕𝑥଴തതത 𝜕[ ]ഥ𝜕𝑥ଷതതതቇ𝜑(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = 𝑚ഥ  𝜑(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) 

ቆ𝜕[ ]ഥ𝜕𝑥ଵതതത 𝜕[ ]ഥ𝜕𝑥ଶതതത − 𝜕[ ]ഥ𝜕𝑥଴തതത 𝜕[ ]ഥ𝜕𝑥ଷതതതቇ ൬ 𝜕𝜕𝑥ଵ 𝜕𝜕𝑥ଶ − 𝜕𝜕𝑥଴ 𝜕𝜕𝑥ଷ൰𝜑(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = 𝑚ଶ𝜑(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ) 

For a free particle the eigenfunctions and eigenvalues solving these equations should coincide, 
but in the presence of an external field the eigenvalues and the corresponding eigenfunctions will 
differ because of the above mentioned difference in summation in one case of vector components and 
in the other case of spinor components. 

While the Dirac equation is sometimes referred to as extracting the square root of the Klein-
Gordon equation, here we see a different way of doing it. 

Let us describe in more detail the square of the length of the momentum vector 

 4(𝑃଴𝑃଴ − 𝑃ଵ𝑃ଵ − 𝑃ଶ𝑃ଶ − 𝑃ଷ𝑃ଷ) == (𝑝଴തതത𝑝଴ + 𝑝ଵതതത𝑝ଵ + 𝑝ଶതതത𝑝ଶ + 𝑝ଷതതത𝑝ଷ)(𝑝଴തതത𝑝଴ + 𝑝ଵതതത𝑝ଵ +𝑝ଶതതത𝑝ଶ + 𝑝ଷതതത𝑝ଷ) − (𝑝଴തതത𝑝ଵ + 𝑝ଵതതത𝑝଴ + 𝑝ଶതതത𝑝ଷ + 𝑝ଷതതത𝑝ଶ)(𝑝଴തതത𝑝ଵ + 𝑝ଵതതത𝑝଴ + 𝑝ଶതതത𝑝ଷ + 𝑝ଷതതത𝑝ଶ) + (−𝑝଴തതത𝑝ଵ + 𝑝ଵതതത𝑝଴ − 𝑝ଶതതത𝑝ଷ +𝑝ଷതതത𝑝ଶ)(−𝑝଴തതത𝑝ଵ + 𝑝ଵതതത𝑝଴ − 𝑝ଶതതത𝑝ଷ + 𝑝ଷതതത𝑝ଶ) − (𝑝଴തതത𝑝଴ − 𝑝ଵതതത𝑝ଵ + 𝑝ଶതതത𝑝ଶ − 𝑝ଷതതത𝑝ଷ)(𝑝଴തതത𝑝଴ − 𝑝ଵതതത𝑝ଵ + 𝑝ଶതതത𝑝ଶ − 𝑝ଷതതത𝑝ଷ) (𝑝଴തതത𝑝଴ + 𝑝ଵതതത𝑝ଵ + 𝑝ଶതതത𝑝ଶ + 𝑝ଷതതത𝑝ଷ)(𝑝଴തതത𝑝଴ + 𝑝ଵതതത𝑝ଵ + 𝑝ଶതതത𝑝ଶ + 𝑝ଷതതത𝑝ଷ)− (𝑝଴തതത𝑝଴ − 𝑝ଵതതത𝑝ଵ + 𝑝ଶതതത𝑝ଶ − 𝑝ଷതതത𝑝ଷ)(𝑝଴തതത𝑝଴ − 𝑝ଵതതത𝑝ଵ + 𝑝ଶതതത𝑝ଶ − 𝑝ଷതതത𝑝ଷ)= 𝑝଴തതത𝑝଴(𝑝ଵതതത𝑝ଵ + 𝑝ଶതതത𝑝ଶ + 𝑝ଷതതത𝑝ଷ) + 𝑝ଵതതത𝑝ଵ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ + 𝑝ଷതതത𝑝ଷ) + 𝑝ଶതതത𝑝ଶ(𝑝଴തതത𝑝଴ + 𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ)+ 𝑝ଷതതത𝑝ଷ(𝑝଴തതത𝑝଴ + 𝑝ଵതതത𝑝ଵ + 𝑝ଶതതത𝑝ଶ) − 𝑝଴തതത𝑝଴(−𝑝ଵതതത𝑝ଵ + 𝑝ଶതതത𝑝ଶ − 𝑝ଷതതത𝑝ଷ) + 𝑝ଵതതത𝑝ଵ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ − 𝑝ଷതതത𝑝ଷ)− 𝑝ଶതതത𝑝ଶ(𝑝଴തതത𝑝଴ − 𝑝ଵതതത𝑝ଵ − 𝑝ଷതതത𝑝ଷ) + 𝑝ଷതതത𝑝ଷ(𝑝଴തതത𝑝଴ − 𝑝ଵതതത𝑝ଵ + 𝑝ଶതതത𝑝ଶ)= 𝑝଴തതത𝑝଴(𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ) + 𝑝ଵതതത𝑝ଵ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ) + 𝑝ଶതതത𝑝ଶ(𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ) + 𝑝ଷതതത𝑝ଷ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ)− 𝑝଴തതത𝑝଴(−𝑝ଵതതത𝑝ଵ − 𝑝ଷതതത𝑝ଷ) + 𝑝ଵതതത𝑝ଵ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ) − 𝑝ଶതതത𝑝ଶ(−𝑝ଵതതത𝑝ଵ − 𝑝ଷതതത𝑝ଷ)+ 𝑝ଷതതത𝑝ଷ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ)= 𝑝଴തതത𝑝଴(𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ) + 𝑝ଵതതത𝑝ଵ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ) + 𝑝ଶതതത𝑝ଶ(𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ) + 𝑝ଷതതത𝑝ଷ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ)+ 𝑝଴തതത𝑝଴(𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ) + 𝑝ଵതതത𝑝ଵ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ) + 𝑝ଶതതത𝑝ଶ(𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ) + 𝑝ଷതതത𝑝ଷ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ) −(𝑝଴തതത𝑝ଵ + 𝑝ଵതതത𝑝଴ + 𝑝ଶതതത𝑝ଷ + 𝑝ଷതതത𝑝ଶ)(𝑝଴തതത𝑝ଵ + 𝑝ଵതതത𝑝଴ + 𝑝ଶതതത𝑝ଷ + 𝑝ଷതതത𝑝ଶ)+ (−𝑝଴തതത𝑝ଵ + 𝑝ଵതതത𝑝଴ − 𝑝ଶതതത𝑝ଷ + 𝑝ଷതതത𝑝ଶ)(−𝑝଴തതത𝑝ଵ + 𝑝ଵതതത𝑝଴ − 𝑝ଶതതത𝑝ଷ + 𝑝ଷതതത𝑝ଶ)= −𝑝଴തതത𝑝ଵ(𝑝ଵതതത𝑝଴ + 𝑝ଶതതത𝑝ଷ + 𝑝ଷതതത𝑝ଶ) − 𝑝ଵതതത𝑝଴(𝑝଴തതത𝑝ଵ + 𝑝ଶതതത𝑝ଷ + 𝑝ଷതതത𝑝ଶ) − 𝑝ଶതതത𝑝ଷ(𝑝଴തതത𝑝ଵ + 𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ)− 𝑝ଷതതത𝑝ଶ(𝑝଴തതത𝑝ଵ + 𝑝ଵതതത𝑝଴ + 𝑝ଶതതത𝑝ଷ) − 𝑝଴തതത𝑝ଵ(𝑝ଵതതത𝑝଴ − 𝑝ଶതതത𝑝ଷ + 𝑝ଷതതത𝑝ଶ) + 𝑝ଵതതത𝑝଴(−𝑝଴തതത𝑝ଵ − 𝑝ଶതതത𝑝ଷ + 𝑝ଷതതത𝑝ଶ)− 𝑝ଶതതത𝑝ଷ(−𝑝଴തതത𝑝ଵ + 𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ) + 𝑝ଷതതത𝑝ଶ(−𝑝଴തതത𝑝ଵ + 𝑝ଵതതത𝑝଴ − 𝑝ଶതതത𝑝ଷ)= −𝑝଴തതത𝑝ଵ(𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ) − 𝑝ଵതതത𝑝଴(𝑝଴തതത𝑝ଵ + 𝑝ଶതതത𝑝ଷ) − 𝑝ଶതതത𝑝ଷ(𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ) − 𝑝ଷതതത𝑝ଶ(𝑝଴തതത𝑝ଵ + 𝑝ଶതതത𝑝ଷ)− 𝑝଴തതത𝑝ଵ(𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ) + 𝑝ଵതതത𝑝଴(−𝑝଴തതത𝑝ଵ − 𝑝ଶതതത𝑝ଷ) − 𝑝ଶതതത𝑝ଷ(+𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ)+ 𝑝ଷതതത𝑝ଶ(−𝑝଴തതത𝑝ଵ − 𝑝ଶതതത𝑝ଷ) 4(𝑃଴𝑃଴ − 𝑃ଵ𝑃ଵ − 𝑃ଶ𝑃ଶ − 𝑃ଷ𝑃ଷ)= 𝑝଴തതത𝑝଴(𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ) + 𝑝ଵതതത𝑝ଵ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ) + 𝑝ଶതതത𝑝ଶ(𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ) + 𝑝ଷതതത𝑝ଷ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ)+ 𝑝଴തതത𝑝଴(𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ) + 𝑝ଵതതത𝑝ଵ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ) + 𝑝ଶതതത𝑝ଶ(𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ) + 𝑝ଷതതത𝑝ଷ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ)− 𝑝଴തതത𝑝ଵ(𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ) − 𝑝ଵതതത𝑝଴(𝑝଴തതത𝑝ଵ + 𝑝ଶതതത𝑝ଷ) − 𝑝ଶതതത𝑝ଷ(𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ) − 𝑝ଷതതത𝑝ଶ(𝑝଴തതത𝑝ଵ + 𝑝ଶതതത𝑝ଷ)− 𝑝଴തതത𝑝ଵ(𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ) + 𝑝ଵതതത𝑝଴(−𝑝଴തതത𝑝ଵ − 𝑝ଶതതത𝑝ଷ) − 𝑝ଶതതത𝑝ଷ(𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ)+ 𝑝ଷതതത𝑝ଶ(−𝑝଴തതത𝑝ଵ − 𝑝ଶതതത𝑝ଷ) 
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To obtain this result, we did not have to make assumptions about commutability of the spinor 
components among themselves. Accordingly, a similar expression takes place for the phase of a plane 
wave in vector space 4(𝑃଴𝑋଴ − 𝑃ଵ𝑋ଵ − 𝑃ଶ𝑋ଶ − 𝑃ଷ𝑋ଷ)= 𝑝଴തതത𝑝଴(𝑥ଵതതത𝑥ଵ + 𝑥ଷതതത𝑥ଷ) + 𝑝ଵതതത𝑝ଵ(𝑥଴തതത𝑥଴ + 𝑥ଶതതത𝑥ଶ) + 𝑝ଶതതത𝑝ଶ(𝑥ଵതതത𝑥ଵ + 𝑥ଷതതത𝑥ଷ) + 𝑝ଷതതത𝑝ଷ(𝑥଴തതത𝑥଴ + 𝑥ଶതതത𝑥ଶ)+ 𝑝଴തതത𝑝଴(𝑥ଵതതത𝑥ଵ + 𝑥ଷതതത𝑥ଷ) + 𝑝ଵതതത𝑝ଵ(𝑥଴തതത𝑥଴ + 𝑥ଶതതത𝑥ଶ) + 𝑝ଶതതത𝑝ଶ(𝑥ଵതതത𝑥ଵ + 𝑥ଷതതത𝑥ଷ) + 𝑝ଷതതത𝑝ଷ(𝑥଴തതത𝑥଴ + 𝑥ଶതതത𝑥ଶ)− 𝑝଴തതത𝑝ଵ(𝑥ଵതതത𝑥଴ + 𝑥ଷതതത𝑥ଶ) − 𝑝ଵതതത𝑝଴(𝑥଴തതത𝑥ଵ + 𝑥ଶതതത𝑥ଷ) − 𝑝ଶതതത𝑝ଷ(𝑥ଵതതത𝑥଴ + 𝑥ଷതതത𝑥ଶ) − 𝑝ଷതതത𝑝ଶ(𝑥଴തതത𝑥ଵ + 𝑥ଶതതത𝑥ଷ)− 𝑝଴തതത𝑝ଵ(𝑥ଵതതത𝑥଴ + 𝑥ଷതതത𝑥ଶ) + 𝑝ଵതതത𝑝଴(−𝑥଴തതത𝑥ଵ − 𝑥ଶതതത𝑥ଷ) − 𝑝ଶതതത𝑝ଷ(𝑥ଵതതത𝑥଴ + 𝑥ଷതതത𝑥ଶ)+ 𝑝ଷതതത𝑝ଶ(−𝑥଴തതത𝑥ଵ − 𝑥ଶതതത𝑥ଷ) 

Further we assume that the components of the momentum spinor commute, which takes place 

for a free particle, then we obtain 4(𝑃଴𝑃଴ − 𝑃ଵ𝑃ଵ − 𝑃ଶ𝑃ଶ − 𝑃ଷ𝑃ଷ)= 𝑝଴തതത𝑝଴(𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ) + 𝑝ଵതതത𝑝ଵ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ) + 𝑝ଶതതത𝑝ଶ(𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ) + 𝑝ଷതതത𝑝ଷ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ)+ 𝑝଴തതത𝑝଴(𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ) + 𝑝ଵതതത𝑝ଵ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ) + 𝑝ଶതതത𝑝ଶ(𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ) + 𝑝ଷതതത𝑝ଷ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ)− 𝑝଴തതത𝑝ଵ(𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ) − 𝑝ଵതതത𝑝଴(𝑝଴തതത𝑝ଵ + 𝑝ଶതതത𝑝ଷ) − 𝑝ଶതതത𝑝ଷ(𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ) − 𝑝ଷതതത𝑝ଶ(𝑝଴തതത𝑝ଵ + 𝑝ଶതതത𝑝ଷ)− 𝑝଴തതത𝑝ଵ(𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ) + 𝑝ଵതതത𝑝଴(−𝑝଴തതത𝑝ଵ − 𝑝ଶതതത𝑝ଷ) − 𝑝ଶതതത𝑝ଷ(𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ)+ 𝑝ଷതതത𝑝ଶ(−𝑝଴തതത𝑝ଵ − 𝑝ଶതതത𝑝ଷ)= 2𝑝଴തതത𝑝଴(𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ) + 2𝑝ଵതതത𝑝ଵ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ) + 2𝑝ଶതതത𝑝ଶ(𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ)+ 2𝑝ଷതതത𝑝ଷ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ) − 𝑝଴തതത𝑝ଵ(𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ) − 𝑝ଵതതത𝑝଴(𝑝଴തതത𝑝ଵ + 𝑝ଶതതത𝑝ଷ) − 𝑝ଶതതത𝑝ଷ(𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ)− 𝑝ଷതതത𝑝ଶ(𝑝଴തതത𝑝ଵ + 𝑝ଶതതത𝑝ଷ) − 𝑝଴തതത𝑝ଵ(𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ) + 𝑝ଵതതത𝑝଴(−𝑝଴തതത𝑝ଵ − 𝑝ଶതതത𝑝ଷ) − 𝑝ଶതതത𝑝ଷ(𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ)+ 𝑝ଷതതത𝑝ଶ(−𝑝଴തതത𝑝ଵ − 𝑝ଶതതത𝑝ଷ)= 2𝑝଴തതത𝑝଴(𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ) + 2𝑝ଵതതത𝑝ଵ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ) + 2𝑝ଶതതത𝑝ଶ(𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ)+ 2𝑝ଷതതത𝑝ଷ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ) − 2𝑝଴തതതതത𝑝ଵ(𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ) − 2𝑝ଶതതത𝑝ଷ(𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ)− 2𝑝଴തതത𝑝ଵ(𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ) − 2𝑝ଶതതത𝑝ଷ(𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ) = 2𝑝଴തതത𝑝଴(𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ) + 2𝑝ଵതതത𝑝ଵ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ) + 2𝑝ଶതതത𝑝ଶ(𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ) + 2𝑝ଷതതത𝑝ଷ(𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ)− 2𝑝଴തതതതത𝑝ଵ(𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ) − 2𝑝ଶതതത𝑝ଷ(𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ) − 2𝑝଴തതത𝑝ଵ(𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ)− 2𝑝ଶതതത𝑝ଷ(𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ)= 2𝑝଴തതത𝑝଴(𝑝ଷതതത𝑝ଷ) + 2𝑝ଵതതത𝑝ଵ(𝑝ଶതതത𝑝ଶ) + 2𝑝ଶതതത𝑝ଶ(𝑝ଵതതത𝑝ଵ) + 2𝑝ଷതതത𝑝ଷ(𝑝଴തതത𝑝଴) − 2𝑝଴തതതതത𝑝ଵ(𝑝ଷതതത𝑝ଶ)− 2𝑝ଶതതത𝑝ଷ(𝑝ଵതതത𝑝଴) − 2𝑝଴തതത𝑝ଵ(𝑝ଷതതത𝑝ଶ) − 2𝑝ଶതതത𝑝ଷ(𝑝ଵതതത𝑝଴)= 4𝑝଴തതത𝑝଴(𝑝ଷതതത𝑝ଷ) + 4𝑝ଵതതത𝑝ଵ(𝑝ଶതതത𝑝ଶ) − 4𝑝଴തതത𝑝ଵ(𝑝ଷതതത𝑝ଶ) − 4𝑝ଶതതത𝑝ଷ(𝑝ଵതതത𝑝଴) 

On the other hand, we can write 𝑚ഥ𝑚 = (𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ)തതതതതതതതതതതതതതതതതത(𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ) =  𝑝ଵ𝑝ଶതതതതതത𝑝ଵ𝑝ଶ − 𝑝ଵ𝑝ଶതതതതതത𝑝଴𝑝ଷ − 𝑝଴𝑝ଷതതതതതത𝑝ଵ𝑝ଶ + 𝑝଴𝑝ଷതതതതതത𝑝଴𝑝ଷ 

Thus, the results of calculations coincide. 
Let us compare the phases of plane waves in vector and spinor spaces. Let us hypothesize that 

the plane wave in spinor space has a more complicated form than it was supposed earlier in the 
paper, namely, it contains an additional conjugate multiplier 𝑒𝑥𝑝 ቀ−𝑖 (𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ)തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത(𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ)ቁ 

On the one hand, this assumption does not cancel the reasoning given in the paper concerning 
the equations and derivatives, since the derivatives on the components of the spatial spinor from the 
first conjugate factor are equal to zero, and on the other hand, the phase of the wave in this form is 
closer to the generally accepted phase of a plane wave in vector space.  
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For the boson the momentum spinor has a special form 𝐩𝐓 = (𝑝଴,𝑝ଵ,𝑝଴,𝑝ଵ) 
Thus phases calculated by two methods do not coincide with each other, though both of them 

are invariant under Lorentz transformations (𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ)തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത(𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ) ≠ 𝑃଴𝑋଴ − 𝑃ଵ𝑋ଵ − 𝑃ଶ𝑋ଶ − 𝑃ଷ𝑋ଷ 

However, if to impose restrictions also on the form of the coordinate spinor 𝐱୘ = (𝑥଴, 𝑥ଵ, 𝑥଴, 𝑥ଵ) 

then  (𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ)തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത(𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ)= 𝑝଴(𝑥ଵ + 𝑥ଷ)തതതതതതതതതതതതതതത𝑝଴(𝑥ଵ + 𝑥ଷ) + 𝑝ଵ(𝑥଴ + 𝑥ଶ)തതതതതതതതതതതതതതത𝑝ଵ(𝑥଴ + 𝑥ଶ) − 𝑝଴(𝑥ଵ + 𝑥ଷ)തതതതതതതതതതതതതതത𝑝ଵ(𝑥଴ + 𝑥ଶ)− 𝑝ଵ(𝑥଴ + 𝑥ଶ)തതതതതതതതതതതതതതത𝑝଴(𝑥ଵ + 𝑥ଷ)  = 4𝑝଴𝑥ଵതതതതതത𝑝଴𝑥 + 4𝑝ଵ𝑥଴തതതതതത𝑝ଵ𝑥଴ − 4𝑝଴𝑥ଵതതതതതത𝑝ଵ𝑥଴ − 4𝑝ଵ𝑥଴തതതതതത𝑝଴𝑥ଵ 
 4(𝑃଴𝑋଴ − 𝑃ଵ𝑋ଵ − 𝑃ଶ𝑋ଶ − 𝑃ଷ𝑋ଷ)= 2𝑝଴തതത𝑝଴𝑥ଵതതത𝑥ଵ + 2𝑝ଵതതത𝑝ଵ𝑥଴തതത𝑥଴ + 2𝑝ଶതതത𝑝ଶ𝑥ଵതതത𝑥ଵ + 2𝑝ଷതതത𝑝ଷ𝑥଴തതത𝑥଴ + 2𝑝଴തതത𝑝଴𝑥ଵതതത𝑥ଵ + 2𝑝ଵതതത𝑝ଵ𝑥଴തതത𝑥଴+ 2𝑝ଶതതത𝑝ଶ𝑥ଵതതത𝑥ଵ + 2𝑝ଷതതത𝑝ଷ𝑥଴തതത𝑥଴ − 2𝑝଴തതത𝑝ଵ𝑥ଵതതത𝑥଴ − 2𝑝ଵതതത𝑝଴𝑥଴തതത𝑥ଵ − 2𝑝ଶതതത𝑝ଷ𝑥ଵതതത𝑥଴ − 2𝑝ଷതതത𝑝ଶ𝑥଴തതത𝑥ଵ− 2𝑝଴തതത𝑝ଵ𝑥ଵതതത𝑥଴ − 2𝑝ଵതതത𝑝଴𝑥଴തതത𝑥ଵ − 2𝑝ଶതതത𝑝ଷ𝑥ଵതതത𝑥଴ − 2𝑝ଷതതത𝑝ଶ𝑥଴തതത𝑥ଵ= 4𝑝଴തതത𝑝଴𝑥ଵതതത𝑥ଵ + 4𝑝ଵതതത𝑝ଵ𝑥଴തതത𝑥଴ + 4𝑝଴തതത𝑝଴𝑥ଵതതത𝑥ଵ + 4𝑝ଵതതത𝑝ଵ𝑥଴തതത𝑥଴ − 4𝑝଴തതത𝑝ଵ𝑥ଵതതത𝑥଴ − 4𝑝ଵതതത𝑝଴𝑥଴തതത𝑥ଵ− 4𝑝଴തതത𝑝ଵ𝑥ଵതതത𝑥଴ − 4𝑝ଵതതത𝑝଴𝑥଴തതത𝑥ଵ= 4𝑝଴തതത𝑝଴𝑥ଵതതത𝑥ଵ + 4𝑝ଵതതത𝑝ଵ𝑥଴തതത𝑥଴ + 4𝑝଴തതത𝑝଴𝑥ଵതതത𝑥ଵ + 4𝑝ଵതതത𝑝ଵ𝑥଴തതത𝑥଴ − 4𝑝଴തതത𝑝ଵ𝑥ଵതതത𝑥଴ − 4𝑝ଵതതത𝑝଴𝑥଴തതത𝑥ଵ− 4𝑝଴തതത𝑝ଵ𝑥ଵതതത𝑥଴ − 4𝑝ଵതതത𝑝଴𝑥଴തതത𝑥ଵ = 8𝑝଴തതത𝑝଴𝑥ଵതതത𝑥ଵ + 8𝑝ଵതതത𝑝ଵ𝑥଴തതത𝑥଴8 − 8𝑝଴തതത𝑝ଵ𝑥ଵതതത𝑥଴ − 8𝑝ଵതതത𝑝଴𝑥଴തതത𝑥ଵ 

That is, there is an equality (𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ)തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത(𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ) = 2(𝑃଴𝑋଴ − 𝑃ଵ𝑋ଵ − 𝑃ଶ𝑋ଶ − 𝑃ଷ𝑋ଷ) 
The form of the coordinate spinor defined in this way leads to the zero length of the coordinate 

vector, but the boson is characterized by this property. That is, it turns out that the requirement of 
coincidence of two definitions of the phase allows revealing the form of the coordinate spinor of the 
particle. 

If a fermion is at rest in some coordinate system, then all components of its momentum vector, 
except the zero component, i.e., energy, are zero. Therefore, the phase of the corresponding plane 
wave in vector space depends on time but does not depend on spatial coordinates. It turns out that 
oscillations in time occur synchronously throughout space, and there is no wave propagation in the 
usual sense. On the contrary, the phase of the wave in spinor space depends on the spatial coordinates 
in such a situation. In addition, two fermions with different spins correspond to the same momentum 
vector, so the phases of the corresponding waves do not differ. But the phases of the wave in spinor 
space for fermions with different spins are different even when they are stationary. 

If we accept the proposed hypothesis, then we need to change the equation for which the plane 

wave is an eigenfunction ൬ 𝜕𝜕𝑥ଵ 𝜕𝜕𝑥ଶ − 𝜕𝜕𝑥଴ 𝜕𝜕𝑥ଷ൰ 𝑒𝑥𝑝 ቀ−𝑖 (𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ)തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത(𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ)ቁ == −(𝑝ଵ𝑝ଶ− 𝑝଴𝑝ଷ) 𝑓(𝐱)തതതതതത𝑓(𝐱)തതതതതത 𝑒𝑥𝑝 ቀ−𝑖 (𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ)തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത(𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ)ቁ 

where 𝑓(𝐱) ≡ (𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ) 
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As a result, we have the equation 

൬ 𝜕𝜕𝑥ଵ 𝜕𝜕𝑥ଶ − 𝜕𝜕𝑥଴ 𝜕𝜕𝑥ଷ൰ 𝑒𝑥𝑝 ቀ−𝑖 𝑓(𝐱)തതതതതത𝑓(𝐱)ቁ = −𝑚𝑓(𝐱)തതതതതത𝑓(𝐱)തതതതതത 𝑒𝑥𝑝 ቀ−𝑖 𝑓(𝐱)തതതതതത𝑓(𝐱)ቁ 

Although the complex multiplier in front of the exponent in the right-hand side does not change 
with rotations and boosts, it now depends on the coordinates. 

Let's consider the equation ൬ 𝜕𝜕𝑥ଵ 𝜕𝜕𝑥ଶ − 𝜕𝜕𝑥଴ 𝜕𝜕𝑥ଷ൰𝜑(𝐱) = −𝑚𝑓(𝐱)തതതതതത𝑓(𝐱)തതതതതത𝜑(𝐱) 

then the function corresponding to the free particle 𝜑(𝐱) = 𝑒𝑥𝑝 ቀ−𝑖 (𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ)തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത(𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ)ቁ𝑓(𝐱)തതതതതത𝑓(𝐱)തതതതതത  

is its solution with 𝑚 = 𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ 
This equation can be ascribed a universal character and its solutions can be sought at different 

possible values of 𝑚 for real physical conditions, for example, in the presence of an electromagnetic 
field. Note that the function with imaginary unit under the exponent 𝑒𝑥𝑝 ቀ−𝑖𝑓(𝐱)തതതതതത𝑓(𝐱)ቁ𝑓(𝐱)തതതതതത𝑓(𝐱)തതതതതത  

tends to zero at removal from the origin, i.e. the wave function of the plane wave is localized in space. 

It was an expression for the amplitude of probability; the probability itself has the form 𝑒𝑥𝑝 ቀ−𝑖𝑓(𝐱)തതതതതത𝑓(𝐱)ቁ𝑓(𝐱)തതതതതത𝑓(𝐱)തതതതതത ቌ𝑒𝑥𝑝 ቀ−𝚤𝑓(𝐱)തതതതതത𝑓(𝐱)ቁ𝑓(𝐱)തതതതതത𝑓(𝐱)തതതതതത ቍതതതതതതതതതതതതതതതതതതതതതതതതതതത = 1𝑓(𝐱)തതതതതത𝑓(𝐱)തതതതതത 𝑓(𝐱)𝑓(𝐱) 

This quantity will not be infinite even at zero coordinates, since the coordinate components enter 
the denominator only as a product with the momentum components, and such a product cannot be 
zero, since this is forbidden by commutation relations and the uncertainty relation. 

The photon has a mass equal to zero, so the right side of the equation is also zero, and it does 
not have a multiplier in the denominator in the solution, so the photon is not localized in space. 

4. Path Integral and Second Quantization in Spinor Coordinate Space 

Based on the above, we can modify the theory of the integral over trajectories. We will consider 
it in the notations in which it is presented in [10]. For a free scalar field with sources J(X) the trajectory 
integral has the form 𝑍(𝐽) = න𝐷𝜑(𝐗) 𝑒𝑥𝑝(𝑖𝒮(𝜑(𝐗))) = න𝐷𝜑(𝐗) 𝑒𝑥𝑝 ൬𝑖 න𝑑ସ𝑋ሼℒ(𝜑(𝐗)) + 𝐽(𝐗)𝜑(𝐗)ሽ)൰

= න𝐷𝜑(𝐗) 𝑒𝑥𝑝 ቆ𝑖 න𝑑ସ𝑋 ቊ 12ቆ൬ 𝜕𝜑𝜕𝑋଴൰ଶ − ൬ 𝜕𝜑𝜕𝑋ଵ൰ଶ − ൬ 𝜕𝜑𝜕𝑋ଶ൰ଶ − ൬ 𝜕𝜑𝜕𝑋ଷ൰ଶ − 𝑚ଶ𝜑(𝐗)ଶቇ
+ 𝐽(𝐗)𝜑(𝐗)ቋቇ 

It includes the action of   𝒮(𝜑(𝐗) = න𝑑ସ𝑋ሼℒ(𝜑(𝐗)) + 𝐽(𝐗)𝜑(𝐗)ሽ 
and the Lagrangian density for the free field ℒ(𝜑(𝐗) = 12ቆ൬ 𝜕𝜑𝜕𝑋଴൰ଶ − ൬ 𝜕𝜑𝜕𝑋ଵ൰ଶ − ൬ 𝜕𝜑𝜕𝑋ଶ൰ଶ − ൬ 𝜕𝜑𝜕𝑋ଷ൰ଶ − 𝑚ଶ𝜑(𝐗)ଶቇ 
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For convenience and clarity, the following notations are introduced (𝜕𝜑)ଶ = 𝜕ఓ𝜑𝜕ఓ𝜑 = 𝜂ఓఔ𝜕ఓ𝜑𝜕ఔ𝜑 = (𝜕଴𝜑)ଶ − (𝜕ଵ𝜑)ଶ − (𝜕ଶ𝜑)ଶ − (𝜕ଷ𝜑)ଶ= ൬ 𝜕𝜑𝜕𝑋଴൰ଶ − ൬ 𝜕𝜑𝜕𝑋ଵ൰ଶ − ൬ 𝜕𝜑𝜕𝑋ଶ൰ଶ − ൬ 𝜕𝜑𝜕𝑋ଷ൰ଶ 

𝜕ఓ ≡ 𝜕𝜕𝑋ఓ 

For the general case the Lagrangian density has the form ℒ൫𝜑(𝐗)൯ = 12 ൫𝜕𝜑(𝐗)൯ଶ − 𝑉൫𝜑(𝐗)൯ 
where V൫𝜑(𝐗)൯-polynomial over the field 𝜑(𝐗). 

Substituting the Lagrangian into the Euler equation 𝜕ఓ 𝛿ℒ𝛿(𝜕ఓ𝜑) − 𝛿ℒ𝛿𝜑 = 0 

the field equation of motion is obtained. 

The free field theory is developed for a special kind of polynomial 𝑉൫𝜑(𝑋)൯ = 12𝑚ଶ𝜑ଶ 

ℒ(𝜑) = 12 [(𝜕𝜑)ଶ − 𝑚ଶ𝜑ଶ]  𝛿ℒ𝛿(𝜕ఓ𝜑) = 12 𝛿(𝜕𝜑)ଶ𝛿(𝜕ఓ𝜑) = 12 𝛿[(𝜕଴𝜑)ଶ − (𝜕ଵ𝜑)ଶ − (𝜕ଶ𝜑)ଶ − (𝜕ଷ𝜑)ଶ]𝛿(𝜕ఓ𝜑) = ± 12 𝛿൫𝜕ఓ𝜑൯ଶ𝛿(𝜕ఓ𝜑) = ±𝜕ఓ𝜑 𝛿ℒ𝛿𝜑 = 12 ቈ−𝑚ଶ 𝛿𝜑ଶ𝛿𝜑 ቉ = −𝑚ଶ𝜑 

In summary, Euler's equation defines the equation of motion 𝜕଴(𝜕଴𝜑) − 𝜕଴(𝜕଴𝜑) − 𝜕଴(𝜕଴𝜑) − 𝜕଴(𝜕଴𝜑) + 𝑚ଶ𝜑 = 0 𝜕଴ଶ𝜑 − 𝜕ଵଶ𝜑 − 𝜕ଶଶ𝜑 − 𝜕ଷଶ𝜑 + 𝑚ଶ𝜑 = 0 𝜕ଶ𝜑 ≡ 𝜕଴ଶ𝜑 − 𝜕ଵଶ𝜑 − 𝜕ଶଶ𝜑 − 𝜕ଷଶ𝜑 𝜕ଶ𝜑 + 𝑚ଶ𝜑 = 0 (𝜕ଶ + 𝑚ଶ)𝜑 = 0 
The notations used here are 𝜕ଶ𝜑 ≡ 𝜕଴ଶ𝜑 − 𝜕ଵଶ𝜑 − 𝜕ଶଶ𝜑 − 𝜕ଷଶ𝜑 𝜕ଶ ≡ 𝜕଴ଶ − 𝜕ଵଶ − 𝜕ଶଶ − 𝜕ଷଶ 
Thus, there is a correspondence of the Lagrangian and the equation of motion for the free field ℒ൫𝜑(𝐗)൯ = 12 ቂ൫𝜕଴𝜑(𝐗)൯ଶ − ൫𝜕ଵ𝜑(𝐗)൯ଶ − ൫𝜕ଶ𝜑(𝐗)൯ଶ − ൫𝜕ଷ𝜑(𝐗)൯ଶ − 𝑚ଶ𝜑(𝐗)ଶቃ 

ℒ(𝜑) = 12 [(𝜕𝜑)ଶ − 𝑚ଶ𝜑ଶ] 
ℒ(𝜑) = 12 [(𝜕଴𝜑)ଶ − (𝜕ଵ𝜑)ଶ − (𝜕ଶ𝜑)ଶ − (𝜕ଷ𝜑)ଶ − 𝑚ଶ𝜑ଶ] 𝜕଴ଶ𝜑(𝐗) − 𝜕ଵଶ𝜑(𝐗) − 𝜕ଶଶ𝜑(𝐗) − 𝜕ଷଶ𝜑(𝐗) + 𝑚ଶ𝜑(𝐗) = 0 

Our proposal is to replace the Lagrangian in vector coordinate space by the Lagrangian in spinor 
coordinate space. For this purpose we use the equation of motion in spinor coordinate space and we 
want to find the Lagrangian for which the Euler equation defines this equation of motion 
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൬ 𝜕𝜕𝑥ଵ 𝜕𝜕𝑥ଶ − 𝜕𝜕𝑥଴ 𝜕𝜕𝑥ଷ൰𝜑(𝐱) + 𝑚𝜑(𝐱) = 0 (𝜕ଵ𝜕ଶ − 𝜕଴𝜕ଷ)𝜑(𝐱) + 𝑚𝜑(𝐱) = 0 𝜕ఓ 𝛿ℒ𝛿(𝜕ఓ𝜑(𝐱)) − 𝛿ℒ𝛿𝜑(𝐱) = 0 

For the sake of clarity, we use the same notation for the spinor coordinate derivative as for the 
vector coordinate derivative; the context allows us to distinguish between them 𝜕ఓ ≡ 𝜕𝜕𝑥ఓ 

Let us write the Lagrangian plus sources in the form ℒ൫𝜑(𝐱)൯ = 12 [𝜕ଵ𝜑(𝐱)𝜕ଶ𝜑(𝐱) − 𝜕଴𝜑(𝐱)𝜕ଷ𝜑(𝐱))] − 𝑉(𝜑(𝐱))  + 𝑗(𝐱)𝜑(𝐱) 

And let's substitute the Lagrangian into the Euler equation 𝜕଴ 𝛿ℒ𝛿(𝜕଴) + 𝜕ଵ 𝛿ℒ𝛿(𝜕ଵ) + 𝜕ଶ 𝛿ℒ𝛿(𝜕ଶ) + 𝜕ଷ 𝛿ℒ𝛿(𝜕ଷ) − 𝛿ℒ𝛿𝜑 = 0 12 ൣ−𝜕଴൫𝜕ଷ𝜑(𝐱)൯ +  𝜕ଵ(𝜕ଶ𝜑(𝐱)) + 𝜕ଶ(𝜕ଵ𝜑(𝐱))− 𝜕ଷ(𝜕଴𝜑(𝐱))൧ − 𝛿ℒ𝛿𝜑 = 0 

For the case of a free field the derivative operators commute, so we can write 𝜕ଵ𝜕ଶ𝜑(𝐱) − 𝜕଴𝜕ଷ𝜑(𝐱) − ൬𝛿ℒ𝛿𝜑൰ = 0 

൬ 𝜕𝜕𝑥ଵ 𝜕𝜕𝑥ଶ − 𝜕𝜕𝑥଴ 𝜕𝜕𝑥ଷ൰𝜑(𝐱) − ൬𝛿ℒ𝛿𝜑൰ = 0 

൬ 𝜕𝜕𝑥ଵ 𝜕𝜕𝑥ଶ − 𝜕𝜕𝑥଴ 𝜕𝜕𝑥ଷ൰𝜑(𝐱) − ቆ𝛿𝑉(𝜑)𝛿𝜑 ቇ = 0 

It is pleasant that the Euler equation in invariant form works also in this situation, so that we 
obtain the desired form of the equation of motion in the spinor coordinate space. It is important that 
the proposed Lagrangian has a relativistically invariant form, even in the general case, and not only 
at commuting derivatives. The polynomial has the form  𝑉(𝜑) = 12𝑚𝜑(𝐱)ଶ + 𝑔3!𝜑(𝐱)ଷ + 𝜆4!𝜑(𝐱)ସ + ⋯ 

In the case of a free field we restrict ourselves to the first term of the polynomial 𝑉(𝜑) = 12  𝑚𝜑(𝐱)ଶ 

Then the Lagrangian density and the equation of motion for the scalar field in spinor coordinate 
space have the form ℒ൫𝜑(𝐱)൯ = 12 [𝜕ଵ𝜑(𝐱)𝜕ଶ𝜑(𝐱) − 𝜕଴𝜑(𝐱)𝜕ଷ𝜑(𝐱))] − 12  𝑚𝜑(𝐱)ଶ 12 (𝜕ଵ𝜕ଶ + 𝜕ଶ𝜕ଵ − 𝜕଴𝜕ଷ − 𝜕ଷ𝜕଴)𝜑(𝐱) + 𝑚𝜑(𝐱) = 0 

For a free field when the derivative operators commute, we obtain (𝜕ଵ𝜕ଶ − 𝜕଴𝜕ଷ)𝜑(𝐱) + 𝑚𝜑(𝐱) = 0 
In the spinor equation of motion there is a plus sign before the mass, although in the rest of the 

paper there was a minus sign. To return to the minus sign it is enough to put a plus sign in front of 
the polynomial 𝑉(𝜑) in the Lagrangian. 

Now we have to find the integral over the trajectories, which, along with the Lagrangian, 
includes the sources 
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𝑍(𝑗) = න𝐷𝜑(𝐱) 𝑒𝑥𝑝 ൬𝑖 න𝑑ସ𝑥ሼℒ(𝜑(𝐱)) + 𝑗(𝐱)𝜑(𝐱)ሽ൰
= න𝐷𝜑(𝐱) 𝑒𝑥𝑝 ൬𝑖 න𝑑ସ𝑥 ൜ 12 [𝜕ଵ𝜑(𝐱)𝜕ଶ𝜑(𝐱) − 𝜕଴𝜑(𝐱)𝜕ଷ𝜑(𝐱))] − 12𝑚𝜑(𝐱)ଶ
+ 𝑗(𝐱)𝜑(𝐱)ൠ൰ 

The components of spinors are complex, and we have already noted that the derivatives on 
complex variables are applied to the degree functions, which, most likely, can describe physical fields, 
respectively, and at integration the finding of a first-form for the degree function of a complex 
variable can be treated similarly, i.e. as a first-form from the degree function.  

It is possible to recover Planck's constant, which provides a transition to the classical limit 𝑍(𝑗) = න𝐷𝜑(𝐱) 𝑒𝑥𝑝 ൬𝑖ℏන𝑑ସ𝑥ℒ(𝜑(𝐱)൰ 

One of the steps in computing the integral over trajectories in [10] is to find the free propagator 

from Eq. −(𝜕ଶ + 𝑚ଶ)𝐷(𝐗 − 𝐘) = 𝛿(𝐗 − 𝐘) 

the solution of which has the form 𝐷(𝐗 − 𝐘) = න 𝑑ସ𝑃(2𝜋)ସ 𝑒௜𝐏(𝐗ି𝐘)  𝑃ଶ −𝑚ଶ + 𝑖𝜀   
herewith 𝛿(𝐗 − 𝐘) = න 𝑑ସ𝑃(2𝜋)ସ 𝑒௜𝐏(𝐗ି𝐘) 
In our case, we want to find 𝑍(𝑗) = න𝐷𝜑(𝐱) 𝑒𝑥𝑝 ൬𝑖 න𝑑ସ𝑥 ൜ 12 [𝜕ଵ𝜑(𝐱)𝜕ଶ𝜑(𝐱) − 𝜕଴𝜑(𝐱)𝜕ଷ𝜑(𝐱))] − 12𝑚𝜑(𝐱)ଶ + 𝑗(𝐱)𝜑(𝐱)ൠ൰ 

After integration by parts by analogy with [10], Chapter 1.3] we obtain for the special case of a free 

field 𝑍(𝑗) = න𝐷𝜑(𝐱) 𝑒𝑥𝑝 ൬𝑖 න𝑑ସ𝑥 ൜−  12𝜑(𝐱)[(𝜕ଵ𝜕ଶ − 𝜕଴𝜕ଷ) + 𝑚]𝜑(𝐱) + 𝑗(𝐱)𝜑(𝐱)ൠ൰ 

In the process of calculation, it is necessary to find the solution of the equation −(𝜕ଵ𝜕ଶ − 𝜕଴𝜕ଷ + 𝑚)𝐷(𝐱 − 𝐲) = 𝛿(𝐱 − 𝐲) 

For this purpose, we pass to the momentum space by means of the integral transformation 𝜑(𝐱) = න 𝑑ସ𝑝(2𝜋)ସ 𝜑(𝐩)𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) 
The assumed propagator has the form 

𝐷(𝐱 − 𝐲) = න 𝑑ସ𝑝(2𝜋)ସ    𝑒௜(௣బ(௫భି௬భ)ି௣భ(௫బି௬బ)ା௣మ(௫యି௬య)ି௣య(௫మି௬మ))   (𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ) −𝑚 + 𝑖𝜀  

which is verified by substitution into Eq. Here it is assumed that the representation of the delta 

function 𝛿(𝐱 − 𝐲) = න 𝑑ସ𝑝(2𝜋)ସ  𝑒௜(௣బ(௫భି௬భ)ି௣భ(௫బି௬బ)ା௣మ(௫యି௬య)ି௣య(௫మି௬మ)) 
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One can see the difference between the propagators, since in one case 𝑚ଶ is real and positive, 
while in spinor space m is complex in general. 

We can use the relation 1   (𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ) −𝑚 = (𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ)തതതതതതതതതതതതതതതതതത + 𝑚ഥ    ൫(𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ)തതതതതതതതതതതതതതതതതത + 𝑚ഥ   ൯൫(𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ) −𝑚  ൯ = (𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ)തതതതതതതതതതതതതതതതതത + 𝑚ഥ     𝑃ଶ − 𝑚ଶ + (𝑚ഥ −𝑚)(𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ)
= (𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ)തതതതതതതതതതതതതതതതതത + 𝑚ഥ     𝑃ଶ − 𝑚ଶ  

where   𝑃ଶ ≡ 𝑃଴ଶ − 𝑃ଵଶ − 𝑃ଶଶ − 𝑃ଷଶ 

in which it is taken into account that the fermion mass is real. Now the propagator has the form 

𝐷(𝐱) = න 𝑑ସ𝑝(2𝜋)ସ (𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ)തതതതതതതതതതതതതതതതതത + 𝑚ഥ     𝑃ଶ − 𝑚ଶ + 𝑖𝜀 𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) 
The derivatives of the scalar field on spinor coordinates can be expressed through the derivatives 

on vector coordinates 𝜕଴𝜑(𝐱) = 𝜕𝜑(𝐱)𝜕𝑥଴ = 𝜕𝜑൫𝐗(𝐱)൯𝜕𝑥଴= 𝜕𝜑൫𝐗(𝐱)൯𝜕𝑋଴ 𝜕𝑋଴(𝐱)𝜕𝑥଴ + 𝜕𝜑൫𝐗(𝐱)൯𝜕𝑋ଵ 𝜕𝑋ଵ(𝐱)𝜕𝑥଴ + 𝜕𝜑൫𝐗(𝐱)൯𝜕𝑋ଶ 𝜕𝑋ଶ(𝐱)𝜕𝑥଴ + 𝜕𝜑൫𝐗(𝐱)൯𝜕𝑋ଷ 𝜕𝑋ଷ(𝐱)𝜕𝑥଴= 𝜕𝜑𝜕𝑋଴ 𝑥଴തതത2 + 𝜕𝜑𝜕𝑋ଵ 𝑥ଵതതത2 + 𝜕𝜑𝜕𝑋ଶ 𝑖𝑥ଵതതത2 + 𝜕𝜑𝜕𝑋ଷ 𝑥଴തതത2  

𝜕଴𝜑(𝐱) = 𝜕𝜑𝜕𝑋଴ 𝑥଴തതത2 + 𝜕𝜑𝜕𝑋ଵ 𝑥ଵതതത2 + 𝜕𝜑𝜕𝑋ଶ 𝑖𝑥ଵതതത2 + 𝜕𝜑𝜕𝑋ଷ 𝑥଴തതത2  

𝜕ଵ𝜑(𝐱) = 𝜕𝜑𝜕𝑋଴ 𝑥ଵതതത2 + 𝜕𝜑𝜕𝑋ଵ 𝑥଴തതത2 − 𝜕𝜑𝜕𝑋ଶ 𝑖𝑥଴തതത2 − 𝜕𝜑𝜕𝑋ଷ 𝑥ଵതതത2  

𝜕ଶ𝜑(𝐱) = 𝜕𝜑𝜕𝑋଴ 𝑥ଶതതത2 + 𝜕𝜑𝜕𝑋ଵ 𝑥ଷതതത2 + 𝜕𝜑𝜕𝑋ଶ 𝑖𝑥ଷതതത2 + 𝜕𝜑𝜕𝑋ଷ 𝑥ଶതതത2  

𝜕ଷ𝜑(𝐱) = 𝜕𝜑𝜕𝑋଴ 𝑥ଷതതത2 + 𝜕𝜑𝜕𝑋ଵ 𝑥ଶതതത2 − 𝜕𝜑𝜕𝑋ଶ 𝑖𝑥ଶതതത2 − 𝜕𝜑𝜕𝑋ଷ 𝑥ଷതതത2  

If in the right part to represent the wave function as a plane wave in vector space 𝜑(𝐗) = 𝑒𝑥𝑝(𝑃଴𝑋଴ − 𝑃ଵ𝑋ଵ − 𝑃ଶ𝑋ଶ − 𝑃ଷ𝑋ଷ) 

then in the left part it should be represented as a plane wave of a special form in spinor space 𝜑(𝐱) = 𝑒𝑥𝑝 ቀ(𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ)തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത(𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ)ቁ 

Only in this case the left and right parts will be dimensionally consistent, e.g. 𝜕ଵ𝜑(𝐱) = (𝑝଴𝑥ଵതതതതതത − 𝑝ଵ𝑥଴തതതതതത + 𝑝ଶ𝑥ଷതതതതതത − 𝑝ଷ𝑥ଶതതതതതത)𝑝଴ 𝜕𝜑𝜕𝑋଴ 𝑥଴തതത2 = 𝑃଴ 𝑥଴തതത2 = 14 (𝑝଴തതത𝑝଴ + 𝑝ଵതതത𝑝ଵ + 𝑝ଶതതത𝑝ଶ + 𝑝ଷതതത𝑝ଷ)𝑥଴തതത 
In any case, a complete coincidence will not be obtained due to the mismatch of dimensionless 

exponents of the exponents (𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ)തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത(𝑝଴𝑥ଵ − 𝑝ଵ𝑥଴ + 𝑝ଶ𝑥ଷ − 𝑝ଷ𝑥ଶ) ≠ 𝑃଴𝑋଴ − 𝑃ଵ𝑋ଵ − 𝑃ଶ𝑋ଶ − 𝑃ଷ𝑋ଷ 

Since we call the field under consideration a scalar field, we expect its value to be invariant to 
Lorentz transformations. But how to formalize this statement and to what exactly does this 
transformation apply? We propose to consider that the value of a scalar field is the scalar product of 
the representatives of a spinor field, which is the most fundamental field in nature, and vectors, 
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tensors and, among others, scalars are formed from the spinors representing it. The scalar product is 
defined by means of the metric tensor of the spinor space. From any two spinors we can obtain a 
scalar, in general the complex case. But if we want to obtain a scalar with real values, we must impose 
some restrictions on the original spinors. For example, to any spinor u we can correspond a scalar U 
taking real values, whose value does not change under the action of the Lorentz transformation on 
the spinor and the action of the same transformation on the conjugate spinor 𝑈 = −𝑖(𝐮𝑻𝛴ெெ𝐮ഥ) = 𝐮𝑻𝑆ଶ𝐮ഥ = (𝑁 ∗ 𝐮)𝑻𝑆ଶ(𝑁 ∗ 𝐮ഥ) 𝑈 = −𝑖(𝑢଴ ∗ 𝑢ଵതതത − 𝑢ଵ ∗ 𝑢଴തതത + 𝑢ଶ ∗ 𝑢ଷതതത − 𝑢ଷ ∗ 𝑢ଶതതത) 

When a spinor and its conjugate spinor are simultaneously rotated or boosted by some angle, 
the scalar undergoes a rotation or boost by zero angle.  

We can find the derivatives of the scalar by the components of the coordinate spinor 𝜕𝑈(𝐱)𝜕𝑥ఓ = ቆ𝜕𝐮(𝐱)𝜕𝑥ఓ ቇ𝑻 𝑆ଶ 𝐮ഥ + 𝐮(𝐱)𝑻𝑆ଶ ቆ𝜕𝐮(𝐱)തതതതതത𝜕𝑥ఓ ቇ 

The components of the coordinate spinor are complex quantities, the derivative on them is taken 
virtually formally, since physical fields can be represented by power functions of the components of 
the coordinate spinor and its conjugate.  

What advantages does the transition from the integral over trajectories in vector space to the 
integral over trajectories in spinor space provide? A possible answer is that it may be easier to 
compute this integral, or the integration may not lead to divergences. If the spinor coordinate space 
is indeed more fundamental, and the vector coordinate space is an offspring of it, then we may benefit 
from this transition in any case. 

Now let us move from the scalar field to the field of an electron, that is, the field of a particle 
with half-integer spin. We will use gamma matrices in the Weyl basis 

𝛾଴௏ = ቌ0 00 0 1 00 11 00 1 0 00 0ቍ                 𝛾ଵ௏ = ቌ 0 00 0 0 11 00 −1−1 0 0 00 0ቍ 

  𝛾ଶ௏ = ቌ 0 00 0 0 −𝑖𝑖 00 𝑖−𝑖 0 0 00 0 ቍ              𝛾ଷ௏ = ቌ 0 00 0 1 00 −1−1 00 1 0 00 0 ቍ 

Let us consider the linear combination of these matrices with components of the momentum 
vector as coefficients, substituting the expressions of the vector components through the components 
of the momentum spinor 𝛾଴௏𝑃଴ + 𝛾ଵ௏𝑃ଵ + 𝛾ଶ௏𝑃ଶ + 𝛾ଷ௏𝑃ଷ

= ቌ0 00 0 1 00 11 00 1 0 00 0ቍ𝑃଴ + ቌ 0    00    0 0 11 00 −1−1    0 0 00 0ቍ𝑃ଵ + ቌ 0    00    0 0 −𝑖𝑖 00 𝑖−𝑖    0 0 00 0 ቍ𝑃ଶ
+ ቌ0   00   0 1   00 −1−1 00 1 0   00   0ቍ𝑃ଷ = ൮ 0    00    0  𝑃଴ + 𝑃ଷ   𝑃ଵ − 𝑖𝑃ଶ𝑃ଵ + 𝑖𝑃ଶ   𝑃଴ − 𝑃ଷ  𝑃଴ − 𝑃ଷ   −𝑃ଵ + 𝑖𝑃ଶ−𝑃ଵ − 𝑖𝑃ଶ   𝑃଴ + 𝑃ଷ 0    00    0 ൲
= ൮ 0    00    0     𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ −𝑝଴തതത𝑝ଵ − 𝑝ଶതതത𝑝ଷ−𝑝ଵതതത𝑝଴ − 𝑝ଷതതത𝑝ଶ   𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ  𝑝ଵതതത𝑝ଵ + 𝑝ଷതതത𝑝ଷ   𝑝଴തതത𝑝ଵ + 𝑝ଶതതത𝑝ଷ𝑝ଵതതത𝑝଴ + 𝑝ଷതതത𝑝ଶ   𝑝଴തതത𝑝଴ + 𝑝ଶതതത𝑝ଶ 0    00    0 ൲ 

= ൮ 0    00    0  𝑝଴തതത𝑝଴   −𝑝଴തതത𝑝ଵ−𝑝ଵതതത𝑝଴   𝑝ଵതതത𝑝ଵ  𝑝ଵതതത𝑝ଵ   𝑝଴തതത𝑝ଵ𝑝ଵതതത𝑝଴   𝑝଴തതത𝑝଴ 0    00    0 ൲ + ൮ 0    00    0  𝑝ଶതതത𝑝ଶ   −𝑝ଶതതത𝑝ଷ−𝑝ଷതതത𝑝ଶ   𝑝ଷതതത𝑝ଷ  𝑝ଷതതത𝑝ଷ   𝑝ଶതതത𝑝ଷ𝑝ଷതതത𝑝ଶ   𝑝ଶതതത𝑝ଶ 0    00    0 ൲ 
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= ൮ 0    00    0  𝑝଴തതത𝑝଴   −𝑝଴തതത𝑝ଵ−𝑝ଵതതത𝑝଴   𝑝ଵതതത𝑝ଵ  𝑝ଵ𝑝ଵതതത − [𝑝ଵ𝑝ଵതതത − 𝑝ଵതതത𝑝ଵ]   𝑝ଵ𝑝଴തതത − [𝑝ଵ𝑝଴തതത − 𝑝଴തതത𝑝ଵ]𝑝଴𝑝ଵതതത − [𝑝଴𝑝ଵതതത − 𝑝ଵതതത𝑝଴]   𝑝଴𝑝଴തതത − [𝑝଴𝑝଴തതത − 𝑝଴തതത𝑝଴] 0    00    0 ൲
+ ൮ 0    00    0  𝑝ଶതതത𝑝ଶ   −𝑝ଶതതത𝑝ଷ−𝑝ଷതതത𝑝ଶ   𝑝ଷതതത𝑝ଷ  𝑝ଷ𝑝ଷതതത − [𝑝ଷ𝑝ଷതതത − 𝑝ଷതതത𝑝ଷ]   𝑝ଷ𝑝ଶതതത − [𝑝ଷ𝑝ଶതതത − 𝑝ଶതതത𝑝ଷ]𝑝ଶ𝑝ଷതതത − [𝑝ଶ𝑝ଷതതത − 𝑝ଷതതത𝑝ଶ]   𝑝ଶ𝑝ଶതതത − [𝑝ଶ𝑝ଶതതത − 𝑝ଶതതത𝑝ଶ] 0    00    0 ൲ 

= ൮ 0    00    0  𝑝଴തതത𝑝଴   −𝑝଴തതത𝑝ଵ−𝑝ଵതതത𝑝଴   𝑝ଵതതത𝑝ଵ  𝑝ଵ𝑝ଵതതത   𝑝ଵ𝑝଴തതത𝑝଴𝑝ଵതതത   𝑝଴𝑝଴തതത 0    00    0 ൲ + ൮ 0    00    0  𝑝ଶതതത𝑝ଶ   −𝑝ଶതതത𝑝ଷ−𝑝ଷതതത𝑝ଶ   𝑝ଷതതത𝑝ଷ  𝑝ଷ𝑝ଷതതത   𝑝ଷ𝑝ଶതതത𝑝ଶ𝑝ଷതതത   𝑝ଶ𝑝ଶതതത 0    00    0 ൲
− ൮ 0    00    0  0    00    0  [𝑝ଵ𝑝ଵതതത − 𝑝ଵതതത𝑝ଵ]   [𝑝ଵ𝑝଴തതത − 𝑝଴തതത𝑝ଵ][𝑝଴𝑝ଵതതത − 𝑝ଵതതത𝑝଴]   [𝑝଴𝑝଴തതത − 𝑝଴തതത𝑝଴] 0    00    0൲
− ൮ 0    00    0  0    00    0  [𝑝ଷ𝑝ଷതതത − 𝑝ଷതതത𝑝ଷ]   [𝑝ଷ𝑝ଶതതത − 𝑝ଶതതത𝑝ଷ][𝑝ଶ𝑝ଷതതത − 𝑝ଷതതത𝑝ଶ]   [𝑝ଶ𝑝ଶതതത − 𝑝ଶതതത𝑝ଶ] 0    00    0൲ ≡ 𝑆௏(𝐩) − 𝐾௏(𝐩) 

Let us represent the matrix 𝑆௏(𝐩) as a sum of direct products of spinors 

𝑆௏(𝐩) = ቌ 0 0𝑝ଵ𝑝଴ቍ (𝑝ଵതതത,𝑝଴തതത, 0,0) + ൮ 𝑝଴തതത−𝑝ଵതതത00 ൲ (0,0,𝑝଴,−𝑝ଵ) + ቌ 0 0𝑝ଷ𝑝ଶቍ (𝑝ଷതതത,𝑝ଶതതത, 0,0) + ൮ 𝑝ଶതതത−𝑝ଷതതത00 ൲ (0,0,𝑝ଶ,−𝑝ଷ) 

For a free field the components of the momentum spinor commute, therefore 𝛾଴௏𝑃଴ + 𝛾ଵ௏𝑃ଵ + 𝛾ଶ௏𝑃ଶ + 𝛾ଷ௏𝑃ଷ = 𝑆௏(𝐩) 
Complex mass 𝑚 = 𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ 

does not change at rotations and boosts for an arbitrary complex spinor. Moreover, by a direct check 

it is possible to check that for an arbitrary spinor 𝑆௏(𝐩)𝑆௏(𝐩) = 𝑚ഥ𝑚𝐼 = 𝑚ଶ𝐼 
For a free field, when all components of the momentum spinor commute, we can write the 

relativistic equation of motion of the fermionic field 𝑆௏𝑆௏𝛗(𝐱) = 𝑚ഥ𝑚𝐼𝛗(𝐱) 

Where the matrix of derivatives 𝑆௏ is obtained from the matrix 𝑆௏(𝐩) by substitutions 𝑝ଵ → −𝜕଴        𝑝଴ → 𝜕ଵ       𝑝ଷ → −𝜕ଶ         𝑝ଶ → 𝜕ଷ 𝑝ଵതതത → −𝜕଴തതത        𝑝଴തതത → 𝜕ଵദ       𝑝ଷതതത → −𝜕ଶതതത        𝑝ଶതതത → 𝜕ଷതതത 𝜕ఓതതത𝜑(𝐱) ≡ 𝜕𝜑(𝐱)തതതതതത𝜕𝑥ఓതതത  

𝑆௏ = ൮ 0 0−𝜕଴𝜕ଵ ൲ ൫−𝜕଴തതത,𝜕ଵദ, 0,0൯ + ൮𝜕ଵദ𝜕଴തതത00൲ (0,0,𝜕ଵ,𝜕଴) + ൮ 0 0−𝜕ଶ𝜕ଷ ൲ ൫−𝜕ଶതതത,𝜕ଷതതത, 0,0൯ + ൮𝜕ଷതതത𝜕ଶതതത00൲ (0,0,𝜕ଷ,𝜕ଶ) 

However, it is generally accepted to write for this field another equation, the Dirac equation, 
which does not possess the invariance property anymore (𝑆௏ −𝑚𝐼)𝛗(𝐱) = 0 

And for the more general case, when the momentum components do not commute, we need to 

write the equation  (𝑆௏ − 𝐾௏ −𝑚𝐼)𝛗(𝐱) = 0 
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𝐾௏(𝐩) = ൮ 0    00    0  0    00    0  [𝑝ଵ𝑝ଵതതത − 𝑝ଵതതത𝑝ଵ]   [𝑝ଵ𝑝଴തതത − 𝑝଴തതത𝑝ଵ][𝑝଴𝑝ଵതതത − 𝑝ଵതതത𝑝଴]   [𝑝଴𝑝଴തതത − 𝑝଴തതത𝑝଴] 0    00    0൲ + ൮ 0    00    0  0    00    0  [𝑝ଷ𝑝ଷതതത − 𝑝ଷതതത𝑝ଷ]   [𝑝ଷ𝑝ଶതതത − 𝑝ଶതതത𝑝ଷ][𝑝ଶ𝑝ଷതതത − 𝑝ଷതതത𝑝ଶ]   [𝑝ଶ𝑝ଶതതത − 𝑝ଶതതത𝑝ଶ] 0    00    0൲ 

𝐾௏ = ⎝⎛
0    00    0  0    00    0  ൣ𝜕଴𝜕଴തതത − 𝜕଴തതത𝜕଴൧   ൣ−𝜕଴𝜕ଵദ + 𝜕ଵദ𝜕଴൧ൣ−𝜕ଵ𝜕଴തതത + 𝜕଴തതത𝜕ଵ൧   ൣ𝜕ଵ𝜕ଵദ − 𝜕ଵദ𝜕ଵ൧ 0    00    0⎠⎞

+ ⎝⎛
0    00    0  0    00    0  ൣ𝜕ଶ𝜕ଶതതത − 𝜕ଶതതത𝜕ଶ൧   ൣ−𝜕ଶ𝜕ଷതതത + 𝜕ଷതതത𝜕ଶ൧ൣ−𝜕ଷ𝜕ଶതതത + 𝜕ଶതതത𝜕ଷ൧   ൣ𝜕ଷ𝜕ଷതതത − 𝜕ଷതതത𝜕ଷ൧ 0    00    0⎠⎞ 

Further we will consider the equation of motion for a free field (𝑆௏ −𝑚𝐼)𝛗(𝐱) = 0 

We again want to find the integral over trajectories 𝑍(𝑗) = න𝐷𝜑(𝐱) 𝑒𝑥𝑝 ൬𝑖 න𝑑ସ𝑥ሼℒ(𝜑(𝐱)) + 𝑗(𝐱)𝜑(𝐱)ሽ൰ 

for which we need the Lagrangian, from which the Euler equation is derived equation of motion (𝑆௏ −𝑚𝐼)𝛗(𝐱) = 0 

It is suggested to use the Lagrangian ℒ = 12𝛗(𝐱)்𝑆௏𝛗(𝐱) − 12𝑚𝛗(𝐱)்𝛗(𝐱) 

Let us substitute the Lagrangian into the Euler equation and obtain the equation of motion 𝜕଴ 𝛿ℒ𝛿(𝜕଴) + 𝜕ଵ 𝛿ℒ𝛿(𝜕ଵ) + 𝜕ଶ 𝛿ℒ𝛿(𝜕ଶ) + 𝜕ଷ 𝛿ℒ𝛿(𝜕ଷ) − 𝛿ℒ𝛿𝜑 = 0 12 𝑆௏𝛗(𝐱) + 𝑚𝛗(𝐱) = 0 

Since the Lagrangian includes, along with the derivatives of 𝜕ఓ, the derivatives of 𝜕ఓതതത, it is logical 
to use a different definition of Euler's equation 𝜕଴ 𝛿ℒ𝛿(𝜕଴) + 𝜕଴തതത 𝛿ℒ𝛿(𝜕଴തതത) + 𝜕ଵ 𝛿ℒ𝛿(𝜕ଵ) + 𝜕ଵദ 𝛿ℒ𝛿(𝜕ଵദ) + 𝜕ଶ 𝛿ℒ𝛿(𝜕ଶ) + 𝜕ଶതതത 𝛿ℒ𝛿(𝜕ଶതതത) + 𝜕ଷ 𝛿ℒ𝛿(𝜕ଷ) + 𝜕ଷതതത 𝛿ℒ𝛿(𝜕ଷതതത) − 𝛿ℒ𝛿𝜑 = 0 

Then for the free field case when the derivative operators commute with each other, we obtain 
the equation of motion 𝑆௏𝛗(𝐱) + 𝑚𝛗(𝐱) = 0 

If the derivative operators do not commute, additional terms will appear in the equation of 
motion in the form of matrices similar to the 𝐾௏  matrix, and these additional terms will not 
necessarily coincide with 𝐾௏. In this connection it is necessary to consider the Lagrangian as more 
fundamental notion than the equation of motion and to derive the equation of motion from the 
Lagrangian, i.e. to take as a basis not the derivation of the equation of motion in momentum space, 
with what we started, but to take as an axiom the form of the Lagrangian in the form of field 
derivatives in the relativistically invariant form. Then, if to follow the invariance principle quite 
strictly, we should start from the product of two matrices, i.e. to use the Lagrangian ℒ = 12 [𝛗(𝐱)்𝑆௏𝑆௏𝛗(𝐱) −𝑚ଶ𝛗(𝐱)்𝛗(𝐱)] 
Or, not limited to fermions, 
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ℒ = 12 [𝛗(𝐱)்𝑆௏𝑆௏𝛗(𝐱) −𝑚𝑚ഥ𝛗(𝐱)்𝛗(𝐱)] 
Nevertheless, further we will search for the integral over trajectories in the simplest case with 

the originally proposed Lagrangian and in addition assume commutativity of all derivative operators 𝑍(𝑗) = න𝐷𝜑(𝐱) 𝑒𝑥𝑝 ൬𝑖 න𝑑ସ𝑥 ൜ 12𝛗(𝐱)்𝑆௏𝛗(𝐱) − 12𝑚𝛗(𝐱)்𝛗(𝐱) + 𝐣(𝐱)்𝛗(𝐱)ൠ൰ 

After integration by parts, we presumably obtain 𝑍(𝑗) = න𝐷𝜑(𝐱) 𝑒𝑥𝑝 ൬𝑖 න𝑑ସ𝑥 ൜−  12𝛗(𝐱)்[𝑆௏ + 𝑚𝐼]𝛗(𝐱) + 𝑗(𝐱)𝛗(𝐱)ൠ൰ 

Then it is necessary to find the solution of the equation −(𝑆௏ + 𝑚𝐼)𝐃(𝐱) = 𝐼𝛿(𝐱) 

For this purpose, we pass to the momentum space by means of the integral transformation 𝛗(𝐱) = න 𝑑ସ𝑝(2𝜋)ସ 𝛗(𝐩)𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) 
We get the equation (𝑆௏(𝐩) −𝑚𝐼)𝐃௏(𝐩) = 𝐼 
with the decision 𝐃௏(𝐩) = 𝑆௏(𝐩) + 𝑚ഥ𝐼  𝑃ଶ −𝑚ഥ𝑚  

Indeed (𝑆௏(𝐩) −𝑚𝐼)(𝑆௏(𝐩) + 𝑚ഥ𝐼)  𝑃ଶ − 𝑚ഥ𝑚 = (𝑃ଶ −𝑚ഥ𝑚)𝐼  𝑃ଶ −𝑚ഥ𝑚 = 𝐼 
Here we use the equality, which is valid for an arbitrary complex spinor 𝐩 (𝑆௏(𝐩) −𝑚𝐼)(𝑆௏(𝐩) + 𝑚ഥ𝐼) = 𝑃ଶ𝐼 − (𝑚 −𝑚ഥ)𝑆௏(𝐩) −𝑚ഥ𝑚𝐼 = (𝑃ଶ − 𝑚ଶ)𝐼 𝑃ఓ = 12𝐩ற𝑆ఓ𝐩    𝑃ଶ = 𝑃଴ଶ − 𝑃ଵଶ − 𝑃ଶଶ − 𝑃ଷଶ 

It is based on the correlation verified earlier in our work (𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ)(𝑝ଵതതത𝑝ଶതതത − 𝑝଴തതത𝑝ଷതതത) = 𝑃଴ଶ − 𝑃ଵଶ − 𝑃ଶଶ − 𝑃ଷଶ 

it is also taken into account that we consider fermions whose mass is real. 

As a result, the propagator has the form 𝐃௏(𝐱) = න 𝑑ସ𝑝(2𝜋)ସ 𝑆௏(𝐩) + 𝑚ഥ𝐼  𝑃ଶ − 𝑚ഥ𝑚 𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) 
here we assume the validity of the relation 𝛿(𝐱) = න 𝑑ସ𝑝(2𝜋)ସ  𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) 

In the case of a fermion, the mass in integration is a fixed real quantity, and it can be considered 
negative for the electron and positive for the positron. Theoretically, the mass can be complex or 
purely imaginary. If we put mass equal to zero, it may be possible to apply this Lagrangian to describe 
massless particles. I wonder if there are particles with complex or purely imaginary mass. In the latter 
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case, the square of the mass will still be positive and the particle will satisfy the Klein-Gordon 
equation. Such particles can interact among themselves, but not with particles whose mass is real. 

Let's return to the question about the use of completely relativistically invariant Lagrangian ℒ = 12 [𝛗(𝐱)்𝑆௏𝑆௏𝛗(𝐱) −𝑚ଶ𝛗(𝐱)்𝛗(𝐱)] 
Let's find the product of matrices 𝑆௏(𝐩)𝑆௏(𝐩) = 

⎝⎜
⎛ቌ 0 0𝑝ଵ𝑝଴ቍ (𝑝ଵതതത,𝑝଴തതത, 0,0) + ൮ 𝑝଴തതത−𝑝ଵതതത00 ൲ (0,0,𝑝଴,−𝑝ଵ) + ቌ 0 0𝑝ଷ𝑝ଶቍ (𝑝ଷതതത,𝑝ଶതതത, 0,0) + ൮ 𝑝ଶതതത−𝑝ଷതതത00 ൲ (0,0,𝑝ଶ,−𝑝ଷ)⎠⎟

⎞
 

⎝⎜
⎛ቌ 0 0𝑝ଵ𝑝଴ቍ (𝑝ଵതതത,𝑝଴തതത, 0,0) + ൮ 𝑝଴തതത−𝑝ଵതതത00 ൲ (0,0,𝑝଴,−𝑝ଵ) + ቌ 0 0𝑝ଷ𝑝ଶቍ (𝑝ଷതതത,𝑝ଶതതത, 0,0) + ൮ 𝑝ଶതതത−𝑝ଷതതത00 ൲ (0,0,𝑝ଶ,−𝑝ଷ)⎠⎟

⎞ = 

(𝑝ଵതതത𝑝ଶതതത − 𝑝଴തതത𝑝ଷതതത)ቌ 0 0𝑝ଵ𝑝଴ቍ (0,0,𝑝ଶ,−𝑝ଷ) + (𝑝଴𝑝ଷ − 𝑝ଵ𝑝ଶ)൮ 𝑝଴തതത−𝑝ଵതതത00 ൲ (𝑝ଷതതത,𝑝ଶതതത, 0,0) + 

(𝑝ଷതതത𝑝଴തതത − 𝑝ଶതതത𝑝ଵതതത)ቌ 0 0𝑝ଷ𝑝ଶቍ (0,0,𝑝଴,−𝑝ଵ) + (𝑝ଶ𝑝ଵ − 𝑝ଷ𝑝଴)൮ 𝑝ଶതതത−𝑝ଷതതത00 ൲ (𝑝ଵതതത,𝑝଴തതത, 0,0) = 

𝑚ഥ ቌ 0 0𝑝ଵ𝑝଴ቍ (0,0,𝑝ଶ,−𝑝ଷ) −𝑚൮ 𝑝଴തതത−𝑝ଵതതത00 ൲ (𝑝ଷതതത,𝑝ଶതതത, 0,0) −𝑚ഥ ቌ 0 0𝑝ଷ𝑝ଶቍ (0,0,𝑝଴,−𝑝ଵ) + 𝑚൮ 𝑝ଶതതത−𝑝ଷതതത00 ൲ (𝑝ଵതതത,𝑝଴തതത, 0,0) = 

𝑚൞ቌ 0 0𝑝ଵ𝑝଴ቍ (0,0,𝑝ଶ,−𝑝ଷ) −൮ 𝑝଴തതത−𝑝ଵതതത00 ൲ (𝑝ଷതതത,𝑝ଶതതത, 0,0) − ቌ 0 0𝑝ଷ𝑝ଶቍ (0,0,𝑝଴,−𝑝ଵ) + ൮ 𝑝ଶതതത−𝑝ଷതതത00 ൲ (𝑝ଵതതത,𝑝଴തതത, 0,0)ൢ 

≡ 𝑚𝑆௏௏(𝐩) 
The assumption that the following equalities hold is used 𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ = 𝑝ଶ𝑝ଵ − 𝑝ଷ𝑝଴ = 𝑚 𝑝ଵതതത𝑝ଶതതത − 𝑝଴തതത𝑝ଷതതത = 𝑝ଶതതത𝑝ଵതതത − 𝑝ଷതതത𝑝଴തതത = 𝑚ഥ  𝑚ഥ = 𝑚 
Further we find the product of matrices 𝑆௏௏(𝐩)𝑆௏௏(𝐩) = 

൞ቌ 0 0𝑝ଵ𝑝଴ቍ (0,0,𝑝ଶ,−𝑝ଷ) −൮ 𝑝଴തതത−𝑝ଵതതത00 ൲ (𝑝ଷതതത,𝑝ଶതതത, 0,0) − ቌ 0 0𝑝ଷ𝑝ଶቍ (0,0,𝑝଴,−𝑝ଵ) + ൮ 𝑝ଶതതത−𝑝ଷതതത00 ൲ (𝑝ଵതതത,𝑝଴തതത, 0,0)ൢ 

൞ቌ 0 0𝑝ଵ𝑝଴ቍ (0,0,𝑝ଶ,−𝑝ଷ) −൮ 𝑝଴തതത−𝑝ଵതതത00 ൲ (𝑝ଷതതത,𝑝ଶതതത, 0,0) − ቌ 0 0𝑝ଷ𝑝ଶቍ (0,0,𝑝଴,−𝑝ଵ) + ൮ 𝑝ଶതതത−𝑝ଷതതത00 ൲ (𝑝ଵതതത,𝑝଴തതത, 0,0)ൢ 

= (𝑝ଶ𝑝ଵ−𝑝ଷ𝑝଴)ቌ 0 0𝑝ଵ𝑝଴ቍ (0,0,𝑝ଶ,−𝑝ଷ) + (𝑝ଷതതത𝑝଴തതത − 𝑝ଶതതത𝑝ଵതതത)൮ 𝑝଴തതത−𝑝ଵതതത00 ൲ (𝑝ଷതതത,𝑝ଶതതത, 0,0) 
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+(𝑝଴𝑝ଷ − 𝑝ଵ𝑝ଶ)ቌ 0 0𝑝ଷ𝑝ଶቍ (0,0,𝑝଴,−𝑝ଵ) + (𝑝ଶതതത𝑝ଵതതത − 𝑝ଷതതത𝑝଴തതത)൮ 𝑝ଶതതത−𝑝ଷതതത00 ൲ (𝑝ଵതതത,𝑝଴തതത, 0,0)
= 𝑚ቐቌ 0 0𝑝ଵ𝑝଴ቍ (0,0,𝑝ଶ,−𝑝ଷ) − ቌ 0 0𝑝ଷ𝑝ଶቍ (0,0,𝑝଴,−𝑝ଵ)ቑ
+ 𝑚ഥ ൞൮ 𝑝ଶതതത−𝑝ଷതതത00 ൲ (𝑝ଵതതത,𝑝଴തതത, 0,0) − ൮ 𝑝଴തതത−𝑝ଵതതത00 ൲ (𝑝ଷതതത,𝑝ଶതതത, 0,0)ൢ 

=  𝑚ቐቌ0 00 0 0 00 00 00 0 𝑝ଵ𝑝ଶ −𝑝ଵ𝑝ଷ𝑝଴𝑝ଶ −𝑝଴𝑝ଷቍ − ቌ0 00 0 0 00 00 00 0 𝑝ଷ𝑝଴ −𝑝ଷ𝑝ଵ𝑝ଶ𝑝଴ −𝑝ଶ𝑝ଵቍቑ 

+ 𝑚ഥ ൞൮ 𝑝ଶതതത𝑝ଵതതത 𝑝ଶതതത𝑝଴തതത−𝑝ଷതതത𝑝ଵതതത −𝑝ଷതതത𝑝଴തതത 0 00 00 00 0 0 00 0൲−൮ 𝑝଴തതത𝑝ଷതതത 𝑝଴തതത𝑝ଶതതത−𝑝ଵതതത𝑝ଷതതത −𝑝ଵതതത𝑝ଶതതത 0 00 00 00 0 0 00 0൲ൢ 

= 𝑚൞൮0 00 0 0 00 00 00 0 𝑝ଵ𝑝ଶ − 𝑝ଷ𝑝଴ 00 −𝑝଴𝑝ଷ + 𝑝ଶ𝑝ଵ൲ൢ + 𝑚ഥ ൞൮𝑝ଶതതത𝑝ଵതതത − 𝑝଴തതത𝑝ଷതതത 00 −𝑝ଷതതത𝑝଴തതത + 𝑝ଵതതത𝑝ଶതതത 0 00 00 00 0 0 00 0൲ൢ 

= ቌ𝑚ഥ𝑚ഥ 00 𝑚ഥ𝑚ഥ 0 00 00 00 0 𝑚𝑚 00 𝑚𝑚ቍ 

Again we use the equality (𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ)(𝑝ଵതതത𝑝ଶതതത − 𝑝଴തതത𝑝ଷതതത) = 𝑃଴ଶ − 𝑃ଵଶ − 𝑃ଶଶ − 𝑃ଷଶ = 𝑃ଶ 

and consider that the mass of the fermion is real, i.e. 𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ = 𝑝ଵതതത𝑝ଶതതത − 𝑝଴തതത𝑝ଷതതത (𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ)(𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ) = (𝑝ଵതതത𝑝ଶതതത − 𝑝଴തതത𝑝ଷതതത)(𝑝ଵതതത𝑝ଶതതത − 𝑝଴തതത𝑝ଷതതത) = 𝑃ଶ 

therefore, the relations are valid 

𝑆௏௏(𝐩)𝑆௏௏(𝐩) = ൮𝑃ଶ 00 𝑃ଶ 0 00 00 00 0 𝑃ଶ 00 𝑃ଶ൲ = 𝑃ଶ𝐼 
(𝑆௏௏(𝐩) −𝑚𝐼)(𝑆௏௏(𝐩) + 𝑚𝐼) = 𝑃ଶ𝐼 − 𝑚ଶ𝐼 = (𝑃ଶ −𝑚ଶ)𝐼 (𝑆௏௏(𝐩) −𝑚𝐼)(𝑆௏௏(𝐩) + 𝑚𝐼)𝑃ଶ − 𝑚ଶ = 𝐼 

But the main advantage of the obtained matrix is the following 

𝑆௏௏(𝐩) = ቌ 0 0𝑝ଵ𝑝଴ቍ (0,0,𝑝ଶ,−𝑝ଷ) −൮ 𝑝଴തതത−𝑝ଵതതത00 ൲ (𝑝ଷതതത,𝑝ଶതതത, 0,0) − ቌ 0 0𝑝ଷ𝑝ଶቍ (0,0,𝑝଴,−𝑝ଵ) + ൮ 𝑝ଶതതത−𝑝ଷതതത00 ൲ (𝑝ଵതതത,𝑝଴തതത, 0,0) = 

ቌ0 00 0 0 00 00 00 0 𝑝ଵ𝑝ଶ −𝑝ଵ𝑝ଷ𝑝଴𝑝ଶ −𝑝଴𝑝ଷቍ − ቌ0 00 0 0 00 00 00 0 𝑝ଷ𝑝଴ −𝑝ଷ𝑝ଵ𝑝ଶ𝑝଴ −𝑝ଶ𝑝ଵቍ 
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+൮ 𝑝ଶതതത𝑝ଵതതത 𝑝ଶതതത𝑝଴തതത−𝑝ଷതതത𝑝ଵതതത −𝑝ଷതതത𝑝଴തതത 0 00 00 00 0 0 00 0൲ −൮ 𝑝଴തതത𝑝ଷതതത 𝑝଴തതത𝑝ଶതതത−𝑝ଵതതത𝑝ଷതതത −𝑝ଵതതത𝑝ଶതതത 0 00 00 00 0 0 00 0൲ 

= ൮0 00 0 0 00 00 00 0 𝑝ଵ𝑝ଶ − 𝑝ଷ𝑝଴ 00 −𝑝଴𝑝ଷ + 𝑝ଶ𝑝ଵ൲ + ൮𝑝ଶതതത𝑝ଵതതത − 𝑝଴തതത𝑝ଷതതത 00 −𝑝ଷതതത𝑝଴തതത + 𝑝ଵതതത𝑝ଶതതത 0 00 00 00 0 0 00 0൲ 

= ቌ𝑚ഥ 00 𝑚ഥ 0 00 00 00 0 𝑚 00 𝑚ቍ 

This matrix does not change at rotations and boosts, so it can be stated that the equation of 

motion, e.g., in the form of 

⎝⎛𝑆௏௏ − ቌ𝑚ഥ 00 𝑚ഥ 0 00 00 00 0 𝑚 00 𝑚ቍ⎠⎞𝛗(𝐱) = 0 

where 

𝑆௏௏ = ൮ 0 0−𝜕଴𝜕ଵ ൲ (0,0,𝜕ଷ,𝜕ଶ) − ൮𝜕ଵദ𝜕଴തതത00 ൲൫−𝜕ଶതതത,𝜕ଷതതത, 0,0൯ − ൮ 0 0−𝜕ଶ𝜕ଷ ൲ (0,0,𝜕ଵ,𝜕଴) + ൮𝜕ଷതതത𝜕ଶതതത00 ൲൫−𝜕଴തതത,𝜕ଵദ, 0,0൯ 
is truly relativistically invariant, respectively we can use the invariant Lagrangian 

ℒ = 12 [𝛗(𝐱)்𝑆௏௏𝛗(𝐱) −𝑚𝛗(𝐱)்𝛗(𝐱)] 
to which corresponds the relativistically invariant propagator of the boson having a real mass, which 
is negative for the electron and positive for the positron 𝐃௏௏(𝐱) = න 𝑑ସ𝑝(2𝜋)ସ 𝑆௏௏(𝐩) + 𝑚𝐼  𝑃ଶ − 𝑚ଶ 𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) 

Let us compare the propagator in spinor space with the propagator of the fermion given in [10], 
formula II.2.22 and formula II.5.18] 𝑆(𝐗) = න 𝑑ସ𝑃(2𝜋)ସ 𝑒ି௜𝐏𝐗  𝛾ఓ𝑃ఓ −𝑚𝐼 = න 𝑑ସ𝑃(2𝜋)ସ 𝛾ఓ𝑃ఓ + 𝑚𝐼    𝑃ଶ −𝑚ଶ 𝑒ି௜𝐏𝐗 

In [10] this formula is obtained by applying the second quantization procedure or using 
Grassmann integrals. The results are similar, but the integration here is performed in the vector 
momentum space. The Dirac equation and the corresponding Lagrangian are not relativistically 
invariant. Besides, here the mass is considered always real and positive, but then it is not clear how 
electron and positron differ from the point of view of this formula. 

Let us consider in detail the derivation of the expression for the fermion propagator in [10], Sec. 
II.2. It is based on the assumption of relativistic invariance of the Dirac equation and therefore the 
calculations are carried out in the rest frame, and then the result is extended to an arbitrary frame of 
reference. Thus for the field spinor u the spinor u_≡ 𝒖ற𝛾଴ is defined and it is asserted that the value 
of 

𝒖ற𝛾଴𝑢 = 𝒖ற ቌ1 00 1 0 00 00 00 0 −1 00 −1ቍ𝑢 

is a Lorentz scalar. But it is not so, since in the spinor space the scalar is formed exclusively by the 
scalar product of two spinors, where the metric tensor of the spinor space is included     
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𝒖ற𝛴ெெ𝑢 = 𝒖ற ቌ 0 1−1 0 0 00 00 00 0 0 1−1 0ቍ𝑢 

there are no other ways to construct a scalar in the spinor space. 
Nevertheless, this fact and the fact of non-invariance of the Dirac equation itself do not cancel 

the value of the second quantization procedure and the final form of the fermion propagator, which 
allows to make accurate predictions of the experimental results. 

We hope that the proposed Lagrangian for the spinor coordinate space can find application in 
the calculation of the integral over trajectories, but already in the spinor space. Whether such a 
calculation in spinor space has an advantage over the calculation of the integral over trajectories in 
vector space can be shown by their real comparison. 

By analogy with the propagator of a photon, more precisely of a massive vector meson, given in 

[10], formula I.5.3 𝐷ఔఒ(𝐗) = න 𝑑ସ𝑃(2𝜋)ସ    −𝜂ఔఒ + 𝑃ఔ𝑃ఒ/𝑚ଶ  𝑃ଶ −𝑚ଶ 𝑒௜𝐏𝐗 

we can assume the propagator form in the spinor space without revealing for compactness the 
expression of the momentum vector components through the momentum spinor components 𝐷ఔఒ(𝐱) = න 𝑑ସ𝑝(2𝜋)ସ −𝜂ఔఒ + 𝑃ఔ𝑃ఒ/𝑚ଶ    𝑃ଶ − 𝑚ഥ𝑚  𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) 

Among other things, the equation 

⎝⎛𝑆௏௏ − ቌ𝑚ഥ 00 𝑚ഥ 0 00 00 00 0 𝑚 00 𝑚ቍ⎠⎞𝛗(𝐱) = 0 

can be modified to take into account the electromagnetic potential, the electron charge is taken as a 

unit 𝑝଴ → 𝜕ଵ + 𝑎଴           𝑝ଵ → −𝜕଴ + 𝑎ଵ           𝑝ଶ → 𝜕ଷ + 𝑎ଶ          𝑝ଷ → −𝜕ଶ + 𝑎ଷ 𝑝଴തതത → 𝜕ଵദ + 𝑎଴തതത         𝑝ଵതതത → −𝜕଴തതത + 𝑎ଵതതത          𝑝ଶതതത → 𝜕ଷതതത + 𝑎ଶതതത         𝑝ଷതതത → −𝜕ଶതതത + 𝑎ଷതതത 
𝑆௏௏ = ൮ 0 0−𝜕଴ + 𝑎ଵ𝜕ଵ + 𝑎଴ ൲ (0,0,𝜕ଷ + 𝑎ଶ,𝜕ଶ − 𝑎ଷ) − ൮𝜕ଵദ + 𝑎଴തതത𝜕଴തതത − 𝑎ଵതതത00 ൲൫−𝜕ଶതതത + 𝑎ଷതതത,𝜕ଷതതത + 𝑎ଶതതത, 0,0൯

− ൮ 0 0−𝜕ଶ + 𝑎ଷ𝜕ଷ + 𝑎ଶ ൲ (0,0,𝜕ଵ + 𝑎଴,𝜕଴ − 𝑎ଵ) + ൮𝜕ଷതതത + 𝑎ଶതതത𝜕ଶതതത − 𝑎ଷതതത00 ൲൫−𝜕଴തതത + 𝑎ଵതതത,𝜕ଵദ + 𝑎଴തതത, 0,0൯ 
and apply, in particular, to analyze the radiation spectrum of a hydrogen-like atom.  

Let us formulate again the difference between the equations, the second of which is derived from 
the Dirac equation with gamma matrices in the Weyl basis 

⎝⎛𝑆௏௏ − ቌ𝑚ഥ 00 𝑚ഥ 0 00 00 00 0 𝑚 00 𝑚ቍ⎠⎞𝛗(𝐱) = 0 

(𝑆௏ −𝑚𝐼)𝛗(𝐱) = 0 

The difference is, the matrix 𝑆௏௏(𝐩) (p) remains unchanged under any rotations and boosts 
applied to the spinor 𝐩, while the matrix 𝑆௏(𝐩) (p) changes under any rotations and boosts. 
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𝑆௏ = ൮ 0 0−𝜕଴𝜕ଵ ൲ ൫−𝜕଴തതത,𝜕ଵദ, 0,0൯ + ൮𝜕ଵദ𝜕଴തതത00൲ (0,0,𝜕ଵ,𝜕଴) + ൮ 0 0−𝜕ଶ𝜕ଷ ൲ ൫−𝜕ଶതതത,𝜕ଷതതത, 0,0൯ + ൮𝜕ଷതതത𝜕ଶതതത00൲ (0,0,𝜕ଷ,𝜕ଶ) 

𝑆௏௏ = ൮ 0 0−𝜕଴𝜕ଵ ൲ (0,0,𝜕ଷ,𝜕ଶ) − ൮𝜕ଵദ𝜕଴തതത00 ൲൫−𝜕ଶതതത,𝜕ଷതതത, 0,0൯ − ൮ 0 0−𝜕ଶ𝜕ଷ ൲ (0,0,𝜕ଵ,𝜕଴) + ൮𝜕ଷതതത𝜕ଶതതത00 ൲൫−𝜕଴തതത,𝜕ଵദ, 0,0൯ 
Equally radically different are the corresponding Lagrangians and propagators. 

By analogy with [10], Chapter II.2] we will carry out the procedure of second quantization of the 

fermion field. Let us write the equation 

⎝⎛𝑆௏௏ − ቌ𝑚ഥ 00 𝑚ഥ 0 00 00 00 0 𝑚 00 𝑚ቍ⎠⎞𝛗(𝐱) = 0 

in the momentum space, for which we apply the integral transformation 𝛗(𝐱) = න 𝑑ସ𝑝(2𝜋)ସ 𝛗(𝐩)𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) 
Let's substitute the wave function into the equation and obtain 

⎝⎛𝑆௏௏(𝐩) − ቌ𝑚ഥ 00 𝑚ഥ 0 00 00 00 0 𝑚 00 𝑚ቍ⎠⎞𝛗(𝐩) = 0 

𝑆௏௏(𝐩) = ቌ 0 0𝑝ଵ𝑝଴ቍ (0,0,𝑝ଶ,−𝑝ଷ) − ൮ 𝑝଴തതത−𝑝ଵതതത00 ൲ (𝑝ଷതതത,𝑝ଶതതത, 0,0) − ቌ 0 0𝑝ଷ𝑝ଶቍ (0,0,𝑝଴,−𝑝ଵ) + ൮ 𝑝ଶതതത−𝑝ଷതതത00 ൲ (𝑝ଵതതത,𝑝଴തതത, 0,0) 

Let us define two sets of four reference spinors 

     𝐮𝟏 = ቌ 0 0𝑝ଵ𝑝଴ቍ      𝐮𝟐 = ൮ 𝑝଴തതത−𝑝ଵതതത00 ൲       𝐮𝟑 = ቌ 0 0𝑝ଷ𝑝ଶቍ      𝐮𝟒 = ൮ 𝑝ଶതതത−𝑝ଷതതത00 ൲ 

     𝐯𝟏 = ቌ𝑝ଵ𝑝଴00 ቍ      𝐯𝟐 = ൮ 00𝑝଴തതത−𝑝ଵതതത൲       𝐯𝟑 = ቌ𝑝ଷ𝑝ଶ00 ቍ      𝐯𝟒 = ൮ 00𝑝ଶതതത−𝑝ଷതതത൲ 

𝐯𝟏 = 𝛾଴௏𝐮𝟏       𝐯𝟐 = 𝛾଴௏𝐮𝟐       𝐯𝟑 = 𝛾଴௏𝐮𝟑       𝐯𝟒 = 𝛾଴௏𝐮𝟒 

where 

𝛾଴௏ = ቌ0 00 0 1 00 11 00 1 0 00 0ቍ 

And let's express the matrix through them 

𝑆௏௏(𝐩) = ቌ 0 0𝑝ଵ𝑝଴ቍ (0,0,𝑝ଶ,−𝑝ଷ) − ൮ 𝑝଴തതത−𝑝ଵതതത00 ൲ (𝑝ଷതതത,𝑝ଶതതത, 0,0) − ቌ 0 0𝑝ଷ𝑝ଶቍ (0,0,𝑝଴,−𝑝ଵ) + ൮ 𝑝ଶതതത−𝑝ଷതതത00 ൲ (𝑝ଵതതത,𝑝଴തതത, 0,0)
= 𝐮𝟏(𝐩)𝐯𝟒ା(𝐩) − 𝐮𝟐(𝐩)𝐯𝟑ା(𝐩) − 𝐮𝟑(𝐩)𝐯𝟐ା(𝐩) + 𝐮𝟒(𝐩)𝐯𝟏ା(𝐩) 

Developing the idea of invariance, we pass to the set of reference spinors with wider filling, but 
continuing to form matrices possessing the invariance property 
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     𝐮𝟏 = ቌ−𝑝ଷ−𝑝ଶ𝑝ଵ𝑝଴ ቍ      𝐮𝟐 = ቌ 𝑝ଶ−𝑝ଷ𝑝଴−𝑝ଵቍ       𝐮𝟑 = ቌ−𝑝ଵ−𝑝଴𝑝ଷ𝑝ଶ ቍ      𝐮𝟒 = ቌ 𝑝଴−𝑝ଵ𝑝ଶ−𝑝ଷቍ 

     𝐯𝟏 = ቌ𝑝ଵ𝑝଴𝑝ଷ𝑝ଶቍ        𝐯𝟐 = ቌ 𝑝଴−𝑝ଵ−𝑝ଶ𝑝ଷ ቍ        𝐯𝟑 = ቌ𝑝ଷ𝑝ଶ𝑝ଵ𝑝଴ቍ        𝐯𝟒 = ቌ 𝑝ଶ−𝑝ଷ−𝑝଴𝑝ଵ ቍ 

Let's express through the reference spinors the matrix 

𝑆ோ(𝐩) = ቌ−𝑝ଷ−𝑝ଶ𝑝ଵ𝑝଴ ቍ (𝑝଴,−𝑝ଵ,𝑝ଶ,−𝑝ଷ) − ቌ−𝑝ଵ−𝑝଴𝑝ଷ𝑝ଶ ቍ (𝑝ଶ,−𝑝ଷ,𝑝଴,−𝑝ଵ) 

+ቌ𝑝ଵ𝑝଴𝑝ଷ𝑝ଶቍ (𝑝ଶ,−𝑝ଷ,−𝑝଴,𝑝ଵ) − ቌ𝑝ଷ𝑝ଶ𝑝ଵ𝑝଴ቍ (𝑝଴,−𝑝ଵ,−𝑝ଶ,𝑝ଷ) 

= 𝐮𝟏(𝐩)𝐮𝟒𝑻(𝐩) − 𝐮𝟑(𝐩)𝐮𝟐𝑻(𝐩) + 𝐯𝟏(𝐩)𝐯𝟒𝑻(𝐩) − 𝐯𝟑(𝐩)𝐯𝟐𝑻(𝐩) 

𝑆ோ(𝐩) = ቌ−𝑝ଷ−𝑝ଶ𝑝ଵ𝑝଴ ቍ (𝑝଴,−𝑝ଵ,𝑝ଶ,−𝑝ଷ) − ቌ−𝑝ଵ−𝑝଴𝑝ଷ𝑝ଶ ቍ (𝑝ଶ,−𝑝ଷ,𝑝଴,−𝑝ଵ) 

+ቌ𝑝ଵ𝑝଴𝑝ଷ𝑝ଶቍ (𝑝ଶ,−𝑝ଷ,−𝑝଴,𝑝ଵ) − ቌ𝑝ଷ𝑝ଶ𝑝ଵ𝑝଴ቍ (𝑝଴,−𝑝ଵ,−𝑝ଶ,𝑝ଷ) 

= ቌ−𝑝ଷ𝑝଴ 𝑝ଷ𝑝ଵ−𝑝ଶ𝑝଴ 𝑝ଶ𝑝ଵ −𝑝ଷ𝑝ଶ 𝑝ଷ𝑝ଷ−𝑝ଶ𝑝ଶ 𝑝ଶ𝑝ଷ𝑝ଵ𝑝଴ −𝑝ଵ𝑝ଵ𝑝଴𝑝଴ −𝑝଴𝑝ଵ 𝑝ଵ𝑝ଶ −𝑝ଵ𝑝ଷ𝑝଴𝑝ଶ −𝑝଴𝑝ଷቍ − ቌ−𝑝ଵ𝑝ଶ 𝑝ଵ𝑝ଷ−𝑝଴𝑝ଶ 𝑝଴𝑝ଷ −𝑝ଵ𝑝଴ 𝑝ଵ𝑝ଵ−𝑝଴𝑝଴ 𝑝଴𝑝ଵ𝑝ଷ𝑝ଶ −𝑝ଷ𝑝ଷ𝑝ଶ𝑝ଶ −𝑝ଶ𝑝ଷ 𝑝ଷ𝑝଴ −𝑝ଷ𝑝ଵ𝑝ଶ𝑝଴ −𝑝ଶ𝑝ଵቍ 

+ቌ𝑝ଵ𝑝ଶ −𝑝ଵ𝑝ଷ𝑝଴𝑝ଶ −𝑝଴𝑝ଷ −𝑝ଵ𝑝଴ 𝑝ଵ𝑝ଵ−𝑝଴𝑝଴ 𝑝଴𝑝ଵ𝑝ଷ𝑝ଶ −𝑝ଷ𝑝ଷ𝑝ଶ𝑝ଶ −𝑝ଶ𝑝ଷ −𝑝ଷ𝑝଴ 𝑝ଷ𝑝ଵ−𝑝ଶ𝑝଴ 𝑝ଶ𝑝ଵቍ − ቌ𝑝ଷ𝑝଴ −𝑝ଷ𝑝ଵ𝑝ଶ𝑝଴ −𝑝ଶ𝑝ଵ −𝑝ଷ𝑝ଶ 𝑝ଷ𝑝ଷ−𝑝ଶ𝑝ଶ 𝑝ଶ𝑝ଷ𝑝ଵ𝑝଴ −𝑝ଵ𝑝ଵ𝑝଴𝑝଴ −𝑝଴𝑝ଵ −𝑝ଵ𝑝ଶ 𝑝ଵ𝑝ଷ−𝑝଴𝑝ଶ 𝑝଴𝑝ଷቍ 

= ൮−𝑝ଷ𝑝଴ + 𝑝ଵ𝑝ଶ 00 𝑝ଶ𝑝ଵ − 𝑝଴𝑝ଷ 0 00 00 00 0 𝑝ଵ𝑝ଶ − 𝑝ଷ𝑝଴ 00 −𝑝଴𝑝ଷ + 𝑝ଶ𝑝ଵ൲ 

+൮𝑝ଵ𝑝ଶ − 𝑝ଷ𝑝଴ 00 −𝑝଴𝑝ଷ + 𝑝ଶ𝑝ଵ 0 00 00 00 0 −𝑝ଷ𝑝଴+𝑝ଵ𝑝ଶ 00 𝑝ଶ𝑝ଵ − 𝑝଴𝑝ଷ൲ 

= ቌ𝑚 + 𝑚 00 𝑚 + 𝑚 0 00 00 00 0 𝑚 + 𝑚 00 𝑚 + 𝑚ቍ 

and matrix 

𝑆ோ(𝐩) = ቌ 𝑝଴−𝑝ଵ𝑝ଶ−𝑝ଷቍ (−𝑝ଷ,−𝑝ଶ,𝑝ଵ,𝑝଴) − ቌ 𝑝ଶ−𝑝ଷ𝑝଴−𝑝ଵቍ (−𝑝ଵ,−𝑝଴,𝑝ଷ,𝑝ଶ) 

+ቌ 𝑝ଶ−𝑝ଷ−𝑝଴𝑝ଵ ቍ (𝑝ଵ,𝑝଴,𝑝ଷ,𝑝ଶ) − ቌ 𝑝଴−𝑝ଵ−𝑝ଶ𝑝ଷ ቍ (𝑝ଷ,𝑝ଶ,𝑝ଵ,𝑝଴) 

= 𝐮𝟒(𝐩)𝐮𝟏𝑻(𝐩) − 𝐮𝟐(𝐩)𝐮𝟑𝑻(𝐩) + 𝐯𝟒(𝐩)𝐯𝟏𝑻(𝐩) − 𝐯𝟐(𝐩)𝐯𝟑𝑻(𝐩) 
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𝑆ோ(𝐩) = ቌ 𝑝଴−𝑝ଵ𝑝ଶ−𝑝ଷቍ (−𝑝ଷ,−𝑝ଶ,𝑝ଵ,𝑝଴) − ቌ 𝑝ଶ−𝑝ଷ𝑝଴−𝑝ଵቍ (−𝑝ଵ,−𝑝଴,𝑝ଷ,𝑝ଶ) 

+ቌ 𝑝ଶ−𝑝ଷ−𝑝଴𝑝ଵ ቍ (𝑝ଵ,𝑝଴,𝑝ଷ,𝑝ଶ) − ቌ 𝑝଴−𝑝ଵ−𝑝ଶ𝑝ଷ ቍ (𝑝ଷ,𝑝ଶ,𝑝ଵ,𝑝଴) =
= ቌ−𝑝଴𝑝ଷ −𝑝଴𝑝ଶ𝑝ଵ𝑝ଷ 𝑝ଵ𝑝ଶ 𝑝଴𝑝ଵ 𝑝଴𝑝଴−𝑝ଵ𝑝ଵ −𝑝ଵ𝑝଴−𝑝ଶ𝑝ଷ −𝑝ଶ𝑝ଶ𝑝ଷ𝑝ଷ 𝑝ଷ𝑝ଶ 𝑝ଶ𝑝ଵ 𝑝ଶ𝑝଴−𝑝ଷ𝑝ଵ −𝑝ଷ𝑝଴ቍ − ቌ−𝑝ଶ𝑝ଵ −𝑝ଶ𝑝଴𝑝ଷ𝑝ଵ 𝑝ଷ𝑝଴ 𝑝ଶ𝑝ଷ 𝑝ଶ𝑝ଶ−𝑝ଷ𝑝ଷ −𝑝ଷ𝑝ଶ−𝑝଴𝑝ଵ −𝑝଴𝑝଴𝑝ଵ𝑝ଵ 𝑝ଵ𝑝଴ 𝑝଴𝑝ଷ 𝑝଴𝑝ଶ−𝑝ଵ𝑝ଷ −𝑝ଵ𝑝ଶቍ 

+ቌ 𝑝ଶ𝑝ଵ 𝑝ଶ𝑝଴−𝑝ଷ𝑝ଵ −𝑝ଷ𝑝଴ 𝑝ଶ𝑝ଷ 𝑝ଶ𝑝ଶ−𝑝ଷ𝑝ଷ −𝑝ଷ𝑝ଶ−𝑝଴𝑝ଵ −𝑝଴𝑝଴𝑝ଵ𝑝ଵ 𝑝ଵ𝑝଴ −𝑝଴𝑝ଷ −𝑝଴𝑝ଶ𝑝ଵ𝑝ଷ 𝑝ଵ𝑝ଶ ቍ − ቌ 𝑝଴𝑝ଷ 𝑝଴𝑝ଶ−𝑝ଵ𝑝ଷ −𝑝ଵ𝑝ଶ 𝑝଴𝑝ଵ 𝑝଴𝑝଴−𝑝ଵ𝑝ଵ −𝑝ଵ𝑝଴−𝑝ଶ𝑝ଷ −𝑝ଶ𝑝ଶ𝑝ଷ𝑝ଷ 𝑝ଷ𝑝ଶ −𝑝ଶ𝑝ଵ −𝑝ଶ𝑝଴𝑝ଷ𝑝ଵ 𝑝ଷ𝑝଴ ቍ
= ൮−𝑝଴𝑝ଷ + 𝑝ଶ𝑝ଵ 00 𝑝ଵ𝑝ଶ − 𝑝ଷ𝑝଴ 0 00 00 00 0 𝑝ଶ𝑝ଵ − 𝑝଴𝑝ଷ 00 −𝑝ଷ𝑝଴ + 𝑝ଵ𝑝ଶ൲
+ ൮𝑝ଶ𝑝ଵ − 𝑝଴𝑝ଷ 00 −𝑝ଷ𝑝଴ + 𝑝ଵ𝑝ଶ 0 00 00 00 0 −𝑝଴𝑝ଷ + 𝑝ଶ𝑝ଵ 00 𝑝ଵ𝑝ଶ − 𝑝ଷ𝑝଴൲
= ቌ𝑚 + 𝑚 00 𝑚 + 𝑚 0 00 00 00 0 𝑚 + 𝑚 00 𝑚 + 𝑚ቍ 

here 𝑚 = 𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ 
Let us deviate from the canonical approach to the definition of antisymmetry of the field and 

consider the following scheme of reasoning. Let us decompose the fermion field into plane waves 
with operator coefficients  𝛗(𝐱) = න 𝑑ସ𝑝(2𝜋)ଶ  

ቈ𝑑ଵ(𝐩)𝐮𝟏(𝐩) + 𝑖𝑑ଶ(𝐩)𝐮𝟑(𝐩) + 𝑖𝑏ଶ(𝐩)𝐮𝟐തതതത(𝐩) +  𝑏ଵ(𝐩)𝐮𝟒തതതത(𝐩)+𝑑ସ(𝐩)𝐯𝟏(𝐩) + 𝑖𝑑ଷ(𝐩)𝐯𝟑(𝐩) + 𝑖𝑏ଷ(𝐩)𝐯𝟐തതതത(𝐩) + 𝑏ସ(𝐩)𝐯𝟒തതതത(𝐩)቉ 𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) 
+ ቈ 𝑏ଵ∗(𝐩)𝐮𝟏തതതത(𝐩) + 𝑖𝑏ଶ∗(𝐩)𝐮𝟑തതതത(𝐩) + 𝑖𝑑ଶ∗(𝐩)𝐮𝟐(𝐩) + 𝑑ଵ∗(𝐩)𝐮𝟒(𝐩)+𝑏ସ∗(𝐩)𝐯𝟏തതതത(𝐩) + 𝑖𝑏ଷ∗(𝐩)𝐯𝟑തതതത(𝐩) + 𝑖𝑑ଷ∗(𝐩)𝐯𝟐(𝐩) + 𝑑ସ∗(𝐩)𝐯𝟒(𝐩)቉ 𝑒ି௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) 

𝛗்(𝐱) = න 𝑑ସ𝑝ᇱ(2𝜋)ଶ  
൤ 𝑑ଵ(𝐩ᇱ)𝐮𝟏𝑻(𝐩ᇱ) + 𝑖𝑑ଶ(𝐩ᇱ)𝐮𝟑𝑻(𝐩ᇱ) + 𝑖𝑏ଶ(𝐩ᇱ)𝐮𝟐ା(𝐩ᇱ) + 𝑏ଵ(𝐩ᇱ)𝐮𝟒ା(𝐩ᇱ)+𝑑ସ(𝐩ᇱ)𝐯𝟏𝑻(𝐩ᇱ) + 𝑖𝑑ଷ(𝐩ᇱ)𝐯𝟑𝑻(𝐩ᇱ) + 𝑖𝑏ଷ(𝐩ᇱ)𝐯𝟐ା(𝐩ᇱ) + 𝑏ସ(𝐩ᇱ)𝐯𝟒ା(𝐩ᇱ)൨ 𝑒௜൫௣బᇲ௫భି௣భᇲ௫బା௣మᇲ௫యି௣యᇲ௫మ൯+ ቈ 𝑏ଵ∗(𝐩ᇱ)𝐮𝟏ା(𝐩ᇱ) + 𝑖𝑏ଶ∗(𝐩ᇱ)𝐮𝟑ା(𝐩ᇱ) + 𝑖𝑑ଶ∗(𝐩ᇱ)𝐮𝟐𝑻(𝐩ᇱ) + 𝑑ଵ∗(𝐩ᇱ)𝐮𝟒𝑻(𝐩ᇱ)+𝑏ସ∗(𝐩ᇱ)𝐯𝟏ା(𝐩ᇱ) + 𝑖𝑏ଷ∗(𝐩ᇱ)𝐯𝟑ା(𝐩ᇱ) + 𝑖𝑑ଷ∗(𝐩ᇱ)𝐯𝟐𝑻(𝐩ᇱ) + 𝑑ସ∗(𝐩ᇱ)𝐯𝟒𝑻(𝐩ᇱ)቉ 𝑒ି௜൫௣బᇲ௫భି௣భᇲ௫బା௣మᇲ௫యି௣యᇲ௫మ൯ 

𝛗ା(𝐱) = න 𝑑ସ𝑝ᇱ(2𝜋)ଶ  
൤ 𝑑ଵ∗(𝐩ᇱ)𝐮𝟏ା(𝐩ᇱ) − 𝑖𝑑ଶ∗(𝐩ᇱ)𝐮𝟑ା(𝐩ᇱ) − i𝑏ଶ∗(𝐩ᇱ)𝐮𝟐்(𝐩ᇱ) + 𝑏ଵ∗(𝐩ᇱ)𝐮𝟒்(𝐩ᇱ)+𝑑ସ∗(𝐩ᇱ)𝐯𝟏ା(𝐩ᇱ) − 𝑖𝑑ଷ∗(𝐩ᇱ)𝐯𝟑ା(𝐩ᇱ) − 𝑖𝑏ଷ∗(𝐩ᇱ)𝐯𝟐்(𝐩ᇱ) + 𝑏ସ∗(𝐩ᇱ)𝐯𝟒்(𝐩ᇱ)൨ 𝑒ି௜൫௣బᇲ௫భି௣భᇲ௫బା௣మᇲ௫యି௣యᇲ௫మ൯ + ൤ 𝑏ଵ(𝐩ᇱ)𝐮𝟏𝑻(𝐩ᇱ) − 𝑖𝑏ଶ(𝐩ᇱ)𝐮𝟑்(𝐩ᇱ) − 𝑖𝑑ଶ(𝐩ᇱ)𝐮𝟐ା(𝐩ᇱ) + 𝑑ଵ(𝐩ᇱ)𝐮𝟒ା(𝐩ᇱ)+𝑏ସ(𝐩ᇱ)𝐯𝟏்(𝐩ᇱ) − 𝑖𝑏ଷ(𝐩ᇱ)𝐯𝟑்(𝐩ᇱ) − 𝑖𝑑ଷ(𝐩ᇱ)𝐯𝟐ା(𝐩ᇱ) + 𝑑ସ(𝐩ᇱ)𝐯𝟒ା(𝐩ᇱ)൨ 𝑒௜൫௣బᇲ௫భି௣భᇲ௫బା௣మᇲ௫యି௣యᇲ௫మ൯ 
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Let's impose the anticommutation conditions on the operator coefficients  𝑏ଵ(𝐩)𝑏ଵ∗(𝐩ᇱ)+𝑏ଵ(𝐩ᇱ)𝑏ଵ∗(𝐩) = 𝑏ଵ∗(𝐩)𝑏ଵ(𝐩ᇱ)+𝑏ଵ∗(𝐩ᇱ)𝑏ଵ(𝐩) = 𝛿(𝐩 − 𝐩ᇱ) 𝑑ଵ(𝐩)𝑑ଵ∗(𝐩ᇱ)+𝑑ଵ(𝐩ᇱ)𝑑ଵ∗(𝐩) = 𝑑ଵ∗(𝐩)𝑑ଵ(𝐩ᇱ)+𝑑ଵ∗(𝐩ᇱ)𝑑ଵ(𝐩) = 𝛿(𝐩 − 𝐩ᇱ)  𝑑ଶ(𝐩)𝑑ଶ∗(𝐩ᇱ)+𝑑ଶ(𝐩ᇱ)𝑑ଶ∗(𝐩) = 𝑏ଶ∗(𝐩)𝑏ଶ(𝐩ᇱ)+𝑏ଶ∗(𝐩ᇱ)𝑏ଶ(𝐩) = 𝛿(𝐩 − 𝐩ᇱ) 𝑏ଶ(𝐩)𝑏ଶ∗(𝐩ᇱ)+𝑏ଶ(𝐩ᇱ)𝑏ଶ∗(𝐩) = 𝑑ଶ∗(p)𝑑ଶ(𝐩ᇱ)+𝑑ଶ∗(𝐩ᇱ)𝑑ଶ(𝐩) = 𝛿(𝐩 − 𝐩ᇱ)  𝑑ଷ(𝐩)𝑑ଷ∗(𝐩ᇱ)+𝑑ଷ(𝐩ᇱ)𝑑ଷ∗(𝐩) = 𝑏ଷ∗(𝐩)𝑏ଷ(𝐩ᇱ)+𝑏ଷ∗(𝐩ᇱ)𝑏ଷ(𝐩) = 𝛿(𝐩 − 𝐩ᇱ) 𝑏ଷ(𝐩)𝑏ଷ∗(𝐩ᇱ)+𝑏ଷ(𝐩ᇱ)𝑏ଷ∗(𝐩) = 𝑑ଷ∗(𝐩)𝑑ଷ(𝐩ᇱ)+𝑑ଷ∗(𝐩ᇱ)𝑑ଷ(𝐩) = 𝛿(𝐩 − 𝐩ᇱ)  𝑏ସ(𝐩)𝑏ସ∗(𝐩ᇱ)+𝑏ସ(𝐩ᇱ)𝑏ସ∗(𝐩) = 𝑏ସ∗(𝐩)𝑏ସ(𝐩ᇱ)+𝑏ସ∗(𝐩ᇱ)𝑏ସ(𝐩) = 𝛿(𝐩 − 𝐩ᇱ) 𝑑ସ(𝐩)𝑑ସ∗(𝐩ᇱ)+𝑑ସ(𝐩ᇱ)𝑑ସ∗(𝐩) = 𝑑ସ∗(𝐩)𝑑ସ(𝐩ᇱ)+𝑑ସ∗(𝐩ᇱ)𝑑ସ(𝐩) = 𝛿(𝐩 − 𝐩ᇱ) 
We consider the rest anticommutators to be equal to zero. Then we can write the expression for 

the anticommutator of the field with its transposed version but without its complex conjugation ሼ𝛗(𝐱),𝛗்(𝐱ᇱ)ሽ = න  න 𝑑ସ𝑝(2𝜋)ଶ 𝑑ସ𝑝ᇱ(2𝜋)ଶ = 

ቈ𝑑ଵ(𝐩)𝐮𝟏(𝐩) + 𝑖𝑑ଶ(𝐩)𝐮𝟑(𝐩) + 𝑖𝑏ଶ(𝐩)𝐮𝟐തതതത(𝐩) +  𝑏ଵ(𝐩)𝐮𝟒തതതത(𝐩)+𝑑ସ(𝐩)𝐯𝟏(𝐩) + 𝑖𝑑ଷ(𝐩)𝐯𝟑(𝐩) + 𝑖𝑏ଷ(𝐩)𝐯𝟐തതതത(𝐩) + 𝑏ସ(𝐩)𝐯𝟒തതതത(𝐩)቉ ቈ 𝑏ଵ∗(𝐩ᇱ)𝐮𝟏ା(𝐩ᇱ) + 𝑖𝑏ଶ∗(𝐩ᇱ)𝐮𝟑ା(𝐩ᇱ) + 𝑖𝑑ଶ∗(𝐩ᇱ)𝐮𝟐𝑻(𝐩ᇱ) + 𝑑ଵ∗(𝐩ᇱ)𝐮𝟒𝑻(𝐩ᇱ)+𝑏ସ∗(𝐩ᇱ)𝐯𝟏ା(𝐩ᇱ) + 𝑖𝑏ଷ∗(𝐩ᇱ)𝐯𝟑ା(𝐩ᇱ) + 𝑖𝑑ଷ∗(𝐩ᇱ)𝐯𝟐𝑻(𝐩ᇱ) + 𝑑ସ∗(𝐩ᇱ)𝐯𝟒𝑻(𝐩ᇱ)቉ 𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ)𝑒ି௜൫௣బᇲ௫భᇲି௣భᇲ௫బᇲା௣మᇲ௫యᇲି௣యᇲ௫మᇲ൯ + ቈ𝑑ଵ(𝐩ᇱ)𝐮𝟏(𝐩ᇱ) + 𝑖𝑑ଶ(𝐩ᇱ)𝐮𝟑(𝐩ᇱ) + 𝑖𝑏ଶ(𝐩ᇱ)𝐮𝟐തതതത(𝐩ᇱ) +  𝑏ଵ(𝐩ᇱ)𝐮𝟒തതതത(𝐩ᇱ)+𝑑ସ(𝐩ᇱ)𝐯𝟏(𝐩ᇱ) + 𝑖𝑑ଷ(𝐩ᇱ)𝐯𝟑(𝐩ᇱ) + 𝑖𝑏ଷ(𝐩ᇱ)𝐯𝟐തതതത(𝐩ᇱ) + 𝑏ସ(𝐩ᇱ)𝐯𝟒തതതത(𝐩ᇱ)቉ ቈ 𝑏ଵ∗(𝐩)𝐮𝟏ା(𝐩) + 𝑖𝑏ଶ∗(𝐩)𝐮𝟑ା(𝐩) + 𝑖𝑑ଶ∗(𝐩)𝐮𝟐𝑻(𝐩) + 𝑑ଵ∗(𝐩)𝐮𝟒𝑻(𝐩)+𝑑ସ∗(𝐩)𝐯𝟏ା(𝐩) + 𝑖𝑑ଷ∗(𝐩)𝐯𝟑ା(𝐩) + 𝑖𝑑ଷ∗(𝐩)𝐯𝟐𝑻(𝐩) + 𝑑ସ∗(𝐩)𝐯𝟒𝑻(𝐩)቉ 𝑒௜൫௣బᇲ௫భᇲି௣భᇲ௫బᇲା௣మᇲ௫యᇲି௣యᇲ௫మᇲ൯𝑒ି௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) + ቈ 𝑏ଵ∗(𝐩)𝐮𝟏തതതത(𝐩) + 𝑖𝑏ଶ∗(𝐩)𝐮𝟑തതതത(𝐩) + 𝑖𝑑ଶ∗(𝐩)𝐮𝟐(𝐩) + 𝑑ଵ∗(𝐩)𝐮𝟒(𝐩)+𝑏ସ∗(𝐩)𝐯𝟏തതതത(𝐩) + 𝑖𝑏ଷ∗(𝐩)𝐯𝟑തതതത(𝐩) + 𝑖𝑑ଷ∗(𝐩)𝐯𝟐(𝐩) + 𝑑ସ∗(𝐩)𝐯𝟒(𝐩)቉ ൤ 𝑑ଵ(𝐩ᇱ)𝐮𝟏𝑻(𝐩ᇱ) + 𝑖𝑑ଶ(𝐩ᇱ)𝐮𝟑𝑻(𝐩ᇱ) + 𝑖𝑏ଶ(𝐩ᇱ)𝐮𝟐ା(𝐩ᇱ) + 𝑏ଵ(𝐩ᇱ)𝐮𝟒ା(𝐩ᇱ)+𝑑ସ(𝐩ᇱ)𝐯𝟏𝑻(𝐩ᇱ) + 𝑖𝑑ଷ(𝐩ᇱ)𝐯𝟑𝑻(𝐩ᇱ) + 𝑖𝑏ଷ(𝐩ᇱ)𝐯𝟐ା(𝐩ᇱ) + 𝑏ସ(𝐩ᇱ)𝐯𝟒ା(𝐩ᇱ)൨ 𝑒ି௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ)𝑒௜൫௣బᇲ௫భᇲି௣భᇲ௫బᇲା௣మᇲ௫యᇲି௣యᇲ௫మᇲ൯ + ቈ 𝑏ଵ∗(𝐩ᇱ)𝐮𝟏തതതത(𝐩ᇱ) + 𝑖𝑏ଶ∗(𝐩ᇱ)𝐮𝟑തതതത(𝐩ᇱ) + 𝑖𝑑ଶ∗(𝐩ᇱ)𝐮𝟐(𝐩ᇱ) + 𝑑ଵ∗(𝐩ᇱ)𝐮𝟒(𝐩ᇱ)+𝑏ସ∗(𝐩ᇱ)𝐯𝟏തതതത(𝐩ᇱ) + 𝑖𝑏ଷ∗(𝐩ᇱ)𝐯𝟑തതതത(𝐩ᇱ) + 𝑖𝑑ଷ∗(𝐩ᇱ)𝐯𝟐(𝐩ᇱ) + 𝑑ସ∗(𝐩ᇱ)𝐯𝟒(𝐩ᇱ)቉ ൤ 𝑑ଵ(𝐩)𝐮𝟏𝑻(𝐩) + 𝑖𝑑ଶ(𝐩)𝐮𝟑𝑻(𝐩) + 𝑖𝑏ଶ(𝐩)𝐮𝟐ା(𝐩) + 𝑏ଵ(𝐩)𝐮𝟒ା(𝐩)+𝑑ସ(𝐩)𝐯𝟏𝑻(𝐩) + 𝑖𝑑ଷ(𝐩)𝐯𝟑𝑻(𝐩) + 𝑖𝑏ଷ(𝐩)𝐯𝟐ା(𝐩) + 𝑏ସ(𝐩)𝐯𝟒ା(𝐩)൨ 𝑒ି௜൫௣బᇲ௫భᇲି௣భᇲ௫బᇲା௣మᇲ௫యᇲି௣యᇲ௫మᇲ൯𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) 

= න  න 𝑑ସ𝑝(2𝜋)ଶ 𝑑ସ𝑝ᇱ(2𝜋)ଶ
⎣⎢⎢
⎢⎢⎢
⎢⎡ቈ 𝑑ଵ(𝐩)𝐮𝟏(𝐩)𝑑ଵ∗(𝐩ᇱ)𝐮𝟒𝑻(𝐩ᇱ) + 𝑑ଵ(𝐩ᇱ)𝐮𝟏(𝐩ᇱ)𝑑ଵ∗(𝐩)𝐮𝟒𝑻(𝐩)−𝑑ଶ(𝐩)𝐮𝟑(𝐩)𝑑ଶ∗(𝐩ᇱ)𝐮𝟐𝑻(𝐩ᇱ) − 𝑑ଶ(𝐩ᇱ)𝐮𝟑(𝐩ᇱ)𝑑ଶ∗(𝐩)𝐮𝟐𝑻(𝐩) + ⋯቉𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ)𝑒ି௜൫௣బᇲ௫భᇲି௣భᇲ௫బᇲା௣మᇲ௫యᇲି௣యᇲ௫మᇲ൯+ቈ  𝑏ଵ(𝐩)𝐮𝟒തതതത(𝐩)𝑏ଵ∗(𝐩ᇱ)𝐮𝟏ା(𝐩ᇱ) +  𝑏ଵ(𝐩ᇱ)𝐮𝟒തതതത(𝐩ᇱ)𝑏ଵ∗(𝐩)𝐮𝟏ା(𝐩)−𝑏ଶ(𝐩)𝐮𝟐തതതത(𝐩)𝑏ଶ∗(𝐩ᇱ)𝐮𝟑ା(𝐩ᇱ) − 𝑏ଶ(𝐩ᇱ)𝐮𝟐തതതത(𝐩ᇱ)𝑏ଶ∗(𝐩)𝐮𝟑ା(𝐩) + ⋯቉𝑒௜൫௣బᇲ௫భᇲି௣భᇲ௫బᇲା௣మᇲ௫యᇲି௣యᇲ௫మᇲ൯𝑒ି௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) ⎦⎥⎥

⎥⎥⎥
⎥⎤
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+න  න 𝑑ସ𝑝(2𝜋)ଶ 𝑑ସ𝑝ᇱ(2𝜋)ଶ
⎣⎢⎢
⎢⎢⎢
⎢⎡ቈ 𝑏ଵ∗(𝐩)𝐮𝟏തതതത(𝐩)𝑏ଵ(𝐩ᇱ)𝐮𝟒ା(𝐩ᇱ) + 𝑏ଵ∗(𝐩ᇱ)𝐮𝟏തതതത(𝐩ᇱ)𝑏ଵ(𝐩)𝐮𝟒ା(𝐩)−𝑏ଶ∗(𝐩)𝐮𝟑തതതത(𝐩)𝑏ଶ(𝐩ᇱ)𝐮𝟐ା(𝐩ᇱ) − 𝑏ଶ∗(𝐩ᇱ)𝐮𝟑തതതത(𝐩ᇱ)𝑏ଶ(𝐩)𝐮𝟐ା(𝐩) + ⋯቉𝑒ି௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ)𝑒௜൫௣బᇲ௫భᇲି௣భᇲ௫బᇲା௣మᇲ௫యᇲି௣యᇲ௫మᇲ൯+ቈ 𝑑ଵ∗(𝐩)𝐮𝟒(𝐩)𝑑ଵ(𝐩ᇱ)𝐮𝟏𝑻(𝐩ᇱ) + 𝑑ଵ∗(𝐩ᇱ)𝐮𝟒(𝐩ᇱ)𝑑ଵ(𝐩)𝐮𝟏𝑻(𝐩)−𝑑ଶ∗(𝐩)𝐮𝟐(𝐩)𝑑ଶ(𝐩ᇱ)𝐮𝟑𝑻(𝐩ᇱ) − 𝑑ଶ∗(𝐩ᇱ)𝐮𝟐(𝐩ᇱ)𝑑ଶ(𝐩)𝐮𝟑𝑻(𝐩) + ⋯቉𝑒ି௜൫௣బᇲ௫భᇲି௣భᇲ௫బᇲା௣మᇲ௫యᇲି௣యᇲ௫మᇲ൯𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) ⎦⎥⎥

⎥⎥⎥
⎥⎤
 

= න  𝑑ସ𝑝(2𝜋)ଶ
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡ ൤ 𝐮𝟏(𝐩)𝐮𝟒𝑻(𝐩) + ⋯−𝐮𝟑(𝐩)𝐮𝟐𝑻(𝐩) + ⋯൨𝑒௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ+൤ 𝐮𝟒തതതത(𝐩)𝐮𝟏ା(𝐩) + ⋯−𝐮𝟐തതതത(𝐩)𝐮𝟑ା(𝐩) + ⋯൨𝑒ି௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤
 

+න  𝑑ସ𝑝(2𝜋)ଶ
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡ ቈ 𝐮𝟏തതതത(𝐩)𝐮𝟒ା(𝐩) + ⋯−𝐮𝟑തതതത(𝐩)𝐮𝟐ା(𝐩) + ⋯቉𝑒ି௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ+൤ 𝐮𝟒(𝐩)𝐮𝟏𝑻(𝐩) + ⋯−𝐮𝟐(𝐩)𝐮𝟑𝑻(𝐩) + ⋯൨𝑒௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤
 

= න  𝑑ସ𝑝(2𝜋)ଶ
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡ ൤𝐮𝟏(𝐩)𝐮𝟒𝑻(𝐩) − 𝐮𝟑(𝐩)𝐮𝟐𝑻(𝐩) + ⋯+𝐮𝟒(𝐩)𝐮𝟏𝑻(𝐩) − 𝐮𝟐(𝐩)𝐮𝟑𝑻(𝐩) + ⋯+൨𝑒௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ+ቈ𝐮𝟒തതതത(𝐩)𝐮𝟏ା(𝐩) − 𝐮𝟐തതതത(𝐩)𝐮𝟑ା(𝐩) + ⋯+𝐮𝟏തതതത(𝐩)𝐮𝟒ା(𝐩) − 𝐮𝟑തതതത(𝐩)𝐮𝟐ା(𝐩) + ⋯+቉𝑒ି௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤
 

= න  𝑑ସ𝑝(2𝜋)ଶ
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡ ൤𝐮𝟏(𝐩)𝐮𝟒𝑻(𝐩) − 𝐮𝟑(𝐩)𝐮𝟐𝑻(𝐩) + 𝐯𝟏(𝐩)𝐯𝟒𝑻(𝐩) − 𝐯𝟑(𝐩)𝐯𝟐𝑻(𝐩) +𝐮𝟒(𝐩)𝐮𝟏𝑻(𝐩) − 𝐮𝟐(𝐩)𝐮𝟑𝑻(𝐩) + 𝐯𝟒(𝐩)𝐯𝟏𝑻(𝐩) − 𝐯𝟐(𝐩)𝐯𝟑𝑻(𝐩) ൨𝑒௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ+ቈ𝐮𝟒തതതത(𝐩)𝐮𝟏ା(𝐩) − 𝐮𝟐തതതത(𝐩)𝐮𝟑ା(𝐩) + 𝐯𝟒തതതത(𝐩)𝐯𝟏ା(𝐩) − 𝐯𝟐തതതത(𝐩)𝐯𝟑ା(𝐩) +𝐮𝟏തതതത(𝐩)𝐮𝟒ା(𝐩) − 𝐮𝟑തതതത(𝐩)𝐮𝟐ା(𝐩) + 𝐯𝟏തതതത(𝐩)𝐯𝟒ା(𝐩) − 𝐯𝟑തതതത(𝐩)𝐯𝟐ା(𝐩) ቉𝑒ି௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤
 

න 𝑑ସ𝑝(2𝜋)ସ ൫𝑆ோ(𝐩) + 𝑆ோ(𝐩)൯𝑒൬௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ൰ + 

න 𝑑ସ𝑝(2𝜋)ସ ቀ𝑆ோതതത(𝐩) + 𝑆ோതതത(𝐩)ቁ 𝑒ି൬௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ൰ = 

න 𝑑ସ𝑝(2𝜋)ସ  4ቌ𝑚 00 𝑚 0 00 00 00 0 𝑚 00 𝑚ቍ𝑒൬௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ൰ + 
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න 𝑑ସ𝑝(2𝜋)ସ  4ቌ𝑚ഥ 00 𝑚ഥ 0 00 00 00 0 𝑚ഥ 00 𝑚ഥቍ𝑒ି൬௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ൰ = 4𝑚𝐼𝛿(𝐱ᇱ − 𝐱) + 4𝑚ഥ𝐼𝛿(𝐱 − 𝐱ᇱ) 
We will consider this relation as a proof of the anti-symmetry of the fermion wave function 

under the stipulated anticommutation relations.  
Let us calculate the total energy of the fermion field 

𝐸 = 𝑃଴ = න𝑑ସ𝑥𝛗ା(𝐱)𝑆଴𝛗(𝐱) 

= න𝑑ସ𝑥 න  න  𝑑ସ𝑝ᇱ(2𝜋)ଶ 𝑑ସ𝑝(2𝜋)ଶ 

⎣⎢⎢⎢
⎡ ൤ 𝑑ଵ∗(𝐩ᇱ)𝐮𝟏ା(𝐩ᇱ) − 𝑖𝑑ଶ∗(𝐩ᇱ)𝐮𝟑ା(𝐩ᇱ) − 𝑖𝑏ଶ∗(𝐩ᇱ)𝐮𝟐்(𝐩ᇱ) + 𝑏ଵ∗(𝐩ᇱ)𝐮𝟒்(𝐩ᇱ)+𝑑ସ∗(𝐩ᇱ)𝐯𝟏ା(𝐩ᇱ) − 𝑖𝑑ଷ∗(𝐩ᇱ)𝐯𝟑ା(𝐩ᇱ) − 𝑖𝑏ଷ∗(𝐩ᇱ)𝐯𝟐்(𝐩ᇱ) + 𝑏ସ∗(𝐩ᇱ)𝐯𝟒்(𝐩ᇱ)൨ 𝑒ି௜൫௣బᇲ௫భି௣భᇲ௫బା௣మᇲ௫యି௣యᇲ௫మ൯+ ൤ 𝑏ଵ(𝐩ᇱ)𝐮𝟏𝑻(𝐩ᇱ) − 𝑖𝑏ଶ(𝐩ᇱ)𝐮𝟑்(𝐩ᇱ) − 𝑖𝑑ଶ(𝐩ᇱ)𝐮𝟐ା(𝐩ᇱ) + 𝑑ଵ(𝐩ᇱ)𝐮𝟒ା(𝐩ᇱ)+𝑏ସ(𝐩ᇱ)𝐯𝟏்(𝐩ᇱ) − 𝑖𝑏ଷ(𝐩ᇱ)𝐯𝟑்(𝐩ᇱ) − 𝑖𝑑ଷ(𝐩ᇱ)𝐯𝟐ା(𝐩ᇱ) + 𝑑ସ(𝐩ᇱ)𝐯𝟒ା(𝐩ᇱ)൨ 𝑒௜൫௣బᇲ௫భି௣భᇲ௫బା௣మᇲ௫యି௣యᇲ௫మ൯⎦⎥⎥⎥

⎤
 

⎣⎢⎢⎢
⎡ ൤ 𝑑ଵ(𝐩ᇱ)𝐮𝟏𝑻(𝐩ᇱ) + 𝑖𝑑ଶ(𝐩ᇱ)𝐮𝟑𝑻(𝐩ᇱ) + 𝑖𝑏ଶ(𝐩ᇱ)𝐮𝟐ା(𝐩ᇱ) + 𝑏ଵ(𝐩ᇱ)𝐮𝟒ା(𝐩ᇱ)+𝑑ସ(𝐩ᇱ)𝐯𝟏𝑻(𝐩ᇱ) + 𝑖𝑑ଷ(𝐩ᇱ)𝐯𝟑𝑻(𝐩ᇱ) + 𝑖𝑏ଷ(𝐩ᇱ)𝐯𝟐ା(𝐩ᇱ) + 𝑏ସ(𝐩ᇱ)𝐯𝟒ା(𝐩ᇱ)൨ 𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ)
+ ቈ 𝑏ଵ∗(𝐩ᇱ)𝐮𝟏ା(𝐩ᇱ) + 𝑖𝑏ଶ∗(𝐩ᇱ)𝐮𝟑ା(𝐩ᇱ) + 𝑖𝑑ଶ∗(𝐩ᇱ)𝐮𝟐𝑻(𝐩ᇱ) + 𝑑ଵ∗(𝐩ᇱ)𝐮𝟒𝑻(𝐩ᇱ)+𝑏ସ∗(𝐩ᇱ)𝐯𝟏ା(𝐩ᇱ) + 𝑖𝑏ଷ∗(𝐩ᇱ)𝐯𝟑ା(𝐩ᇱ) + 𝑖𝑑ଷ∗(𝐩ᇱ)𝐯𝟐𝑻(𝐩ᇱ) + 𝑑ସ∗(𝐩ᇱ)𝐯𝟒𝑻(𝐩ᇱ)቉ 𝑒ି௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ)⎦⎥⎥⎥

⎤
 

= න𝑑ସ𝑥 න  න 𝑑ସ𝑝ᇱ(2𝜋)ଶ 𝑑ସ𝑝(2𝜋)ଶ 

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎡ ൤ 𝑑ଵ

∗(𝐩ᇱ)𝐮𝟏ା(𝐩ᇱ) − 𝑖𝑑ଶ∗(𝐩ᇱ)𝐮𝟑ା(𝐩ᇱ) − 𝑖𝑏ଶ∗(𝐩ᇱ)𝐮𝟐்(𝐩ᇱ) + 𝑏ଵ∗(𝐩ᇱ)𝐮𝟒்(𝐩ᇱ)+𝑑ସ∗(𝐩ᇱ)𝐯𝟏ା(𝐩ᇱ) − 𝑖𝑑ଷ∗(𝐩ᇱ)𝐯𝟑ା(𝐩ᇱ) − 𝑖𝑏ଷ∗(𝐩ᇱ)𝐯𝟐்(𝐩ᇱ) + 𝑏ସ∗(𝐩ᇱ)𝐯𝟒்(𝐩ᇱ)൨ቈ 𝑑ଵ(𝐩)𝐮𝟏(𝐩) + 𝑖𝑑ଶ(𝐩)𝐮𝟑(𝐩) + 𝑖𝑏ଶ(𝐩)𝐮𝟐തതതത(𝐩) +  𝑏ଵ(𝐩)𝐮𝟒തതതത(𝐩)+𝑑ସ(𝐩)𝐯𝟏(𝐩) + 𝑖𝑑ଷ(𝐩)𝐯𝟑(𝐩) + 𝑖𝑏ଷ(𝐩)𝐯𝟐തതതത(𝐩) +  𝑏ସ(𝐩)𝐯𝟒തതതത(𝐩)቉𝑒ି௜൫௣బᇲ௫భି௣భᇲ௫బା௣మᇲ௫యି௣యᇲ௫మ൯𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ)+ ൤ 𝑏ଵ(𝐩ᇱ)𝐮𝟏𝑻(𝐩ᇱ) − 𝑖𝑏ଶ(𝐩ᇱ)𝐮𝟑்(𝐩ᇱ) − 𝑖𝑑ଶ(𝐩ᇱ)𝐮𝟐ା(𝐩ᇱ) + 𝑑ଵ(𝐩ᇱ)𝐮𝟒ା(𝐩ᇱ)+𝑏ସ(𝐩ᇱ)𝐯𝟏்(𝐩ᇱ) − 𝑖𝑏ଷ(𝐩ᇱ)𝐯𝟑்(𝐩ᇱ) − 𝑖𝑑ଷ(𝐩ᇱ)𝐯𝟐ା(𝐩ᇱ) + 𝑑ସ(𝐩ᇱ)𝐯𝟒ା(𝐩ᇱ)൨ቈ 𝑏ଵ∗(𝐩)𝐮𝟏തതതത(𝐩) + 𝑖𝑏ଶ∗(𝐩)𝐮𝟑തതതത(𝐩) + 𝑖𝑑ଶ∗(𝐩)𝐮𝟐(𝐩) + 𝑑ଵ∗(𝐩)𝐮𝟒(𝐩)+𝑏ସ∗(𝐩)𝐯𝟏തതതത(𝐩) + 𝑖𝑏ଷ∗(𝐩)𝐯𝟑തതതത(𝐩) + 𝑖𝑑ଷ∗(𝐩)𝐯𝟐(𝐩) + 𝑑𝟒∗(𝐩)𝐯𝟒(𝐩)቉𝑒௜൫௣బᇲ௫భି௣భᇲ௫బା௣మᇲ௫యି௣యᇲ௫మ൯𝑒ି௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) ⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎤
 

= න  න 𝑑ସ𝑝ᇱ(2𝜋)ଶ 𝑑ସ𝑝(2𝜋)ଶ 

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎡ ൤ 𝑑ଵ

∗(𝐩ᇱ)𝐮𝟏ା(𝐩ᇱ) − 𝑖𝑑ଶ∗(𝐩ᇱ)𝐮𝟑ା(𝐩ᇱ) − 𝑖𝑏ଶ∗(𝐩ᇱ)𝐮𝟐்(𝐩ᇱ) + 𝑏ଵ∗(𝐩ᇱ)𝐮𝟒்(𝐩ᇱ)+𝑑ସ∗(𝐩ᇱ)𝐯𝟏ା(𝐩ᇱ) − 𝑖𝑑ଷ∗(𝐩ᇱ)𝐯𝟑ା(𝐩ᇱ) − 𝑖𝑏ଷ∗(𝐩ᇱ)𝐯𝟐்(𝐩ᇱ) + 𝑏ସ∗(𝐩ᇱ)𝐯𝟒்(𝐩ᇱ)൨ቈ 𝑑ଵ(𝐩)𝐮𝟏(𝐩) + 𝑖𝑑ଶ(𝐩)𝐮𝟑(𝐩) + 𝑖𝑏ଶ(𝐩)𝐮𝟐തതതത(𝐩) +  𝑏ଵ(𝐩)𝐮𝟒തതതത(𝐩)+𝑑ସ(𝐩)𝐯𝟏(𝐩) + 𝑖𝑑ଷ(𝐩)𝐯𝟑(𝐩) + 𝑖𝑏ଷ(𝐩)𝐯𝟐തതതത(𝐩) +  𝑏ସ(𝐩)𝐯𝟒തതതത(𝐩)቉𝛿(𝐩ᇱ − 𝐩)+ ൤ 𝑏ଵ(𝐩ᇱ)𝐮𝟏𝑻(𝐩ᇱ) − 𝑖𝑏ଶ(𝐩ᇱ)𝐮𝟑்(𝐩ᇱ) − 𝑖𝑑ଶ(𝐩ᇱ)𝐮𝟐ା(𝐩ᇱ) + 𝑑ଵ(𝐩ᇱ)𝐮𝟒ା(𝐩ᇱ)+𝑏ସ(𝐩ᇱ)𝐯𝟏்(𝐩ᇱ) − 𝑖𝑏ଷ(𝐩ᇱ)𝐯𝟑்(𝐩ᇱ) − 𝑖𝑑ଷ(𝐩ᇱ)𝐯𝟐ା(𝐩ᇱ) + 𝑑ସ(𝐩ᇱ)𝐯𝟒ା(𝐩ᇱ)൨ቈ 𝑏ଵ∗(𝐩)𝐮𝟏തതതത(𝐩) + 𝑖𝑏ଶ∗(𝐩)𝐮𝟑തതതത(𝐩) + 𝑖𝑑ଶ∗(𝐩)𝐮𝟐(𝐩) + 𝑑ଵ∗(𝐩)𝐮𝟒(𝐩)+𝑏ସ∗(𝐩)𝐯𝟏തതതത(𝐩) + 𝑖𝑏ଷ∗(𝐩)𝐯𝟑തതതത(𝐩) + 𝑖𝑑ଷ∗(𝐩)𝐯𝟐(𝐩) + 𝑑𝟒∗(𝐩)𝐯𝟒(𝐩)቉𝛿(𝐩 − 𝐩ᇱ) ⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎤
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= න  𝑑ସ𝑝(2𝜋)ଶ
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡
𝑑ଵ∗(𝐩)𝑑ଵ(𝐩)𝐮𝟏ା(𝐩)𝐮𝟏(𝐩) + 𝑑ଵ(𝐩)𝑑ଵ∗(𝐩)𝐮𝟒ା(𝐩)𝐮𝟒(𝐩)+𝑏ଵ(𝐩)𝑏ଵ∗(𝐩)𝐮𝟏𝑻(𝐩)𝐮𝟏തതതത(𝐩) + 𝑏ଵ∗(𝐩)𝑏ଵ(𝐩)𝐮𝟒𝑻(𝐩)𝐮𝟒തതതത(𝐩)+𝑏ଶ(𝐩)𝑏ଶ∗(𝐩)𝐮𝟑𝑻(𝐩)𝐮𝟑തതതത(𝐩) + 𝑏ଶ∗(𝐩)𝑏ଶ(𝐩)𝐮𝟐𝑻(𝐩)𝐮𝟐തതതത(𝐩)+𝑑ଶ∗(𝐩)𝑑ଶ(𝐩)𝐮𝟑ା(𝐩)𝐮𝟑(𝐩) + 𝑑ଶ(𝐩)𝑑ଶ∗(𝐩)𝐮𝟐ା(𝐩)𝐮𝟐(𝐩)+𝑑ସ∗(𝐩)𝑑ସ(𝐩)𝐯𝟏ା(𝐩)𝐯𝟏(𝐩) + 𝑑ସ(𝐩)𝑑ସ∗(𝐩)𝐯𝟒ା(𝐩)𝐯𝟒(𝐩)+𝑏ସ(𝐩)𝑏ସ∗(𝐩)𝐯𝟏𝑻(𝐩)𝐯𝟏തതതത(𝐩) + 𝑏ସ∗(𝐩)𝑏ସ(𝐩)𝐯𝟒𝑻(𝐩)𝐯𝟒തതതത(𝐩)+𝑏ଷ(𝐩)𝑏ଷ∗(𝐩)𝐯𝟑𝑻(𝐩)𝐯𝟑തതതത(𝐩) + 𝑏ଷ∗(𝐩)𝑏ଷ(𝐩)𝐯𝟐𝑻(𝐩)𝐯𝟐തതതത(𝐩)+𝑑ଷ∗(𝐩)𝑑ଷ(𝐩)𝐯𝟑ା(𝐩)𝐯𝟑(𝐩) + 𝑑ଷ(𝐩)𝑑ଷ∗(𝐩)𝐯𝟐ା(𝐩)𝐯𝟐(𝐩) ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤
 

= න 𝑑ସ𝑝(2𝜋)ସ 𝑒଴(𝐩) ⎣⎢⎢
⎡ 𝑏ଵ(𝐩)𝑏ଵ∗(𝐩) + 𝑏ଵ∗(𝐩)𝑏ଵ(𝐩) + 𝑑ଵ∗(𝐩)𝑑ଵ(𝐩) + 𝑑ଵ(𝐩)𝑑ଵ∗(𝐩)+𝑏ଶ(𝐩)𝑏ଶ∗(𝐩) + 𝑑ଶ∗(𝐩)𝑑ଶ(𝐩) + 𝑏ଶ∗(𝐩)𝑏ଶ(𝐩) + 𝑑ଶ(𝐩)𝑑ଶ∗(𝐩)+𝑏ସ(𝐩)𝑏ସ∗(𝐩) + 𝑏ସ∗(𝐩)𝑏ସ(𝐩) + 𝑑ସ∗(𝐩)𝑑ସ(𝐩) + 𝑑ସ(𝐩)𝑑ସ∗(𝐩)+𝑏ଷ(𝐩)𝑏ଷ∗(𝐩) + 𝑑ଷ∗(𝐩)𝑑ଷ(𝐩) + 𝑏ଷ∗(𝐩)𝑏ଷ(𝐩) + 𝑑ଷ(𝐩)𝑑ଷ∗(𝐩)⎦⎥⎥

⎤
 

= 8න 𝑑ସ𝑝(2𝜋)ସ 𝑒଴(𝐩)𝛿(𝟎) = 8න 𝑑ସ𝑥(2𝜋)ସ න 𝑑ସ𝑝(2𝜋)ସ 𝑒଴(𝐩)  
here 𝑒଴(𝐩) = 𝑝଴തതത𝑝଴ + 𝑝ଵതതത𝑝ଵ + 𝑝ଶതതത𝑝ଶ + 𝑝ଷതതത𝑝ଷ 

Each summand in brackets represents the operator of the number of particles with a certain 
reference spinor. The operator's action consists of consecutive application of the annihilation operator 
and the operator of the birth of a particle. On initial examination, it would appear that the energy 
associated with zero-point fluctuations in the vacuum has been overlooked. However, an 
examination of the final expression reveals that the field always possesses a constant energy, 
regardless of the particles that contribute to it. This constant energy of the field can be interpreted as 
the energy of zero-point fluctuations of the vacuum. 

It is important that all the above deductions are valid in any frame of reference, while the proof 
of anticommutativity of the fermion field in [10] is carried out for the rest frame. 

The following relations were taken into account in the derivation  𝑑ଵ(𝐩)𝑑ଵ∗(𝐩)+𝑑ଵ(𝐩)𝑑ଵ∗(𝐩) = 𝑏ଵ∗(𝐩)𝑏ଵ(𝐩)+𝑏ଵ∗(𝐩)𝑏ଵ(𝐩) = 𝛿(𝟎) 𝑏ଵ(𝐩)𝑏ଵ∗(𝐩)+𝑏ଵ(𝐩)𝑑ଵ∗(𝐩) = 𝑑ଵ∗(𝐩)𝑑ଵ(𝐩)+𝑑ଵ∗(𝐩)𝑏ଵ(𝐩) = 𝛿(𝟎)  𝑑ଶ(𝐩)𝑏ଶ∗(𝐩)+𝑑ଶ(𝐩)𝑏ଶ∗(𝐩) = 𝑏ଶ∗(𝐩)𝑑ଶ(𝐩)+𝑏ଶ∗(𝐩)𝑑ଶ(𝐩) = 𝛿(𝟎) 𝑏ଶ(𝐩)𝑑ଶ∗(𝐩)+𝑏ଶ(𝐩)𝑑𝟐∗(𝐩) = 𝑑ଶ∗(𝐩)𝑏ଶ(𝐩)+𝑑ଶ∗(𝐩)𝑏ଶ(𝐩) = 𝛿(𝟎)  𝑑ଷ(𝐩)𝑏ଷ∗(𝐩)+𝑑ଷ(𝐩)𝑏ଷ∗(𝐩) = 𝑏ଷ∗(𝐩)𝑑ଷ(𝐩)+𝑏ଷ∗(𝐩)𝑑ଷ(𝐩) = 𝛿(𝟎) 𝑏ଷ(𝐩)𝑑𝟑∗(𝐩)+𝑏ଷ(𝐩)𝑑𝟑∗(𝐩) = 𝑑𝟑∗(𝐩)𝑏ଷ(𝐩)+𝑑𝟑∗(𝐩)𝑏ଷ(𝐩) = 𝛿(𝟎)  𝑑ସ(𝐩)𝑑ସ∗(𝐩)+𝑑ସ(𝐩)𝑑ସ∗(𝐩) = 𝑏ସ∗(𝐩)𝑏ସ(𝐩)+𝑏ସ∗(𝐩)𝑏ସ(𝐩) = 𝛿(𝟎) 𝑏ସ(𝐩)𝑏ସ∗(𝐩)+𝑏ସ(𝐩)𝑏ସ∗(𝐩) = 𝑑ସ∗(𝐩)𝑑ସ(𝐩)+𝑑ସ∗(𝐩)𝑑ସ(𝐩) = 𝛿(𝟎) 

 𝑑ଵ(𝐩)𝑑ଵ∗(𝐩) = 12 𝛿(𝟎)         𝑏ଵ∗(𝐩)𝑏ଵ(𝐩) = 12 𝛿(𝟎)          𝑏ଵ(𝐩)𝑏ଵ∗(𝐩) = 12 𝛿(𝟎)          𝑑ଵ∗(𝐩)𝑑ଵ(𝐩) = 12 𝛿(𝟎) 

 𝑑ଶ(𝐩)𝑏ଶ∗(𝐩) = 12 𝛿(𝟎)         𝑏ଶ∗(𝐩)𝑑ଶ(𝐩) = 12 𝛿(𝟎)          𝑏ଶ(𝐩)𝑑ଶ∗(𝐩) = 12 𝛿(𝟎)           𝑑ଶ∗(𝐩)𝑏ଶ(𝐩) = 12 𝛿(𝟎) 

 𝑑ଷ(𝐩)𝑏ଷ∗(𝐩) = 12 𝛿(𝟎)         𝑏ଷ∗(𝐩)𝑑ଷ(𝐩) = 12 𝛿(𝟎)          𝑏ଷ(𝐩)𝑑ଷ∗(𝐩) = 12 𝛿(𝟎)           𝑑ଷ∗(𝐩)𝑏ଷ(𝐩) = 12 𝛿(𝟎) 

 𝑑ସ(𝐩)𝑑ସ∗(𝐩) = 12 𝛿(𝟎)         𝑏ସ∗(𝐩)𝑏ସ(𝐩) = 12 𝛿(𝟎)          𝑏ସ(𝐩)𝑏ସ∗(𝐩) = 12 𝛿(𝟎)          𝑑ସ∗(𝐩)𝑑ସ(𝐩) = 12 𝛿(𝟎) 

𝛿(𝟎) = න 𝑑ସ𝑥(2𝜋)ସ  
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Other components of the total field momentum are calculated by the formula 𝑃ఓ = න𝑑ସ𝑥𝛗ା(𝐱)𝑆ఓ𝛗(𝐱) 

Total momentum 𝐏𝐓 ≡ (𝑃଴,𝑃ଵ,𝑃ଶ,𝑃ଷ) 
is a vector in Minkowski space. Multiplied by the ratio of the electron or positron charge to their 
mass, it turns into the vector of the total current of the fermionic field 𝐈 = ± 𝑒𝑚௘ 𝐏 

But the real interest is not the total current of the fermionic field, but the density of this current 
as a function of coordinates 𝐽ఓ = ± 𝑒𝑚௘ 𝛗ା(𝐱)𝑆ఓ𝛗(𝐱) = ± 𝑒𝑚௘ 𝐹ఓ(𝐱) 

where  𝐹ఓ(𝐱) = 𝛗ା(𝐱)𝑆ఓ𝛗(𝐱) 
is a four-dimensional probability density current, which is transformed as a four-dimensional vector 
by Lorentz transformations. Multiplication by ± ௘௠೐ transforms it into a four-dimensional current 

density. Let us perform a series of transformations analogous to those presented by Dirac in [11], 
Lecture 11]. 𝑃଴ = න 𝑑ସ𝑥(2𝜋)ଶ 𝛗ା(𝐱)𝑆଴𝛗(𝐱) = 12𝑚න 𝑑ସ𝑥(2𝜋)ଶ 𝛗ା(𝐱)𝑆଴[𝑆ோ𝛗(𝐱)] 
= 12𝑚න 𝑑ସ𝑥(2𝜋)ଶ 𝛗ା(𝐱)𝑆଴ ቈන 𝑑ସ𝑝(2𝜋)ଶ 𝑆ோ(𝐩)𝛗(𝐩)𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ)቉  

= 12𝑚න 𝑑ସ𝑝(2𝜋)ଶ ቈන 𝑑ସ𝑥(2𝜋)ଶ 𝛗ା(𝐱)𝑆଴𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ)቉ 𝑆ோ(𝐩)𝛗(𝐩)
= 12𝑚න 𝑑ସ𝑝(2𝜋)ଶ 𝛗ା(𝐩)𝑆଴[𝑆ோ(𝐩)𝛗(𝐩)] = න 𝑑ସ𝑝(2𝜋)ଶ 𝛗ା(𝐩)𝑆଴𝛗(𝐩) = න 𝑑ସ𝑝(2𝜋)ଶ 𝛗ା(𝐩)𝛗(𝐩)
= න 𝑑ସ𝑝(2𝜋)ଶ [𝜑଴ା(𝐩)𝜑଴(𝐩) + 𝜑ଵା(𝐩)𝜑ଵ(𝐩) + 𝜑ଶା(𝐩)𝜑ଶ(𝐩) + 𝜑ଷା(𝐩)𝜑ଷ(𝐩)] 

For an arbitrary component of the total momentum we have 𝑃ఓ = න 𝑑ସ𝑝(2𝜋)ଶ 𝛗ା(𝐩)𝑆ఓ𝛗(𝐩) 

Following Dirac's argument in [11], the value of 𝑃଴ = 𝐻 = න 𝑑ସ𝑝(2𝜋)ଶ [𝜑଴ା(𝐩)𝜑଴(𝐩) + 𝜑ଵା(𝐩)𝜑ଵ(𝐩) + 𝜑ଶା(𝐩)𝜑ଶ(𝐩) + 𝜑ଷା(𝐩)𝜑ଷ(𝐩)] 
can be treated as either a Hamiltonian or a total energy operator, with 𝜑଴ା(𝐩) representing the 

birth operator and 𝜑ఓ(𝐩) representing the annihilation operator. 
In [11] the quantization procedure includes the use of one definite Lorentzian reference frame, 

i.e. it is not invariant. In our case all deductions are valid in any reference frame in the spinor space, 
and it means invariance to change of reference frames in the Minkowski space also. 

The following relations are used in the transformations 𝑆ோ𝛗(𝐱) = 2𝑚𝛗(𝐱) 
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𝛗(𝐱) = 12𝑚𝑆ோ𝛗(𝐱) 

𝛗(𝐱) = න 𝑑ସ𝑝(2𝜋)ଶ 𝛗(𝐩)𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ)  
𝛗(𝐩) = න 𝑑ସ𝑥ᇱ(2𝜋)ଶ 𝛗(𝐱ᇱ)𝑒ି௜൫௣బ௫భᇲି௣భ௫బᇲା௣మ௫యᇲି௣య௫మᇲ ൯ 

𝛿(𝐩) = න 𝑑ସ𝑥ᇱ(2𝜋)ଶ 𝑒ି௜൫௣బ௫భᇲି௣భ௫బᇲା௣మ௫యᇲି௣య௫మᇲ ൯ 
𝛿(𝐱) = න 𝑑ସ𝑝(2𝜋)ଶ 𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) 

𝛗ା(𝐩) = න 𝑑ସ𝑥(2𝜋)ଶ 𝛗ା(𝐱)𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) 
𝑆ோ𝛗(𝐱) = න 𝑑ସ𝑝(2𝜋)ଶ  𝑆ோ(𝐩)𝛗(𝐩)𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) 

𝑆ோ(𝐩) = 2𝑚𝐼 
𝑆ோ = ൮ 𝜕ଶ−𝜕ଷ−𝜕଴𝜕ଵ ൲ (𝜕ଵ,𝜕଴,𝜕ଷ,𝜕ଶ) − ൮ 𝜕଴−𝜕ଵ−𝜕ଶ𝜕ଷ ൲ (𝜕ଷ,𝜕ଶ,𝜕ଵ,𝜕଴) 

+൮−𝜕଴𝜕ଵ−𝜕ଶ𝜕ଷ ൲ (𝜕ଷ,𝜕ଶ,−𝜕ଵ,−𝜕଴) −൮−𝜕ଶ𝜕ଷ−𝜕଴𝜕ଵ ൲ (𝜕ଵ,𝜕଴,−𝜕ଷ,−𝜕ଶ) 

𝑆ோ(𝐩) = ቌ−𝑝ଷ−𝑝ଶ𝑝ଵ𝑝଴ ቍ (𝑝଴,−𝑝ଵ,𝑝ଶ,−𝑝ଷ) − ቌ−𝑝ଵ−𝑝଴𝑝ଷ𝑝ଶ ቍ (𝑝ଶ,−𝑝ଷ,𝑝଴,−𝑝ଵ) 

+ቌ𝑝ଵ𝑝଴𝑝ଷ𝑝ଶቍ (𝑝ଶ,−𝑝ଷ,−𝑝଴,𝑝ଵ) − ቌ𝑝ଷ𝑝ଶ𝑝ଵ𝑝଴ቍ (𝑝଴,−𝑝ଵ,−𝑝ଶ,𝑝ଷ) 

The chain of reasoning can be organized in a slightly different way as well 

𝑃଴ = න 𝑑ସ𝑥(2𝜋)ଶ 𝛗ା(𝐱)𝑆଴𝛗(𝐱) = 12𝑚ഥ 12𝑚න 𝑑ସ𝑥(2𝜋)ଶ [𝑆ோ𝛗(𝐱)]ା[𝑆ோ𝛗(𝐱)]
= 12𝑚ഥ 12𝑚න 𝑑ସ𝑥(2𝜋)ଶ ቈන 𝑑ସ𝑝ᇱ(2𝜋)ଶ 𝑆ோ(𝐩ᇱ)𝛗(𝐩ᇱ)𝑒௜൫௣బᇲ௫భି௣భᇲ௫బା௣మᇲ௫యି௣యᇲ௫మ൯቉ା 

ቈන 𝑑ସ𝑝(2𝜋)ଶ 𝑆ோ(𝐩)𝛗(𝐩)𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ)቉
= 12𝑚ഥ 12𝑚න 𝑑ସ𝑥(2𝜋)ଶ ቈන 𝑑ସ𝑝ᇱ(2𝜋)ଶ 𝑆ோ(𝐩ᇱ)𝛗(𝐩ᇱ)቉ା 𝑒ି௜൫௣బᇲ௫భି௣భᇲ௫బା௣మᇲ௫యି௣యᇲ௫మ൯ 
ቈන 𝑑ସ𝑝(2𝜋)ଶ 𝑆ோ(𝐩)𝛗(𝐩)቉ 𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) 

= 12𝑚ഥ 12𝑚 ቈන 𝑑ସ𝑝ᇱ(2𝜋)ଶ 𝑆ோ(𝐩ᇱ)𝛗(𝐩ᇱ)቉ା ቈන 𝑑ସ𝑝(2𝜋)ଶ 𝑆ோ(𝐩)𝛗(𝐩)቉ 𝛿(𝐩ᇱ − 𝐩) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 July 2024                   doi:10.20944/preprints202401.1032.v4

https://doi.org/10.20944/preprints202401.1032.v4


 62 

 

= 12𝑚ഥ 12𝑚න 𝑑ସ𝑝ᇱ(2𝜋)ଶ  න 𝑑ସ𝑝(2𝜋)ଶ [𝑆ோ(𝐩ᇱ)𝛗(𝐩ᇱ)]ା[𝑆ோ(𝐩)𝛗(𝐩)]𝛿(𝐩ᇱ − 𝐩) 

= 12𝑚ഥ 12𝑚න 𝑑ସ𝑝(2𝜋)ଶ [𝑆ோ(𝐩)𝛗(𝐩)]ା[𝑆ோ(𝐩)𝛗(𝐩)] 
= 12𝑚ഥ 12𝑚න 𝑑ସ𝑝(2𝜋)ଶ 𝛗(𝐩)ା[𝑆ோ(𝐩)]ା[𝑆ோ(𝐩)𝛗(𝐩)] 
= 12𝑚ഥ 12𝑚න 𝑑ସ𝑝(2𝜋)ଶ 𝛗(𝐩)ାൣ𝑆ோതതത(𝐩)൧𝑻[𝑆ோ(𝐩)]𝛗(𝐩) 

= 12𝑚ഥ 12𝑚න 𝑑ସ𝑝(2𝜋)ଶ 𝛗(𝐩)ାൣ2(𝑝ଵ𝑝ଶ − 𝑝ଷ𝑝଴)തതതതതതതതതതതതതതതതതത𝐼൧𝑻[2(𝑝ଵ𝑝ଶ − 𝑝ଷ𝑝଴)𝐼]𝛗(𝐩) 

= 1𝑚ഥ 1𝑚න 𝑑ସ𝑝(2𝜋)ଶ 𝛗(𝐩)ା(𝑝ଵ𝑝ଶ − 𝑝ଷ𝑝଴)തതതതതതതതതതതതതതതതതത(𝑝ଵ𝑝ଶ − 𝑝ଷ𝑝଴)𝛗(𝐩) 

= 1𝑚ഥ 1𝑚න 𝑑ସ𝑝(2𝜋)ଶ (𝑃଴ଶ − 𝑃ଵଶ − 𝑃ଶଶ − 𝑃ଷଶ)𝛗(𝐩)ା𝛗(𝐩) 

= න 𝑑ସ𝑝(2𝜋)ଶ 𝛗(𝐩)ା𝛗(𝐩) 

Here it is taken into account that 𝑆ோ(𝐩) = 2(𝑝ଵ𝑝ଶ − 𝑝ଷ𝑝଴)𝐼 (𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ)തതതതതതതതതതതതതതതതതത(𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ) = 𝑃଴ଶ − 𝑃ଵଶ − 𝑃ଶଶ − 𝑃ଷଶ = 𝑚ഥ𝑚 = = (𝑆଴𝑃଴ − 𝑆ଵ𝑃ଵ − 𝑆ଶ𝑃ଶ − 𝑆ଷ𝑃ଷ)(𝑆଴𝑃଴ + 𝑆ଵ𝑃ଵ + 𝑆ଶ𝑃ଶ + 𝑆ଷ𝑃ଷ) 
Let us draw an analogy between our approach and the relations given in [12], Volume 1, Chapter 

3, Section 3.3.1]. There it is noted that the birth and annihilation operators of the fermionic field must 
satisfy such commutation relations that the equality expressing translational invariance is satisfied 𝛗(𝐗 + 𝐀) = 𝑒௜𝐏೅𝐀 𝛗(𝐗)𝑒ି௜𝐏೅𝐀 

which in differential form is written as 𝜕ఓ𝛗(𝐗) = 𝑖[𝑃ఓ ,𝛗(𝐗)] 
On the basis of these relations the anticommutation relations between the birth and annihilation 

operators are derived. The coordinates here are the components of the Minkowski vector space. 
We can perform a similar consideration in the spinor coordinate space, describing for it the 

translational invariance by the relations 𝛗(𝐱 + 𝐚) = 𝑒௜(௣బ௔భି௣భ௔బା௣మ௔యି௣య௔మ) 𝛗(𝐱)𝑒ି௜(௣బ௔భି௣భ௔బା௣మ௔యି௣య௔మ) 𝜕଴𝛗(𝐱) = 𝑖[−𝑝ଵ,𝛗(𝐱)] 𝜕ଵ𝛗(𝐱) = 𝑖[𝑝଴,𝛗(𝐱)] 𝜕ଶ𝛗(𝐱) = 𝑖[−𝑝ଷ,𝛗(𝐱)] 𝜕ଷ𝛗(𝐱) = 𝑖[𝑝ଶ,𝛗(𝐱)] 
Or we can try to approximate the formulation of translational invariance in Minkowski space by 

means of the formula 𝛗(𝐱 + 𝐚) = 𝑒ൣ௜(௣బ௔భି௣భ௔బା௣మ௔యି௣య௔మ)തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത(௣బ௔భି௣భ௔బା௣మ௔యି௣య௔మ)൧ 𝛗(𝐱)𝑒ൣି௜(௣బ௔భି௣భ௔బା௣మ௔యି௣య௔మ)തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത(௣బ௔భି௣భ௔బା௣మ௔యି௣య௔మ)൧ 
Let us calculate the total mass of the fermion field 𝑀 = න𝑑ସ𝑥𝛗்(𝐱) 𝛗(𝐱) = 
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න𝑑ସ𝑥න  න 𝑑ସ𝑝ᇱ(2𝜋)ଶ 𝑑ସ𝑝(2𝜋)ଶ  
൤ 𝑑ଵ(𝐩ᇱ)𝐮𝟏𝑻(𝐩ᇱ) + 𝑖𝑑ଶ(𝐩ᇱ)𝐮𝟑𝑻(𝐩ᇱ) + 𝑖𝑏ଶ(𝐩ᇱ)𝐮𝟐ା(𝐩ᇱ) + 𝑏ଵ(𝐩ᇱ)𝐮𝟒ା(𝐩ᇱ)+𝑑ସ(𝐩ᇱ)𝐯𝟏𝑻(𝐩ᇱ) + 𝑖𝑑ଷ(𝐩ᇱ)𝐯𝟑𝑻(𝐩ᇱ) + 𝑖𝑏ଷ(𝐩ᇱ)𝐯𝟐ା(𝐩ᇱ) + 𝑏ସ(𝐩ᇱ)𝐯𝟒ା(𝐩ᇱ)൨ ቈ 𝑏ଵ∗(𝐩)𝐮𝟏തതതത(𝐩) + 𝑖𝑏ଶ∗(𝐩)𝐮𝟑തതതത(𝐩) + 𝑖𝑑ଶ∗(𝐩)𝐮𝟐(𝐩) + 𝑑ଵ∗(𝐩)𝐮𝟒(𝐩)+𝑏ସ∗(𝐩)𝐯𝟏തതതത(𝐩) + 𝑖𝑏ଷ∗(𝐩)𝐯𝟑തതതത(𝐩) + 𝑖𝑑ଷ∗(𝐩)𝐯𝟐(𝐩) + 𝑑ସ∗(𝐩)𝐯𝟒(𝐩)቉ 𝑒௜൫௣బᇲ௫భି௣భᇲ௫బା௣మᇲ௫యି௣యᇲ௫మ൯𝑒ି௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) +න𝑑ସ𝑥න  න 𝑑ସ𝑝ᇱ(2𝜋)ଶ 𝑑ସ𝑝(2𝜋)ଶ  
ቈ 𝑏ଵ∗(𝐩ᇱ)𝐮𝟏ା(𝐩ᇱ) + 𝑖𝑏ଶ∗(𝐩ᇱ)𝐮𝟑ା(𝐩ᇱ) + 𝑖𝑑ଶ∗(𝐩ᇱ)𝐮𝟐𝑻(𝐩ᇱ) + 𝑑ଵ∗(𝐩ᇱ)𝐮𝟒𝑻(𝐩ᇱ)+𝑏ସ∗(𝐩ᇱ)𝐯𝟏ା(𝐩ᇱ) + 𝑖𝑏ଷ∗(𝐩ᇱ)𝐯𝟑ା(𝐩ᇱ) + 𝑖𝑑ଷ∗(𝐩ᇱ)𝐯𝟐𝑻(𝐩ᇱ) + 𝑑ସ∗(𝐩ᇱ)𝐯𝟒𝑻(𝐩ᇱ)቉ ቈ𝑑ଵ(𝐩)𝐮𝟏(𝐩) + 𝑖𝑑ଶ(𝐩)𝐮𝟑(𝐩) + 𝑖𝑏ଶ(𝐩)𝐮𝟐തതതത(𝐩) +  𝑏ଵ(𝐩)𝐮𝟒തതതത(𝐩)+𝑑ସ(𝐩)𝐯𝟏(𝐩) + 𝑖𝑑ଷ(𝐩)𝐯𝟑(𝐩) + 𝑖𝑏ଷ(𝐩)𝐯𝟐തതതത(𝐩) + 𝑏ସ(𝐩)𝐯𝟒തതതത(𝐩)቉ 𝑒ି௜൫௣బᇲ௫భି௣భᇲ௫బା௣మᇲ௫యି௣యᇲ௫మ൯𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) = න  න 𝑑ସ𝑝ᇱ(2𝜋)ଶ 𝑑ସ𝑝(2𝜋)ଶ  
൤ 𝑑ଵ(𝐩ᇱ)𝐮𝟏𝑻(𝐩ᇱ) + 𝑖𝑑ଶ(𝐩ᇱ)𝐮𝟑𝑻(𝐩ᇱ) + 𝑖𝑏ଶ(𝐩ᇱ)𝐮𝟐ା(𝐩ᇱ) + 𝑏ଵ(𝐩ᇱ)𝐮𝟒ା(𝐩ᇱ)+𝑑ସ(𝐩ᇱ)𝐯𝟏𝑻(𝐩ᇱ) + 𝑖𝑑ଷ(𝐩ᇱ)𝐯𝟑𝑻(𝐩ᇱ) + 𝑖𝑏ଷ(𝐩ᇱ)𝐯𝟐ା(𝐩ᇱ) + 𝑏ସ(𝐩ᇱ)𝐯𝟒ା(𝐩ᇱ)൨ ቈ 𝑏ଵ∗(𝐩)𝐮𝟏തതതത(𝐩) + 𝑖𝑏ଶ∗(𝐩)𝐮𝟑തതതത(𝐩) + 𝑖𝑑ଶ∗(𝐩)𝐮𝟐(𝐩) + 𝑑ଵ∗(𝐩)𝐮𝟒(𝐩)+𝑏ସ∗(𝐩)𝐯𝟏തതതത(𝐩) + 𝑖𝑏ଷ∗(𝐩)𝐯𝟑തതതത(𝐩) + 𝑖𝑑ଷ∗(𝐩)𝐯𝟐(𝐩) + 𝑑ସ∗(𝐩)𝐯𝟒(𝐩)቉ 𝛿(𝐩 − 𝐩ᇱ) +න  න 𝑑ସ𝑝ᇱ(2𝜋)ଶ 𝑑ସ𝑝(2𝜋)ଶ  
ቈ 𝑏ଵ∗(𝐩ᇱ)𝐮𝟏ା(𝐩ᇱ) + 𝑖𝑏ଶ∗(𝐩ᇱ)𝐮𝟑ା(𝐩ᇱ) + 𝑖𝑑ଶ∗(𝐩ᇱ)𝐮𝟐𝑻(𝐩ᇱ) + 𝑑ଵ∗(𝐩ᇱ)𝐮𝟒𝑻(𝐩ᇱ)+𝑏ସ∗(𝐩ᇱ)𝐯𝟏ା(𝐩ᇱ) + 𝑖𝑏ଷ∗(𝐩ᇱ)𝐯𝟑ା(𝐩ᇱ) + 𝑖𝑑ଷ∗(𝐩ᇱ)𝐯𝟐𝑻(𝐩ᇱ) + 𝑑ସ∗(𝐩ᇱ)𝐯𝟒𝑻(𝐩ᇱ)቉ ቈ𝑑ଵ(𝐩)𝐮𝟏(𝐩) + 𝑖𝑑ଶ(𝐩)𝐮𝟑(𝐩) + 𝑖𝑏ଶ(𝐩)𝐮𝟐തതതത(𝐩) +  𝑏ଵ(𝐩)𝐮𝟒തതതത(𝐩)+𝑑ସ(𝐩)𝐯𝟏(𝐩) + 𝑖𝑑ଷ(𝐩)𝐯𝟑(𝐩) + 𝑖𝑏ଷ(𝐩)𝐯𝟐തതതത(𝐩) + 𝑏ସ(𝐩)𝐯𝟒തതതത(𝐩)቉ 𝛿(𝐩ᇱ − 𝐩) 

 

= න  𝑑ସ𝑝(2𝜋)ଶ ⎣⎢⎢⎢
⎡ 𝑑ଵ(𝐩)𝑑ଵ∗(𝐩)𝐮𝟏𝑻(𝐩)𝐮𝟒(𝐩) + 𝑏ଵ(𝐩)𝑏ଵ∗(𝐩)𝐮𝟒ା(𝐩)𝐮𝟏തതതത(𝐩)−𝑑ଶ(𝐩)𝑑ଶ∗(𝐩)𝐮𝟑𝑻(𝐩)𝐮𝟐(𝐩) − 𝑏ଶ(𝐩)𝑏ଶ∗(𝐩)𝐮𝟐ା(𝐩)𝐮𝟑തതതത(𝐩)+𝑑ସ(𝐩)𝑑ସ∗(𝐩)𝐯𝟏𝑻(𝐩)𝐯𝟒(𝐩) + 𝑏ସ(𝐩)𝑏ସ∗(𝐩)𝐯𝟒ା(𝐩)𝐯𝟏തതതത(𝐩)−𝑑ଷ(𝐩)𝑑ଷ∗(𝐩)𝐯𝟑𝑻(𝐩)𝐯𝟐(𝐩) − 𝑏ଷ(𝐩)𝑏ଷ∗(𝐩)𝐯𝟐ା(𝐩)𝐯𝟑തതതത(𝐩) ⎦⎥⎥⎥

⎤
 

+න  𝑑ସ𝑝(2𝜋)ଶ ⎣⎢⎢⎢
⎡ 𝑏ଵ∗(𝐩) 𝑏ଵ(𝐩)𝐮𝟏ା(𝐩)𝐮𝟒തതതത(𝐩) + 𝑑ଵ∗(𝐩)𝑑ଵ(𝐩)𝐮𝟒𝑻(𝐩)𝐮𝟏(𝐩)−𝑏ଶ∗(𝐩)𝑏ଶ(𝐩)𝐮𝟑ା(𝐩)𝐮𝟐തതതത(𝐩) − 𝑑ଶ∗(𝐩)𝑑ଶ(𝐩)𝐮𝟐(𝐩)𝐮𝟑(𝐩)+𝑏ସ∗(𝐩)𝑏ସ(𝐩)𝐯𝟏ା(𝐩)𝐯𝟒തതതത(𝐩) + 𝑑ସ∗(𝐩)𝑑ସ(𝐩)𝐯𝟒𝑻(𝐩)𝐯𝟏(𝐩)−𝑏ଷ∗(𝐩)𝑏ଷ(𝐩)𝐯𝟑ା(𝐩)𝐯𝟐തതതത(𝐩) − 𝑑ଷ∗(𝐩)𝑑ଷ(𝐩)𝐯𝟐𝑻(𝐩)𝐯𝟑(𝐩)⎦⎥⎥⎥

⎤
 

 

= න 𝑑ସ𝑝(2𝜋)ସ  (𝑚 + 𝑚ഥ) ⎣⎢⎢
⎡ 𝑑ଵ(𝐩)𝑑ଵ∗(𝐩) + 𝑏ଵ(𝐩)𝑏ଵ∗(𝐩) + 𝑑ସ(𝐩)𝑑ସ∗(𝐩) + 𝑏ସ(𝐩)𝑏𝟒∗(𝐩)+𝑏ଶ∗(𝐩)𝑏ଶ(𝐩) + 𝑑ଶ∗(𝐩)𝑑ଶ(𝐩) + 𝑑ଷ(𝐩)𝑑ଷ∗(𝐩) + 𝑏ଷ(𝐩)𝑏ଷ∗(𝐩)+𝑏ଵ∗(𝐩) 𝑏ଵ(𝐩) + 𝑑ଵ∗(𝐩)𝑑ଵ(𝐩) + 𝑏ସ∗(𝐩)𝑏ସ(𝐩) + 𝑑ସ∗(𝐩)𝑑ସ(𝐩)+𝑏ଶ∗(𝐩)𝑏ଶ(𝐩) + 𝑑ଶ∗(𝐩)𝑑ଶ(𝐩) + 𝑏ଷ∗(𝐩)𝑏ଷ(𝐩) + 𝑑ଷ∗(𝐩)𝑑ଷ(𝐩)⎦⎥⎥

⎤
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= න 𝑑ସ𝑝(2𝜋)ସ 8(𝑚 + 𝑚ഥ) 𝛿(𝟎) = න 𝑑ସ𝑥(2𝜋)ସ න 𝑑ସ𝑝(2𝜋)ସ 8(𝑚 + 𝑚ഥ) 

The ratios used in the derivation are 𝐮𝟏𝑻(𝐩)𝐮𝟒(𝐩) = −𝑝ଷ𝑝଴ + 𝑝ଶ𝑝ଵ + 𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ = 2𝑚 𝐮𝟒𝑻(𝐩)𝐮𝟏(𝐩) = −𝑝଴𝑝ଷ + 𝑝ଵ𝑝ଶ + 𝑝ଶ𝑝ଵ − 𝑝ଷ𝑝଴ = 2𝑚 𝐮𝟑𝑻(𝐩)𝐮𝟐(𝐩) = −𝑝ଵ𝑝ଶ + 𝑝଴𝑝ଷ + 𝑝ଷ𝑝଴ − 𝑝ଶ𝑝ଵ = −2𝑚 𝐮𝟐𝑻(𝐩)𝐮𝟑(𝐩) = −𝑝ଶ𝑝ଵ + 𝑝ଷ𝑝଴ + 𝑝଴𝑝ଷ−𝑝ଵ𝑝ଶ = −2𝑚 𝐮𝟏𝑻(𝐩)𝐮𝟒(𝐩) = −𝑝ଷ𝑝଴ + 𝑝ଶ𝑝ଵ + 𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ = 2𝑚 𝐯𝟏𝑻(𝐩)𝐯𝟒(𝐩) = 𝑝ଵ𝑝ଶ − 𝑝ଷ𝑝଴ − 𝑝଴𝑝ଷ + 𝑝ଶ𝑝ଵ = 2𝑚 𝐮𝟏ା(𝐩)𝐮𝟒തതതത(𝐩) = −𝑝ଷ𝑝଴ + 𝑝ଶ𝑝ଵ + 𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത = 2𝑚ഥ   𝑑ଵ(𝐩)𝑑ଵ∗(𝐩)+𝑑ଵ(𝐩)𝑑ଵ∗(𝐩) = 𝑏ଵ∗(𝐩)𝑏ଵ(𝐩)+𝑏ଵ∗(𝐩)𝑏ଵ(𝐩) = 𝛿(𝟎) 𝑏ଵ(𝐩)𝑏ଵ∗(𝐩)+𝑏ଵ(𝐩)𝑑ଵ∗(𝐩) = 𝑑ଵ∗(𝐩)𝑑ଵ(𝐩)+𝑑ଵ∗(𝐩)𝑏ଵ(𝐩) = 𝛿(𝟎)  𝑑ଶ(𝐩)𝑏ଶ∗(𝐩)+𝑑ଶ(𝐩)𝑏ଶ∗(𝐩) = 𝑏ଶ∗(𝐩)𝑑ଶ(𝐩)+𝑏ଶ∗(𝐩)𝑑ଶ(𝐩) = 𝛿(𝟎) 𝑏ଶ(𝐩)𝑑𝟐∗(𝐩)+𝑏ଶ(𝐩)𝑑𝟐∗(𝐩) = 𝑑𝟐∗(𝐩)𝑏ଶ(𝐩)+𝑑ଶ∗(𝐩)𝑏ଶ(𝐩) = 𝛿(𝟎)  𝑑ଷ(𝐩)𝑏ଷ∗(𝐩)+𝑑ଷ(𝐩)𝑏ଷ∗(𝐩) = 𝑏ଷ∗(𝐩)𝑑ଷ(𝐩)+𝑏ଷ∗(𝐩)𝑑ଷ(𝐩) = 𝛿(𝟎) 𝑏ଷ(𝐩)𝑑𝟑∗(𝐩)+𝑏ଷ(𝐩)𝑑𝟑∗(𝐩) = 𝑑𝟑∗(𝐩)𝑏ଷ(𝐩)+𝑑𝟑∗(𝐩)𝑏ଷ(𝐩) = 𝛿(𝟎)  𝑑ସ(𝐩)𝑑ସ∗(𝐩)+𝑑ସ(𝐩)𝑑ସ∗(𝐩) = 𝑏ସ∗(𝐩)𝑏ସ(𝐩)+𝑏ସ∗(𝐩)𝑏ସ(𝐩) = 𝛿(𝟎) 𝑏ସ(𝐩)𝑏ସ∗(𝐩)+𝑏ସ(𝐩)𝑏ସ∗(𝐩) = 𝑑ସ∗(𝐩)𝑑ସ(𝐩)+𝑑ସ∗(𝐩)𝑑ସ(𝐩) = 𝛿(𝟎) 

 𝑑ଵ(𝐩)𝑑ଵ∗(𝐩) = 12 𝛿(𝟎)         𝑏ଵ∗(𝐩)𝑏ଵ(𝐩) = 12 𝛿(𝟎)          𝑏ଵ(𝐩)𝑏ଵ∗(𝐩) = 12 𝛿(𝟎)          𝑑ଵ∗(𝐩)𝑑ଵ(𝐩) = 12 𝛿(𝟎) 

 𝑑ଶ(𝐩)𝑏ଶ∗(𝐩) = 12 𝛿(𝟎)         𝑏ଶ∗(𝐩)𝑑ଶ(𝐩) = 12 𝛿(𝟎)          𝑏ଶ(𝐩)𝑑ଶ∗(𝐩) = 12 𝛿(𝟎)           𝑑ଶ∗(𝐩)𝑏ଶ(𝐩) = 12 𝛿(𝟎) 

 𝑑ଷ(𝐩)𝑏ଷ∗(𝐩) = 12 𝛿(𝟎)         𝑏ଷ∗(𝐩)𝑑ଷ(𝐩) = 12 𝛿(𝟎)          𝑏ଷ(𝐩)𝑑ଷ∗(𝐩) = 12 𝛿(𝟎)           𝑑ଷ∗(𝐩)𝑏ଷ(𝐩) = 12 𝛿(𝟎) 

 𝑑ସ(𝐩)𝑑ସ∗(𝐩) = 12 𝛿(𝟎)         𝑏ସ∗(𝐩)𝑏ସ(𝐩) = 12 𝛿(𝟎)          𝑏ସ(𝐩)𝑏ସ∗(𝐩) = 12 𝛿(𝟎)          𝑑ସ∗(𝐩)𝑑ସ(𝐩) = 12 𝛿(𝟎) 

𝛿(𝟎) = න 𝑑ସ𝑥(2𝜋)ସ  
Let us give an interpretation of the operator coefficients for this approach 

     𝐮𝟏 = ቌ−𝑝ଷ−𝑝ଶ𝑝ଵ𝑝଴ ቍ      𝐮𝟐 = ቌ 𝑝ଶ−𝑝ଷ𝑝଴−𝑝ଵቍ       𝐮𝟑 = ቌ−𝑝ଵ−𝑝଴𝑝ଷ𝑝ଶ ቍ      𝐮𝟒 = ቌ 𝑝଴−𝑝ଵ𝑝ଶ−𝑝ଷቍ 

𝑚𝐮𝟏 = −𝑝ଶ𝑝ଵ + 𝑝ଷ𝑝଴ = −𝑚 𝑚𝐮𝟐 = −𝑝ଷ𝑝଴ + 𝑝ଶ𝑝ଵ = 𝑚 𝑚𝐮𝟑 = −𝑝଴𝑝ଷ + 𝑝ଵ𝑝ଶ = 𝑚 𝑚𝐮𝟒 = −𝑝ଵ𝑝ଶ + 𝑝଴𝑝ଷ = −𝑚 

        𝐯𝟏 = ቌ𝑝ଵ𝑝଴𝑝ଷ𝑝ଶቍ      𝐯𝟐 = ቌ 𝑝଴−𝑝ଵ−𝑝ଶ𝑝ଷ ቍ       𝐯𝟑 = ቌ𝑝ଷ𝑝ଶ𝑝ଵ𝑝଴ቍ      𝐯𝟒 = ቌ 𝑝ଶ−𝑝ଷ−𝑝଴𝑝ଵ ቍ 

𝑚𝐯𝟏 = 𝑝଴𝑝ଷ − 𝑝ଵ𝑝ଶ = −𝑚 𝑚𝐯𝟐 = 𝑝ଵ𝑝ଶ − 𝑝଴𝑝ଷ = 𝑚 
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𝑚𝐯𝟑 = 𝑝ଶ𝑝ଵ − 𝑝ଷ𝑝଴ = 𝑚 𝑚𝐯𝟒 = 𝑝ଷ𝑝଴ − 𝑝ଶ𝑝ଵ = −𝑚 

𝛗(𝐱) = න 𝑑ସ𝑝(2𝜋)ଶ  
ቈ𝑑ଵ(𝐩)𝐮𝟏(𝐩) + 𝑖𝑑ଶ(𝐩)𝐮𝟑(𝐩) + 𝑖𝑏ଶ(𝐩)𝐮𝟐തതതത(𝐩) +  𝑏ଵ(𝐩)𝐮𝟒തതതത(𝐩)+𝑑ସ(𝐩)𝐯𝟏(𝐩) + 𝑖𝑑ଷ(𝐩)𝐯𝟑(𝐩) + 𝑖𝑏ଷ(𝐩)𝐯𝟐തതതത(𝐩) + 𝑏ସ(𝐩)𝐯𝟒തതതത(𝐩)቉ 𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) 

+ ቈ 𝑏ଵ∗(𝐩)𝐮𝟏തതതത(𝐩) + 𝑖𝑏ଶ∗(𝐩)𝐮𝟑തതതത(𝐩) + 𝑖𝑑ଶ∗(𝐩)𝐮𝟐(𝐩) + 𝑑ଵ∗(𝐩)𝐮𝟒(𝐩)+𝑏ସ∗(𝐩)𝐯𝟏തതതത(𝐩) + 𝑖𝑏ଷ∗(𝐩)𝐯𝟑തതതത(𝐩) + 𝑖𝑑ଷ∗(𝐩)𝐯𝟐(𝐩) + 𝑑ସ∗(𝐩)𝐯𝟒(𝐩)቉ 𝑒ି௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) 
𝑑ଵ∗(𝐩)  creates and 𝑑ଵ(𝐩)  destroys a particle 𝐮𝟏(𝐩) = ቌ−𝑝ଷ−𝑝ଶ𝑝ଵ𝑝଴ ቍ  with mass −𝑚 , spin up and 

momentum in the interval 𝑑ସ𝑝, 𝑑ଵ∗(𝐩)𝑑ଵ(𝐩) is the operator of the number of such particles 

𝑏ଵ(𝐩)  creates and 𝑏ଵ∗(𝐩)  destroys a particle 𝐮𝟏തതതത(𝐩) = ൮−𝑝ଷതതത−𝑝ଶതതത𝑝ଵതതത𝑝଴തതത ൲  with mass −𝑚ഥ , spin up and 

momentum in the interval 𝑑ସ𝑝, 𝑏ଵ(𝐩)𝑏ଵ∗(𝐩) is the operator of the number of such particles 

𝑑ଵ(𝐩)  creates and 𝑑ଵ∗(𝐩)  destroys a particle 𝐮𝟒(𝐩) = ቌ 𝑝଴−𝑝ଵ𝑝ଶ−𝑝ଷቍ  with mass −𝑚 , spin up and 

momentum in the interval 𝑑ସ𝑝, 𝑑ଵ(𝐩)𝑑ଵ∗(𝐩) is the operator of the number of such particles 

𝑏ଵ∗(𝐩)  creates and 𝑏ଵ(𝐩)  destroys a particle 𝐮𝟒തതതത(𝐩) = ൮ 𝑝଴തതത−𝑝ଵതതത𝑝ଶതതത−𝑝ଷതതത൲  with mass −𝑚ഥ , spin up and 

momentum in the interval 𝑑ସ𝑝, 𝑏ଵ∗(𝐩)𝑏ଵ(𝐩) is the operator of the number of such particles 

Note that 𝐮𝟏(𝐩) and 𝐮𝟒(𝐩)are translated into each other by a linear transformation, this is also 

true for other pairs of spinors 

𝐮𝟒 = ቌ 0  00  0  0  1−1  0  0  −11  0  0  00 0 ቍ𝐮𝟏 

𝐮𝟏 = ቌ 0  00  0  0  1−1  0  0  −11  0  0  00 0 ቍ𝐮𝟒 

It is known [10], formula II.1.30] that the charge conjugation operation transforms an electron 
into a positron with a change of the sign of the charge. Let us apply the charge conjugation to the 
reference spinor  

ቌ  0 0 0 0  0 −𝑖𝑖 0  0 𝑖−𝑖 0  0 00 0 ቍ𝐮𝟏 = ቌ  0 0 0 0  0 −𝑖𝑖 0  0 𝑖−𝑖 0  0 00 0 ቍቌ
−𝑝ଷ−𝑝ଶ𝑝ଵ𝑝଴ ቍ = −𝑖 ቌ 𝑝଴−𝑝ଵ𝑝ଶ−𝑝ଷቍ = −𝑖𝐮𝟒 

As a result 𝐮𝟏 not only transforms to 𝐮𝟒, but also changes a sign of mass due to the imaginary 
unit in the charge conjugation matrix. This confirms our thesis that the charge conjugation 
synchronously changes signs of charge and mass. 

The properties of all particles and operators are summarized in a table  
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creates destroys particle number mass spin 
wave 
sign 

𝑑ଵ∗(𝐩) 𝑑ଵ(𝐩) 𝐮𝟏(𝐩) = ቌ−𝑝ଷ−𝑝ଶ𝑝ଵ𝑝଴ ቍ 𝑑ଵ∗(𝐩)𝑑ଵ(𝐩) −𝑚 up + 

𝑑ଵ(𝐩) 𝑑ଵ∗(𝐩) 𝐮𝟒(𝐩) = ቌ 𝑝଴−𝑝ଵ𝑝ଶ−𝑝ଷቍ 𝑑ଵ(𝐩)𝑑ଵ∗(𝐩) −𝑚 up - 

𝑏ଵ(𝐩) 𝑏ଵ∗(𝐩) 𝐮𝟏തതതത(𝐩) = ൮−𝑝ଷതതത−𝑝ଶതതത𝑝ଵതതത𝑝଴തതത ൲ 𝑏ଵ(𝐩)𝑏ଵ∗(𝐩) −𝑚ഥ  up - 

𝑏ଵ∗(𝐩) 𝑏ଵ(𝐩) 𝐮𝟒തതതത(𝐩) = ൮ 𝑝଴തതത−𝑝ଵതതത𝑝ଶതതത−𝑝ଷതതത൲ 𝑏ଵ∗(𝐩)𝑏ଵ(𝐩) −𝑚ഥ  up + 

𝑑ସ∗(𝐩) 𝑑ସ(𝐩) 𝐯𝟏(𝐩) = ቌ𝑝ଵ𝑝଴𝑝ଷ𝑝ଶቍ 𝑑ସ∗(𝐩)𝑑ସ −𝑚 down + 

𝑑ସ(𝐩) 𝑑ସ∗(𝐩) 𝐯𝟒(𝐩) = ቌ 𝑝ଶ−𝑝ଷ−𝑝଴𝑝ଵ ቍ 𝑑ସ(𝐩)𝑑ସ∗(𝐩) −𝑚 down - 

𝑏ସ(𝐩) 𝑏ସ∗(𝐩) 𝐯𝟏തതതത(𝐩) = ൮𝑝ଵതതത𝑝଴തതത𝑝ଷതതത𝑝ଶതതത൲ 𝑏ସ(𝐩)𝑏ସ∗(𝐩) −𝑚ഥ  down - 

𝑏ସ∗(𝐩) 𝑏ସ(𝐩) 𝐯𝟒തതതത(𝐩) = ൮ 𝑝ଶതതത−𝑝ଷതതത−𝑝଴തതത𝑝ଵതതത ൲ 𝑏ସ∗(𝐩)𝑏ସ(𝐩) −𝑚ഥ  down + 

𝑑ଶ∗(𝐩) 𝑑ଶ(𝐩) 𝑖𝐮𝟑(𝐩) = 𝑖 ቌ−𝑝ଵ−𝑝଴𝑝ଷ𝑝ଶ ቍ 𝑑ଶ∗(𝐩)𝑑ଶ(𝐩) 𝑚 up + 

𝑑ଶ(𝐩) 𝑑ଶ∗(𝐩) 𝑖𝐮𝟐(𝐩) = 𝑖 ቌ 𝑝ଶ−𝑝ଷ𝑝଴−𝑝ଵቍ 𝑑ଶ(𝐩)𝑑ଶ∗(𝐩) 𝑚 up - 

𝑏ଶ(𝐩) 𝑏ଶ∗(𝐩) 𝑖𝐮𝟑തതതത(𝐩) = 𝑖 ൮−𝑝ଵതതത−𝑝଴തതത𝑝ଷതതത𝑝ଶതതത ൲ 𝑏ଶ(𝐩)𝑏ଶ∗(𝐩) 𝑚ഥ  up - 

𝑏ଶ∗(𝐩) 𝑏ଶ(𝐩) 𝑖𝐮𝟐തതതത(𝐩) = 𝑖 ൮ 𝑝ଶതതത−𝑝ଷതതത𝑝଴തതത−𝑝ଵതതത൲ 𝑏ଶ∗(𝐩)𝑏ଶ(𝐩) 𝑚ഥ  up + 

𝑑ଷ∗(𝐩) 𝑑ଷ(𝐩) 𝑖𝐯𝟑(𝐩) = 𝑖 ቌ𝑝ଷ𝑝ଶ𝑝ଵ𝑝଴ቍ 𝑑ଷ∗(𝐩)𝑑ଷ(𝐩) 𝑚 down + 

𝑑ଷ(𝐩) 𝑑ଷ∗(𝐩) 𝑖𝐯𝟐(𝐩) = 𝑖 ቌ 𝑝଴−𝑝ଵ−𝑝ଶ𝑝ଷ ቍ 𝑑ଷ(𝐩)𝑑ଷ∗(𝐩) 𝑚 down - 

𝑏ଷ(𝐩) 𝑏ଷ∗(𝐩) 𝑖𝐯𝟑തതതത(𝐩) = 𝑖 ൮𝑝ଷതതത𝑝ଶതതത𝑝ଵതതത𝑝଴തതത൲  𝑏ଷ(𝐩)𝑏ଷ∗(𝐩) 𝑚ഥ  down - 
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𝑏ଷ∗(𝐩) 𝑏ଷ(𝐩) 𝑖𝐯𝟐തതതത(𝐩) = 𝑖 ൮ 𝑝଴തതത−𝑝ଵതതത−𝑝ଶതതത𝑝ଷതതത ൲ 𝑏ଷ∗(𝐩)𝑏ଷ(𝐩) 𝑚ഥ  down + 

By the words 𝑑ଵ(𝐩) destroys the particle 𝐮𝟏(𝐩) it should be understood that this operator 
transforms this particle into the particle 𝐮𝟒(𝐩) , and the operator 𝑑ଵ∗(𝐩)  performs the reverse 
transformation of 𝐮𝟒(𝐩)  into 𝐮𝟏(𝐩).  Since both of these particles have the same mass, the total 
mass of the fermionic field does not change from these transformations. The mass m itself can have 
any sign. 

If the operator 𝑑ଵ(𝐩) acts on the particle 𝐮𝟏(𝐩), it transforms it into the particle 𝐮𝟒(𝐩), the 

action on any other particle gives zero. 

Let us see what result we get if we apply the canonical definition of anticommutativity of the 

fermionic field. ሼ𝛗(𝐱),𝛗ା(𝐱ᇱ)ሽ = න  න 𝑑ସ𝑝(2𝜋)ଶ 𝑑ସ𝑝ᇱ(2𝜋)ଶ 

ቈ𝑑ଵ(𝐩)𝐮𝟏(𝐩) + 𝑖𝑑ଶ(𝐩)𝐮𝟑(𝐩) + 𝑖𝑏ଶ(𝐩)𝐮𝟐തതതത(𝐩) +  𝑏ଵ(𝐩)𝐮𝟒തതതത(𝐩)+𝑑ସ(𝐩)𝐯𝟏(𝐩) + 𝑖𝑑ଷ(𝐩)𝐯𝟑(𝐩) + 𝑖𝑏ଷ(𝐩)𝐯𝟐തതതത(𝐩) + 𝑏ସ(𝐩)𝐯𝟒തതതത(𝐩)቉ ൤ 𝑑ଵ∗(𝐩ᇱ)𝐮𝟏ା(𝐩ᇱ) − 𝑖𝑑ଶ∗(𝐩ᇱ)𝐮𝟑ା(𝐩ᇱ) − 𝑖𝑏ଶ∗(𝐩ᇱ)𝐮𝟐்(𝐩ᇱ) + 𝑏ଵ∗(𝐩ᇱ)𝐮𝟒்(𝐩ᇱ)+𝑑ସ∗(𝐩ᇱ)𝐯𝟏ା(𝐩ᇱ) − 𝑖𝑑ଷ∗(𝐩ᇱ)𝐯𝟑ା(𝐩ᇱ) − 𝑖𝑏ଷ∗(𝐩ᇱ)𝐯𝟐்(𝐩ᇱ) + 𝑏ସ∗(𝐩ᇱ)𝐯𝟒்(𝐩ᇱ)൨ 𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ)𝑒ି௜൫௣బᇲ௫భᇲି௣భᇲ௫బᇲା௣మᇲ௫యᇲି௣యᇲ௫మᇲ൯ + ቈ𝑑ଵ(𝐩ᇱ)𝐮𝟏(𝐩ᇱ) + 𝑖𝑑ଶ(𝐩ᇱ)𝐮𝟑(𝐩ᇱ) + 𝑖𝑏ଶ(𝐩ᇱ)𝐮𝟐തതതത(𝐩ᇱ) +  𝑏ଵ(𝐩ᇱ)𝐮𝟒തതതത(𝐩ᇱ)+𝑑ସ(𝐩ᇱ)𝐯𝟏(𝐩ᇱ) + 𝑖𝑑ଷ(𝐩ᇱ)𝐯𝟑(𝐩ᇱ) + 𝑖𝑏ଷ(𝐩ᇱ)𝐯𝟐തതതത(𝐩ᇱ) + 𝑏ସ(𝐩ᇱ)𝐯𝟒തതതത(𝐩ᇱ)቉ ൤𝑑ଵ∗(𝐩)𝐮𝟏ା(𝐩) − 𝑖𝑑ଶ∗(𝐩)𝐮𝟑ା(𝐩) − 𝑖𝑏ଶ∗(𝐩ᇱ)𝐮𝟐்(𝐩ᇱ) + 𝑏ଵ∗(𝐩)𝐮𝟒்(𝐩)+𝑑ସ∗(𝐩)𝐯𝟏ା(𝐩) − 𝑖𝑑ଷ∗(𝐩)𝐯𝟑ା(𝐩) − 𝑖𝑏ଷ∗(𝐩)𝐯𝟐்(𝐩) + 𝑏ସ∗(𝐩)𝐯𝟒்(𝐩)൨ 𝑒௜൫௣బᇲ௫భᇲି௣భᇲ௫బᇲା௣మᇲ௫యᇲି௣యᇲ௫మᇲ൯𝑒ି௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) + ቈ 𝑏ଵ∗(𝐩)𝐮𝟏തതതത(𝐩) + 𝑖𝑏ଶ∗(𝐩)𝐮𝟑തതതത(𝐩) + 𝑖𝑑ଶ∗(𝐩)𝐮𝟐(𝐩) + 𝑑ଵ∗(𝐩)𝐮𝟒(𝐩)+𝑏ସ∗(𝐩)𝐯𝟏തതതത(𝐩) + 𝑖𝑏ଷ∗(𝐩)𝐯𝟑തതതത(𝐩) + 𝑖𝑑ଷ∗(𝐩)𝐯𝟐(𝐩) + 𝑑ସ∗(𝐩)𝐯𝟒(𝐩)቉ ൤ 𝑏ଵ(𝐩ᇱ)𝐮𝟏𝑻(𝐩ᇱ) − 𝑖𝑏ଶ(𝐩ᇱ)𝐮𝟑்(𝐩ᇱ) − 𝑖𝑑ଶ(𝐩ᇱ)𝐮𝟐ା(𝐩ᇱ) + 𝑑ଵ(𝐩ᇱ)𝐮𝟒ା(𝐩ᇱ)+𝑏ସ(𝐩ᇱ)𝐯𝟏்(𝐩ᇱ) − 𝑖𝑏ଷ(𝐩ᇱ)𝐯𝟑்(𝐩ᇱ) − 𝑖𝑑ଷ(𝐩ᇱ)𝐯𝟐ା(𝐩ᇱ) + 𝑑ସ(𝐩ᇱ)𝐯𝟒ା(𝐩ᇱ)൨ 𝑒ି௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ)𝑒௜൫௣బᇲ௫భᇲି௣భᇲ௫బᇲା௣మᇲ௫యᇲି௣యᇲ௫మᇲ൯ + ቈ 𝑏ଵ∗(𝐩ᇱ)𝐮𝟏തതതത(𝐩ᇱ) + 𝑖𝑏ଶ∗(𝐩ᇱ)𝐮𝟑തതതത(𝐩ᇱ) + 𝑖𝑑ଶ∗(𝐩ᇱ)𝐮𝟐(𝐩ᇱ) + 𝑑ଵ∗(𝐩ᇱ)𝐮𝟒(𝐩ᇱ)+𝑏ସ∗(𝐩ᇱ)𝐯𝟏തതതത(𝐩ᇱ) + 𝑖𝑏ଷ∗(𝐩ᇱ)𝐯𝟑തതതത(𝐩ᇱ) + 𝑖𝑑ଷ∗(𝐩ᇱ)𝐯𝟐(𝐩ᇱ) + 𝑑ସ∗(𝐩ᇱ)𝐯𝟒(𝐩ᇱ)቉ ൤ 𝑏ଵ(𝐩)𝐮𝟏𝑻(𝐩) − 𝑖𝑏ଶ(𝐩)𝐮𝟑்(𝐩) − 𝑖𝑑ଶ(𝐩)𝐮𝟐ା(𝐩) + 𝑑ଵ(𝐩)𝐮𝟒ା(𝐩)+𝑏ସ(𝐩)𝐯𝟏்(𝐩) − 𝑖𝑏ଷ(𝐩)𝐯𝟑்(𝐩) − 𝑖𝑑ଷ(𝐩)𝐯𝟐ା(𝐩) + 𝑑ସ(𝐩)𝐯𝟒ା(𝐩)൨ 𝑒ି௜൫௣బᇲ௫భᇲି௣భᇲ௫బᇲା௣మᇲ௫యᇲି௣యᇲ௫మᇲ൯𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) 
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= න  න 𝑑ସ𝑝(2𝜋)ଶ 𝑑ସ𝑝ᇱ(2𝜋)ଶ
⎣⎢⎢
⎢⎢⎢
⎢⎡ ൤ 𝑑ଵ(𝐩)𝐮𝟏(𝐩)𝑑ଵ∗(𝐩ᇱ)𝐮𝟏ା(𝐩ᇱ) + 𝑑ଵ(𝐩ᇱ)𝐮𝟏(𝐩ᇱ)𝑑ଵ∗(𝐩)𝐮𝟏ା(𝐩) + ⋯+𝑑ଶ(𝐩)𝐮𝟑(𝐩)𝑑ଶ∗(𝐩ᇱ)𝐮𝟑ା(𝐩ᇱ) + 𝑑ଶ(𝐩ᇱ)𝐮𝟑(𝐩ᇱ)𝑑ଶ∗(𝐩)𝐮𝟑ା(𝐩) + ⋯൨𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ)𝑒ି௜൫௣బᇲ௫భᇲି௣భᇲ௫బᇲା௣మᇲ௫యᇲି௣యᇲ௫మᇲ൯+ቈ  𝑏ଵ(𝐩)𝐮𝟒തതതത(𝐩)𝑏ଵ∗(𝐩ᇱ)𝐮𝟒்(𝐩ᇱ) +  𝑏ଵ(𝐩ᇱ)𝐮𝟒തതതത(𝐩ᇱ)𝑏ଵ∗(𝐩)𝐮𝟒்(𝐩) + ⋯+𝑏ଶ(𝐩)𝐮𝟐തതതത(𝐩)𝑏ଶ∗(𝐩ᇱ)𝐮𝟐்(𝐩ᇱ) + 𝑏ଶ(𝐩ᇱ)𝐮𝟐തതതത(𝐩ᇱ)𝑖𝑏ଶ∗(𝐩ᇱ)𝐮𝟐்(𝐩ᇱ) + ⋯቉𝑒௜൫௣బᇲ௫భᇲି௣భᇲ௫బᇲା௣మᇲ௫యᇲି௣యᇲ௫మᇲ൯𝑒ି௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) ⎦⎥⎥

⎥⎥⎥
⎥⎤
 

+ 

න  න 𝑑ସ𝑝(2𝜋)ଶ 𝑑ସ𝑝ᇱ(2𝜋)ଶ
⎣⎢⎢
⎢⎢⎢
⎢⎡ ቈ 𝑏ଵ∗(𝐩)𝐮𝟏തതതത(𝐩)𝑏ଵ(𝐩ᇱ)𝐮𝟏𝑻(𝐩ᇱ) + 𝑏ଵ∗(𝐩ᇱ)𝐮𝟏തതതത(𝐩ᇱ)𝑏ଵ(𝐩)𝐮𝟏𝑻(𝐩) + ⋯+𝑏ଶ∗(𝐩)𝐮𝟑തതതത(𝐩)𝑏ଶ(𝐩ᇱ)𝐮𝟑்(𝐩ᇱ) + 𝑏ଶ∗(𝐩ᇱ)𝐮𝟑തതതത(𝐩ᇱ)𝑏ଶ(𝐩)𝐮𝟑்(𝐩) + ⋯቉𝑒ି௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ)𝑒௜൫௣బᇲ௫భᇲି௣భᇲ௫బᇲା௣మᇲ௫యᇲି௣యᇲ௫మᇲ൯+൤ 𝑑ଵ∗(𝐩)𝐮𝟒(𝐩)𝑑ଵ(𝐩ᇱ)𝐮𝟒ା(𝐩ᇱ) + 𝑑ଵ∗(𝐩ᇱ)𝐮𝟒(𝐩ᇱ)𝑑ଵ(𝐩)𝐮𝟒ା(𝐩) + ⋯+𝑑ଶ∗(𝐩)𝐮𝟐(𝐩)𝑑ଶ(𝐩ᇱ)𝐮𝟐ା(𝐩ᇱ) + 𝑑ଶ∗(𝐩ᇱ)𝐮𝟐(𝐩ᇱ)𝑑ଶ(𝐩)𝐮𝟐ା(𝐩) + ⋯൨𝑒ି௜൫௣బᇲ௫భᇲି௣భᇲ௫బᇲା௣మᇲ௫యᇲି௣యᇲ௫మᇲ൯𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) ⎦⎥⎥

⎥⎥⎥
⎥⎤
 

 

= න  𝑑ସ𝑝(2𝜋)ଶ
⎣⎢⎢
⎢⎢⎢
⎢⎡ ൤ 𝐮𝟏(𝐩)𝐮𝟏ା(𝐩) + ⋯+𝐮𝟑(𝐩)𝐮𝟑ା(𝐩) + ⋯൨𝑒௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ+൤ 𝐮𝟒തതതത(𝐩)𝐮𝟒்(𝐩) + ⋯+𝐮𝟐തതതത(𝐩)𝐮𝟐்(𝐩) + ⋯൨𝑒ି௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ⎦⎥⎥

⎥⎥⎥
⎥⎤
 

+න  𝑑ସ𝑝(2𝜋)ଶ
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡ ቈ 𝐮𝟏തതതത(𝐩)𝐮𝟏𝑻(𝐩) + ⋯+𝐮𝟑തതതത(𝐩)𝐮𝟑்(𝐩) + ⋯቉𝑒ି௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ+൤ 𝐮𝟒(𝐩)𝐮𝟒ା(𝐩) + ⋯+𝐮𝟐(𝐩)𝐮𝟐ା(𝐩) + ⋯൨𝑒௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤
 

 

= න  𝑑ସ𝑝(2𝜋)ଶ
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡ ൤ 𝐮𝟏(𝐩)𝐮𝟏ା(𝐩) + 𝐮𝟑(𝐩)𝐮𝟑ା(𝐩) +𝐮𝟒(𝐩)𝐮𝟒ା(𝐩) + 𝐮𝟐(𝐩)𝐮𝟐ା(𝐩) + ⋯൨𝑒௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ+ቈ 𝐮𝟒തതതത(𝐩)𝐮𝟒்(𝐩) + 𝐮𝟐തതതത(𝐩)𝐮𝟐்(𝐩) +𝐮𝟏തതതത(𝐩)𝐮𝟏𝑻(𝐩) + 𝐮𝟑തതതത(𝐩)𝐮𝟑்(𝐩) + ⋯቉𝑒ି௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤
 

 

= න  𝑑ସ𝑝(2𝜋)ଶ
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡൤𝐮𝟏(𝐩)𝐮𝟏ା(𝐩) + 𝐮𝟐(𝐩)𝐮𝟐ା(𝐩) + 𝐮𝟑(𝐩)𝐮𝟑ା(𝐩) + 𝐮𝟒(𝐩)𝐮𝟒ା(𝐩) +𝐯𝟏(𝐩)𝐯𝟏ା(𝐩) + 𝐯𝟐(𝐩)𝐯𝟐ା(𝐩) + 𝐯𝟑(𝐩)𝐯𝟑ା(𝐩) + 𝐯𝟒(𝐩)𝐯𝟒ା(𝐩) ൨𝑒௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ+ቈ𝐮𝟏തതതത(𝐩)𝐮𝟏ା(𝐩) + 𝐮𝟐തതതത(𝐩)𝐮𝟐ା(𝐩) + 𝐮𝟑തതതത(𝐩)𝐮𝟑ା(𝐩) + 𝐮𝟒തതതത(𝐩)𝐮𝟒ା(𝐩) +𝐯𝟏തതതത(𝐩)𝐯𝟏ା(𝐩) + 𝐯𝟐തതതത(𝐩)𝐯𝟐ା(𝐩) + 𝐯𝟑തതതത(𝐩)𝐯𝟑ା(𝐩) + 𝐯𝟒തതതത(𝐩)𝐯𝟒ା(𝐩) ቉𝑒ି௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤
 

= න 𝑑ସ𝑝(2𝜋)ସ ൫𝑇ோ(𝐩) + 𝑇ோ(𝐩)൯𝑒൬௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ൰ 
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+ න 𝑑ସ𝑝(2𝜋)ସ ቀ𝑇ோതതത(𝐩) + 𝑇ோതതതത(𝐩)ቁ 𝑒ି൬௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ൰ = 

න 𝑑ସ𝑝(2𝜋)ସ  4൮𝑒(𝐩) 00 𝑒(𝐩) 0 00 00 00 0 𝑒(𝐩) 00 𝑒(𝐩)൲𝑒൬௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ൰ + 

න 𝑑ସ𝑝(2𝜋)ସ  4൮𝑒(𝐩) 00 𝑒(𝐩) 0 00 00 00 0 𝑒(𝐩) 00 𝑒(𝐩)൲𝑒ି൬௜ቀ௣బ൫௫భି௫భᇲ൯ି௣భ൫௫బି௫బᇲ൯ା௣మ൫௫యି௫యᇲ൯ି௣య൫௫మି௫మᇲ൯ቁ൰ 
 = 4𝑒(𝐩)𝐼𝛿(𝐱ᇱ − 𝐱) + 4𝑒(𝐩)𝐼𝛿(𝐱 − 𝐱ᇱ) 

where 𝑇ோ(𝐩) = 𝐮𝟏(𝐩)𝐮𝟏ା(𝐩) + 𝐮𝟐(𝐩)𝐮𝟐ା(𝐩) + 𝐮𝟑(𝐩)𝐮𝟑ା(𝐩) + 𝐮𝟒(𝐩)𝐮𝟒ା(𝐩) 𝑇ோ(𝐩) = 𝐯𝟏(𝐩)𝐯𝟏ା(𝐩) + 𝐯𝟐(𝐩)𝐯𝟐ା(𝐩) + 𝐯𝟑(𝐩)𝐯𝟑ା(𝐩) + 𝐯𝟒(𝐩)𝐯𝟒ା(𝐩) 

 𝑇ோ(𝐩) + 𝑇ோ(𝐩) + 𝑇ோതതതത(𝐩) + 𝑇ோതതത(𝐩) = 

4(𝑝଴𝑝଴തതത + 𝑝ଵ𝑝ଵതതത + 𝑝ଶ𝑝ଶതതത + 𝑝ଷ𝑝ଷതതത)ቌ 1    00    1  0    00    0  0    00    0 1    00    1ቍ = 4𝑒(𝐩)𝐼 
In deriving this result, the following relations are taken into account 𝑇ோ(𝐩) + 𝑇ோ(𝐩) = 𝐮𝟏(𝐩)𝐮𝟏ା(𝐩) + 𝐮𝟐(𝐩)𝐮𝟐ା(𝐩) + 𝐮𝟑(𝐩)𝐮𝟑ା(𝐩) + 𝐮𝟒(𝐩)𝐮𝟒ା(𝐩) +𝐯𝟏(𝐩)𝐯𝟏ା(𝐩) + 𝐯𝟐(𝐩)𝐯𝟐ା(𝐩) + 𝐯𝟑(𝐩)𝐯𝟑ା(𝐩) + 𝐯𝟒(𝐩)𝐯𝟒ା(𝐩) = 

ቌ−𝑝ଷ−𝑝ଶ𝑝ଵ𝑝଴ ቍ (−𝑝ଷതതത,−𝑝ଶതതത,𝑝ଵതതത,𝑝଴തതത) + ቌ 𝑝ଶ−𝑝ଷ𝑝଴−𝑝ଵቍ (𝑝ଶതതത,−𝑝ଷതതത,𝑝଴തതത,−𝑝ଵതതത) 

+ቌ−𝑝ଵ−𝑝଴𝑝ଷ𝑝ଶ ቍ (−𝑝ଵതതത,−𝑝଴തതത,𝑝ଷതതത,𝑝ଶതതത) + ቌ 𝑝଴−𝑝ଵ𝑝ଶ−𝑝ଷቍ (𝑝଴തതത,−𝑝ଵതതത,𝑝ଶതതത,−𝑝ଷതതത) + 

ቌ𝑝ଵ𝑝଴𝑝ଷ𝑝ଶቍ (𝑝ଵതതത,𝑝଴തതത,𝑝ଷതതത,𝑝ଶതതത) + ቌ 𝑝଴−𝑝ଵ−𝑝ଶ𝑝ଷ ቍ (𝑝଴തതത,−𝑝ଵതതത,−𝑝ଶതതത,𝑝ଷതതത) 

+ቌ𝑝ଷ𝑝ଶ𝑝ଵ𝑝଴ቍ (𝑝ଷതതത,𝑝ଶതതത,𝑝ଵതതത,𝑝଴തതത) + ቌ 𝑝ଶ−𝑝ଷ−𝑝଴𝑝ଵ ቍ (𝑝ଶതതത,−𝑝ଷതതത,−𝑝଴തതത,𝑝ଵതതത) = 

൮ 𝑝ଷ𝑝ଷതതത    𝑝ଷ𝑝ଶതതത𝑝ଶ𝑝ଷതതത    𝑝ଶ𝑝ଶതതത  −𝑝ଷ𝑝ଵതതത   −𝑝ଷ𝑝଴തതത−𝑝ଶ𝑝ଵതതത   −𝑝ଶ𝑝଴തതത  −𝑝ଵ𝑝ଷതതത  −𝑝ଵ𝑝ଶതതത−𝑝଴𝑝ଷതതത   −𝑝଴𝑝ଶതതത 𝑝ଵ𝑝ଵതതത    𝑝ଵ𝑝଴തതത𝑝଴𝑝ଵതതത    𝑝଴𝑝଴തതത ൲ + ൮ 𝑝ଶ𝑝ଶതതത   −𝑝ଶ𝑝ଷതതത−𝑝ଷ𝑝ଶതതത    𝑝ଷ𝑝ଷതതത  𝑝ଶ𝑝଴തതത   −𝑝ଶ𝑝ଵതതത−𝑝ଷ𝑝଴തതത   𝑝ଷ𝑝ଵതതത  𝑝଴𝑝ଶതതത  −𝑝଴𝑝ଷതതത−𝑝ଵ𝑝ଶതതത   𝑝ଵ𝑝ଷതതത 𝑝଴𝑝଴തതത    −𝑝଴𝑝ଵതതത−𝑝ଵ𝑝଴തതത    𝑝ଵ𝑝ଵതതത ൲ 

+൮ 𝑝ଵ𝑝ଵതതത    𝑝ଵ𝑝଴തതത𝑝଴𝑝ଵതതത    𝑝଴𝑝଴തതത  −𝑝ଵ𝑝ଷതതത   −𝑝ଵ𝑝ଶതതത−𝑝଴𝑝ଷതതത   −𝑝଴𝑝ଶതതത  −𝑝ଷ𝑝ଵതതത  −𝑝ଷ𝑝଴തതത−𝑝ଶ𝑝ଵതതത   −𝑝ଶ𝑝଴തതത 𝑝ଷ𝑝ଷതതത    𝑝ଷ𝑝ଶതതത𝑝ଶ𝑝ଷതതത    𝑝ଶ𝑝ଶതതത ൲ + ൮ 𝑝଴𝑝଴തതത   −𝑝଴𝑝ଵതതത−𝑝ଵ𝑝଴തതത    𝑝ଵ𝑝ଵതതത  𝑝଴𝑝ଶതതത   −𝑝଴𝑝ଷതതത−𝑝ଵ𝑝ଶതതത   𝑝ଵ𝑝ଷതതത  𝑝ଶ𝑝଴തതത  −𝑝ଶ𝑝ଵതതത−𝑝ଷ𝑝଴തതത   𝑝ଷ𝑝ଵതതത 𝑝ଶ𝑝ଶതതത    −𝑝ଶ𝑝ଷതതത−𝑝ଷ𝑝ଶതതത    𝑝ଷ𝑝ଷതതത ൲ 
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+൮ 𝑝ଵ𝑝ଵതതത    𝑝ଵ𝑝଴തതത𝑝଴𝑝ଵതതത    𝑝଴𝑝଴തതത  𝑝ଵ𝑝ଷതതത   𝑝ଵ𝑝ଶതതത𝑝଴𝑝ଷതതത   𝑝଴𝑝ଶതതത  𝑝ଷ𝑝ଵതതത  𝑝ଷ𝑝଴തതത𝑝ଶ𝑝ଵതതത   𝑝ଶ𝑝଴തതത 𝑝ଷ𝑝ଷതതത    𝑝ଷ𝑝ଶതതത𝑝ଶ𝑝ଷതതത    𝑝ଶ𝑝ଶതതത൲ + ൮ 𝑝଴𝑝଴തതത   −𝑝଴𝑝ଵതതത−𝑝ଵ𝑝଴തതത    𝑝ଵ𝑝ଵതതത  −𝑝଴𝑝ଶതതത   𝑝଴𝑝ଷതതത−𝑝ଵ𝑝ଶതതത   −𝑝ଵ𝑝ଷതതത  −𝑝ଶ𝑝଴തതത  𝑝ଶ𝑝ଵതതത𝑝ଷ𝑝଴തതത   −𝑝ଷ𝑝ଵതതത 𝑝ଶ𝑝ଶതതത    −𝑝ଶ𝑝ଷതതത−𝑝ଷ𝑝ଶതതത    𝑝ଷ𝑝ଷതതത ൲ 

+൮ 𝑝ଷ𝑝ଷതതത    𝑝ଷ𝑝ଶതതത𝑝ଶ𝑝ଷതതത    𝑝ଶ𝑝ଶതതത  𝑝ଷ𝑝ଵതതത   𝑝ଷ𝑝଴തതത𝑝ଶ𝑝ଵതതത   𝑝ଶ𝑝଴തതത  𝑝ଵ𝑝ଷതതത  𝑝ଵ𝑝ଶതതത𝑝଴𝑝ଷതതത   𝑝଴𝑝ଶതതത 𝑝ଵ𝑝ଵതതത    𝑝ଵ𝑝଴തതത𝑝଴𝑝ଵതതത    𝑝଴𝑝଴തതത൲ + ൮ 𝑝ଶ𝑝ଶതതത   −𝑝ଶ𝑝ଷതതത−𝑝ଷ𝑝ଶതതത    𝑝ଷ𝑝ଷതതത  −𝑝ଶ𝑝଴തതത   𝑝ଶ𝑝ଵതതത𝑝ଷ𝑝଴തതത   −𝑝ଷ𝑝ଵതതത  −𝑝଴𝑝ଶതതത  𝑝଴𝑝ଷതതത𝑝ଵ𝑝ଶതതത   −𝑝ଵ𝑝ଷതതത 𝑝଴𝑝଴തതത    −𝑝଴𝑝ଵതതത−𝑝ଵ𝑝଴തതത    𝑝ଵ𝑝ଵതതത ൲ 

= ൮𝑝ଷ𝑝ଷതതത    𝑝ଷ𝑝ଶതതത𝑝ଶ𝑝ଷതതത    𝑝ଶ𝑝ଶതതത  0    00    0  0    00    0 𝑝ଵ𝑝ଵതതത    𝑝ଵ𝑝଴തതത𝑝଴𝑝ଵതതത    𝑝଴𝑝଴തതത൲ + ൮ 𝑝ଶ𝑝ଶതതത   −𝑝ଶ𝑝ଷതതത−𝑝ଷ𝑝ଶതതത    𝑝ଷ𝑝ଷതതത  0    00    0  0    00    0 𝑝଴𝑝଴തതത    −𝑝଴𝑝ଵതതത−𝑝ଵ𝑝଴തതത    𝑝ଵ𝑝ଵതതത ൲ 

+൮𝑝ଵ𝑝ଵതതത    𝑝ଵ𝑝଴തതത𝑝଴𝑝ଵതതത    𝑝଴𝑝଴തതത  0    00    0  0    00    0 𝑝ଷ𝑝ଷതതത    𝑝ଷ𝑝ଶതതത𝑝ଶ𝑝ଷതതത    𝑝ଶ𝑝ଶതതത൲ + ൮ 𝑝଴𝑝଴തതത   −𝑝଴𝑝ଵതതത−𝑝ଵ𝑝଴തതത    𝑝ଵ𝑝ଵതതത  0    00    0  0    00    0 𝑝ଶ𝑝ଶതതത    −𝑝ଶ𝑝ଷതതത−𝑝ଷ𝑝ଶതതത    𝑝ଷ𝑝ଷതതത ൲ 

+൮𝑝ଵ𝑝ଵതതത    𝑝ଵ𝑝଴തതത𝑝଴𝑝ଵതതത    𝑝଴𝑝଴തതത  0    00    0  0    00    0 𝑝ଷ𝑝ଷതതത    𝑝ଷ𝑝ଶതതത𝑝ଶ𝑝ଷതതത    𝑝ଶ𝑝ଶതതത൲ + ൮ 𝑝଴𝑝଴തതത   −𝑝଴𝑝ଵതതത−𝑝ଵ𝑝଴തതത    𝑝ଵ𝑝ଵതതത  0    00    0  0    00    0 𝑝ଶ𝑝ଶതതത    −𝑝ଶ𝑝ଷതതത−𝑝ଷ𝑝ଶതതത    𝑝ଷ𝑝ଷതതത ൲ 

+൮𝑝ଷ𝑝ଷതതത    𝑝ଷ𝑝ଶതതത𝑝ଶ𝑝ଷതതത    𝑝ଶ𝑝ଶതതത  0    00    0  0    00    0 𝑝ଵ𝑝ଵതതത    𝑝ଵ𝑝଴തതത𝑝଴𝑝ଵതതത    𝑝଴𝑝଴തതത൲ + ൮ 𝑝ଶ𝑝ଶതതത   −𝑝ଶ𝑝ଷതതത−𝑝ଷ𝑝ଶതതത    𝑝ଷ𝑝ଷതതത  0    00    0  0    00    0 𝑝଴𝑝଴തതത    −𝑝଴𝑝ଵതതത−𝑝ଵ𝑝଴തതത    𝑝ଵ𝑝ଵതതത ൲ 

 𝑇ோ(𝐩) + 𝑇ோ(𝐩) + 𝑇ோതതതത(𝐩) + 𝑇ோതതത(𝐩) = 

4(𝑝଴𝑝଴തതത + 𝑝ଵ𝑝ଵതതത + 𝑝ଶ𝑝ଶതതത + 𝑝ଷ𝑝ଷതതത)ቌ 1    00    1  0    00    0  0    00    0 1    00    1ቍ = 4𝑒(𝐩)𝐼 
The last operation of taking the value (𝑝଴𝑝଴തതത + 𝑝ଵ𝑝ଵതതത + 𝑝ଶ𝑝ଶതതത + 𝑝ଷ𝑝ଷതതത) out from under the sign of 

the integral seems doubtful because of its dependence on the momentum over which the integration 
is performed. If one closes one's eyes to this, as is generally accepted in the literature, in particular in 
[10], this relation is taken to be interpreted as a proof of the anti-symmetry of the fermion wave 
function under the stipulated anticommutation relations. The only situation where this is 
unquestionably true is when considering in a rest system where boosts are excluded, energy is equal 
to mass, and invariant to rotations. 

It is noteworthy that the antisymmetric treatment, whether or not complex conjugation is 
considered, yields a diagonal matrix that is invariant in one case but not in the other. It is encouraging 
to observe that the set of reference spinors remain consistent. 

It is crucial to note that the proposed invariant approach cannot be realized within the 
Minkowski vector space. To achieve this, it is necessary to transition to the spinor space. This 
reiterates the secondary role of the Minkowski space in comparison to the spinor space. 

Dirac's equation can be expressed in both spinor and vector spaces, a fact that led Dirac to 
discover it. In contrast, the invariant equation can be written in spinor space but not in vector space, 
which explains why it was unknown. 

Let us write down the propagator of the fermionic field and the fermionic field invariant 
equation of motion using the proposed matrices 

𝑆ோ(𝐩) = ቌ−𝑝ଷ−𝑝ଶ𝑝ଵ𝑝଴ ቍ (𝑝଴,−𝑝ଵ,𝑝ଶ,−𝑝ଷ) − ቌ−𝑝ଵ−𝑝଴𝑝ଷ𝑝ଶ ቍ (𝑝ଶ,−𝑝ଷ,𝑝଴,−𝑝ଵ) 

+ቌ𝑝ଵ𝑝଴𝑝ଷ𝑝ଶቍ (𝑝ଶ,−𝑝ଷ,−𝑝଴,𝑝ଵ) − ቌ𝑝ଷ𝑝ଶ𝑝ଵ𝑝଴ቍ (𝑝଴,−𝑝ଵ,−𝑝ଶ,𝑝ଷ) 
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𝑆ோ(𝐩) = ቌ 𝑝଴−𝑝ଵ𝑝ଶ−𝑝ଷቍ (−𝑝ଷ,−𝑝ଶ,𝑝ଵ,𝑝଴) − ቌ 𝑝ଶ−𝑝ଷ𝑝଴−𝑝ଵቍ (−𝑝ଵ,−𝑝଴,𝑝ଷ,𝑝ଶ) 

+ቌ 𝑝ଶ−𝑝ଷ−𝑝଴𝑝ଵ ቍ (𝑝ଵ,𝑝଴,𝑝ଷ,𝑝ଶ) − ቌ 𝑝଴−𝑝ଵ−𝑝ଶ𝑝ଷ ቍ (𝑝ଷ,𝑝ଶ,𝑝ଵ,𝑝଴) 

The equation of motion has the form ൫𝑆ோ + 𝑆ோതതത + 𝑆ோ + 𝑆ோതതത − 4(𝑚 + 𝑚ഥ)𝐼൯𝛗(𝐱) = 0 

where 𝑝଴ → 𝜕𝜕𝑥ଵ  ≡ 𝜕ଵ     𝑝ଵ → − 𝜕𝜕𝑥଴ ≡ −𝜕଴      𝑝ଶ → 𝜕𝜕𝑥ଷ  ≡ 𝜕ଷ      𝑝ଷ → − 𝜕𝜕𝑥ଶ ≡ −𝜕ଶ 

𝑝଴തതത → 𝜕[ ]ഥ𝜕𝑥ଵതതത ≡ 𝜕ଵദ      𝑝ଵതതത → − 𝜕[ ]ഥ𝜕𝑥଴തതത ≡ −𝜕଴തതത      𝑝ଶതതത → 𝜕[ ]ഥ𝜕𝑥ଷതതത ≡ 𝜕ଷതതത       𝑝ଷതതത → −𝜕[ ]ഥ𝜕𝑥ଶതതത ≡ −𝜕ଶതതത 
𝑆ோ = ൮ 𝜕ଶ−𝜕ଷ−𝜕଴𝜕ଵ ൲ (𝜕ଵ,𝜕଴,𝜕ଷ,𝜕ଶ) − ൮ 𝜕଴−𝜕ଵ−𝜕ଶ𝜕ଷ ൲ (𝜕ଷ,𝜕ଶ,𝜕ଵ,𝜕଴) 

+൮−𝜕଴𝜕ଵ−𝜕ଶ𝜕ଷ ൲ (𝜕ଷ,𝜕ଶ,−𝜕ଵ,−𝜕଴) −൮−𝜕ଶ𝜕ଷ−𝜕଴𝜕ଵ ൲ (𝜕ଵ,𝜕଴,−𝜕ଷ,−𝜕ଶ) 

𝑆ோ = ൮𝜕ଵ𝜕଴𝜕ଷ𝜕ଶ൲ (𝜕ଶ,−𝜕ଷ,−𝜕଴,𝜕ଵ) − ൮𝜕ଷ𝜕ଶ𝜕ଵ𝜕଴൲ (𝜕଴,−𝜕ଵ,−𝜕ଶ,𝜕ଷ) 

+൮ 𝜕ଷ𝜕ଶ−𝜕ଵ−𝜕଴൲ (−𝜕଴,𝜕ଵ,−𝜕ଶ, (𝜕ଷ)) − ൮ 𝜕ଵ𝜕଴−𝜕ଷ−𝜕ଶ൲ (−𝜕ଶ,𝜕ଷ,−𝜕଴,𝜕ଵ) 

The equation is relativistically invariant, respectively we can use the invariant Lagrangian 

ℒ = 12 ൣ𝛗(𝐱)்(𝑆ோ + 𝑆ோതതത + 𝑆ோ + 𝑆ோതതത)𝛗(𝐱) − 4(𝑚 + 𝑚ഥ)𝛗(𝐱)்𝛗(𝐱)൧ 
to which corresponds the relativistically invariant fermion propagator 

𝐃ோ(𝐱) = න 𝑑ସ𝑝(2𝜋)ସ 𝑆ோ(𝐩) + 𝑆ோതതത(𝐩) + 𝑆ோ(𝐩) + 𝑆ோതതത(𝐩) + 4(𝑚 + 𝑚ഥ)𝐼  𝑃ଶ − 𝑚ଶ 𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) 
The equation can be modified to take into account the electromagnetic potential, the electron charge 

is taken as a unit 𝑝଴ → 𝜕ଵ + 𝑎଴           𝑝ଵ → −𝜕଴ + 𝑎ଵ           𝑝ଶ → 𝜕ଷ + 𝑎ଶ          𝑝ଷ → −𝜕ଶ + 𝑎ଷ 

𝑆ோ = ⎝⎛
−(−𝜕ଶ + 𝑎ଷ)−(𝜕ଷ + 𝑎ଶ)(−𝜕଴ + 𝑎ଵ)(𝜕ଵ + 𝑎଴) ⎠⎞൫(𝜕ଵ + 𝑎଴),−(−𝜕଴ + 𝑎ଵ), (𝜕ଷ + 𝑎ଶ),−(−𝜕ଶ + 𝑎ଷ)൯ 
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−൮−(−𝜕଴ + 𝑎ଵ)−(𝜕ଵ + 𝑎଴)(−𝜕ଶ + 𝑎ଷ)(𝜕ଷ + 𝑎ଶ) ൲൫(𝜕ଷ + 𝑎ଶ),−(−𝜕ଶ + 𝑎ଷ), (𝜕ଵ + 𝑎଴),−(−𝜕଴ + 𝑎ଵ)൯ 
+⎝⎛

(−𝜕଴ + 𝑎ଵ)(𝜕ଵ + 𝑎଴)(−𝜕ଶ + 𝑎ଷ)(𝜕ଷ + 𝑎ଶ) ⎠⎞൫(𝜕ଷ + 𝑎ଶ),−(−𝜕ଶ + 𝑎ଷ),−(𝜕ଵ + 𝑎଴), (−𝜕଴ + 𝑎ଵ)൯ 
−൮(−𝜕ଶ + 𝑎ଷ)(𝜕ଷ + 𝑎ଶ)(−𝜕଴ + 𝑎ଵ)(𝜕ଵ + 𝑎଴) ൲൫(𝜕ଵ + 𝑎଴),−(−𝜕଴ + 𝑎ଵ),−(𝜕ଷ + 𝑎ଶ), (−𝜕ଶ + 𝑎ଷ)൯ 

𝑆ோ = ⎝⎛
(𝜕ଵ + 𝑎଴)−(−𝜕଴ + 𝑎ଵ)(𝜕ଷ + 𝑎ଶ)−(−𝜕ଶ + 𝑎ଷ)⎠⎞൫−(−𝜕ଶ + 𝑎ଷ),−(𝜕ଷ + 𝑎ଶ), (−𝜕଴ + 𝑎ଵ), (𝜕ଵ + 𝑎଴)൯ 

−൮ (𝜕ଷ + 𝑎ଶ)−(−𝜕ଶ + 𝑎ଷ)(𝜕ଵ + 𝑎଴)−(−𝜕଴ + 𝑎ଵ)൲ (−(−𝜕଴ + 𝑎ଵ),−(𝜕ଵ + 𝑎଴), (−𝜕ଶ + 𝑎ଷ), (𝜕ଷ + 𝑎ଶ)) 

+⎝⎛
(𝜕ଷ + 𝑎ଶ)−(−𝜕ଶ + 𝑎ଷ)−(𝜕ଵ + 𝑎଴)(−𝜕଴ + 𝑎ଵ) ⎠⎞൫(−𝜕଴ + 𝑎ଵ), (𝜕ଵ + 𝑎଴), (−𝜕ଶ + 𝑎ଷ), (𝜕ଷ + 𝑎ଶ)൯ 

−൮ (𝜕ଵ + 𝑎଴)−(−𝜕଴ + 𝑎ଵ)−(𝜕ଷ + 𝑎ଶ)(−𝜕ଶ + 𝑎ଷ) ൲ ((−𝜕ଶ + 𝑎ଷ), (𝜕ଷ + 𝑎ଶ), (−𝜕଴ + 𝑎ଵ), (𝜕ଵ + 𝑎଴)) 

and apply, in particular, to analyze the emission spectrum of the hydrogen-like atom. 
It is our intention to extend the proposed approach to the description of the bosonic field. In 

order to transition to such a description, it would be prudent to consider the existence of the fermion 
annihilation process as a potential indicator. It is reasonable to posit a relationship between electrons 
and photons, given their ability to transform into one another. It is therefore proposed that the photon 
field be expressed by means of analogous reference spinors, which can be obtained from the fermion 
spinors but which have zero mass. Let us utilize the table of properties of the reference spinors to 
identify suitable pairs for describing the annihilation process. The two spinors should exhibit 
identical properties, with the exception of their respective masses, which should have opposite signs. 
For example, 

     𝐮𝟏 + 𝐮𝟑 = ቌ−𝑝ଷ−𝑝ଶ𝑝ଵ𝑝଴ ቍ + ቌ−𝑝ଵ−𝑝଴𝑝ଷ𝑝ଶ ቍ = ൮−𝑝ଷ − 𝑝ଵ−𝑝ଶ − 𝑖𝑝଴𝑝ଵ + 𝑝ଷ𝑝଴ + 𝑝ଶ ൲ = ቌ−𝑝ଷ−𝑝ଶ𝑝ଷ𝑝ଶ ቍ + ቌ−𝑝ଵ−𝑝଴𝑝ଵ𝑝଴ ቍ 

     𝐮𝟒 + 𝐮𝟐 = ቌ 𝑝଴−𝑝ଵ𝑝ଶ−𝑝ଷቍ + ቌ 𝑝ଶ−𝑝ଷ𝑝଴−𝑝ଵቍ = ൮−𝑝଴ − 𝑝ଶ−𝑝ଵ − 𝑝ଷ𝑝ଶ + 𝑝଴𝑝ଷ + 𝑝ଵ ൲ = ቌ−𝑝଴−𝑝ଵ𝑝଴𝑝ଵ ቍ + ቌ−𝑝ଶ−𝑝ଷ𝑝ଶ𝑝ଷ ቍ 

𝐟𝐮𝟏 = ቌ−𝑝ଷ−𝑝ଶ𝑝ଷ𝑝ଶ ቍ      𝐟𝐮𝟑 = ቌ−𝑝ଵ−𝑝଴𝑝ଵ𝑝଴ ቍ     𝐟𝐮𝟒 = ቌ−𝑝ଶ−𝑝ଷ𝑝ଶ𝑝ଷ ቍ     𝐟𝐮𝟐 = ቌ−𝑝଴−𝑝ଵ𝑝଴𝑝ଵ ቍ  
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𝑚𝐟𝐮𝟏 = −𝑝ଶ𝑝ଷ + 𝑝ଷ𝑝ଶ = 0 𝑚𝐟𝐮𝟑 = −𝑝଴𝑝ଵ + 𝑝ଵ𝑝଴ = 0 𝑚𝐟𝐮𝟒 = −𝑝ଷ𝑝ଶ + 𝑝ଶ𝑝ଷ = 0 𝑚𝐟𝐮𝟑 = −𝑝ଵ𝑝଴ + 𝑝଴𝑝ଵ = 0 

     𝐯𝟏 + 𝑖𝐯𝟑 = ቌ𝑝ଵ𝑝଴𝑝ଷ𝑝ଶቍ+ ቌ𝑝ଷ𝑝ଶ𝑝ଵ𝑝଴ቍ = ൮𝑝ଵ + 𝑝ଷ𝑝଴ + 𝑝ଶ𝑝ଷ + 𝑝ଵ𝑝ଶ + 𝑝଴൲ = ቌ𝑝ଵ𝑝଴𝑝ଵ𝑝଴ቍ + ቌ𝑝ଷ𝑝ଶ𝑝ଷ𝑝ଶ ቍ 

     𝐯𝟒 + 𝑖𝐯𝟐 = ቌ 𝑝ଶ−𝑝ଷ−𝑝଴𝑝ଵ ቍ + ൮ 𝑝଴−𝑖𝑝ଵ−𝑖𝑝ଶ𝑝ଷ ൲ = ൮ 𝑝ଶ + 𝑝଴−𝑝ଷ − 𝑝ଵ−𝑝଴ − 𝑝ଶ𝑝ଵ + 𝑝ଷ ൲ = ቌ 𝑝ଶ−𝑝ଷ−𝑝ଶ𝑝ଷ ቍ+ ቌ 𝑝଴−𝑝ଵ−𝑝଴𝑝ଵ ቍ 

𝐟𝐯𝟏 = ൮𝑝ଵ𝑝଴𝑖𝑝ଵ𝑖𝑝଴൲      𝐟𝐯𝟑 = ቌ𝑝ଷ𝑝ଶ𝑝ଷ𝑝ଶ ቍ      𝐟𝐯𝟒 = ቌ 𝑝ଶ−𝑝ଷ−𝑝ଶ𝑝ଷ ቍ      𝐟𝐯𝟐 = ቌ 𝑝଴−𝑝ଵ−𝑝଴𝑝ଵ ቍ 

𝑚𝐟𝐯𝟏 = 𝑝଴𝑝ଵ − 𝑝ଵ𝑝଴ = 0 𝑚𝐟𝐯𝟑 = 𝑝ଶ𝑝ଷ − 𝑝ଷ𝑝ଶ = 0 𝑚𝐟𝐯𝟒 = 𝑝ଷ𝑝ଶ − 𝑝ଶ𝑝ଷ = 0 𝑚𝐟𝐯𝟐 = 𝑝ଵ𝑝଴ − 𝑝଴𝑝ଵ = 0 

Let us represent the photon field as a decomposition 

𝛙(𝐱) = න 𝑑ସ𝑝(2𝜋)ଶ  
ቈfdଵ(𝐩)𝐟𝐮𝟏(𝐩) + fdଶ(𝐩)𝐟𝐮𝟑(𝐩) + fbଶ(𝐩)𝐟𝐮𝟐തതതതത(𝐩) + fbଵ(𝐩)𝐟𝐮𝟒തതതതത(𝐩)+fdସ(𝐩)𝐯𝟏(𝐩) + fdଷ(𝐩)𝐟𝐯𝟑(𝐩) + fbଷ(𝐩)f𝐯𝟐തതതത(𝐩) + fbସ(𝐩)𝐟𝐯𝟒തതതതത(𝐩)቉ 𝑒௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) 

+ ቈ fbଵ∗(𝐩)𝐟𝐮𝟏തതതതത(𝐩) + fbଶ∗(𝐩)𝐟𝐮𝟑തതതതത(𝐩) + fdଶ∗(𝐩)𝐟𝐮𝟐(𝐩) + fdଵ∗(𝐩)𝐟𝐮𝟒(𝐩)+fbସ∗(𝐩)f𝐯𝟏തതതത(𝐩) + fbଷ∗(𝐩)𝐟𝐯𝟑തതതതത(𝐩) + fdଷ∗(𝐩)𝐟𝐯𝟐(𝐩) + fdସ∗(𝐩)𝐟𝐯𝟒(𝐩)቉ 𝑒ି௜(௣బ௫భି௣భ௫బା௣మ௫యି௣య௫మ) 
We are interested in the coordinate function 𝛙ା(𝐱)𝑆ఓ𝛙(𝐱) 
It represents a four-dimensional probability density current, which is transformed by the 

Lorentz transformations as a four-dimensional vector. It is proposed that this vector, possibly with 
some dimensional coefficient, be treated as a vector potential of the electromagnetic field 𝐴ఓ(𝐱) = 𝑒𝑚௘ 𝛙ା(𝐱)𝑆ఓ𝛙(𝐱) 

The final step is to verify that, under the specified commutation relations between the operator 
coefficients, the commutation relations of the following type are satisfied for the vector potential  [𝐀ା(𝐱),𝐀(𝐱ᇱ)] =  𝐀ା(𝐱)𝐀(𝐱ᇱ) − 𝐀ା(𝐱ᇱ)𝐀(𝐱) = 𝐶𝐼𝛿(𝐱 − 𝐱ᇱ) 

or [𝐀்(𝐱),𝐀(𝐱ᇱ)] =  𝐀ା(𝐱)𝐀(𝐱ᇱ) − 𝐀ା(𝐱ᇱ)𝐀(𝐱) = 𝐶𝐼𝛿(𝐱 − 𝐱ᇱ) 

with a certain constant 𝐶. 

Conclusions 

An alternative approach to analyze relativistic and quantum effects inherent in charged particles 
in the presence of an electromagnetic field is proposed. Two ways of describing the electron behavior 
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in the electromagnetic field are considered: by means of the vector equation, which is based on the 
plane wave model for a free electron, and the spinor equation, which is based on the representation 
of the electron as a plane wave in spinor space. For both equations, which are valid for a free particle, 
their applicability to an arbitrary physical situation is postulated, in particular to describe the 
behavior of a particle in the presence of an electromagnetic field. The presented equations are 
intended to fulfill the same role as the Schrödinger equation and the Dirac equation. At the same 
time, in our opinion, the spinor equations more accurately describe the details of the interaction 
between fields and particles. 

References 

1. Marsch, E.; Narita, Y. A New Route to Symmetries through the Extended Dirac Equation. Symmetry 2023, 
15, 492. 

2. Fleury, N.; Hammad, F.; Sadeghi, P. Revisiting the Schrödinger–Dirac Equation. Symmetry 2023, 15, 432. 
3. Jean Maruani, The Dirac Equation as a Privileged Road to the Understanding of Quantum Matter, 

Quantum Matter Vol. 4, 3–11, 2015.  
4. Hiley, B.; Dennis, G. de Broglie, General Covariance and a Geometric Background to Quantum Mechanics. 

Symmetry 2024, 16, 67. 
5. Andrey Akhmeteli, The Dirac equation as one fourth-order equation for one function - a general, manifestly 

covariant form, arXiv: 1502.02351v9 [quant-ph] 23 Apr 2022.  
6. Leonard I. Schiff, Quantum Mechanics, Third edition. McGraw-Hill Book Company, 1959 - 545 p. 
7. P. A. M. Dirac. The principles of quantum mechanics (International Series of Monographs on Physics), 

Fourth edition, Oxford Science Publications.  
8. E. Schrödinger, “A Method of Determining Quantum-Mechanical Eigenvalues and Eigenfunctions”, 

Proceedings of the Royal Irish Academy, Vol. 46A, 1940, pp. 9-16. 
9. Lewis H. Ryder, Quantum Field Theory, University of Kent, Canterbury – 1996 г. 
10. A Zee, Quantum Field Theory in a Nutshell, 2nd Edition. – Princeton University Press, 2003. 
11. Paul A. M. Dirac, Lectures on quantum field theory, New York 1967. 
12. Claude Itzycson and Jean-Bernard Zuber, Quantum field theory, McGraw-Hill Book Company, 1980. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 
products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 July 2024                   doi:10.20944/preprints202401.1032.v4

https://doi.org/10.20944/preprints202401.1032.v4

