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Abstract: Physical processes are usually described using four-dimensional vector quantities - coordinate
vector, momentum vector, current vector. But at the fundamental level they are characterized by spinors -
coordinate spinors, momentum spinors, spinor wave functions. The propagation of fields and their interaction
takes place at the spinor level, and since each spinor uniquely corresponds to a certain vector, the results of
physical processes appear before us in vector form. For example, the relativistic Schrodinger equation and the
Dirac equation are formulated by means of coordinate vectors, momentum vectors and quantum operators
corresponding to them. In the Schrédinger equation the wave function is represented by a single complex
quantity, in the Dirac equation a step forward is taken and the wave function is a spinor with complex
components, but still coordinates and momentum are vectors. For a closed description of nature using only
spinor quantities, it is necessary to have an equation similar to the Dirac equation in which momentum,
coordinates and operators are spinors. It is such an equation that is presented in this paper. Using the example
of the interaction between an electron and an electromagnetic field, we can see that the spinor equation contains
more detailed information about the interaction than the vector equations. This is not new for quantum
mechanics, since it describes interactions using complex wave functions, which cannot be observed directly,
and only when measured goes to probabilities in the form of squares of the moduli of the wave functions. In
the same way spinor quantities are not observable, but they completely determine observable vectors. In
Section 2 of the paper, we analyze the quadratic form for an arbitrary four-component complex vector based
on Pauli matrices. The form is invariant with respect to Lorentz transformations including any rotations and
boosts. The invariance of the form allows us to construct on its basis an equation for a free particle combining
the properties of the relativistic wave equation and the Dirac equation. For an electron in the presence of an
electromagnetic potential it is shown that taking into account the commutation relations between the
momentum and coordinate components allows us to obtain from this equation the known results describing
the interactions of the electron spin with the electric and magnetic field. In section 3 of the paper this quadratic
form is expressed through momentum spinors, which makes it possible to obtain an equation for the spinor
wave function in spinor coordinate space by replacing the momentum spinor components by partial derivative
operators on the corresponding coordinate spinor component. Section 4 presents a modification of the theory
of the path integral, which consists in considering the path integral in the spinor coordinate space. The
Lagrangian densities for the scalar field and for the electron field, along with their corresponding propagators,
are presented. An equation of motion for the electron is proposed that is relativistically invariant, in contrast
to the Dirac equation, which lacks this invariance. This novel equation permitted the construction of a
relativistically invariant procedure for the second quantization of the fermion field in spinor coordinate space.

Keywords: relativistic wave equation; Dirac equation; Pauli matrices; Schrodinger equation; second
quantization; path integral

1. Introduction

Nowadays, the interest to study applications of the Dirac equation to different situations and to
find out the conditions of its generalization is not weakening. In particular, in [1] new versions of an
extended Dirac equation and the associated Clifford algebra are presented. In [2] a study of the
Schroédinger-Dirac covariant equation in the presence of gravity, where the non-commuting gamma
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matrices become space-time-dependent, is carried out. In [3] an idea is discussed that the visible
properties of the electron, including rest mass and magnetic moment, are determined by a massless
charge spinning at light speed within a Compton domain. In [4] some aspects of conformal rescaling
in detail are explored and the role of the "quantum" potential is discussed as a natural consequence
of non-inertial motion and is not exclusive to the quantum domain. Author establishes the
fundamental importance of conformal symmetry, in which rescaling of the rest mass plays a vital
role. Thus, the basis for a radically new theory of quantum phenomena based on the process of mass-
energy flow is proposed. In [5] author have derived the covariant fourth-order/one-function
equivalent of the Dirac equation for the general case of an arbitrary set of y-matrices.

Supporting these search aspirations, in our work we propose a deeper understanding of the
Dirac equation with an emphasis on the direct use of the principles of symmetry and invariance to
Lorentz transformations. For the first time we present a formulation of the Dirac and Schrédinger
equations in spinor coordinate space.

2. Generalized Dirac Type Equation

Let us introduce notations, which will be used further on. The speed of light and the rationalized
Planck’s constant will be considered as unity.
Pauli matrices

w=(p 1) 2=(G o) 2=(G o) »=( 2

Matrices constructed from Pauli matrices
220 @) =00 o) 2=(0 o) ==(C o)
A vector of matrices
ST = (5,,5,,55)
A set of arbitrary complex numbers and a vector of its three components
XT = (Xo, X1, X, X3)
X" = (X1, X5, X3)

Let us define a 2x2 matrix of Lorentz transformations given by the set of real rotation angles
(a1, @z, a3) and boosts (B, Bz, Bs)

1 1 1 1 1 1
n = exp (— > lalo'l) exp (E,Blal) exp (— > la20'2) exp (E,Bzaz) exp (— > la3a3) exp (53303)
and a similar 4x4 transformation matrix
1 1 1 1 1 1
N = exp (— - lalSl) exp (—,8151) exp (— = lazSz) exp (—ﬁzSZ) exp (— = La353) exp (—ﬁ353)
2 2 2 2 2 2
We also define a 4x4 matrix of Lorentz transformations A, where y and v take values 0,1,2,3
w_ 1 +
A, = ETr[ounovn ]
which can also be written explicitly using the 4x4 matrices of turn generators (Ry, R,, R3) and boosts

(K, Kz, Ks)
A = exp(ayRy)exp (B, Ky )exp(azRy)exp (B, Kz)exp(asR3)exp(BsKs)
Let's define a 4x4 matrix
M? = (SoXg — S1X1 — Sp X5 — S3X3)(SoXo + S1Xq + Su X5 + S3X3) = (SoXo — STX) (S X, + STX)
= SoX0S0Xo — S1X181 X, — S3X35,X; — S3X3S53X5 + SpXo (51X, + S, X5 + S3X3)
— $51X1(SoXo + S2Xz + S3X3) — S2X5(SoXo + S1X1 + S3X3) — S3X3(SoXo + S1X1 + S2X3)
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In fact, we consider a quaternion with complex coefficients, which we multiply by its conjugate
quaternion (due to the complexity of the coefficients, these are biquaternions, but we still use
quaternionic conjugation, without complex conjugation).

Let us subject the set of complex numbers to the Lorentz transformation

X' =A%

Let us write a relation whose validity for an arbitrary set of complex numbers can be checked

directly
(SoXo' — S1X1" — S2X;" — S3X3')(SoXo' + S1X1' + S2X," + S3X3")
= (SOXO - Sle - 52X2 - S3X3)(50X0 + S]_X]_ + 52X2 + S3X3) = M2

The matrix M? in the simplest case is diagonal with equal complex elements on the diagonal
equal to the square of the length of the vector ¥ in the metric of Minkowski space, which we denote
m?. Both M? and m? do not change under any rotations and boosts, in physical applications the
invariance of m? is usually used, in particular, for the four-component momentum vector this
quantity is called the square of mass.

Since the matrices S anticommutate with each other, for a vector ¥ whose components
commute with each other, we have just the simplest case with a diagonal matrix with m? on the
diagonal. But if the components of vector ¥ do not commute, the matrix M? already has a more
complex structure and carries additional physical information compared to m?. For example, the
vector ¥ may include the electron momentum vector and the electromagnetic potential vector. The
four-component potential vector is a function of the four-dimensional coordinates of Minkowski
space. The components of the four-component momentum do not commute with the components of
the coordinate vector, respectively, and the coordinate function does not commute with the
momentum components, and their commutator is expressed through the partial derivative of this
function by the corresponding coordinate. If the components of the vector X do not commute, the
matrix M? will no longer be invariant with respect to Lorentz transformations.

Suppose that the complex numbers we consider commute with all matrices, and note that the
squares of all matrices are equal to the unit 4x4 matrix [

M? = (XoXo — X1 X1 — XX, — X3X)I + (51 XX, + S, XoX, + S3XX3)
— (8§, X1 Xg + S185,X, X5 + 5153X,X3) — (S, XX + S5, X, X, + 5,8:X,X5)
— (S3X3Xo + S35:X3X1 + 535, X3X>)
= (XoXo — X1X1 — Xo Xy — X3X3)I + S1(XoX1 — X1 X0) + S2(Xo Xz — X2Xo) + S3(XoX3
— X3X0) — (5152X1 X5 + 5153X1X3) — (5251 X2X1 + 5553X2X3) — (8351 X3X1 + S35,X35X5)
= (XoXo — X1X1 — XoXp — X3X3)I + S1(XoX1 — X1X0) + S2(Xo Xz — X2Xo) + S3(XoX3
— X3X0) — (5182 X1X; + 551 X2X1) — (5253X2X3 + $35:X3X;) — (8351 X3X1 + $153X1X3)
= (XoXo — X1X1 — Xo Xy — X3 X3)I + S1(XoX1 — X1X0) + S2(Xo X2 — X2Xo) + S3(XoX3
— X3Xo) — (5152X1X2 + 5251 X1 X, + 5,51 (X2 Xy — X1X2))
— (85253X2X5 + S35,X5X3 + S35, (X3X5 — X2 X3))
— (8351 X3Xy + S183X3X; + $1S5(X1X3 — X3X1))
Taking into account anticommutative properties of matrices and expressions for their pairwise
products we obtain
M? = (XoXo — X1 X1 — XpX5 — X3X3)I + S1(XoX1 — X1Xo) + S2(XoXz — X2X0) + S5(XoX; —
X3Xo) = 52851 (X2X1 — X1X3) — $352(X3Xz — X5X3) — 5153(X1X3 — X3X7) = (XoXo — X1 X1 — XX, —
X3X3) + S (XoX1 — X1Xo) + S2(XoX2 — X2Xo) + S3(XoX3 — X3Xp) + iS3(X2 X1 — X1 Xp) + 151 (X3X; —
X5X3) +iS:(X1X3 — X3X;1) = (XoXo — X1 X1 — XpXo — X3X3)[ + 51 (Xo Xy — X1 Xo) + iS1(X3X; — XoX3) +
S2(XoXz — X5Xo) + 1S5(X1 X3 — X3X;1) + S3(XoX3 — X3Xp) + iS3(X2 X1 — X1 X3)
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Consider the case when X is the sum of the momentum vector and the electromagnetic
potential vector, which is a function of coordinates
X=P+A
P = (P, Py, Py, P3)
A = (Ao, 41,42, 43)
"= (P, Py, P3)

AT = (4,,4,,45)

M? = 1[(Po + Ao)(Po + Ao) — (Pr + A1) (P + Ay) — (P, + A) (P, + Ay) — (P + A3) (P + A3)] +
S1[(Po + Ag)(Py + A1) — (P + Ay)(Po + Ap)] + iS51[(P3 + A3) (P, + Az) — (P, + Az)(P3 + A3)] +
S2[(Po + Ag)(Pz + Az) — (P2 + A)(Po + Ag)] + iSz[(Pr + A1) (P3 + A3) — (P + A3)(Py + Ap)] +
S3[(Po + Ag)(P3 + A3) — (P3 + A3)(Po + Ag)] + iS3[(P, + A2) (P + A1) — (Pr + A (P2 + Ay)]

For now, we'll stick with the Heisenberg approach, that is, we will consider the components of
the momentum vector Py, Py, P,, P; as operators for which there are commutation relations with
coordinates or coordinate functions such as Ay, A4, 4,, A3. In this approach, the operators do not have
to act on any wave function.

Taking into account the commutation relations of the components of the momentum vector and
the coordinate vector, the commutator of the momentum component and the coordinate function is
expressed through the derivative of this function by the corresponding coordinate, e.g.

0A
[((Py +A,)(Py + A;) — (Py + A)) (P, + Ay)] =P2A1_A1P2_(P1A2_A2P1)—_l—l_( i

aAz)
0x;

0xq
As a result, we obtain

M? =1[(Py + Ap)(Py + Ap) — (Py + A))(Py + Ay) — (P, + A) (P, + Ay) — (P34 A3)(Ps + A3)]

+s J0A L d4, +is [ 6A2+ 6A3] s aA2 aAO
P R P L ] L L,
+is [ 04, N aAl] g [ 6A3+ 04, +is [ JdA 1 04,
2 lal o) T3 T o, T e T T e, T o,
=1[(Py + Ag)(Po + Ap) — (Py + A))(Py + Ay) — (P, + Ax) (P, + A)
— (P +A4)(Ps+ A 225, ===
(Ps +45)(Ps + 43)] =15, axo axl] ! [6x3 axz] “lox, ox,
04, 6A1 ) [6A3 aAo] [6A1 d04,
Zlox, 0xs lox, 0xs lox, ox

= I[(Py + Ap)(Po + Ag) — (Py + A)(Py + Ay) — (P, + Ax) (P, + 4)

— (P3 + A3)(P3 + A3)] — iS1Fo1 + S1Fsp — iS5Fo; + SpFi3 — iS5Fo3 + S3Fay
= I[(Py + Ap)(Po + Ag) — (Py + A) (P + Ay) — (Pr + A5) (P, + 4)

— (P;+ A3)(P3 + A3)] — iS1E, + S1B, — iS;E, + S;B, —iS3E, + S3B,

where

As a result, we have the expression
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M? = 1[(Py + Ag)(Po + Ag) — (Pr + A)(Py + Ay) — (P + A3) (P + Ay) — (P3 + A3)(Ps + A)] +
STB — iSTE
B" = (B,, By, B,) = (B1,B;, B3)
ET = (E, E, E;) = (Ey, Ep E3)
Similarly, it can be shown that
(SoPo — S1Py — S3P; — S3P3)(SpAg + S141 + S54; + S343)
+ (SoAg — S141 — SyA; — S343)(SoPy + S1 Py + S, P, + S3P3)
= 2I(PyAg — P,A, — P,A, — PsA3) + STB — iSTE
The matrix
M? — {STB — iSTE} = I{(Py + Ag)(Py + Ag) — (P, + A (Py + Ay) — (P, + A) (P, + Ay) — (P3 +
A3)(P; + A3)} = 1d?
does not change under Lorentz transformations involving any rotations and boosts.
1d? = (So(Po +4p) = S1(Py + Ay) — S,(P, + A;) — S3(P; + As))(so(Po + 4p) +S5:(Py + A7)
+S,(P, + Ay) + S3(Ps + A3)) — {STB — iSTE}
= (So(Py + Ag) — ST(P + A))(So(Py + Ag) + ST(P + A)) — {STB — iSTE}
Taking into account the electron charge we have
X=P—eA
1d? = (So(Py — eAy) — ST(P — eA))(So (P, — eAy) + ST(P — eA)) + e{STB — iSTE}
Let us summarize our consideration. There is a correlation
1d? = M? + e{STB — iSTE}
where
M? = (So(Py — edy) — ST(P — eA))(So (P, — edy) + ST(P — eA))
Id* = I{(Py — eAy)? — (Py — eA;)? — (P, — eA;)* — (P3 — eA3)?}
= I[(Py — eAy)(Py — eAy) — (Py — eA) (P — eA;) — (P, — eAy) (P, — eAy)
— (P3 — eA3)(Ps — eA3)] = I[(Py — eAg)(Py — eAy) — (P — eA)" (P — eA)]
= I{(P, — eAp)? — (P — eA)?}
Let's analyze the obtained equality
M? = 1d? — e{STB — iSTE}
Note that the quantity d? is invariant to the Lorentz transformations irrespective of whether
the momentum and field components commute or not. To solve this equation, we have to make

additional simplifications. For example, to arrive at an equation similar to the Dirac equation, we
must equate M? with the matrix Im?, where m? is the square of the mass of a free electron. Then

Im? = 1d? — e{STB — iS"E}
1d? —Im? — e{STB — iSTE} = 0
{(P, — er)Z —(P—eA)?}— Im? —e{STB—iSTE} =0
With this substitution the generalized equation almost coincides with the equation [6], formula

(43.25), the difference is that there is a plus sign before eSTB, and instead of iSTE there is iaE, in
which the matrices a have the following form

of = (g, 25, 3)

(e 0) @=(o ©) ©=(o ©)
“=l, 0) 27\, 0) BT\ 0
A similar equation is given by Dirac in [7], Para. 76, Equation 24]; he does not use the matrices

o, only the matrices S, but the signs of the contributions of the magnetic and electric fields are the
same.
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Along with the original form
M? = (Sy(Py — eAp) — ST(P — eA))(So(Po — e4y) + ST(P — eA)) = d? — e{STB — iSTE}

it is possible to consider the form with a different order of the factors. It can be shown that this

leads to a change in the sign of the electric field contribution
M? = (So(Py — eAy) + ST(P — eA))(So (P, — eAg) — ST(P — eA)) = d? — e{S"B + iSTE}

Since Id?, unlike M?, isinvariant to Lorentz transformations, it would be logical to replace it by
Im?. At least both these matrices are diagonal, and in the case of a weak field their diagonal elements
are close. Nevertheless, the approach based on the Dirac equation leads to solutions consistent with
experiment.

The matrix M? in the general case has complex elements and is not diagonal, and in the Dirac
equations instead of it is substituted the product of the unit matrix by the square of mass m?, the
physical meaning of such a substitution is not obvious. Apparently it is implied that it is the square
of the mass of a free electron. But the square of the length of the sum of the lengths of the electron
momentum vectors and the electromagnetic potential vector is not equal to the sum of the squares of
the lengths of these vectors, that is, it is not equal to the square of the mass of the electron, even if the
square of the length of the potential vector were zero. But, for example, in the case of an electrostatic
central field, even the square of the length of one potential vector is not equal to zero. Therefore, it is
difficult to find a logical justification for using the mass of a free electron in the Dirac equation in the
presence of an electromagnetic field. Due to the noted differences, the solutions of the generalized
equation can differ from the solutions arising from the Dirac equation.

In the case when there is a constant magnetic field directed along the z-axis, we can write down

1 1
A(J:O A1=—§B3X2 A2 ZEB3X1 A3 =0

(SoPy)? —M? — (P — eA)T(P — eA)] — eS;B; = 0
(SoPo)2 - M? - (P —eA;)(P; —eA;)] — (P, — eAy)(P, —eAy)] —eS3B3 =0

1
(SOPO)Z—MZ—POZI—P321—P12—(eAl)z—Pzz—(eAz)z+e§B3(x1P2—x2P1+x1P2—x2P1)

- 65333 = O
Py — M? — Py*I — P,*1 — P,*1 — (eA1)?I — P,%I — (eA;)*] + eB3(x; P, — x,P;) — eS3B; = 0
L;y+1 0 0 0
0 IL,—1 0 0
2 2 2 3
I(=Py* = P,* = Py* = (eA1)? — (eAp)?) - M? —eBs| o L+1 o |70
0 0 0 Ly—1

Here (x; P, — x,P;) = L;. Only when the field is directed along the z-axis, the matrix M? is
diagonal and real because the third Pauli matrix is diagonal and real. And if the field is weak, M?
can be approximated by the m?I matrix. This is probably why it is customary to illustrate the
interaction of electron spin with the magnetic field by choosing its direction along the z-axis. In any
other direction M? is not only non-diagonal, but also complex, so that it is difficult to justify the use
of m?I.

When the influence of the electromagnetic field was taken into account, no specific
characteristics of the electron were used. When deriving a similar result using the Dirac equation, it
is assumed that since the electron equation is used, the result is specific to the electron. In our case
Pauli matrices and commutation relations are used, apparently these two assumptions or only one of
them characterize the properties of the electron, distinguishing it from other particles with non-zero
masses.

The proposed equation echoes the Dirac equation, at least from it one can obtain the same
formulas for the interaction of spin and electromagnetic field as with the Dirac equation, and in the
absence of a field the proposed equation is invariant to the Lorentz transformations. In contrast, to
prove the invariance of the Dirac equation even in the absence of a field, the infinitesimal Lorentz
transformations are used, but the invariance at finite angles of rotations and boosts is not
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demonstrated. The proof of invariance of the Dirac equation is based on the claim that a combination
of rotations at finite angles can be represented as a combination of infinitesimal rotations. But this is
true only for rotations or boosts around one axis, and if there are at least two axes, this statement is
not true because of non-commutability of Pauli matrices, which are generators of rotations, so that
the exponent of the sum is not equal to the product of exponents if the sum includes generators of
rotations or boosts around different axes. By a direct check we can verify that the invariance of the
Dirac equation takes place at any combination of rotations, but only under the condition of zero
boosts, i.e., only in a rest frame of reference, any boost violates the invariance.

A test case for any theory is the model of the central electrostatic field used in the description of
the hydrogen atom, in which the components of the vector potential are zero

(So(Py — eAg) — STP)(S,(Py — eAy) + STP) = I[(Py — eAg)? — Pi* — P,* — P3%| + ieSTE
If again we equate the left part with Im?, we obtain
I[(Py — e4g)? — P,? — P, — P3?] — Im? + ieSTE = 0

04, _ 94, aAo)_O

I[(Py — eAg)? — P* — P, — P32 — m?] —ie (Sla_xl + Sza_xz + S3a_x3

Introducing the notations (4y = @(r) = Q/r, P, =E, r =1/x1%2 + x;%2 4+ x3 %), we obtain

e\ o o o2 | 99 09p() e _
I[(E r) P, =P, =P m ie| S, x +S, o, + 83 % =0

2
e e
I[(E_TQ) _P12_P22_P32_m2:|+ir_§(51x1 +52x2 +S3x3)=0

If we substitute operators acting on the wave function instead of momentum components into
the equation, we obtain a generalized analog of the relativistic Schrodinger equation, in which the
wave function has four components and changes as a spinor under Lorentz transformations. Using
the substitutions

Pp»i— Po>o—-i— Pp>—-i— P3o—i—
07 T Ty TPT TY9x, TP T'ox,

the equation for the four-component wave function { before all transformations has the form

0 ]
(So (E - €Ao) +SsT(v - eA)) (So (& — er) —ST(v - eA)> Y+ M2 =0
and after transformations
{(S0(Py = €40))" — (P — eA)?I — €SB + ieSTE} ¢ = My

Once again, note that the matrix M 2 isnot diagonal and real.

All the above deductions are also valid when replacing 4x4 matrices S, by 2x2 matrices g,
since their commutative and anticommutative properties are the same. The corresponding
generalized equation is of the form

(05(Py — eAy))* — M? — (P — eA)?] — e6™B + iecTE = 0
where

o' = (0y,0,,05)

and the equation for the now two-component wave function looks like

(00 (% - eAO) +oT(V-— eA)) <00 (% - eA0> -6 (V- eA)> Y+MPy=0

In deriving his equation, Dirac [7], paragraph 74 noted that as long as we are dealing with
matrices with two rows and columns, we cannot obtain a representation of more than three
anticommuting quantities; to represent four anticommuting quantities, he turned to matrices with
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four rows and columns. In our case, however, three anticommuting matrices are sufficient, so the
wave function can also be two-component. Dirac also explains that the presence of four components
results in twice as many solutions, half of which have negative energy. In the case of a two-component
wave function, however, no negative energy solutions are obtained. Particles with negative energy
in this case also exist, but they are described by the same equation in which the signs of all four
matrices S or ¢ are reversed.

One would seem to expect similar results from other representations of the momentum operator,
e.g., [6], formula (24.15)]

(1 0 0) 1(0 1 0) 1(0 —i o> (1 0 0)
wo=(0 1 0) wy=—=(1 0 1] w,=—=(i 0 —-i] w;=(0 0 0
00 1 VZ\o 1 o VZ\o i o 00 -1

under the assumption that this representation can describe a particle with spin one. But this
expectation is not justified, since the last three matrices do not anticommutate, and therefore the
quadratic form constructed on their basis is not invariant under Lorentz transformations.

Let's see what happens to M? when we change the sign of the matrices. When changing the sign
of S, we have

M? = [=SoPy = (S P)][=SoPo + (S P)] = [SoPo + (S P)][SoPy — (S - P)]

swapping the places of the multipliers. The multipliers do not necessarily commute, so M? is
not invariant with respect to the change of sign of S, which can be interpreted as a reflection in time.
The same picture of invariance absence we have at the sign change of matrices §, i.e. at spatial
reflection

M? = [SoPy + (S P)][SoPy — (S P)]
If we change the signs of all matrices at once, we have

M? = [=SoPy + (S P)][=SoPy — (S P)] = [SoPo — (S~ P)][SoPy + (S P)]
i.e. invariance. The physical interpretation of this case can be given by taking into account the
change of signs of the matrices in equation

(=So(Py — eAO))2 — M? — (P — eA)?] — e(—S"B) + ie(—STE) = 0
which can be rewritten as

(So((=Po) — (—€)Ag))* — M2 — (P — eA)2] — (—e)S™B + i(—e)S"E = 0

it can be interpreted as an equation for a particle with negative energy and positive charge, i.e.
for the positron. Thus, the generalized equation with matrices Sy, Sy, S,, S3 describes a particle, and
with matrices —S,, =S, —S,,—S; an antiparticle. However, in the next section of the paper another
approach is described in which we do not have to deal with negative energy, it is positive for all
particles, and the difference between particles and antiparticles consist in a different sign of their
mass. And the mass in the generally accepted sense is simply equal to its modulus.

If one consistently adheres to the Heisenberg approach and does not involve the notion of wave
function, it is not very clear how to search for solutions of the presented equations. The Schrodinger
approach with finding the eigenvalues of the M?matrix and their corresponding eigenfunctions can
help here.

{(So(Po —eAy))’ — (P —eA)? — eS"B + iesTE}q; = M?>{

In the left-hand side are the operators acting on the wave function, and in the right-hand side is
a constant matrix on which the wave function is simply multiplied. This equality must be satisfied
for all values of the four-dimensional coordinates (¢, x;,x,,x3) atonce. Then M? isnot fixed but can
take a set of possible values, finding all these values is the goal of solving the equation.

Thus, we have arrived at an equation containing a matrix M? which is non-diagonal, complex
and in general depends on the coordinates (t,xy, x5, x3). After the standard procedure of separating
the time and space variables, we can go to a stationary equation in which there will be no time
dependence, but the dependence the matrix M? on the coordinates will remain. It is possible to
ignore the dependence of M? on the coordinates and its non-diagonality and simply replace this
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matrix by a unit matrix with a coefficient in the form of the square of the free electron mass. Then the
equation will give solutions coinciding with those of the Dirac equation. But this solution can be
considered only approximate and the question remains how far we depart from strict adherence to
the principle of invariance with respect to Lorentz transformations and how far we deviate from the
hypothetical true solution, which is fully consistent with this principle. To find this solution, we need
to approach this equation without simplifying assumptions and look for a set of solutions, each of
which represents an eigenvalue matrix M? of arbitrary form and its corresponding four-component
eigenfunction.

When searching for solutions, one can try to use two equations

(so (% - eAO) +8T(V - eA)) (50 (% - eAO) —sT(V - eA)> Y+ MY =0

0 0
<SO (E - er) —-sT(v- eA)) <So (& - eAO) +ST(v - eA)) Y+ MPy=0
successively applying the operators with first order derivatives included in them to the
eigenfunctions already found, similarly as described in Schrodinger's work [8].

3. Equation for the Spinor Coordinate Space

Let us return to the set of arbitrary complex numbers, for simplicity we will call it a vector
X" = (X0, %, %,,%3)
Let us consider in connection with it arbitrary four-component complex spinors
P = (Po, D1, P2, P3)
*1T = (x1,,x1,,x1,,x15)
2T = (x24,%21,%25,%23)

Among all possible vectors, let us select a set of such vectors for which there is a representation
of components through arbitrary complex spinors

1 t
X, = Exl S, %2
and there is another way to calculate them

1 t
X, = ETr[xle Sul

Further we will assume that both spinors are identical, then the vector constructed from them is
PT = (POIP1JP21P3)

has real components, and we will assume that this is the electron momentum vector constructed
from the complex momentum spinor p

1 t
P#=Ep Sup

! t
P = ETr[pp Sul

Consider the complex quantity

0 1 0 0\ /% X
-1.0 0 0)[x —x
P Zunx = Po.puP2P)| 50 o o 1)lx | = ®Popupap)| k'
0 0 -1 0/ \x; —%

= PoX1 — P1Xo + P2X3 — P3X2
where we introduce one more complex spinor, which in the future we will give the meaning of
the complex coordinate spinor

xT = (o, X1, %2, X3)
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and
0 1 0 0
_(om OY_[-1 0 0 O (0 1
2MM‘<0 o—M)‘ 0 0 0 1 “M‘(_1 0)
0 0 -1 0

Coordinate vector of the four-dimensional Minkowski space
X" = (Xo, X1, X5, X3)

is obtained from the coordinate spinor by the same formulas

1 t
X#=§x S”X

1 t
X” = ETT[XX Sll]

Thus, the vector in the Minkowski space is not a set of four arbitrary real numbers, but only such
that are the specified bilinear combinations of components of completely arbitrary complex spinors

Xo = E(x_oxo + X1x1 + XX, + X3X3)
X1 = E(%Jﬁ + X1Xo + XpX3 + X3X3)

X2 = E (_ix—oxl + ix—le - i@x'j + ix—3xZ)

X3 = %(x—oxo — XpXp + XX — X3X3)

Accordingly, the components of the vector in Minkowski space are interdependent, from this
dependence automatically follow the relations of the special theory of relativity between space and
time. For the same reason, the coordinates of Minkowski space cannot serve as independent variables
in the equations. From the commutative properties of S, matrices, which are generators of
rotations and boosts with respect to which the length of vectors is invariant, quantum mechanics
automatically follows. Indeed, the commutation relations between the components of momenta are
related to the noncommutativity of rotations in some way, and from them the commutation relations
between the components of coordinates and momenta are directly deduced. And from these relations
the differential equations are derived.

And since we do not doubt the truth of the theory of relativity and quantum mechanics, we
cannot doubt the reality of spinor space, which by means of the simplest arithmetic operations
generates our space and time.

The quantity p’XyyX is invariant under the Lorentz transformation simultaneously applied to
the momentum and coordinate spinor, which automatically transforms both corresponding vectors
as well

’ 1 1t I
P;L:Ep S[l.p
P' = AP
x' = Nx
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’ 1 1t I
Xu=§x Sux

X'=4X
This quantity does not change for any combination of turns and boosts

/T '
P Zymx = p' Iynx

Accordingly, the exponent

exp(p ZymX) = exp(poxs — p1xo + P2x3 — P3x7)
characterizes the propagation process of a plane wave in spinor space with phase invariant to
Lorentz transformations.

Let us apply the differential operator to the spinor analog of a plane wave

< a 0 a 0 ) ( N )
ox. 0x,  9xy oxy) CP P01 T PiXo + PaXs ~PaXs
= (Po(—P3) — (—p1)p2) exp(Pox1 — P1Xo + P2X3 — P3X2) =

= (p1P2 — PoP3) exp(PoX1 — P1Xo + P2X3 — P3Xz)
Applying this operator at another definition of the phase gives the same eigenvalue

0o 0 0o 0
(a_xla_xz - a_xoa_x3) exp(poxo + P1x1 + PaXz + D3x3) = (P1P2 — PoP3) €xp(PoXo + P11 + PaXy + P3x3)
that is, two different eigenfunctions correspond to this eigenvalue, but in the second case the
phase in the exponent is not invariant with respect to the Lorentz transformation, so we will use the
first definition.

Since
(pO'pl)T and (pz,p3)T

are complex spinors, which, under the transformation
, n 0
p =Np= (0 n) p

is affected by the same matrix n, then the complex quantity

m = pipPz — PoPs3
is invariant under the action on the momentum spinor p of the transformation N. m is an
eigenvalue of the differential operator, and the plane wave is the corresponding m eigenfunction,
which is a solution of the equation

o 0 o d
(__ - _—) Y(xg, %1, %2, %3) = mYP(xg, Xq, X2, X3)

0x, 0x, 0xy0x3
Here ¥(x¢,x1,x,,%3) denotes the complex function of complex spinor coordinates.

When substantiating the Schrodinger equation for a plane wave in four-dimensional vector
space, an assumption is made (further confirmed in the experiment) about its applicability to an
arbitrary wave function. Let us make a similar assumption about the applicability of the reduced
spinor equation to an arbitrary function of spinor coordinates, that is, we will consider this equation
as universal and valid for all physical processes.

Let us clarify that by the derivative on a complex variable from a complex function we here
understand the derivative from an arbitrary stepped complex function using the formula that is valid
at least for any integer degrees

azk

— =k k-1
0z z


https://doi.org/10.20944/preprints202401.1032.v4

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 July 2024 d0i:10.20944/preprints202401.1032.v4

12

In particular, this is true for the exponential function, which is an infinite power series.
It is not by chance that we denote the eigenvalue by the symbol m, because if we form the
momentum vector from the momentum spinor p included in the expression for the plane wave

1 t
P;L = E p Sup
then for the square of its length the following equality will be satisfied
Py2 — P2 — P,2 — P,% = ffim = m?

That is the square of the modulus m has the sense of the square of the mass of a free particle,
which is described by a plane wave in spinor space as well as by a plane wave in vector space. For
the momentum spinor of a fermionic type particle having in the rest frame the following form

pT = (p(]' Py, D1 _m)
quantity

m = PPz — PoP3 = P1P1 + PoPo
is real and not equal to zero, and for the bosonic-type momentum spinor having in the rest frame
the following form
P’ = (Do, P1, Po, P1)

it is zero
m = p1P, — PoP3 = P1Po — PoP1 =0

i.e., the boson satisfies the plane wave equation in spinor space with zero eigenvalue.

For the momentum spinor of a fermion-type particle we can consider another form in the rest
system

pT = (pO' P _E' %)

then the mass will be real and negative

m = Pp1p2 — PoP3 = —P1P1 ~ PoPo
This particle with negative mass can be treated as an antiparticle, and in the rest frame its energy
is equal to its mass modulo, but it is always positive

1 1 . . . 1 _ . .
Py = EPTSOP = E(Popo +P1p1 + (—p1) (—P1) + PoDo) = > (Popo + P1p1 + P1P1 + PoPo)

To describe the behavior of an electron in the presence of an external electromagnetic field, it is
common practice to add the electromagnetic potential vector to its momentum vector. We use the
same approach at the spinor level and to each component of the momentum spinor of the electron
we add the corresponding component of the electromagnetic potential spinor. For simplicity, the
electron charge is equal to unity.

Further we need an expression for the commutation relation between the components of the
momentum spinor, to which is added the corresponding component of the electromagnetic potential
spinor, which is a function of the spinor coordinates

(Po + ag(x1, %)) (p1 + a1 (x1,%2)) = (p1 + a1 (1, %2) ) (po + a0 (1, x2))
Let us replace the momenta by differential operators

0 0 0 5]

Po—’a—x1 P1—>—a—xo Pz—>6—x3 Ps—’—a—xz

and find the commutation relation
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a a
{(a_xl + Ao (xO! X1, X2, x3)> <_ a_xo + al('xOI X1, X2, x3)>

0 d
—| ===+ a;(x0, X1, %2, x3) || s—+ ao((xo, X1, X2, xs)) Y(xg, X1, X2, X3)
Jdx, 0xy

d oy 0 oY
= a—xl(aﬂl’) - aoa—x0+6_xo(a°¢) Ty
_0ay P Y Odag P oY  day da,
T oxy % 0xq %o 0x, 0xg o dx, " ox, 0x; 0x,

_ aal(xo.x1,xz,x3)+aao(xo;x1.x2.x3)
0x; 0x,

} Y (xg, X1, X2, X3)

Thus

da; Oda
(Po + @) (P +a1) = (P + @) (o +a) = 5+ 72
Let us apply the proposed equation to analyze the wave function of the electron in a centrally
symmetric electric field, this model is used to describe the hydrogen-like atom. For the components

of the vector potential of a centrally symmetric electric field it is true that

1 1 1
A =za'Soa = 5 (@ao + ara; + Ga, + Gas) =4
2 2 R
1 1 _ . -
Al = EaTsla = E(aoal + a1a0 + (12(13 + a3a2) =0

1
Az = EaTSZa = E(_la_oal + ia_1a0 - ia_2a3 + ia_3a2) =0

1
Ay = EaTSQ.a ) (@ao — a1a; + aza; —azas) = 0

aApAgy + a,a, = a1aq + asas
i 1
aga a,a, = —
0“0 242 R

a_0a1 + a_2a3 = a_lao + a_3a2

E (a_0a1 + a_1a0 + a_2a3 + a_3a2) = a_0a1 + a_2a3 =0

aQpa; = —a,as
ag = ia;
ap, = —la,
Toao + Ty, = i@, * (—iay) + @a, = 2aza, = 2a,° = %
As a result, it is possible to accept
i 1 1 i
_ 1 1 i
apa —
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R=VX*+X2+ X =

2 2 2
J (3G + Ty + Toxs + T53) ) + (£ (—iom + 1o = 3, + 155%2) )+ (5 oo — Ty + o, = Toxy)) =

2

2 2
[ _ _ _ 1, _ _ _ 1, _ _ _
\/(E (Xgxy + Xyx9 + Xpx5 + x3x2)) - (E (—Xoxq + Xyxg — Xpx3 + x3x2)) + (5 (Toxg — X121 + Xgx, — x3x3))

We are looking for a solution of the spinor equation; we do not consider the electron's spin yet
( 0o 0 0o 0

9x, 0%,  0xg 03 )‘P(xo;xl:xzﬂ%) =m @(xo, X1, X2, X3)

This equation can be interpreted in another way.

Let us take the invariant expression

(P1p2 — Pop3) =m
And let's do the substitution

0
Po — Oxs + ao(xo, X1, X2, X3) [ T ox. + ay (xg, x1, X3, x3)
1 0

d
P2 — dx + aZ(xOl X1, xz,x:),) ps = — dx + a3(x0J x11x21x3)
3 2

(o + ) G o) =+ o0) (- o) -
0xg % 0x3 %2 0x4 %o 0x, 4s)§¢ =me

We will consider this equation as an equation for determining the eigenvalues of m and the
corresponding eigenfunctions

_9 & 9 9 9az _daz\ ~_ . 99 9¢ _ 99 _ —
%o 03 7 + 8xq B, ¢+ ( axo Bxl) A2 5% T Mo, 8x3 a3 ax + a° ax + (10, — aoas)g =
mo
i 1 1 i
Ay = —— a, = — a, = — a3 = ——
°7 V2R ' V2R 7 VZR 7 V2R

a;a; — apdsz =

da, daz; 1 0 (1
dxy 0x;  +/20x

11
2R " 2R
o o ) 5w 7) = v (1) * ()

_ 111 \ae o 111 \a
- \/7< (R2)>ax0(R)+L‘/§< (R2)>ax1(R)

1
= ( o )[—axo (R?) — i —( 9= o —ax (R —i —(RZ)]
R= /)(12+x22+x32

2
1 _ _ _ 1 _ _ _
= \/(z (ox1 + Xyx9 + Xpx5 + x3x2)) - (E (—Xox;, + Xyx9 — Xgx5 + x3x2)>

CH 2
+ <§ (Xgx0 — X1X1 + X3%, — JTs"s))

d0i:10.20944/preprints202401.1032.v4
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2

0

2
d 1 _ - - 1 _ - _
a_xo (R?) = a_xo ((E (Xox1 + X1x0 + Xgx5 + x3x2)) — <§ (—xgx;, + X1xg — Xzx3 + x3x2)>

2
1
+ (E (xoxo — X1, + XX — x_3x3)> )
e N0
= Z 2(x0x1 + xle + xe3 + X3x2) % (x0x1 + xle + xe3 + x3x2)
0
O
- 2(_x0x1 + x1x0 - XZX3 + X3x2) W (_xOxl + xlxo - x2x3 + X3x2)
0

0
+ 2(Xoxo — X1x1 + X3X; — X3X3) FIR (Xoxo — X1x1 + X3X; — X3X3)
Xo

1
=2 (2(Xox1 + X1x¢ + XpX3 + X3x3)X1 — 2(—XoX; + X1Xo — XzX3 + X3X2)X7
+ 2(Xox0 — X1X1 + XX, — X3X3)%p)
1, _ _ N _ _ _ N
= E ((xoxl + xlxo + XZX3 + X3x2)x1 - (_xoxl + xlxo - XZX3 + X3x2)x1
+ (Xoxo — XXy + XpXp — X3%3)%0)

1, S _ e _ _ o
=5 ((x0x1 + X3x3)%1 — (=XoX; — X3x3)%X; + (Xoxo — X1X; + XX — xsxs)xo)
1, [ O _ _ o
= 2 ((xoxl + Xx3)%; + (Xox; + Xx3)%7 + (XgXo — X1Xq + XX, — x3x3)x0)

1, e _ o
=5 ((x0x1 + Xpx3)%; + (Xx3)%7 + (XoXo + Xpx — x3x3)x0)
=5 (Xox1 %1 + 2X5x3%7 + (XoXo + XX, — X3X3)Xo)

r o o
= E (ZXZX3x1 - ZX3X3xo + (xoxo + xlxl + x2x2 + X3x3)x0)

1 o _ o o
=5 (2x3 (%1 — X3Xg) + (XoXo + X1 X1 + X3, + X3%X3)Xp)

1 _ _ o o
=5 (2x3 (%1 — X3%) + (XoXo + X1 X1 + X3, + X3%X3)Xp)

d

1
ax (RZ) = E ((x_oxl + .x_lxo + X_2X3 + X_3X2)% + (_x_oxl + x_lxo - X_2X3 + X_3x2)x_0
1

— (Xoxo — X1%; + XXy — X3%x3)¥7)

1, o N _ _ o
=5 ((x1xo + X3x2)Xg + (XX + X3X2)Xy — (XoXg — X1 X1 + XX — x3x3)x1)
r_ _ o
=5 (X1x0Xg + 2X3x,%g + (X1 — XX + X3X3)%)

1 o o _ o
=5 (2%, (3% — X2%1) + (xoXg + X1X1 + XX, + X3X3)%X7)

Let's introduce the notations

XX, — X3Xg =1
this quantity does not change under rotations and boosts and is some analog of the interval
defined for Minkowski space and
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> (x0Xg + X1x1 + XX, + X3x3) =t

this quantity represents time in four-dimensional vector space.

An interesting fact is that time is always a positive quantity. As an assumption it can be noted
that since we observe that time value goes forward, i.e. the value of t grows, and it is possible only
due to scaling of all components of spinor space, such scaling leads to increase of distance between
any two points of Minkowski space. As a result, with the passage of time the Minkowski space should
expand, herewith at first relatively quickly, and then more and more slowly.

d 0
—~(R?) — i— (R? ]
oxe (R?) o (R?)
=5 (2x3 (%1 — X3X) + (XoXo + X1 X1 + XX, + X3%X3)X)
1 o o _ o
—i3 (2x, (3% — X2%1) + (XoXg + X1x71 + X35 + X3X3)%7)
A S o e
= 236X — X3%) + E(xoxo + x1 X7 + X3, + X3x3)X0 — ix2(X3X0 — X3X7)

— ii(xox_o + X% + XXy + X3x3)X; = x5l + txy + ix,l — ithg

= 1l(x;3 +ixy) + t(Xo — ixy)

As a result, we have an equation for determining the eigenvalues of m and their corresponding
eigenfunctions ¢ (xq, X1, X5, X3)

<66 aa)(p 1(6(p dp dep | do

1 . .
_a_xoa—x3 a—)qa—xz + R —axo x5 la_xl_la_xz)-l__(\/ﬁ)s (l(xg + ix,) + t(Xo —lX1))§0
+1 =
E(P =mgo

Instead of looking for solutions to this equation directly, we can first try substituting already
known solutions to the Schrodinger equation for the hydrogen-like atom. If ¢ (X, X1, X5, X3) is one
of these solutions, we need to find its derivatives over all spinor components

dp d¢ 0X,
ox, 0X, 0x,

Xo = E(x_oxo + X1x1 + XX, + X3X3)
X1 = E(%Jﬁ + X1Xo + X3X3 + X3X3)

X2 = E (—ix_0x1 + ix_1x0 - ix_2x3 + ix_3x2)

1 _ _ _ _
X3 = > (Xoxo — X1x1 + X3X; — X3X3)

For example
dp 0p X, OpXxi  0¢ix; 09Xy
ox, 0%, 2 Tox 2 X, 2 X, 2
Let’s pay attention to the shift in priorities. In the Schrédinger equation one looks for energy
eigenvalues, while here it is proposed to look for mass eigenvalues, it seem more natural to us. The
mass of a free particle is an invariant of the Lorentz transformations, and in the bound state the mass
of the particle has a discrete series of allowed values, each of which corresponds to an energy
eigenvalue, and the eigenfunction of these eigenvalues is the same. But these energy eigenvalues are


https://doi.org/10.20944/preprints202401.1032.v4

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 July 2024 d0i:10.20944/preprints202401.1032.v4

17

not the same as the energy eigenvalues of the Schrodinger equation, because the equations are
different. When an electron absorbs a photon, their spinors sum up and the mass of the electron
changes. If the new mass coincides with some allowed value, the electron enters a new state. The kay
idea here is the assumption that the interaction of spinors occurs simply by summing them.

The advantages of considering physical processes in spinor coordinate space may not be limited
to electrodynamics. It may turn out, for example, that the spinor space is not subject to curvature
under the influence of matter, as it takes place in the general theory of relativity for the vector
coordinate space. On the contrary, it can be assumed that it is when the components of vector
coordinate space are computed from the coordinate spinor that the momentum spinor with a
multiplier of the order of the gravitational constant is added to this spinor. This results in a warp that
affects other massive bodies.

To account for the electron spin, we will further represent the electron wave function as a four-
component spinor function of four-component spinor coordinates

1/)O(XOJxlrx2fx3) Uy
Py (X0, X1, X2, X3) Uy
X0, X1,X2,X3) = = X0, X1, X2, X
lIJ( 0,41, 42 3) wz(xo;xpxz:x?,) Uy §0( 0,41 A2 3)

1/)3(350, X1, X2, x3) Us

where the coefficients u, are complex quantities independent of coordinates. In fact, as shown
at the end of the paper, the wave function is a linear combination of such right-hand sides with
operator coefficients.
We will search for the solution of the wave equation considered in the first part of this paper

(SoPy — S1Py — S;P, — S3P3)(SoPo + S1Py + S,P, + S3P) Y = M2

Let's express the left part through the components of the momentum spinor

1 t
Pu - Ep Sup
L . 1 0 O 0 Po " Po
S 0 1 0 0 p — — — [P
Py = EPTSOP = E(Po: D1, D2, P3) 0 0 1 0 p; = 2 (Po, P1, D2, P3) p;
0 0 0 1 P3 P3
1 __ _ _ _
=5 (Popo + P11 + D2D2 + D3D3)
L L 0 1 0 0 Po L D1
_ .t | 1 0 0 0 Pr|_ 25 75— [ Po
Pr=5p'Sip =500 P20 o o o 1]||ps|=7PoPrP2P3) | p,
0 0 1 0 P3 D2
1 _ _ _ _
=§m%+mm+mm+mm)
1 L 0 —i 0 0 Po 1 _.ip1
— _pt e e Y L 0 0 0 Pr| _ 1 ipo
P, = 2 p'S;p = ) (Po, P1, D2, P3) 0 0 0 —i 2 (9o, P1, D2, P3) —ips
0 0 i 0/ \ps ip,
1. — — —
=5 (=iPop1 + iP1po — iP2Ps + iP3p2)
1 L 1 0 0 0 Po L Po
_ Tt e o Y AL -1 0 0 Pr|\_2— o [ P1
I 2 p'S;p 2 (Do, P1, D2, P3) 0 0 1 0 D2 2 (9o, P1, D2, P3) D2
0 0o 0 -1 D3 —P3

1 _ . _
=gmm—mm+mm—mm)
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1 _ - . 1 . . -
Py—P; = E(Popo +D1p1 + D2p2 + D3p3) — 2 (PoPo — P1P1 + P2P2 — P3P3)
1 _ _ _ _ _ _ _ _
=5 (Popo + P1p1 + D2D2 + D3Ps — Dobo + D1P1 — P2P2 + P3P3)
1 _ _ _ _ _ _
=5 (P1p1 + D3ps + D11 + P3P3) = Pip1 + D3p3
1 . _ . 1 _ . _ _ _
Py+P;= E(Popo + P1p1 + D202 +P303) + > (Popo — P1P1 + D22 — D3P3) = DoPo + D22
. 1 _ _ _ I o o o
—P+iP, = _E(Pom + P1Po + P2p3 + P3p2) + lE(—lpopl + ip1po — iP2Ps + iD3D2)
1 _ _ _ _ _ _ _
=5 (Pop1 + P1Po + D23 + D3Pz + DoP1 — P1Po + P2P3 — P3P2)
1 _ _ _ _ _ _
= E(popl + D23 + DoP1 + D2P3) = Pob1 + D2P3
. 1 _ _ _ 1 — o o
—-P, —iP, = _E(polh + P1Po + P2p3 + P3p2) — 15(—1100191 + ip1po — iP2p3 + iD3D2)
1 _ _ _ _ _ _ _
=3 (Pop1 + P1Do + D23 + D3Pz — DobP1 + P1Po — P2P3 + P3P2)

T I
= E(plpo + P3Pz + P1Po + P3P2) = P1bo + D3D2

50P0_51P1_52P2_S3P3

1 0 0 0 0 1 0 0 0 —i O 0
(o 1 0 o\, (1 o0 0o o), [i 0 0 o
lo o1 o/ lo o0 1) |0 o0 —i
0 0 0 1 0 0 1 0 0 0 i 0
1 0 0 0 Poy— P3 =P, +iP, 0 0
(0 -1 0 0lp Py —iP, Py + P3 0 0 _
0o 0 1 0] 0 o0 Py—P; P +iP,
0 0 0 —1 0 0 _Pl_ipz P0+P3
P1P1+DPsP3 PoP1 + P2Ps 0 o0
_ [ P1Po + P3P PoPo + D2P2 - 0 o0 -
0 o0 PiPs + P3p3 Pob1 +P2_P3
0 o0 P1Po + D3Pz DPoDo + D2P2
1 0 0 0 0 1 0 0 0 —i O 0
_|0 1 O 0 1 0 O 0 i 0 O 0
0 0 1 0>P°+ o oo 1]t o o0 —i)P
0 0 O 1 0 0 1 0 0 0 i 0
1 0 0 0 Py+P; P —iP, 0 o0
(0 -1 0 0)p _ P, +iP, Py—P; 0 O
0 o 1 0] 0 o0 Po+P; P —iP,
0 0 0 -1 0 0 Pi+iP,  Py— P
P_ipo +P_ipz _Epl —@93 0 o0
—P1Po — P3Pz pip1 + P3P 0 0 o
0 o0 PoPo + P2bz  —PoP1 ~ P2P3
0 o —P1Po — D3Pz p1P1 + D303

Let's distinguish the direct products of vectors in these matrices
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PoPo +D2P2  —PoP1 — P2Ps3 0 o
_ | =P1Po — D3D2 P1b1 + P3P3 0 o0
0 0 Pl + le PO - P3
pve <m0 0\ /Pm Pws 0 0
_ | ~P1Po pirn 0 0_ —DP3P2 bsbs 0 0_
0 0 PoPo  —Pobs 0 0 b, —Pabs
0 0 —P1Po P1P1 0 o0 —DP3P2 P3P3
7 0 o 0
= P P00 +| _% |00, ~pop) +| P2 | (=p2ps 000 + | 2 | (0.0,psps)
0 orl1Y _p(] ) 0 M1 0 2'HM3»Y) _pz IAd) 23
0 P1 0 P3
p1ib1 + P3P Pob1 + P2Ps3 0 0
P1bo + P3P2 PoPo + D2P2 0 0
SoPo — S1Py — SyPy — S;P; = 09
0fo — 911 — 520 — 5313 0 0 &P1+£3P3 pipl-l_pim
0 o0 P1Po + D3P2 PoPo t D2p2
ETH P__0P1 0 0 Em P__2p3 0 o0
PiPo  PoPo 0 g P3Pz P2P2 0 g
0 0 ﬂﬂh p_Opl 0 0 &p3 p_ng
0 o0 P1iPo  PoDPo 0 0 P3P2  D2P2
p1P1 — [PiP1 — Pip1]l  P1Po — [P1Po — Popil 0 0
PoP1 — [PoP1 — PiPo]l  PoPo — [PoPo — PoPol 0 0

—+

0
0

p3Ps — [psPs — Dspsl
p2P3 — [p2P3 — D3p2]

0
0

P3Pz — [psP2 — D2ps]
p2P2 — [p2P2 — P2Dp2]

P11 — [p1P1 — P1pil
poP1 — [PoP1 — P1pol

0
0

0 0 PsP3 — [psbs — Pspsl
0 0 p2P3 — [p2P5 — P3p2]
p1 0
= % |Gr0.0.0) +( ) | (0.0,75,50)
0 Po
[p1P1 — Pip1l  [P1Po — Popil 0
[PoP1 — P1p0] [PoPo — Popol 0
0 0 [p1P1 — P1p4]
0 0 [PoP1 — P1Pol
%] 0
+| P2 ) 55,5,00 +( .2 | 0,0,55)
0 P3, P2, Y, D3 U, D3, D2
0 %
[psps — P3ps]  [psbz — P2psl 0
[p2P5 — P3P-] [p2p2 — P2p-] 0
0 0 [psP5 — P3psl
0 0 [p2P5 — P3p2]
Let's introduce the notations
—Po 0 —D2
L 0 o
%1 (_pOt P1, 0'0) + _m (0'0' —Po, pl) + %3 (_p2: P3» 0,0) +
0 1 0
P1 0 D3 0
0 @LE5 00+ ) | 00550 +( B | 7Pz, 00 +|
0 Po 0 D2

P1Po — [P1Do — Popil
PoPo — [PoPo — DoPol

0

0
P3Pz — [PsP2 — D2ps]
p2P2 — [P2P2 — P2Dp2]

0
0

[p1Po — Dop1]
[PoDo — Popol

0
0

[psPz — D2ps]
[p2P2 — D2p2]

0

000, —pop) =5+
_pZ Ny 2 M3

p3

(0,0,p5,P2) =S~
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[p1P1 = Pip1]  [P1Po — Popil 0 0
[PoP1 —P1Pol  [PoPo — Popol 0 0
0 0 [p1P1 — P1p1]  [P1Po — Dol
0 0 [PoP1 — P1Po]  [PoPo — Popol
[psPs — Paps]l  [psPz — P2psl 0 0
n [p2D3 — D3p2]  [p2D2 — P2p2] 0 0 =K
0 0 [psPs —P3p3]  [p3Pz — P2psl
0 0 [p2D5 — P3p2]  [P2P2 — P2p2]
Let us substitute differential operators instead of spinor components
d 0
Po_’a_xlzal Pl_’_a_xo= 0 Pz_’a_=a3 P32 —5 = 02
L | ) e
->—= > ——=— - —= - ——=—
Po %, 1 D1 0%, o D2 X 3 D3 0%, 2
Then the quantities included in the wave equation
(5™ = K)S*W(xo, X1, X3, X3) = M*Y(x0, X1, X2, X3)
will have the form
—0, 0 -0, 0
- _| o4 = 5 0 = 5 d5 = 5 0 = 5
§S™= 0 (=90,0,,0,0) +| _ 2, (0,0,—9,,0,) + 0 (-9,,05,0,0) +| _ 9, (0,0,—9,,05)
0 01 0 03
-0, 0 —05
o[ -3, 0 -3,
S = 00 (_61,_60,0,0) + _a_l (0,0, _al, —60) + 02 (_63, _62, 0,0)
0 —0, 0
0
0
+ _a_3 (0,0, _63, _62)
—0,
K =
900 — 99 (_60)5__1— 3__1(_60) 0 0
_ 0,(—0,) — (—9,)0, 8,0, — 0,0, 0 0
0 0 aﬁo - aoai (_60)0_1_ 6_1(_60)
0 0 0.(=0) — (~95)3, 0.0, — 9,0,
0,0, = 0,0, (—0,)05 — 05(=0,) 0 0
+ 63(_62) - (_62)63 6363 - 6363 0 0
0 0 aﬁz - azai (_62)6_3_ 6_3(_62)
0 0 95(=0;) — (~9,)05 0303 — 0303

Let us consider the case of a free particle and represent the electron field as a four-component
spinor function of four-component spinor coordinates

1/)0(x01x1!x2!x3) Ug
Y1 (x0, X1, X2, X3) Uy
X0, X1,X2,X3) = = Xo) X1, X2, X
lIJ( 0, A1, 42 3) 1/)2(x0:x1rx2fx3) Uy (p( 0y A1 42y 3)

Y3 (xg, X1, X2, X3)

For a free particle, the components of the momentum spinor commute with each other, so all
components of the matrix K are zero.

Let us use the model of a plane wave in spinor space
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Substituting the plane wave solution into the differential equation, we obtain the algebraic equation

Up Ug
ss+| @ (xg, X1, %5, %3) = M? e (xg, X1, X5, X3)
U, 0, X1, X2, X3 u, | P X0, X1, X2, X3
Us Uz
—Po 0 —P2
_ I 0 D3
S %1 (—pouo + p1uy) + Py (=pouz + prus) + %3 (=p2uo + psuy)
0 1 0
0 Uy
0 _ o2 W
+ —p; (—=p2uz + psus) p @(x, X1, X2, X3) =M U, @ (X9, X1, X2, X3)
D3 Us
b1 0 (%] 0
P ) 51,55,00) + | .0 ]00,5,50) + | F? | @5.52,00) + (.2 | 0,0,555)
0 10 Y pl W P11 PO 0 320 p3 W P32
0 Po 0 %
—Do 0 75
K 0 &
%1 (=pouo + pruy) + —Pg (=pouz + pius) + %3 (—=pauo + pP3uy)
0 D1 0
0 Up
0 o[ U1
+ —p; (—=p2uz + p3usz)  @(xg, X1, X2, x3) = M U, @(xg, X1, X2, X3)
D3 U3
b1 0 (%] 0
o) 51,55,00) + | 0 ] 0,0,5,50) + | F? | @5.52,00) + (.2 | 0,0,555)
0 10 Y pl W P11 PO 0 320 p3 W P32
0 Po 0 %
—Do 0 )
- 0 2
%1 (=pouo + pruy) + —Pg (=pouz + pius) + %3 (=p2uo + p3uy)
0 D1 0
0 Ug
0 u
+ —p; (=puz + p3uz) p = M? u;

P3 Uz
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D1 D3
) (~PiPo + PoPr) (—potto + prwy) + | B | (<35 + PaPr) (—Potto + Prtty)
0 0
0 0
+ P(i (=P1Po + PoP1) (—Pouz + p1us) + p(; (=P3Po + P2P1) (—Pouz + p1us3)
Po P2
b1 D3
+ F(’)o (=P1P2z + PoP3) (—pauo + P3uy) + %2 (=P3Pz + P2P3) (—P2uo + P3Uq)
0 0
0 0
+| ) | (7177 + B (—pattz + paws) + | ) | (P3P + Pas) (~patty + psis)
Po D2
U
= M2 Z;
Uz

Let us take into account the commutativity of the momentum components, besides, let us

introduce the notations

—D3Do+P2P1 =M —P1P2 + Dbz = —

for the quantities which are invariant under any rotations and boosts, then we obtain

p3 0 P1
P2 |, 0= Po | _=y_
0 Mm(—polto + P1y) + p3 m(—pou, + pyuz) + 0 (—m)(—pauo + P3uq)
0 0
0 Up
u
+ p?) (—=m)(—=pau, + psuz) f = M? u;
Po Us
%] P1 P1 0 0
_ _ _ Po |- 0= 0=
Ug %2 mpg + }())0 mp2> mp; — 00 mpz | Uz —| p, |MPo+| p, |MP2
0 0 0 D2 Po
0 Up
0\ 0 u
+ Us D3 mp; — D1 mpB (u;
D2 Po Uz
P1P2 — P3Po P3P1 — P1P3 0
_ [ PoP2 — P2Po _ [ DP2P1 — PoP3 — 0
Uom 0 tum 0 ( P1P2— p3po +Usm P3P1 — P1P3
0 0 PoP2 — P2DPo P2P1 — PoP3
Up
_ U
= M? U
Usz

Additionally, introducing notation for Lorentz invariant quantities

D1P2 —P3Po =M P2pP1 —PoP3 =M

we obtain
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m 0 0 0 Ug
u
UM 8 +u,m 6” + u,m (12 + usm (8 =m? u;
0 0 0 m Uz
m2 0 0 0 Ug
0 m? 0 0 _ o2l W
uol | +uy 0 +u, m? + us 0 =m*|
0 0 0 m? Uz
m?> 0 0 0\ /Uo U
0 m?2 0 0)fw])_ M2 Uy
0 0 mz 0 U, Uy
0 0 0 m?/ \U3 Us

We see that in the case of a plane wave in spinor space, the matrix in the left part of the equation
is diagonal and remains so at any rotations and boosts, the diagonal element also does not change.

In this case we can consider the matrix M? in the right part to be diagonal with the same
elements on the diagonal m?, then the equation can be rewritten as an equation for the problem of
finding eigenvalues and eigenfunctions

STSTYP(xg, X1, X3, x3) = M2IP(xq, X1, X, X3)
S_S+ll‘,(x0r xll xZI x3) = mzlp(xOJ xll x2I x3)

Let us compare our equation with the Dirac equation [6], formula (43.16)]

Pot+M 0 P Py —iP\ ,ug
0 Phb+M P +iP, —P; up |
Py P —iP, Py,—M 0 u, | =0
P, +iP, —P; 0 Po—M Us
In the rest frame of reference, the three components of momentum are zero and the equation is
simplified
Po+M 0 0 0 Ug
0 Py+ M 0 0 Uy
0 0 Py—M 0 Uz
0 0 0 Py—M/ \Us

That is, in the rest frame the Dirac equation and the spinor equation analyzed by us look
identically and contain a diagonal matrix. The corresponding problem on eigenvalues and
eigenvectors of these matrices has degenerate eigenvalues, which correspond to the linear space of
eigenfunctions. In this space, one can choose an orthogonal basis of linearly independent functions,
and this choice is quite arbitrary. For example, in [9], formula (2.127)], solutions in the form of plane
waves in the vector space have been proposed for the Dirac equation in the rest frame

ut(0) exp(—iMt)
vt(0) exp(+iMt)

and the following spinors are chosen as basis vectors

1 0 0 0
1y =[O0 200 = [ 1 1) =[O0 2(m —| O
0 0 0 1

For transformation to a moving coordinate system in [9], formula (2.133)] the following formula
is used
PH(X) = u'(P) exp(—iPX)
Y (X) = v'(P) exp(+iPX)

where
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1 1 P,
19 P O'P Fo + M
Py,+M 3 P+ M| f1— Uy Po+M| p, +iP
1p) = |2 _ 2(py = |2 _ 1p)y = |2 1 2
wi(P) / o | Pt | WP o | Pt | VP 2M | By M
P1+iP2 _P3 1
Py+M Py+M 0
Pl_iPZ
P+ M
Po+M| —
vipy = |2 =P
M | P+ M
0
1

The basis spinors form a complete system, that is, any four-component complex spinor can be
represented as their linear combination and this arbitrary spinor will be a solution to the problem on
eigenvalues and eigenfunctions in a resting coordinate system. The choice of the given particular
basis has disadvantages, because if to find a four-dimensional current vector from any of these basis
functions

1 +
ju =75 @) S, (0)
then this current in the rest frame of reference
1 1
i = (5,003)
) (2 2

has non-zero components, and the square of the length of the current vector is zero. It turns out that
aresting electron creates a current, which contradicts physical common sense. Since we have freedom
of choice of the basis, it is reasonable to choose the spinor for the wave function as some set of
momentum spinor components, for example

b2
_ |&[~Pps3
u(0) = \/; Po
D1
The proportionality factor is chosen so that in the rest frame the zero component of the current

is equal to the charge of, for example, an electron or a positron. If the momentum spinor in the rest
frame has the form

p" = (o, P+, 71, Do)

then the momentum vector in this rest frame of reference will be

PT = (m,0,0,0)
and the current vector
i" = (e,0,0,0)
The same momentum vector in the rest frame of reference can be obtained from different spinors, e.g,
1 0 -1 0 1
i=(2) (1) wo=(8) m-()  e-(s
1 0 1 0 0

after a 30-degree boost along the z-axis we get

1.299 0 ~1.299 0 114
[ o | 077 [ o (=077 [ o
pl={ PZ=|1599] P3=| P4 =11 799 P=1 o

0.77 0 0.77 0 0.548
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After scaling the spinors by the factor \/%, similar relations are true for the current vector. Thus,

electrons can have the same momentum and current vector but different spinors, i.e., they are
characterized by different spins. As it is supposed, the electron here has two physical degrees of
freedom, since in a rest frame of reference one can choose the components p, and p; to be real.

Thus defined spinor wave function for a free particle is invariant to Lorentz transformations,
since in this case the mass of electron m = p;p, — pspy, its charge and the phase of the plane spinor
wave

exp(p Zynx) = exp(poxs — p1xo + P2x3 — P3x7)
do not change at rotations and boosts. The matrix on the left side of the equation does not change
either, remaining diagonal with m? on the diagonal.

It is logical to use the same considerations when choosing the basis for the wave function of the
photon, whose mass, i.e., the eigenvalues of the wave function equation, are also degenerate and thus
equal to zero. In this case, the choice of the proportionality factor between the spinor of the wave
function and the momentum spinor is not so obvious, one can, for example, consider the option of

p2

u(0) =+e :g
P3

For a fermion, which can be an electron or a positron in the rest frame takes place pT =
(Po, P1, P1, —Po), so the quantity

m = Pp1P; — P3Po = P1P1 + PoPo

which, unlike the mass M in the Dirac equation, is complex in the general case, is also real for
the fermion and can be positive for the electron or negative for the positron. The charge is
proportional to the mass with a minus sign, since the electron charge is considered negative and the
positron positive. For simplicity it is possible to consider the mass of the electron as negative and that
of the positron as positive, then the charge will be proportional to the mass without changing the
sign.

For the momentum spinor of a boson, such as a photon, it is true that pT = (py, p1, Po, P1), SO its

mass is zero
m = P1Pz — P3Po = P1Po — P1Po = 0
The given constructions are not abstract, but describe the physical reality, since the results of the

processes occurring in the spinor space are displayed in the Minkowski vector space. In particular,
the momentum vector corresponding to the momentum spinor has the following parameters

P =1Tr[ppTS ]
13 2 13

the square of the length is equal to the square of the mass of the electron or positron
P? — P — P> — P2 =m?
And to the spinor wave function (x,xy, X,,X3) at some point in spinor space corresponds the

vector wave function W(X,, X1, X,, X3)

¥, = 2Tr[pyts,]
2 U

(which for a plane wave coincides with the current vector), taking its value in the corresponding point
of physical space with coordinates

1

X, = ETr[xx*S#]

The vector wave function ¥ can be compared in meaning to the square of the modulus of the
conventional scalar wave function, in particular ¥, is equal to this square and has the meaning of
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probability. The conventional scalar wave function itself is closer in meaning to the spinor wave
function considered here, they both have complex values, and the four-component wave functions
of the electron have in both cases the same meaning.

The arbitrary choice of the basis of the linear space of the eigenvectors of the matrix takes place
only for a free particle. In the general case the matrix K is not zero, the wave equation has no solution
in the form of plane waves in spinor space and ceases to be invariant with respect to Lorentz
transformations, and the eigenvalues become nondegenerate.

We propose to extend the scope of applicability of the presented equation consisting of
differential operators in the form of partial derivatives on the components of coordinate spinors with
a nonzero matrix K

(5™ = K)S™(xo, %1, X2, %3) = M2 (xo, X1, X2, X3)
not only to the case of a plane wave, but to any situation in general. This transition is analogous to
the transition from the application of the Schrodinger equation to a plane wave in vector space to its
application in a general situation. The legitimacy of such transitions should be confirmed by the
results of experiments.

This equation will be called the equation for the spinor wave function defined on the spinor
coordinate space. Here the matrix M? is, generally speaking, neither diagonal nor real, but it does
not depend on the coordinates and is determined solely by the parameters of the electromagnetic
field. Only in the case of a plane wave it is diagonal and has on the diagonal the square of the mass
of the free particle. We can try to simplify the problem and require that the matrix M? is diagonal
with the same elements on the diagonal m?, then the equation can be rewritten in the form of the
equation for the problem of search of eigenvalues and eigenfunctions for any quantum states

(5™ = K)S* P (xo, %1, %2, %3) = m*W(xq, X1, X2, X3)

This approach is pleasant in the Dirac equation, where the mass is fixed and equated to the mass
of a free particle, and at the same time results giving good agreement with experiment are obtained.

We are of the opinion that the spinor equation is more fundamental than the relativistic
Schrodinger and Dirac equations, it is not a generalization of them, it is a refinement of them, because
it describes nature at the spinor level, and hence is more precise and detailed than the equations for
the wave function defined on the vector space.

Let us consider the proposed equation for the special case when the particle is in an external
electromagnetic field, which we will also represent by a four-component spinor function at a point of
the spinor coordinate space

ao(x, X1, X2, X3)
a1 (%o, X1, X2, x3)
a(xo, X1, X2, X3)
az(xo, X1, X2, X3)

a(x(]' X1, X2, X3) =

We will apply to the wave function of the electron the operators corresponding to the
components of the momentum spinor, putting for simplicity the electron charge equal to unity

a
Po 5~ + ay(xg, X1, X, X3) P15 + ay (%, X1, X2, X3)
1 0
p2 = %"‘ az(xg, X1, X2, X3) pz — _E"' az (X, X1, X2, X3)
3 2
] [ o,
Po = Fhes + ag(xo, X1, X2, X3) P12~ EEN + a1 (o, X1, X2, X3)
1 0
E - ﬁ-i_ aZ(xO!xlr X2, x3) m_) _ﬁﬁ_ a3(x0’x1’ X2 x3)
3 2

Note that the electromagnetic potential vector can be calculated from the electromagnetic
potential spinor by the standard formula
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1 t
Au =Ea Sua

The advantage of the spinor description over the vector description is that instead of summing
up the components of the momentum and electromagnetic potential vectors as is usually done

1, 1.
B, +A4, =Ep Sup+za S.a

now we sum the spinor components and then the resulting vector is

1 1 1 1 1
S@+a)is(p+a) =-p'sp+opisa+toalsp+sals,a

in addition to the usual momentum and field vectors, contains an additional term
1 1
3 ptS,a+ > ats,p

taking real values and describing the mutual influence of the fields of the electron and photon.

After the addition of the electromagnetic field the components of the momentum spinor do not
commute, the corresponding commutators are found above

)~ e v o - )
Jdx; %o d0x, % d0x, % 0x; b )j¢ = dx, 0xg ¢

) o) () oo 3
0x3 %2 dx, %3 dx, %3 0x %2)§¢ = Jdx; 0Ox, ¢

Let's find commutators for other operators
ERTERNE
() ()G v
_ (a—2+a—o><—§—xé+a—1<ﬂ) - (—g—g+a—1>(a_xfz+a—o(p)

o[l 0@ G p\ 0[] /0p a1
= a_x—l(_ axo) T @y + o= (@) + @ ( axo) t o (ax ) ©Ga0p + 5= (@)
_0p o[l _ _ p\ 0[] __ __ 09
—a1a—x_1—7_1(a1§0)+ao(—a—) —( o) — a1a—x_1
_0p__  0ay _( 0@ op __  da, __0p dag oa,
_ax_1a1+6x_1¢+a0( ax_0)+6x_0a0+6x_0¢ “or T aw? T ox
o e

dx; 0x,
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=(%+ao)(_§_g+a¢)_( ;’E al)(a_;w)

d 0p d apy\ 0[] a<p) _ all
= 6_x1(_ axo) + apa; @ +—(a1§0) +ap ( axo> + a_x_o(a_xl — ;a0 + a—x_o(aofﬂ)
__0¢ _ apy\  o[] de
a; 6x (a1§0) + ao( Er ) %o —(app) —a; — ax,
_6(p_+6a_1 ( aga) P +6a_o _0p _ o +6a_0
i P 0%y) oy T axg Y Moxm  ox, LT 0%,
dx, 0Jx,

Further we will use these and analogous relations
(G o)+ )~ (-5 )( Jo -5l
J0x; %o d0x, % 6x0 0x; b )j¢ = dx, 0xg ¢
0 ol __ a[] ) aal 6a0}
{(6x1+a0)< ax—0+al> ( a—+a1 ox, T W)(P= 6x1 HF =
0 [l [l __ ( 0 ) _( 9dag 6a1}
{< a—xo”l)(a—z*%) (a——+ ) U e ol
ore)(crma) (5 (o ale =50+
{( +a1)< a%+a1) ( ax—0+“1 6x0+a1 Q= o, +6x_0 ®

9 a0 a0 @
(e ) &) ()

+

wra)fe= (G0 -5
ox, )= W\ox,) oS ?

(ﬂ+a_0 }(p={a—ﬁ+a—@}<p

of] (.o, \_(_o00

{(a—x_1+ao)<—7_0+a1)—( ax0+a1> 0x; 0x; 0%

a[ ] d d ar Ja. a.
<_(_a_%+a_1>(ag+a>+<ag+a_")<_a—;[c—]+a_1 >(p={a—z_i+a_z_z}<p

Let's solve the equation

(ST = K)S*W(xg, %1, %2, %3) = lell(xo.xpxz,xs)

Yo (X, X1, X2, X3) Yo (X, X1, X2, X3)
- Y1 (xg, X1, X3, X3) Y1 (xg, X1, X2, X3)
S~ —K)S* = M?
( ) Y2 (X0, X1, X2, X3) Yo (X0, X1, X2, X3)
Y3 (xg, X1, X3, X3) Y3 (xg, X1, X2, X3)
_ao + a1 0
- 0 — N
s-=[ O S0 (-0 + @), (@ + @) 00) +| _g 4 g, |(00.(-30+ ). 31 + @)
0 01+ aq
_az + a3 0
— N\ [, — 0 — N A —
+ % 0+ a; ((—a2 +@),(0; + @), 0,0) +| o, +a, (0,0(—62 +a3)(0; + az))
d; +a,

0
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-(0, + ) 0
— 0
S+ = (_600+ al)/ (_ (al + ao), (_60 + al)l 0,0) + —(6_1 + a_O) (0101 - (61 + a(])(]l (_60 + al))
0 (00 + @)
—(0; + @)
+[ (024 ) | (=85 + ay), (0, + a5),0,0)
0
0
0
0
+ _(6_3 + a—z) (0,0, _(63 + (12), (_62 + a3))
(-0, + @)
K=
9y — al)((?'() - a_1) - (6'0 - a_1)(30 -a;) (=0 + a1)(51 + a_o) - (51 + a_o)(_ao +a,) 0 0
_| @+ ao)(_aio + a_1) - (_6'0 + a_1)(a1 +a,) (0, + aO)((’i + a_o) - (‘i + a_o)(a1 +a,) 0 0
0 0 [p1P1 —P1p1]  [P1Po — Popil
0 0 [poP1 — P1Pol  [PoDo — Popol
0, - a3)(6'2 -az)— (0, - a_3)(62 —as) (=0, + a3)(6'3 +a;) —(0; + a_z)(_az + as3) 0 0
+ (95 +a2)(—6_2+a'3) - (_Z"'a'a)(as +az) (95 +a2)(6_3+a'2)— (6_3'*'“'2)(63 +ay) 0 0
0 0 [p:P5 — P3ps]  [p3Pz — D2ps]
0 0 [p:P5 — P3p2]  [p2P2 — Dap2]
da; Ja; da, da;
6x0 ax_o axO ax_l 0 0
Jda; da, da, OJa, 0 0
| 0x; 9x, 0x, 0xq
- da; da; Oa, O0a;
0 0 dx, 0Xx, 0x, 0xy
0 0 Jda; Jda, da, OJa,
dx; 0x, dx, O0x;
da; OJaz da, OJag
dx, 0Jx, dx, 0x3 0 o0
das + Ja, da, OJa, 0 0
0x3 0x, 0x3 0x3
4
da; OJdas Jda, Jda;
0 0 Ox, 0x;  0x; O0x3
0 0 da; OJa, da, OJa,

0x; 0x, 0x; 0x3
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—(0: + )
st =| (500 +@) ) (= @, + ao)o + (=00 + @)
0
0
0
0
T —(0; + @) (—=(01 + ap)p, + (—0p + a,)ps)
(=00 + @)
—(05 + @)
+| (502 + @) | (=05 + apwo + (=9, + as)p)
0
0
0
0
T —-(0; + @) (=05 + ax)y, + (=0, + as)ys)
(-0; +a@)

Since the second factor S* in the left-hand side of the equation has a simpler structure than the
first factor, perhaps as a first step we should find the eigenvalues and eigenfunctions of the equation

5+ll’(x0' X1, X2, x3) = lep(xO' X1, X2, x3)

and use them when solving the equation as a whole.

_60 + a1 0 \
— = 0 o
" ;)i- " ((—60 +@), (0 + %) 0‘0) T -a, + (0'0' (=0, + @), (3, + ao))
- = 0 61 + Ao
S S+l|, B _62 + a3 0
— = 0 o
+ 05 3‘ a, ((_62 + (13): (63 + az), 0,0) + —0, + as (0,0, (—02 + a3)(63 + az))
0 03 +a, J
_(6_1 +T0) %
- 3 o0 , ;
((—300-1- a1)> (— (6—15:3 + aolpo) + <_6_191:0 + a1lp1)> + <—(6_1 + a_0)> <— (619512 + aolpz) + (—alxz + a1¢3)>
0 (-0 + @)
~(%+ @) 0
2 3 " , ;
+ ((—020+ a3)> (— (aix: + azlpo) + <_6_131:2 + a3¢11)> + <_(a + a_2)> <— (6_15:32 + azlpz) + (—aixj + a3¢3)>
0 (-0, + @)
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_a(] + a1
d, +qg

)( (T + @)@+ @) + (@ +3) (- 60+a1))<— (Bt ap) + (52 +

_62 + a3

"’3*“2) (-0 + @)@+ @) + (B + @) (3 + @) (— (G + o)
s

| o a1> (~(-0+ @)@ + @) + (@0 + T)(-0 + @) <— (522 + ao)

61+a0

<_62 Y ) (-(-T+ @)@+ @) + (@ + @) (-9, + @) (— (522 + ao)
d; +a,
—0o + a4
< oo ) (T )+ @ T ) (- (G )

e ) (-2 + @) (@ + @) + (3 + @) (-0, + ) <— (ai+ cabo)

30+ ) (-0 + @) (3 + @) + (3, + @) (-7, + @) (— (a_wz+ azwz)

+

o a3> (-(-%+ @)@+ @) + (@ + @) (-7 + T)) <— (522 + aa)

d; +a,

()|
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—60 + a1

il 0;+a da;  dag 9o 0y,
SST= | 0 ’ (ax—1 * ax—0)< (ax1 °¢°> ( axg T 1¢1)>
_62 + a3 alp
Os + 2 ( 9, + aB)(al + ao) + (63 + az)( 9o + ‘11)) <_ (a_o + aoll’o)
+ + altpl

6a1 aao (61/)2 + a0¢2) (—ﬂ + a11/)3)>

<_ao +a1> %, 6x0 0 0
0, +ag

( 0, + a3)(al + ao) + (63 + az)( 0 + a1))< <Z_lf: + ao'l’z)

(
0o +a;
+< 0, J(; Qo >(—(—60+a_1)(63 +a;)+ (6_1+a_0)(—6_2+a_3)) <— (%+ azl,bo)
(

0
+ —a—f: + a3¢1)>
—0, + az 5 3 P)
N e R )
0
0
¥ (_60‘1 ) (-(-0+ @)@ + @) + (0 + @)(-2 + @) (- (e + o)
0, +ay
+ (_(;_lgl: + a3¢3)>
0
+ —6291- as (g_z_z +Z—Z_z)< <?’;£32 + azl,bz) (—a—l'b3 + a31/J3)> —
0; +a,

Let's calculate the expressions included in the equation
(~(-02 + @)@ + @) + (35 + @) (-0 + @) 0 = (35 + @) (~ 0o + @) — (=0, + %) (3 + @)
= (63 + az)( + a1<p) ( 62 + a3) ( + ag(p)

(47 dap ap 0p
=05 (_ £> +0;(a;p) + @ <‘W) +@Qa e + 0, (ax ) ( az)(“o‘ﬂ) - asﬁ — Q3009



https://doi.org/10.20944/preprints202401.1032.v4

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 July 2024 d0i:10.20944/preprints202401.1032.v4

33
—( 0@ Jday ago (6@) dp Jdag _0p _
= 0, ( Oxo) + o 6 + a0 + 0, o +ay— % +—= 0% (p as o azay¢
adp\ ——/0p da, Oda, ago _0p __0p _ 0@
=0, (axl) Os (ax—o) %3 T %, x5, ¢ o ox; a—0+ Yox; Cox

+ (aza; — azaq)¢

Let us consider the situation when the electromagnetic potential can be described by a plane

wave in spinor space

ao(xg, X1, X2, X3) Ugo Ugo
ay (%o, %1, X2, X3) Ug1 Ua1
a(xg, x4, x5, x3) = = = ex X1 — Pg1Xo + Pa2X3 — Pa3X
(X0, X1, X2, X3) ay (X, X1, Xz, X3) Ugz Pa Ugz P(PaoX1 — ParXo + PazX3 — PazX2)
a3(x01xllx2I‘x3) ua3 ua3
(o) o) G o))
——da)|lz—+a,)]—|zm—+a a
axg ) \ax, T92) T ox, T M)\ ox, TSP

0 0 a 0
= Tax 0% ? T ox o, +(‘a?‘a?ﬁ‘“Za—w%a‘%a—,@*%axz
+ (aia; — apaz)@

K a 0 dp dp

= —a—xoa—x;ﬂ +— 9%, 0%, — @ + (UgaPa1 — UazPa0)PaP — Ug2Pa 5— oxg u‘“(paa_xz

de de
+ Ua3Pa 7~ 6 + UgoPa 7~ 6 + (ualuaz uaoua3)(pa2(p

(G 00) (3 + 22) = (s + ) (5 0o = (5~ 5o =
9x, Qo %3 a; 9xs a 9x, Ao | P = 9x, 0% ® = (Ug2Pa0 — UaoPaz2)Pa®P

When the electromagnetic potential is represented by a plane wave, the field created by a
charged particle is not taken into account, so this model adequately describes only the situation when
the electromagnetic field is strong enough and the influence of the particle charge can be neglected.

It would be interesting in this context to consider for the presented spinor model the case of a
centrally symmetric electric field and to find solutions of the spinor wave equation for the hydrogen-
like atom, taking into account the presence of spin at the electron. For such a model we can take

1 1 1 .1

Ay = —l— a, =— a, =— a; = —l—
0 V2R 17 VzR 27 2R 3 V2R

2

2 2
1 1 1
R= \/(E (Xox; + X7x0 +X3x3 + x_3x2)> - <E (=Xox; + 10 — Xpx3 + x_3xz)) + <E (Foxo — %1%; + Xpx; — x_3x3)>

As mentioned above, we can substitute into the equation the already known exact solutions of
the Dirac equation for the hydrogen-like atom by expressing the components of the coordinate vector
and derivatives on them through the components of the coordinate spinor and derivatives on them.
It is likely that the solution of the Dirac equation would not make the spinor equation an identity; it
would be evidence that more arbitrary assumptions are made in the Dirac equation than in the spinor
equation, and that the latter claims to be a better description of nature.

We can also consider the case of a constant magnetic field directed along the z-axis

1 1
A0=O Alz__B3X2 A2 =_B3X1 A3=O

2 2

X = E(%xl + X1x0 + XX3 + X3X3)

1
X, = 3 (—ixgxy + iX1xg — iX3x3 + iX3x5)
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A = > (@ay + ara, + aza; + aza,)
1 N - o
A2 = E (_laoal + la;ag — laas + la3a2)
1 _ _ _ _
AO = E(aoao + a,aq + a,a, + a3a3)

Az = E(a_oao —aja; + aza; —asas)

Let's say
ay = iX1/B3/2 a; = —Xo/B3/2
a, = iX3/B3/2 az = —Xz/B3/2

A = ZBs(ixﬂC—o — iXoxy + iX3x; — iXpX3) = _§B3X2
1 _ _ _ 1
Az = ZB'_;;(xle + XoX1 + X3Xo + xeg) = EB'_;;X]_
1 _ _ _ _ 1
Ao = ZB3(JC1X1 + xOxo + X3X3 + xzxz) = §B3t

1
Az = 133(35195_1 — XoXo + X3X3 — X2X3) = §B3X3

We see that the scalar potential 4, grows with time, but does not depend on spatial coordinates,
and the vector potential does not depend on time, so that there is no electric field. In this case

oa, da; Oda; oa,;

dx, 0x, dx, 0x; 0 0
da; OJa, da, da, 0 o
K= dx, 0Jx, 0x, 0Ox;
Jda, OJday da, OJa
0 0 dx, 0x, dx, 0xy
0 0 da; Jda, da, OJa,
dx;  0Xx, 0x; 0x;
da; daz da, OJaz
Ox; 0x; Ox; 0x3 0 o0
6a_3+6a_2 aa_z_aa_z 0 o
dx; 0x, 0x; 0x3
+ =
da; OJdag Jda, Jdas
0 0 dx, 0Jx, 0x, 0x3
0 0 0w om  0m 0
dx; Jx, 0x; 0Jxs
B 1 0 0 0 1 0 0 0 1 0 0 0
_ 12310 =i O 0 0 —-i 0 0 _ 0 —-i 0 0
_’20010+B3/20010_V2330010
0 0 0 —i 0 0 0 —i 0 0 0 —i

The equation considered up to now is rather cumbersome, therefore we would like to have a
simpler and compact relativistic invariant equation for the fermion, taking into account the presence
of a half-integer spin. Such equation really exists, its derivation is given in section 4 of the paper. Here
we will give its form for the electron in the presence of the electromagnetic field

(SR + SR+ Sg+Sg —4(m+m))p(x) =0

where
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—(=0; +a3)
st = (__(Zz I Zig (31 + ap), — (=0 + ay), (85 + az), —(~0, + a3))
(01 + ao)
—(=0p + ay)
—(@
- (_(a; i Zgg ((63 + az); _(_02 + a3), (61 + ao), —(—00 + al))
(05 +ay)
(=dp +ay) T
+ ((_652++a£3) (03 + az), — (=0, + az), —(3; + ay), (=9, + ay))
(05 + ap)
(—0; + a3)
03 + a,
_ ((_ ;0++aa3) (0, + ag), — (=0 + a1), — (03 + az), (=0, + a3))
(0, + ap)
@ +ao) ’
—_ _a 1
SR = Ea3 ?I_-;za) )> (—(—62 + a3), —(63 + az), (_ao + al)! (81 + aO))
—(=0; + a3)
(05 + ay)
—(—d
i < Ea1 120%3) (—=(=00 + a1), —(01 + ao), (=0, + a3), (93 + az))
—(=0y + ay)
@ +a) o
+ ((6?2++a((13)> (=9 + a1), (81 + ap), (—0, + a3), (93 + a3))
(=00 +ay)
(01 + ao)
— _a 1
B —((630++a(z)) (=02 + a3), (03 + a2), (=0o + a1), (91 + o))
(=0, +a3)

In general case electric and magnetic fields are expressed through partial derivatives of
components of the vector potential by components of the space vector. We also can find the
expression through these fields for the derivatives of the spinor components of the electromagnetic
potential by the components of the coordinate spinor. To do this, we first find all derivatives

94, _ 04, 0X,

dx, 0X, 0x,
then express the components of the vector potential through the components of the spinor potential,
substitute the components of the electric and magnetic fields instead of the derivatives of the
components of the vector potential by the components of the coordinate vector, and then find the
required derivatives from the resulting system of linear equations.

From general considerations taking into account the substitutions

_en el
0 ax—l 1 ax—o
it is possible to write the commutation relations for the components of the momentum spinor and
functions from the components of the coordinate spinor

am_1[ _]_1 o
ox ¢ 9 Pol = (@Po ~Po@)
_ _ ox;
[x1, Dol = (x1D0 — Pox1) = Ca_x—1 =c

[xX1,p0] = (X1po — PoX1) = C

d0i:10.20944/preprints202401.1032.v4
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o] 1 . 1 _
o5 - awpl=—gep-po)
0%,
[x0, 1] = (xoP1 — P1X0) = —da—_o =—d
Xo

(%o, 1] = (op1 — p1 %) = —d
All other combinations commute with each other. The constant coefficients ¢ and d possibly
include a minus sign, an imaginary unit and some degree of the rationalized Planck’s constant. Their
values can be determined using known commutation relations for vector components, e.g.

X1P1_ P1X1=ih

and using expressions of vector components through spinor components

- =@ DEERE DE)-mmC HEmEnC HE)
- 0 () ()~ o5m () )

= (Xox1 + X1%0) (PoP1 + P1Po) — Pop1 + P1Po) (Kox1 + X1%0)
= XoX1DoP1 T XoX1P1Po T X1XoPoP1 T X1XoP1Po — PoP1X0X1 — PoP1X1Xo — P1PoX0X1
— P1PoX1Xo
= (Xox1PoP1 — PoP1XoX1) + (XoX1P1Po — P1PoXoX1) + (X1XoPoP1 — PoP1X1X0)
+ (X1xoP1P0 — P1PoX1%0)
XoX1PoP1 — PoP1%oX1 = Xo(PoXy + )p1 — Po(Xopy + d)x; = XoPox,p1 + €Xopy — PoXoP1X1 — dPoXs
= XoPoX1P1 — XoPoX1P1 + CXopy — dPoXy = cXopy — dPoXy
X1XoP1Po — P1PoX1Xo = X1(P1Xo — d)po — P1(X1Po — €)Xo = X1P1XoPo — dX1Po — P1X1PoXo + CP1%Xo
= X1P1%oPo — X1P1XoPo T CP1Xo — dX1py = CP1Xo — dX1Do
XoX1P1Po — P1PoXoX1 = XoP1X1Po — P1PoXoX1 = P1XoX1Po — P1PoXoX1 = P1XoPoX1 — P1PoXoX1
= D1PoXoX1 — P1PoXoX1 = 0
X1XoPoP1 — PoP1X1Xo = X1XoPoP1 — PoP1X1Xo = PoX1XoP1 — PoP1X1Xo = PoP1X1Xo — PoP1X1Xo = 0
X1Py — PiXy = (XoX1PoP1 — PoP1XoX1) + (X XoP1Po — PiPoXiXe) = CXop1 — dPoXy + CP1xo — dXipg
= C(Plx_o - ‘1) - &(xlm —c) + c(xop; + d) — d(poX; + ©)
= cp, X — cd — dx, Py + dc + Exop; + ¢d — dpyX; — dc
= cpsXo — dx,Po + CxoPy — dpoXy
Let's return to the relations
Py2 — P2 — P2 — P2 = mm = m?
P1D2 —Pob3 =Mm
P1D2 — Dop3 =M
(P1P2 — PoP3) (P1P2 — Pop3) = Mm = m?
In this form they are equivalent, but if an external field is added, a difference arises, since in one

case the field is added at the vector level and in the other at the spinor level
(Po —Ag)? = (P, — A1)? = (P, — A3)* — (P — A3)* =m?
(1 — a)) (P2 — az) — (o — o) (3 — a3))((P1 — A1) (P2 — @2) — (Po — Q) (P3 — @3)) = m?

These relations correspond to differential equations including the relativistic Schrodinger

equation
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02 02 0? 0?
<6X 2 OX 2 OX 2 6X 2)(»0(XO!X11X2'X3) = mz(p(XO:Xl:Xz:X3)
0 1 2 3
a o0 Jd d

(a_xla_xZ - a_xoa_x3) @ (x0, X1, X2, %3) = m @(xg, X1, X2, X3)

(a_Ea_E - 6_96_E> (P(xo, xl; x21 x3) = 771’ (p(xOJ xl: xZJ x3)

0x, 0x, 0x,0x3

a[1o[1 oa[]9[] a 0 Ja ad

(Frva a5y 7m) (3 ™ ) PR 20 =323

0% 0%; 0%, 0%;
For a free particle the eigenfunctions and eigenvalues solving these equations should coincide,
but in the presence of an external field the eigenvalues and the corresponding eigenfunctions will
differ because of the above mentioned difference in summation in one case of vector components and
in the other case of spinor components.
While the Dirac equation is sometimes referred to as extracting the square root of the Klein-
Gordon equation, here we see a different way of doing it.

Let us describe in more detail the square of the length of the momentum vector

4(PyPy — PPy — PP, — P3P3) == (Dopo + P1P1 + D2P2 + P3P3) PoPo + D101 +
P2P2 + P3p3) — (Pop1 + P1Po + D2P3 + P3p2) PoP1 + P1Po + P2ps + Pap2) + (—Pop1 + P1Po — P2p3 +
P3P2) (—PoP1 + P1Po — P2P3 + P3P2) — (PoPo — P1P1 + P2P2 — P3P3) (PoPo — P1P1 + D2P2 — P3P3)
(Popo + P1P1 + P2p2 + P3P3) (Pobo + P1P1 + D2P2 + P3P3)
— (Popo — P1p1 + D202 — P3P3) DoDo — D1P1 + P2P2 — P3P3)
= PoPo(P1P1 + P2P2 + P3P3) + P1p1(Pobo + P2P2 + P3p3) + P2p2(Pobo + P1P1 + P3Ps3)
+ P3p3(Popo + P1p1 + P2P2) — PoPo(—P1P1 + P2P2 — P3bs) + P1P1(PoPo + P22 — P3P3)
— D2P2(PoPo — P1P1 — P3P3) + P3ps(Pobo — P1P1 + D2P2)
= PoPo(P1P1 + P3p3) + P1P1(PoPo + P2P2) + P2b2(P1p1 + P3ps) + P3ps(PoPo + P2p2)
— DoPo(—P1P1 — P3p3) + P1P1(PoPo + P2P2) — P2P2(—P1P1 — P3Ps3)
+ P33 (PoPo + P2P2)
= PoPo(P1P1 + P3p3) + P1P1(PoPo + P2P2) + P2p2(P1p1 + P3ps) + Psps(PoPo + D2P2)
+ Pobo(P1P1 + P3P3) + P1P1(Pobo + P2p2) + D2P2(P1p1 + P3p3) + P3ps(Popo + P2p2)
—(Pop1 + D10 + P2P3 + D3P2) Pop1 + P1Po + D203 + P3P2)
+ (=PoP1 + P1Po — P2P3 + P3p2)(—PoP1 + P1Po — P2P3 + P3P2)
= —PoP1(P1Po + P2P3 + P3P2) — P1Po(PoP1 + P2Ps + P3P2) — D2P3(Pop1 + P1Po + P3P2)
— P3P2(Pop1 + P1Po + D203) — DoP1(P1Po — P2P3 + P3P2) + P1Po(—Dob1 — P2P3 + P3P2)
— P23 (=Dop1 + P1Po + P3pP2) + P32 (—Pop1 + P1Po — P2P3)
= —Pop1(P1Po + P3P2) — P1Po(Pop1 + P2P3) — P23 (P1Po + P3P2) — P3P2(Pop1 + P2P3)
— DoP1(P1Po + D3P2) + P1Po(—PoP1 — P2P3) — PzP3(+P1Po + P3P2)
+ D3p2(—Pop1 — P2P3)
4(PyPy — PyP; — P,P, — P3P3)
= Dopo(P1P1 + P3P3) + P11 (Dobo + D2p02) + D202 (P1P1 + P3P3) + P3ps(Popo + P2p2)
+ Pobo(P1P1 + P3P3) + P1p1(Pobo + P2P2) + D2P2(P1p1 + P3p3) + P3ps(Popo + P2p2)
— Pop1(P1Po + P3P2) — P1Po(Pop1 + P2P3) — D23 (P1Po + P3P2) — P3p2(Pop1 + P2p3)
— PoP1(P1Po + P3P2) + P1Po(—PoP1 — P2P3) — P2P3(P1Po + P3p2)
+ D3p2(—Pop1 — P2P3)
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To obtain this result, we did not have to make assumptions about commutability of the spinor
components among themselves. Accordingly, a similar expression takes place for the phase of a plane
wave in vector space

4(PoXo — P1Xy — PX; — P3X3)
= DoPo(X1X1 + X3x3) + D101 (XoXg + X3X3) + D202 (X1x1 + X3X3) + P33 (Xoxo + X3X3)
+ Popo(X1x1 + X3x3) + P11 (XoXo + X2x3) + D2p2 (51 X1 + X3x3) + D3p3(XoXo + X3x3)
— Pop1 (X1xg + X3x3) — P1Po(XoX1 + Xpx3) — D203 (X1Xo + X3X3) — P3p2 (Xoxy + Xpx3)
— Pop1 (X1xg + X3x3) + P1Po(—Xox1 — X3X3) — P23 (X1Xo + X3X2)
+ P3p2 (—Xox; — X3x3)
Further we assume that the components of the momentum spinor commute, which takes place
for a free particle, then we obtain
4(POPO_P1P1_P2P2_P3P3)
= PoPo(P1P1 + P3Ps) + P1P1(PoPo + P2P2) + P2P2(P1p1 + P3ps) + Psps(Popo + P2p2)
+ DoPo(P1P1 + P3P3) + P1P1(PoPo + P2p2) + P2P2 (P11 + P3p3) + Psps(Popo + P2p2)
— PoP1 (P10 + D3P2) — D1Po(PoP1 + P2P3) — D203 (P10 + D3p2) — D3p2(Pop1 + P2P3)
— DoP1(P1Po + P3P2) + P1Po(—PoP1 — P2P3) — P2zP3(P1Po + P3P2)
+ D3p2(—Pop1 — P2P3)
= 2Popo(P1P1 + P3P3) + 2P1p1 (Pobo + P2P2) + 2D2p2(P1p1 + P3p3)
+ 2p3p3(Popo + P2P2) — PoP1(P1Po + P3P2) — P1Po(Pop1 + P2P3) — P2p3(P1bo + P3p2)
— D3P2(Pop1 + P2P3) — PoP1(P1Po + P3P2) + P1Po(—PoP1 — P2P3) — P2P3(P1Po + P3P2)
+ P3p2(—Pop1 — D2P3)
= 2Popo(P1P1 + P3P3) + 2P1p1 (Pobo + D2P2) + 2D2p2(P1p1 + P3p3)
+ 233 (Bopo + P2P2) — 2pop1 (PiPo + D3p2) — 20203 (P1po + P3P2)
— 2pop1(P1Po + P3P2) — 2P2zp3(P1po + P3p2)
= 2Popo(P1p1 + P3P3) + 2P1p1(Pobo + P2P2) + 2D2p2(P1p1 + P3p3) + 2Psps(Popo + P2p2)
— 2pop1 (B1Po + P3P2) — 20203 (Pibo + D3p2) — 2Pop1 (P1Po + P3b2)
— 2p2p3(P1po + P3P2)
= 2Popo(P3P3) + 29101 (B2p2) + 20202 (B1p1) + 27303 Bopo) — 2pop1 (P3P2)
— 2P2p3(P1po) — 2Pop1(P3P2) — 2D2p3(P1po)
= 4popo(P3p3) + 4P1p1(P2P2) — 4Pop1(P3p2) — 4P2p3(P1Po)

On the other hand, we can write

mm = (p1p2 — PoP3)(P1P2 — PoP3) = D1P2P1P2 — P1P2PoPs — PoP3P1P2 + DoP3PoPs3

Thus, the results of calculations coincide.

Let us compare the phases of plane waves in vector and spinor spaces. Let us hypothesize that
the plane wave in spinor space has a more complicated form than it was supposed earlier in the
paper, namely, it contains an additional conjugate multiplier

exp (_i (Pox1 — D1Xg + D2X3 — D3X2) (PoX1 — P1Xo + P2X3 — P3x2))

On the one hand, this assumption does not cancel the reasoning given in the paper concerning
the equations and derivatives, since the derivatives on the components of the spatial spinor from the
first conjugate factor are equal to zero, and on the other hand, the phase of the wave in this form is
closer to the generally accepted phase of a plane wave in vector space.
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For the boson the momentum spinor has a special form

P" = (Po, P1,Po, P1)
Thus phases calculated by two methods do not coincide with each other, though both of them
are invariant under Lorentz transformations

(Pox1 — D1Xg + P2X3 — D3X2) (PoX1 — P1Xo + DXz — P3Xp) # PoXo — P Xy — P,X; — P3X5

However, if to impose restrictions also on the form of the coordinate spinor
T_
X" = (X0, X1, X0, X1)

then

(Pox1 — P1Xo + D2X3 — P3X2) (PoX1 — P1Xo + P2X3 — D3X2)
= po(x1 + x3)Po (1 + x3) + 01 (xg + x2)P1 (X0 + x2) — Do (X1 + x3)P1 (%0 + x7)
= p1(Xo + x2)Po(x1 + x3) = 4PoX1PoX + 4P1XoP1X0 — 4DoX1P1X0 — 4P1XoPoX1

4(POXO =P Xy — P X, — P3X3)
= 2PoPoX1X1 + 2P1P1XoXo + 2P2P2X1X1 + 2P3p3XoXo + 2PoPoX1X1 + 2P1P1X0X0
+ 2PapaX1 X1 + 2P3p3XoXo — 2PoP1X1%0 — 2P1PoXoX1 — 2D2P3X1X0 — 2P3P2X0X1
— 2PoP1X1Xg — 2P1PoXoX1 — 2D2P3X1Xo — 2D3P2X0X1
= 4popoX1x1 + 4P1P1XoXo + 4DoPoX1X1 + 4P1P1X0Xo — 4DoP1X1X0 — 4P1P0X0X1
— 4Pop1X1Xg — 4P1PoXoX1
= 4PopoX1x1 + 4P1P1XoXo + 4PoPoX1X1 t 4P1P1XoXo — 4PoP1X1X0 — 4P1P0X0X1

— 4Pop1X1xg — 4P1PoXoX1 = 8PoPoX1X1 + 8P1P1XX08 — 8Pop1 X1 X9 — 8D1PoXoX1

That is, there is an equality

(Pox1 — P1%Xo + P2X3 — P3x2) (PoX1 — P1Xo + PaXz — P3xz) = 2(PoXo — PoXy — P2X; — P3X3)

The form of the coordinate spinor defined in this way leads to the zero length of the coordinate
vector, but the boson is characterized by this property. That is, it turns out that the requirement of
coincidence of two definitions of the phase allows revealing the form of the coordinate spinor of the
particle.

If a fermion is at rest in some coordinate system, then all components of its momentum vector,
except the zero component, i.e., energy, are zero. Therefore, the phase of the corresponding plane
wave in vector space depends on time but does not depend on spatial coordinates. It turns out that
oscillations in time occur synchronously throughout space, and there is no wave propagation in the
usual sense. On the contrary, the phase of the wave in spinor space depends on the spatial coordinates
in such a situation. In addition, two fermions with different spins correspond to the same momentum
vector, so the phases of the corresponding waves do not differ. But the phases of the wave in spinor
space for fermions with different spins are different even when they are stationary.

If we accept the proposed hypothesis, then we need to change the equation for which the plane

wave is an eigenfunction

Jd 0 0 0 )
(a_xla_xz - a_xoa_x3> exp (_l (Pox1 — P1Xo + D2X3 — P3X2) (PoX1 — P1Xo + P2X3 — P3x2)) =

= —(p1p2

—pop3) fF(X)f (X) exp (_i (Pox1 — P1Xo + D2X3 — P3X2) (PoX1 — P1Xo + P2X3 — p3x2))

where

f(X) = (Pox1 — P1Xo + P2X3 — P3X2)
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As a result, we have the equation

<a 9 0 6)exp(—imf(x))=—mf(x)f(x)exp(_imf(x))

0x; 0x, 0% 0x3
Although the complex multiplier in front of the exponent in the right-hand side does not change

with rotations and boosts, it now depends on the coordinates.
Let's consider the equation
( 0 0 a0 0
0x; 0x, 0xy0x3

)00 = ~mFE7 P

then the function corresponding to the free particle
exp (_i (Pox1 — P1%Xo + P2X3 — P3X2) (PoXs — P1Xo + PaX3 — p3x2))
fEOf(x)

p(x) =
is its solution with

m = Pp1P2 — PoP3
This equation can be ascribed a universal character and its solutions can be sought at different
possible values of m for real physical conditions, for example, in the presence of an electromagnetic
field. Note that the function with imaginary unit under the exponent

exp (~if COF ()
fGOF GO

tends to zero at removal from the origin, i.e. the wave function of the plane wave is localized in space.

It was an expression for the amplitude of probability; the probability itself has the form

exp (—if GOf ) (exp (—if (0 1
FOOf®) fOFG0 | FOOFGO fFOOf )

This quantity will not be infinite even at zero coordinates, since the coordinate components enter
the denominator only as a product with the momentum components, and such a product cannot be
zero, since this is forbidden by commutation relations and the uncertainty relation.

The photon has a mass equal to zero, so the right side of the equation is also zero, and it does
not have a multiplier in the denominator in the solution, so the photon is not localized in space.

4. Path Integral and Second Quantization in Spinor Coordinate Space

Based on the above, we can modify the theory of the integral over trajectories. We will consider
it in the notations in which it is presented in [10]. For a free scalar field with sources J(X) the trajectory
integral has the form

20) = [ o) exps (o) = [ Do) exp (i [ *x(L(o(0) + /X0 0D)

= fD(p(X) exp <ifd4X{%<(§—;:0) —<:—;(p1) — (;—)Z) - (:—;{03) —mz(P(X)2>
+](X)(P(X)}>

It includes the action of
S = [ dX{L@00) + X}

and the Lagrangian density for the free field

cto0=3((0) - () - () - (o) o)
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For convenience and clarity, the following notations are introduced
(09)* = 0,00"¢p = 0" 9,00, = (099)* = (0:9)* = (3,9)* — (35)*

do 2 do 2 do z do 2
-(ox) -Gx) -Gr) -Gx)
_ 0

For the general case the Lagrangian density has the form
1 2
L(p®0) =5 (99X)" = V(0 ()

where V((p(X))—polynomial over the field ¢(X).
Substituting the Lagrangian into the Euler equation
5 3L _oC_
“5(0up) b9
the field equation of motion is obtained.

The free field theory is developed for a special kind of polynomial

V(p(0) = %m%pz

1
L(p) = 5109)* —m?*¢?]
6L _18(09)° _ 18[000)* — (019)* = @:9)* = (0s9)*] _ , 18(0,0)° _
5@u0)  260,0) 2 5@ F280.0)
oL 1 ,ée*|
5o 2| " S| T T

In summary, Euler's equation defines the equation of motion
00 (0p) — 05(0gp) — 0o (dpp) — 09 (Bgp) + m?p =0
e — 0t —03p —03p + mPp =0
0*p =05 — 0fp — 059 — 03¢
2 +m?p =0
@?+mPHep =0
The notations used here are
0*p =05 — 09 — 03 — 03¢
0% = 02 — 0% — 92 — 9%

Thus, there is a correspondence of the Lagrangian and the equation of motion for the free field

1 2 2 2 2
£(p) = 7 [(800 )" = (3:0(0)" = (0:0(X))" ~ (359(X))” — m2p(X)?|

1
Lp) =5 [(09)? — m?¢p?]

N| -

L(@) =5 [(0o9)* — (0:0)* — (0,0)? — (039)? — m?¢p?]

35p(X) — 07 p(X) — 079p(X) — 03p(X) + m?@(X) = 0
Our proposal is to replace the Lagrangian in vector coordinate space by the Lagrangian in spinor
coordinate space. For this purpose we use the equation of motion in spinor coordinate space and we
want to find the Lagrangian for which the Euler equation defines this equation of motion
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(66 d 0

ox, 9%, 6_x06_x3) p(x) +mep(x) =0

(0,10, — 0903)9(x) + mep(x) = 0
P 6 6L _
#6(0up(x)  Sp(x)
For the sake of clarity, we use the same notation for the spinor coordinate derivative as for the
vector coordinate derivative; the context allows us to distinguish between them
d

0x,

Oy

Let us write the Lagrangian plus sources in the form

1
£(p®) = 5[0:9(x)0,0(x) — 99 ()30 ()] = V(p(x)) +jX)pX)

And let's substitute the Lagrangian into the Euler equation
9 5L +a 5L +a 8L +a 8L 6L
°8(0y)  18(3)  78(d) U 8(3s) S

=0

1 oL
> [_60(63‘P(X)) + 01(0,90(x)) + 0,(0;9(x))— 63(60g0(x))] - % =0

For the case of a free field the derivative operators commute, so we can write

é
00,000 ~ 0u050(0) — (3) =0

0o 0 0o 0
(a—xlaxz Jdx, 6x3) o) = (_) =0
(ia 0 6) ()_(cW((p))_O
0x4 0x, 6x0 J0x; 0]
It is pleasant that the Euler equation in invariant form works also in this situation, so that we
obtain the desired form of the equation of motion in the spinor coordinate space. It is important that

the proposed Lagrangian has a relativistically invariant form, even in the general case, and not only
at commuting derivatives. The polynomial has the form

1 A
V(9) = me()? + 5 000° + 9" +

In the case of a free field we restrict ourselves to the first term of the polynomial

1
Vip) = 5 me(x)?

Then the Lagrangian density and the equation of motion for the scalar field in spinor coordinate
space have the form

1
£(<p(X))— [0:0(x)020(x) = 0o ()30 (x)] — 5 M%)

1
E(alaz + 0,01 — 0903 — 03095)p(X) + me(x) =0

For a free field when the derivative operators commute, we obtain
(010, = 0503)9(x) + mp(x) = 0
In the spinor equation of motion there is a plus sign before the mass, although in the rest of the
paper there was a minus sign. To return to the minus sign it is enough to put a plus sign in front of
the polynomial V(¢) in the Lagrangian.
Now we have to find the integral over the trajectories, which, along with the Lagrangian,
includes the sources

d0i:10.20944/preprints202401.1032.v4
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2G) = [ o) exp (i [ a*22(p0) + 79 (0))
= [ D009 exp (i [ a'x{ 510,000,050 — 200200 - 3mp(0?

+j@e))

The components of spinors are complex, and we have already noted that the derivatives on
complex variables are applied to the degree functions, which, most likely, can describe physical fields,
respectively, and at integration the finding of a first-form for the degree function of a complex
variable can be treated similarly, i.e. as a first-form from the degree function.

It is possible to recover Planck's constant, which provides a transition to the classical limit
[
2G) = [ Po@ exp (5 [ d*x2(000)

One of the steps in computing the integral over trajectories in [10] is to find the free propagator
from Eq.
—(@*+mHDX-Y)=56X-Y)
the solution of which has the form
d4P e IPX-Y)
2m)* P2 —m? +ie

Dm—n=f
herewith
ar .
—V) = iP(X-Y)
5(X-Y) f(zﬂ)4e

In our case, we want to find

2() = [ Do) exp (i [ 44{ 510030000 - 9 (050 (] - mP + /)

After integration by parts by analogy with [10], Chapter 1.3] we obtain for the special case of a free
field

1
2G) = [ Do) exp (i [ d*x{- 50091@:0, = 2005) + mlpx) + /P (0})
In the process of calculation, it is necessary to find the solution of the equation

—(0,0; = 090; + m)D(x —y) = 6(x —y)

For this purpose, we pass to the momentum space by means of the integral transformation

d4p i(pox1—DP1Xo+D2X3—D3X2)
(P(X)=IW¢([))€ PoX1—P1X0+P2X3-P3%X2

The assumed propagator has the form
d*p  ePo(x1=¥1)=P1(X0~Y0)+P2(X3-Y3)~P3(X2~¥2))

(2m)* (P1p2 — Pop3) —m + i

which is verified by substitution into Eq. Here it is assumed that the representation of the delta

D(x—y)=

function

4
S(x—y) = f (6211_54 elPo(x1=y1)—P1(X0—Y0)+P2(¥3-¥3)—P3(X2~¥2))
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One can see the difference between the propagators, since in one case m? is real and positive,
while in spinor space m is complex in general.
We can use the relation
1 _ (12 — pops) + _ (12 — pops) +
(P1p2 = Pop3) =M ((p1p; — Pop3) + M )((P1p2 —pops) —m ) P2 —m? + (M —m)(p1p; — PoP3)

_ (p1p2 —pops) + M
- P2 — 2

where
P? = p? — P? — P? — P?

in which it is taken into account that the fermion mass is real. Now the propagator has the form

4 o — o) 4

D(x) = J- d°p_(p1p2 — Pobs) + 1 el (Pox1—P1Xo+P2X3-P3%X2)
2m)*  P?2—-m?+ie

The derivatives of the scalar field on spinor coordinates can be expressed through the derivatives

on vector coordinates
dp(x) _ 09p(X(x))

Dop(x) = d0x, 0xg
B a(p(X(x)) 0X,(x) 4 a(p(X(x)) 0X,(x) 4 a(p(X(x)) 0X,(x) 4 a(p(X(x)) 0X5(x)
TaX, dx, X, dx, X, dx, 0X; dx,

dp %, 0% 0¢ix; 09 %y
99 X% 99 % 9P, 99 %
X, 2 90X, 2 09X, 2 0X5 2

dp Xy OpX; O¢ixy 09X

Bpp(X) = -t o o

X, 2  0X, 2 90X, 2 0Xs 2

P ()_0<px_1 dp Xy 0 ix, 0¢ X;
1P =5x,2 Tox, 2 T ox, 29X 2

09X, 0pX3 O¢ixs O0¢X;
00 =52 Y ax, 2 Tax, 2 Tax, 2

dp x5 OdpXx; Opix; 09 X3
0X) =t e ————
Xy 2  0X, 2 0X, 2 0X3 2

If in the right part to represent the wave function as a plane wave in vector space
@(X) = exp(PoXo — P1X1 — PX; — P3X3)

then in the left part it should be represented as a plane wave of a special form in spinor space

p(x) = exp ((P0x1 — D1Xg + D2X3 — P3X2) (PoX1 — P1Xo + PaX3 — Psxz))

Only in this case the left and right parts will be dimensionally consistent, e.g.
010(x) = (PoX1 — P1%o + P2X3 — P3X2)Po

0p X _ , Xo
X, 2 %2
In any case, a complete coincidence will not be obtained due to the mismatch of dimensionless

1 _ _ _ N
=2 (Popo + P1p1 + D2p2 + D3P3)%

exponents of the exponents

(Pox1 — P1Xo + P2X3 — P3X2) (PoX1 — P1Xo + P2X3 — P3X2) # PoXo — P1Xy — P,X; — P3 X3
Since we call the field under consideration a scalar field, we expect its value to be invariant to
Lorentz transformations. But how to formalize this statement and to what exactly does this
transformation apply? We propose to consider that the value of a scalar field is the scalar product of
the representatives of a spinor field, which is the most fundamental field in nature, and vectors,
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tensors and, among others, scalars are formed from the spinors representing it. The scalar product is
defined by means of the metric tensor of the spinor space. From any two spinors we can obtain a
scalar, in general the complex case. But if we want to obtain a scalar with real values, we must impose
some restrictions on the original spinors. For example, to any spinor u we can correspond a scalar U
taking real values, whose value does not change under the action of the Lorentz transformation on
the spinor and the action of the same transformation on the conjugate spinor

U= —i(ug* U —uy *Ug + Uy * Uz — Uz * Uy)
When a spinor and its conjugate spinor are simultaneously rotated or boosted by some angle,
the scalar undergoes a rotation or boost by zero angle.
We can find the derivatives of the scalar by the components of the coordinate spinor

WX [(ux)\ au(x)
3%, =< Tx ) 52u+u(x)T52( o )

" "

The components of the coordinate spinor are complex quantities, the derivative on them is taken
virtually formally, since physical fields can be represented by power functions of the components of
the coordinate spinor and its conjugate.

What advantages does the transition from the integral over trajectories in vector space to the
integral over trajectories in spinor space provide? A possible answer is that it may be easier to
compute this integral, or the integration may not lead to divergences. If the spinor coordinate space
is indeed more fundamental, and the vector coordinate space is an offspring of it, then we may benefit
from this transition in any case.

Now let us move from the scalar field to the field of an electron, that is, the field of a particle
with half-integer spin. We will use gamma matrices in the Weyl basis

00 1 0 00 0 1
v_[0 0 0 1 v_[ 00 10
Yo=11 0 0 o n 0 -1 0 0
010 0 -1 0 00
00 0 —i 00 1 0
v_[0 0 i 0 v_[0 0 0 -1
& 0 i 0 0 Y3 -1 0 0 0
i 0 0 0 0 1 0 0

Let us consider the linear combination of these matrices with components of the momentum
vector as coefficients, substituting the expressions of the vector components through the components
of the momentum spinor

YoPo+v{Pi+viP, +y3Ps

0 0 1 0 0 0 0 1 0 0 0 —i
0 0 0 1 0 0 1 0 0 0 i O
“l1 00 of/ffotlo -1 0 0/t 0 ¢ o o])P
01 0 0 -1 0 0 O —i 0 0 O
0 01 o0 0 0 Pot Py P —iP;
(0 0 0 -1}, _ 0 o Py +iP,  Py—Ps
“1 00 o0 Po—P,  —P +iP, 0 0
0 10 0 —P,—iP,  Py+Ps 0 0
0 0 DPoPo +D2P2  —PoP1 — P2P3
_ 0 0 —P1Do — P3P2 pip1 + D3p3
P1iP1 +D3Ps  PoP1 + D2P3 0 o0
P1Po + D3Pz DPoPo + D2P: 0 o0
0 0 PoPo —PoP1 0 0 25 —D2Ps3
0 0 —P1Po P1P1 n 0 0 —P3P: P3ps3
Pib1 PoP1 0 0 P3bs  D2Ds3 0 0

P1iPo  Dobo 0 0 P3Pz D2P2 0 0
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0 0 PoPo —Pob1
0 0 —P1Po P1b1
P1P1 — [P1P1 — PPl P1Po — [P1Po — Popil 0 0
PoP1 — [PoP1 — P1Po] PoPo — [PoPo — Popol 0 0 . .
0 0 P22 —D2P3
0 0 —P3p2 P3D3
PsPs — [psPs —Pspsl P3Pz — [psPz — P2psl 0 0
P2P3 — [P2P3s — D3Pzl p2P2 — [P2P2 — P2p2] 0 0
0 0 Pobo —PoP1 0 0 D2D2 —P2D3
_ 0o 0 —P1Po P1b1 n o o —P3p2 P3p3
PiP1 P1Po 0 0 Psbs  P3D2 0 0
PoP1  PoPo 0 0 pP2D3 D202 0o o0

0 0 0 0
0 0 0 0

[p1P1 — P1pi] [p1Do —Por1] © 0

[poP1 — P1Po] [PoPo — Poprel 0 0
0 0 0 0
0 0 0 o0

[psPs —ps]  [psPr—Paps] 0 0 | =5 @K@

[p2p3 — D3P-] [p2D2z — P2p2] O 0

Let us represent the matrix SV(p) as a sum of direct products of spinors

0 2 0 a
Sv(p) = p(i (ﬂ' %' 0'0) + _gl (0'0' Do, _pl) + p(; (ﬁ, E’ 0'0) + _53 (0,0, D2, _p3)
Po 0 D2 0

For a free field the components of the momentum spinor commute, therefore
YoPo+ v/ P+ vy P, +yiPs =SV (p)
Complex mass
m = P1P2 — PoD3
does not change at rotations and boosts for an arbitrary complex spinor. Moreover, by a direct check
it is possible to check that for an arbitrary spinor
SV(p)SV(p) = mml = m?I

For a free field, when all components of the momentum spinor commute, we can write the

relativistic equation of motion of the fermionic field

SVSV(x) = mml@(x)
Where the matrix of derivatives SV is obtained from the matrix SV(p) by substitutions
p1 = —0o pPo— 01 p3——0, pz > 03

Poh W8 mof P

— dp(x)
0,9p(X) = ——
® 0%,
0 A 0 05
sV — _go (—9,,0;,0,0) + %o (0,0,04,0,) + _gz (-9,,05,00) + %z (0,0,05,9,)
al 0 63 0

However, it is generally accepted to write for this field another equation, the Dirac equation,
which does not possess the invariance property anymore

(" —=mhe(x) =0
And for the more general case, when the momentum components do not commute, we need to

write the equation

SV —K"—-mDex) =0
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0 0 0 0 0 0 0 0
KV () — 0 0 0 0 0 0 0 0
P)=\ [ppr—pipl  [pPo—DPopl 0 0 [psPs —Psps]  [psPz—Paps] 0 0
[PoP1 — P1Po] [PoPo — Dopro]l O 0 [p2P3 — P3p2] [p2p; —D2p2] O 0
0 0 0 0
v o 0 0 o 0 0
kK" = [6060 - 6060] [_6061 + alao] 0 o0
[_616_0 + 6_001] [616_1 - 6_161] 0 0

0 0
+ [azaz - 6262] [_6263 +_6362]
[—030, + 9,05] [0505 — 0505]

© O oo
OO oo

Further we will consider the equation of motion for a free field
(8" —mhex) =0

We again want to find the integral over trajectories
2G) = [ Pp@) exp (i [ dx2(p00) + 709 ))

for which we need the Lagrangian, from which the Euler equation is derived equation of motion
(8" =mDe(x) =0

It is suggested to use the Lagrangian
1 1
L=50X"S"ex) —sme) ex)

Let us substitute the Lagrangian into the Euler equation and obtain the equation of motion

6L 6L 6L 6L 6L

0 +0 +0 +0 -—=0
°8(d0) 169 ?8(0)  6(0) b

25000 + mp(x) = 0

Since the Lagrangian includes, along with the derivatives of 9,, the derivatives of d,, itis logical
to use a different definition of Euler's equation
do L NP L LR WL nL R Ly ol .
800 °8(@) 6@ 8@ ‘8@) (8@ 60 580 b¢
Then for the free field case when the derivative operators commute with each other, we obtain
the equation of motion

SY@x) + me(x) =0

If the derivative operators do not commute, additional terms will appear in the equation of
motion in the form of matrices similar to the KY matrix, and these additional terms will not
necessarily coincide with K". In this connection it is necessary to consider the Lagrangian as more
fundamental notion than the equation of motion and to derive the equation of motion from the
Lagrangian, i.e. to take as a basis not the derivation of the equation of motion in momentum space,
with what we started, but to take as an axiom the form of the Lagrangian in the form of field
derivatives in the relativistically invariant form. Then, if to follow the invariance principle quite
strictly, we should start from the product of two matrices, i.e. to use the Lagrangian

L= %[q:(x)TSVSch(x) —m*@(0) @]

Or, not limited to fermions,
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£ =2 [9(0"S"S" 9(x) ~ mmp()T @()

Nevertheless, further we will search for the integral over trajectories in the simplest case with
the originally proposed Lagrangian and in addition assume commutativity of all derivative operators

1 1
2) = [ Po@ exp (i [ a2 {5060757 000 - Mo @G0 + i 0G0}
After integration by parts, we presumably obtain
1
2G) = [ Pp@) exp (i [ d*x{- 5 0(7Is" + mile®) +j(9e00})

Then it is necessary to find the solution of the equation
=SV + mDHD(x) = I5(X)

For this purpose, we pass to the momentum space by means of the integral transformation

d4p i(pox1—DP1Xo+P2X3—D3X2)
(p(x)zf(2n)4 @(p)etPoX1—P1XotP2X3~P3X;

We get the equation
(8"(p) —mND"(p) =1
with the decision
SV(p) + mI
V = —-—
D" (p) P2 —mm
Indeed

(") —mN(S"(p) + mI) _ (P? —mm)I —

P2 —mm P2 —mm
Here we use the equality, which is valid for an arbitrary complex spinor p

(8V(p) —mN)(SY(p) + ml) = P?I — (m —m)S" (p) — mml = (P? —m?)I

1
F=5p'Sup
P? = p? — P? — P? — P2
It is based on the correlation verified earlier in our work
(P1p2 — Pop3) P1Pz — PoPs) = P¢ — P{ — P7 — P
it is also taken into account that we consider fermions whose mass is real.
As a result, the propagator has the form

d*p SV(p) +ml

— pl(Pox1-P1X0+P2X3-P3%2)
(2m)* P?Z—mm

D'(x) =

here we assume the validity of the relation

§(x) = f d*p el(Pox1—P1X0+P2X3-P3X2)
~ ) ent

In the case of a fermion, the mass in integration is a fixed real quantity, and it can be considered

negative for the electron and positive for the positron. Theoretically, the mass can be complex or

purely imaginary. If we put mass equal to zero, it may be possible to apply this Lagrangian to describe

massless particles. I wonder if there are particles with complex or purely imaginary mass. In the latter
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case, the square of the mass will still be positive and the particle will satisfy the Klein-Gordon
equation. Such particles can interact among themselves, but not with particles whose mass is real.

Let's return to the question about the use of completely relativistically invariant Lagrangian
1
L=2le0"s"S"@x) — m*e(x)" ()]

Let's find the product of matrices

S¥(p)S¥(p) =
0 m 0 a
0| (71,76,0,0) +{ P |(0,0,p0,~p) + | > | @552,00) +| P2 | (0,0,p,,—p3)
pl 1 FOY 0 AN )] 1 p3 32M2,Y 0 Wy M2 3
Do 0 D2 0
0 Do 0 P2
0 ) 50 55,0,0) + | P ]0,0,p0,—p) + | .2 | @5.5,00) + [ 72 | (0,0,p, —ps) | =
pl lePOJ ) 0 ) 'pOJ pl p3 p3vp2v ’ 0 ) 'pZJ p3
Po 0 D2 0
0 Po_
(P1P2 — DoP3) p‘1>(0,0,p2,—p3)+(vop3—plpz) —(1)91 (P5,92,0,0) +
Po 0
0 a
(P3P0 — P2p1) p2>(0,0,po.—p1)+(pzpl—pspo) _5)3 (P1,0,0,0) =
P2 0
0 m 0 2
il pr | 00,02 -p) —m| P | 75,52,000 = | ) | 00,p0,—p) +m| P | 175,000 =
Do 0 D2 0
0 a 0 a
m| 2 )00,p,-ps) —| P | #5700 — (2 ]©0,0,p0,—p) +| “P* | @1, 50,00
pl W P2 3 0 3yM2,Y p3 W POy 1 0 1 rOY
Po 0 D2 0
=mS"V (p)
The assumption that the following equalities hold is used
D1P2 — PoP3 = P2P1 — P3P =M
P1D2 — PoD3 = D2P1 —DP3Do =M
m=m
Further we find the product of matrices
SV (p)S*' (p) =
0 7 0 a
010,00, —p3) = | P |@5.72,00) — [ .2 | 0.0,p5,—p) +| P* | (1,75,0,0)
pl WU, P2, —P3 0 P3, P2, Y, ps U, Do, —P1 0 P1,Po, Y,
Do 0 D2 0
0 p—o_ 0 2
010,00, -p3) = | ' |@5.72,00) [ .2 | 0.0,p5,—p) +| P3| (1,75,0,0)
pl I P2, 3 0 3 P2,Y, p3 Y Yoy 1 0 1P Y
Do 0 D2 0
0 Po

0 SR —
= (P2P1=P3po) | p, | (0,0,p2, —p3) + (P3P0 — P2P1) 5’1 (P5,72,0,0)

Do 0
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o a
+(Pops — P1P2) P(; (0,0, po, —p1) + (P2P1 — P3Po) _(1)73 (P1, Do, 0,0)
D2
0
=m P(l (0,0,pz,—p3) — (0,0, po, —P1)

K )(Pl:Po:O 0) —( P | @5.72,00)
0
0 0 0 0 0 0 0 0
- m 0 0 0 0 ({0 O 0 0
0 0 DPib2 —DP1Ps3 0 0 P3sbo —P3b1
0 0 Pobz —PoP3 0 0 P2Po —P2P1
P21 D2b0 0 O PoPs DPob2 0 O
+md| TP3b1 —P3sbo 0 O —PiPz —PiP2 0 O
00 0 0 0 0 0 0
0 0 0 0 00 0 0
0 0 00 D2P1 — DoP3 0 0 0
=m 0 0 00 0 —P3PotpPiP2 0 O
0 0 pP1P2 — P3P0 0 0 0 0
0 0 0 —PoP3 +pzp1 0 0 0 0
0 0 0
_ 0 mm 0 0
0 0 mm 0
0 0 0 mm
Again we use the equality
(p1p2 — Pops) P1Pz — Pob3) = P§ — P{ — P} — P§ = P?
and consider that the mass of the fermion is real, i.e.
P1P2 — PoP3 = P1D2 — DPoD3
(P12 — PoP3) (P1P2 — Pob3) = (P1Pz — Do) (P1Pz — Pobs) = P?
therefore, the relations are valid
PZ 0 0 0
v v _[ 0 P2 0 0 |_p
ST@ST® = o p2 o |TPY
0 0 0 P?
S () —mN) (S (p) + ml) = P2l —m?I = (P —m?)I
(8" (p) —mI)(S" (p) + ml)
P2 —_ mZ =
But the main advantage of the obtained matrix is the following
0 Po 0 P2
0 D1 | — 0 D3 | —
SY®) = p | 00,0 -p) —| I | #522,00) ~ | ) | ©.0,p0,—p0) +| T | B1.76,0,0) =
Po 0 D2 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 Pib2 p1D3 0 0 P3P0 —P3P1
0 0 Pob2 —DPoP3 0 0 P2bo —P2P1
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P21 DP2b0 0 O Pobs Dobz 0 O
4| 7PsPL PP 0 0 —piPs —Pip2 0 O
0 0 0 0 0 0 0 0
0 0 0 0 0 0 00
0 0 0 ) (Eﬁ—m 0 0 0
_[o o 0 0 —PsPo+PiP2 0 0
0 0 pipP2—P3Do 0 0 0 0
0 0 0 _P0p3+P2P1 0 0 0 0
m 0 0 0
_[0 m 0 0
00 m 0
00 0 m

This matrix does not change at rotations and boosts, so it can be stated that the equation of

motion, e.g., in the form of

m 0 0 0
w_[0 m 0 0 _
S 00 m o)]|e®=0
00 0 m
where
0 9, 0 03
SV — _go (0,0,03,0,) — %o (—9,,03,0,0) — _gz (0,0,04,0,) + %2 (—9,,01,0,0)
61 0 63 0

is truly relativistically invariant, respectively we can use the invariant Lagrangian

£=21060"S" 900 ~ mp()T @ (0]

to which corresponds the relativistically invariant propagator of the boson having a real mass, which
is negative for the electron and positive for the positron

d*p SVV(p) +ml
2m)* P?2—-m?

Let us compare the propagator in spinor space with the propagator of the fermion given in [10],

formula I1.2.22 and formula I1.5.18]

‘P e X d*P y*B, +ml
(2m)* y#B, —ml - (2m)* P2—m? ¢

In [10] this formula is obtained by applying the second quantization procedure or using

el(Pox1—P1Xo+P2X3—P3X2)

DVV (X) —

—iPX

SX) =

Grassmann integrals. The results are similar, but the integration here is performed in the vector
momentum space. The Dirac equation and the corresponding Lagrangian are not relativistically
invariant. Besides, here the mass is considered always real and positive, but then it is not clear how
electron and positron differ from the point of view of this formula.
Let us consider in detail the derivation of the expression for the fermion propagator in [10], Sec.

I1.2. It is based on the assumption of relativistic invariance of the Dirac equation and therefore the
calculations are carried out in the rest frame, and then the result is extended to an arbitrary frame of
reference. Thus for the field spinor u the spinor u_= u'y? is defined and it is asserted that the value
of
0
0

0

0 0
1 0
0 1

SO -

utyu = utf u

00 0 -1
is a Lorentz scalar. But it is not so, since in the spinor space the scalar is formed exclusively by the
scalar product of two spinors, where the metric tensor of the spinor space is included
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there are no other ways to construct a scalar in the spinor space.

Nevertheless, this fact and the fact of non-invariance of the Dirac equation itself do not cancel
the value of the second quantization procedure and the final form of the fermion propagator, which
allows to make accurate predictions of the experimental results.

We hope that the proposed Lagrangian for the spinor coordinate space can find application in
the calculation of the integral over trajectories, but already in the spinor space. Whether such a
calculation in spinor space has an advantage over the calculation of the integral over trajectories in
vector space can be shown by their real comparison.

By analogy with the propagator of a photon, more precisely of a massive vector meson, given in
[10], formula I.5.3
d*p —Nya + PVP,l/mZ
(2m)* P2 —m?
we can assume the propagator form in the spinor space without revealing for compactness the
expression of the momentum vector components through the momentum spinor components

eiPX

Dy X) =

d4p —Nya + PVPA/mZ
(2m)* PZ —mm

el (PoxX1—P1Xo+P2X3-P3X2)

D, (x) =

Among other things, the equation

m 0 0 0
(8 208 ) Jow-o
00 0 m

can be modified to take into account the electromagnetic potential, the electron charge is taken as a

unit

Do = 01 +ag p1— —0p+a; p; = 03+ a, p3 = —0; +as
Po—=0i+d Pi>—0+@ P00t % P30 —0,+T
0 3+

gV — _ao(lal (0,0,05 + a,, 0, —az) — a_0561_1 (—6_2+a_3,6_3+a_2,0,0)
d; +qay 0

0 %+ 7
= _azg_% (0,0,0; + ag,dy — a;) + 6_2561_3 (=3, + @y, 9, +@,0,0)
d; +a, 0

and apply, in particular, to analyze the radiation spectrum of a hydrogen-like atom.
Let us formulate again the difference between the equations, the second of which is derived from
the Dirac equation with gamma matrices in the Weyl basis

m 0 0 O
(8180w
0 0 0 m

SV —mDe(x) =0

The difference is, the matrix S"V(p) (p) remains unchanged under any rotations and boosts
applied to the spinor p, while the matrix S¥(p) (p) changes under any rotations and boosts.
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0 0, 0 05
o = _go (=35,3,,0,0) + %o 00,0, +| _9 |(~7,,35,00) + %z (0,0,,3,)
61 0 63 0
0 0, 0 03
0 7\, — = 0 E P
SVV = _ao (0;0: 63,62) - 600 (_aZia?u 0;0) - _az (0;01 a1160) + %2 (_aOI al: 0;0)
61 0 a3 0

Equally radically different are the corresponding Lagrangians and propagators.
By analogy with [10], Chapter I1.2] we will carry out the procedure of second quantization of the

fermion field. Let us write the equation

m

oo O

0
SV — 6” ex)=0

©oc3co

0
0
0 0 m

in the momentum space, for which we apply the integral transformation

d4p i(pox1—pP1Xo+P2X3—D3X2)
(p(x)sz(p(p)e PoX1—P1Xo+P2X3~P3X2

Let's substitute the wave function into the equation and obtain

/ m 0 0 0 \
\SVV(p) Syl /(p(p)=0
0 0 0 m
0 Bo. 0 23
SY®) = p |©0p—p) = I | @ 52000~ [ ) | (00,90, -0 +| TP | B2 75,0,0)
Do 0 D2 0

Let us define two sets of four reference spinors

0 Do 0 P2
_| 0 _| Pt _[ 0 —P3
ul={p, uz = 0 us=1{p, 0
Po 0 D2 0
p1 0 P3 0
_[Po ) _ [P 0
vl = 0 v2 = o v3 = 0 By
0 —P1 0 —P3
vi=yful v2=yfu2 v3=ylu3 =yJu4
where
0 0 1 0
v_[0 0 0 1
=11 0 0 0
01 00
And let's express the matrix through them
0 Do 0 D2
0 iy 2 [pa— 0 D3 | —
SY®) = p) | 00,12 —p) —| T | 75,75,00) ~{ ) | (00,p0,~p) +| " * | BLP,0,0)
Po 0 P2 0

=ul(p)v4*(p) —u2(p)v3*(p) — u3(p)v2*(p) + u4(p)vi*(p)
Developing the idea of invariance, we pass to the set of reference spinors with wider filling, but
continuing to form matrices possessing the invariance property
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—P3 D2 —P1 Po
_ | P2 _ | ~P3 _ | ~Po _| 7P
ul = P1 uz = Po u3 = ps3 u4 = D2
Po —P1 P2 —P3
P1 Do D3 P2
_ | Po _| 7P _ [ P2 _ | ~ps
vi=1{p, v2=\—p, v3=1p, vd =1 —p,
D2 D3 Do 1
Let's express through the reference spinors the matrix
—P3 —P1
S = 52 | o —pup2—13) = | " | 02 =Ps, 10, —P2)
Po D2
P1 D3
p p
+ pg (D2, —P3, —Po, P1) — pi (Po, —P1, —P2,D3)
D2 Po
= ul(p)u4’(p) — u3(p)u2’(p) + vi(p)v4’ (p) — v3(p)v2’(p)
—Ps3 —P1
SRP) = 2 | o —Pup2—12) = | 5 | @2 —pspo,—p)
Po D2
P1 P3
+| 50 ) @2 =p3 =0 p) = | 52 | o, —p1 —12.p5)
D2 Po
—P3Po P3P1 —P3Pz2 P3P3 —P1P2 P1P3 —P1Po PiP;
_ | 7™P2Po P2P1 —P2P2 P2P3 | _ [ —PoP2 PoP3 —PoPo Dob1
P1iPo —PiP1 P1iP2 —P1Ps3 P3P2 —P3P3 P3Po —DP3P1
PoPo —DPoP1 DPoPz2 —PoP3 D2P2  —D2P3 DP2P0 —DP2P1
P1P2 —PiP3 —PiPo P1P1 D3P0 —P3P1 —P3P2 P33
+ PoP2  —PoP3 —PoPo PoP1 | _ [ P2P0 —P2P1 —P2P2 D2P3
P3P2 —P3P3 —DP3Po P3P P1iPo —PiP1 —PiP2 DPiPs3
D2DP2 D2P3  —DP2P0 DP2P1 PoPo —PoP1 —DPoP2 DPoP3
—P3Do + P1P2 0 0 0
_ 0 P2P1 — PoP3 0 0
0 0 P1P2 — P3Po 0
00 0 —PoP3 + P2P1
P1P2 — P3Po 0 0 0
n 0 —PoP3 T P2P1 0 0
00 —P3DotD1P2 0
0 0 0 D201 — PoP3
m+m 0 0 0
_ 0 m+m 0 0
0 0 m+m 0
0 0 0 m+m
and matrix
Po D2
S = | 21 | =P —p2ppo) = | 12 | (~P1 P, P3 P2
R P2 3 2 P11 PO Po 1 0 P3 P2
—P3 —P1
P2 Do
+| 23 ) 01 p0.psp2) = | ZBL | 02 P2 00)
P1 D3

= u4(p)ul’(p) — u2(p)u3”(p) + v4(p)v1’ (p) — v2(p)v3”' (p)
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Do b2
Sg(p) = P (=p3, —P2,P1, Do) — P (=p1, —Po, 03, D2)
P2 Po
—Ps3 —P1
D2 Po
+{ 223 ) @1, p0,p5:P2) — | B | 03,92 P1P0) =
—Po 1, Po, P3, P2 —p, 3, P2, P1, Po
b1 P3
—PoP3 —PoP2 PoP1 PoPo —P2P1  —P2Po0  DP2P3 b2P2
_ | Pib3 P1iP2  —PiP1  —P1Po P3P1 P3Po  —P3P3 —DP3D2
—Db2P3 —DP2DP2  P2P1 D2Do —PoP1  —PoPo DPoDP3 DoD2
D3P3 P3Pz  —P3P1 —P3Po DP1D1 DP1ibo  —P1P3 —DP1Db2
D2P1 D2Do b2Ds3 D2D2 DPoD3 DoD2 DPob1 PoDPo
+ —P3P1 —P3Po —P3P3 —P3P2)|_ | —P1iP3 —PiP2 —PiP1 —P1Po
—PoP1  —PoPo —PoP3 —PoP2 —P2P3 —DP2P2 —P2P1 —P2Po
P1P1 P1Po b1Ps3 p1Db2 b3DP3 D3D2 P3P1 P3DPo
—PoP3 + P2P1 0 0 0
_ 0 P1P2 — P3Po 00
0 0 P2D1 — PoDs3 0
0 0 0 —P3Po + P1P2
P2P1 — PoP3 0 0 0
n 0 —P3Po + P1P2 0 0
0 0 —PoP3 + P21 0
0 0 0 P1P2 — D3DPo
m+m 0 0 0
_ 0 m+m 0 0
0 0 m+m 0
0 0 0 m+m
here

m = P1P2 — PoD3
Let us deviate from the canonical approach to the definition of antisymmetry of the field and
consider the following scheme of reasoning. Let us decompose the fermion field into plane waves
with operator coefficients

'
(2m)?

[dl(p)ul(p) +id,(p)u3(p) + ib,(PIu2(p) + by (p)ud(p)
+d,(p)v1(p) + id;(p)v3(p) + ib;(p)v2(p) + ba(p)v4(p)

[ bi (p)ul(p) + ib;(p)u3(p) + id;(p)u2(p) + d; (p)u(p)
+b;(p)v1(p) + ib3(p)v3(p) + id3(p)v2(p) + di(p)v4(p)

ox) =

] el(PoxX1—P1Xo+P2X3-P3X2)

—i(pox1—P1X0t+P2X3—-D3X2)

d4pr

@'(x) = n)?

[dl(p’)ulT(p’) +id,(pHu3’(p") + ib,(pHu2* (p') + by (pHus* (p’
+d,(pHIVIT(p") + id3(p)v3T (p) + ib3(p)v2* (p') + by(p')v4* (p
[ b;(p")ul*(p") + ib;(p")u3d* (p’) + id;(p"Hu2’(p’) + d; (p"Hu4’ (p’
+by(pHvL*(p') + ib;(p")v3*(p) + id3(pHIv2T (p') + di(p")v4 (p

,)] ei(Pox1-Pix0+Dsx3—DEx2)
,)] e~ i(Pox1-P1x0+Dsx3~Dx2)
d*p’

+ = | £
L (X) f (27.[)2
[ di(pul*(p’) — idz(p"Hu3d*(p") — ib;(p")u2’(p’) + bi (p")ud’ (p’
+dz(pr)vl+(p’) _ ld; (p’)v3+(p’) - lb;(p’)va(p’) + bZ(p’)V4T(p

b, (pHul” (p") — ib,(pHu3” (p) — id,(pHu2*(p’) + d,(pus* (p’
+b,(pHIVLT(p") — ib3(p')v3T(p') — id3(p')v2*(p) + d,(p")v4* (p

,)] e —i(pox1—P1%0+P2X3—P3%X2)

))] oi(P0X1-P1X0+Pox3-P3X2)
!
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Let's impose the anticommutation conditions on the operator coefficients
b, (p)bi(p")+b,(p")bi(p) = bi(P)b1(p)+bi(p)bs(p) = 6(p — p)
d1(p)di(p)+d.(p)di(p) = di(p)d,(p)+di(p)d.(p) =5(p —p')
d,(p)d;(p')+d,(p")d;(p) = b3 (P)b,(p")+b3(P")b2(p) = 6(p — p)
b, (p)b3(p")+b,(p')b;(p) = d3(p)d,(p)+d3(p")d2(p) = 6(p — p)
d3(p)d;(p')+ds(p")ds(p) = b3(p)bs(p')+b3(p")bs(p) = 6(p — p)
b3 (p)b3(p")+bs(p)bs(p) = d3(p)ds(p')+d5(p")ds(p) = 6(p — p)
by(p)bi(p")+bs(p)bi(p) = bi(P)bs(p')+bi(p')bs(p) = 6(p — p)
do(p)d;(p)+d,(p")d;i(p) = di(p)d.(p)+di(p)ds(p) = 6(p — p')

We consider the rest anticommutators to be equal to zero. Then we can write the expression for
the anticommutator of the field with its transposed version but without its complex conjugation

Tewr d'p d'p" _
w00 = [ [ G5 Gh =
[dl (P)ul(p) + id,(p)u3(p) + ib;(PIu2(p) + by (p)E(p)]
+d,(p)vi(p) + id3(p)v3(p) + ib3(p)v2(p) + by (p)v4(p)
[ b (pHul*(p’) + ib;(pud*(p’) + id;(pH)u2’ (p’) + di (pHud’ (p") ]
+b;(p")v1*(p’) + ib3(pIV3*(p") + id3(p)v2T (p") + di(p)v4T (p)

eiPox1—D1X0+P2x3-D3%2) o —i(Po" %1 —p1 %0 +p2 x3" ~p3"x;")

+
[dl (pul(p’) + idy(p")ud(p) + ib,(p)u2(p) + by(p)u(p)
+d,(p)v1(p) + ids;(p')v3(p’) + ib3(p")v2(p’) + b, (p’)v4(p’)
[ b; (p)ul*(p) + ib;(p)u3*(p) + id;(p)u2’ (p) + di(p)u4’ (p) ]
+d;(p)v1*(p) + id;(p)v3*(p) + id;(p)v2’ (p) + di(p)v4” (p)
ei(po'xl'—pl'x0'+p2’x3'—p3’x2’)e—i(poxl—p1x0+p2x3—p3x2)

+

[ bi(p)ul(p) + ib;(p)u3(p) + id;(p)u2(p) + di(p)u4(p)
+b;(p)v1(p) + ib3(p)v3(p) + id3(p)v2(p) + d;3(p)v4(p)
d,(pHul’(p’) + id,(pHu3d’(p’) + ib,(p)u2*(p’) + b, (pHud* (p")
+d,(pHvIT(p") + id;(p")v3T(p") + ibs(pIV2*(p") + by (pIv4* (p)
e—i(poxl—p1x0+pZX3—p3xz)ei(po'xl'—pl’xo'+p2'x3’—p3'xz')
+
[ bi (pHul(p’) + ibs(p"u3(p’) + id;(pIu2(p’) + di (p")us(p’ ]
+b;(p)vi(p’) + ib3(p)v3(p’) + id3(p)v2(p’) + d;(p')v4(p’)
[dl(p)ulT(p) + id,(p)u3”(p) + ib,(p)u2*(p) + by (p)ud*(p)
+d,(p)v1T(p) + id;(p)v3T(p) + ibs(p)v2* (p) + b, (p)v4* (p)
e—i(P0'x1'—P1'x0'+pz'x3'—l73'xz')ei(Pox1—P1xo+P2x3—P3x2)
[ d,(p)ul(p)d;(pHu4’(p") + d,(p)ul(p’)d;(p)ud’ (p) ]
—d,(p)ud(p)d;(pHu2’(p") — d,(pHud(p’)d;(p)u2’(p) + -
J_ j. d*p  d*p’ elPox1-P12%0+P2X3-D3%2) o —1(Po X1 ~p1 %0  +p2"x3" ~p3"x")

+
@ (2”)2[ L@ @) - hEELEE) |

—b,(p)u2(p)b;(pu3d*(p’) — by (pHu2(p")b;(p)ud™(p) + -

elpo'x1'=p1"x0 +p2"x3" ~p3"x3") o ~i(Pox1 D1 X0 +P2x3-D3x2)
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bi(p)ul(p)b; (p’)ud* (p') + bi (p")ul(p’)b,(p)us (p)
|—b3(p)u3(p)b,(pIu2*(p’) — bz(pIu3(p’)b, (p)u2*(p) + -

e ~i(PoX1—P1X0o+P2X3-P3%2) ei(Po’x1’—P1'Xo’+Dz’x3'—Dslle)

o f o +
2 2
G G e yud(p)dy (a1 (b7 + 3 () ud(p ) (pul’ ()
| —d;(p)u2(p)d,(pHu3’(p') — d;(pHu2(p")d,(p)ud’(p) + -
e~ i/ x1" =10 +p2 23" 13" %,") g1 (Pox1-P1x0+P2X3-D3X2)
[ ul(p)ud’(p) + -
—u3(p)u2’(p) + -

e i(Po(x1—x1')—P1(xo—x0')+l’z(x3 -x3')-p3 (xz—le))

[ ’
(2m) WA (p)ult(p) + |
[—u2(p)u3*(p) + -

_e—i(Po(x1—x1’)—P1(xo —xo’)"'Pz (x3 —le)—Ps (xz —le))_

[ uL(p)us*(p) + - |
[—u3(p)uz*(p) + -
d4p e—i(Po(x1—x1')—P1(xo—xo')HJz(x3—x3')—l’3(xz—xz'))
| :
[ u4(p)ul’(p) + - ]
—uz(p)ud’(p) + -
| ei(Do(x1—x1’)—731(x0—xo’)"'Pz(xs—le)—P3(x2—x2’)) ]

[ul(p)u4T(p) —u3(p)u2’(p) + -+
u4(p)ul’(p) — u2(p)ud’(p) + -+
e i(Po(x1—x1’)—P1(xo—xol)"'pz (x3—x3")-p3(x2 —le))

d*p
J oy
u4(p)ul*(p) —u2(p)ud*(p) + -+
ul(p)ust(p) — u3(p)u2*(p) + - _|_]
_e—i(Po(x1—xll)—p1(xo—xo')+pz(x3—x3’)—p3(xz_xz'))_

[ [ul(p)u4T(p) —u3(p)u2”(p) + vi(p)v4" (p) — v3(p)v2T(p) +]]
u4(p)ul’(p) — u2(p)ud’(p) + v4(p)vi’(p) — v2(p)v3’(p)
~ d4p ei(Po(x1—x1’)—P1(xo—x0’i+172(x3—x3')—173(xz—le))
(2m)* [ﬁcp)u1+<p) — UZ(p)u3*(p) + VA(PIVL*(p) — VZ(p)v3* (p) +
ul(p)ud*(p) — u3d(p)u2*(p) + vi(p)v4*(p) — v3(p)v2*(p)
e—i(po(xl—xl’)—pl(xo—xo’)+p2(x3—x3’)—p3(x2—xz’))

f (2n)* (SR (p) + S (p)) e PolEr=a1)Prlro=xo ) palis=xs")pal(ea=2"))

f (62141))4‘ (Sa(@) + 57 (m)) O R CD)

) e (i(po(x1 —x1")=p1(x0=x0")+p2(x3-x3")-p3(x2 —le))) +

©c3co
3@00

d*p
an)* 4(

coco 3
OOEO
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0
(()) ) e_(i(po(xl —x1")=p1(x0—x0")+p2(¥3—x3")-p3(x2 —le)))

© 3o o

d*p m

J Gy |
(2m)* 0

0 m

OO§|O

=4mI§(x' — x) + 4miIS(x — x")
We will consider this relation as a proof of the anti-symmetry of the fermion wave function

under the stipulated anticommutation relations.
Let us calculate the total energy of the fermion field

E=P,= fd“x @ (X)Se(x)
_ d’p’ d*p
=[a | | Gapmy
[di(p’)u1+(p’) —id;(p)u3*(p’) — ib;(p )u2” (p") + b; (p")ud’ (p’
+d;(p)vit(p") — id3(p")v3*(p') — ib3(p")v2" (p') + bi(p")v4" (p

e (p)ul”(p") — ib,(p)ud” (p") — id,(pHu2*(p’) + d,(p)ud* (p’
+b,(p)v1T (p") — ibs(p" V3T (p') — id3(p')v2*(p’) + d,(p')v4* (p

,)] e —i(pox1—P1%0+P2X3—P3%X2)

)] i (Pox1-D1X0+P2X3-P5X2)
!

el(Pox1—P1Xo+P2X3—P3X2)
D

d,(pHul’(p") + id,(p")u3’ (p") + ib,(p")u2*(p’) + by (pHud*(p’
+d,(pHVIT(p") + id3(p")v3T (p) + ib3(p)v2* (p') + by (p)v4* (p
+ [ b;(p"ul*(p’) + ib;(p"u3d* (p’) + id;(p")u2’(p’) + d; (p")u4’ (p’
+b;(p)v1*(p") + ib3(p)v3* (p") + id;(p)v2T (p') + di(p)v4" (p
d*p’ d*p
=4t | | Gz Gy
[ [ di(p"ul*(p") — id;(p")ud*(p") — ib;(p)u2’ (p’) + bi(p")ua’ (p') ] T
+d3(p)v1*(p") — id3(p)v3*(p') — ib3(p")v2"(p") + b;(p")v4" (p')
[dl (p)ul(p) + id,(p)ud(p) + ib,(p)u2(p) + b, (p)u4(p)
+d,(p)v1(p) + id3(p)v3(p) + ib3(P)VZ(P) + by(p)v4(p)
e—i(p6x1—p1x0+17£x3—Péxz)ei(Pox1—P1x0+sz3—P3x2)
L[ b (pHul”(p") — ib,(p")u3d” (p’) — id,(pHu2*(p’) + d;(p"ud*(p") ]
+b,(pIVIT (p") — ibs(p")V3T (p") — id3(pIv2*(p') + du(p)v4* (p")
[ b; (p)ul(p) + ib;(p)u3(p) + id;(p)u2(p) + di(p)u4(p)
+b;(p)v1(p) + ib;(p)v3(p) + id3(p)v2(p) + dy(p)v4(p)

ei(p(')xl—p1x0+pQX3—pgxz)e—i(poxl—p1x0+p2x3—p3x2)
3 f f d4pr d4p
B (2m)? (2m)?
[ [di(p')lﬂJr(P') — id;(p"u3*(p") — ib;(p")u2” (p') + b; (p")ud’ (p") ] ]
+d;(p")v1*(p") — id3(p")v3*(p') — ib3(p")v2" (p') + b3 (p"Iv4" (p")

[dl (p)ul(p) + id,(p)u3(p) + ib,(p)u2(p) + b, (p)u4(p)
+d,(p)v1(p) + id3(p)v3(p) + ib3(p)vZ(p) + b,y(p)v4(p)

) e ~L(PoX1—P1Xo+P2X3-P3%X2)
D

s(p' —p)
L[ b (pHul"(p") — ib,(p")u3d” (p’) — id,(pHu2*(p’) + d;(p"ud*(p") ]
+b,(pIVIT(p") — ibs(p")V3T (p") — id3(pIv2* (p') + du(p)v4* (p")
[ b; (p)ul(p) + ib;(p)u3(p) + id;(p)u2(p) + di(p)u4(p)
+b;(p)v1(p) + ib;(p)v3(p) + id3(p)v2(p) + dy(p)v4(p)
s(p—p")
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[ di(p)d; (p)ul*(p)ul(p) + d;(p)di(p)ud* (p)ud(p)
+b, (p)b; (p)ul” (p)ul(p) + b; (p)b, (p)ud” (p)u4(p)
+b,(p)b; (P)u3” (p)u3(p) + b;(p)b,(p)u2’ (p)u2(p)
_ [ @' [+d3(p)do(p)u3* (P)u3(p) + d,(p)d;(P)u2* (p)u2(p)
(2m)? | +di(p)ds(p)v1* (p)vi(p) + d4(p)di(p)v4™ (p)v4(p)
+b,(p)b;(P)V1T (p)v1(p) + bi(p)bs(p)v4a™ (p)v4(p)
+b3(p)b3(p)v3T (p)v3(p) + b3(p)bs(p)v2’ (p)v2(p)

L +d3(p)d;(p)v3*(p)v3(p) + d3(p)d;(p)v2*(p)v2(p) ]

[ b1()bi(p) + bi(p)by(P) + di(p)d,(p) + di(p)di(p) |

_ f d*p eo(p) +b,(p)b;(p) + d;(p)d,(p) + b;(p)b,(p) + d,(p)d;(p)
@2m)* | +b,(p)bi(p) + bi(P)b,(p) + di(p)di(p) + di(p)d;(p)
+b3(p)b3(p) + d3(p)ds(p) + b3(p)bs(p) + d3(p)d3(p)

d* d* d*
= | Gy @@ =5 e | G o
here

eo(P) = PoPo + P1P1 + D2P2 + P3P3

Each summand in brackets represents the operator of the number of particles with a certain
reference spinor. The operator's action consists of consecutive application of the annihilation operator
and the operator of the birth of a particle. On initial examination, it would appear that the energy
associated with zero-point fluctuations in the vacuum has been overlooked. However, an
examination of the final expression reveals that the field always possesses a constant energy,
regardless of the particles that contribute to it. This constant energy of the field can be interpreted as
the energy of zero-point fluctuations of the vacuum.

It is important that all the above deductions are valid in any frame of reference, while the proof
of anticommutativity of the fermion field in [10] is carried out for the rest frame.

The following relations were taken into account in the derivation
d1(p)di(p)+d;(p)di(p) = bi(p)b,(p)+bi(p)b;:(p) = 6(0)
b, (p)bi(p)+b1(p)di(p) = di(p)d, (p)+di(p)b,(p) = 5(0)
d,(p)b;(p)+d,(p)b;(p) = b;(p)d,(p)+b3(p)d,(p) = 5(0)
b, (p)d;(p)+b,(p)d;(p) = d3(p)b,(p)+d;(p)b,(p) = 5(0)
d3(p)b3(p)+d;(p)b3(p) = b3(p)ds(p)+b3(p)ds(p) = 5(0)
b3 (p)d3(p)+bs(p)d3(p) = d3(p)bs(p)+d3(p)bs(p) = 5(0)
d.(p)d;(p)+d.(p)d;i(p) = bi(p)bs(p)+bi(p)bs(p) = 6(0)
by (p)b3(p)+b,(P)bi(p) = di(p)ds(p)+di(p)ds(p) = 6(0)

LGP =350 @B =560)  b@bE) =350) @) @) =560

GEBID) = 5600 BGE® =350)  LEGE =550)  d@b®) =550)
dEBD) =560)  b@E® =350)  LEEGE =550)  d@b®) =550)

1 1 1 1
d,(p)di(p) = 56 0)  bi(p)bs(p) = 56 0) b,(p)bs(p) = 56 (0) d;(p)d,(p) = 56 (0)

d*x

50)= | o
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Other components of the total field momentum are calculated by the formula

P, = f d*x @* (S, @(x)

Total momentum
1= (P, Py, Py, Ps)
is a vector in Minkowski space. Multiplied by the ratio of the electron or positron charge to their
mass, it turns into the vector of the total current of the fermionic field

e
I=+—FP
me

But the real interest is not the total current of the fermionic field, but the density of this current
as a function of coordinates

Ju = imie<p+(X)5u<p(X) = imiemx)

where

E&) = @*(x)S,9(x)
is a four-dimensional probability density current, which is transformed as a four-dimensional vector

by Lorentz transformations. Multiplication by imi transforms it into a four-dimensional current
e

density. Let us perform a series of transformations analogous to those presented by Dirac in [11],
Lecture 11].

d4—
P 7 @ (9500(0) =

o [ o @ (s15 000

1 [ d*x
~2m) o2 ® "5 U (2 )2 SR (p)@(p)e!Pox1=P1¥o+paxs= vst)]

Zin (27-[)2 [f (2 )2 (p+(X)Soei(poxl-P1x0+sz3—P3x2)] SR(p)(p(p)

1 d* d* d*
= o [ s " SIS @0®)] = [ 55 0 D500 = [ 52> 0 Be®)

d*p
= f @z 25 P0o®) + of (P)p1(P) + 02 (P)02(P) + 93 ()93 ()]
For an arbitrary component of the total momentum we have
b= [ G o @s.0®)
u - (27_[)2 @ p y.(p p
Following Dirac's argument in [11], the value of

Po=H = f 2n)? (o5 (P)@o(P) + 9T (P)@1(P) + @5 (P2 (P) + @3 (P)e3(p)]

can be treated as either a Hamiltonian or a total energy operator, with ¢g(p) representing the
birth operator and ¢, (p) representing the annihilation operator.

In [11] the quantization procedure includes the use of one definite Lorentzian reference frame,
i.e. it is not invariant. In our case all deductions are valid in any reference frame in the spinor space,
and it means invariance to change of reference frames in the Minkowski space also.

The following relations are used in the transformations

SRe(x) = 2me(x)
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1
9 (%) =%5R(P(X)
d4p i(Pox1—P1X0+P2X3—PD3X2)
(p(x):fw(p(p)e PoX1—P1Xo+P2X3-P3X2

d*x' 1 o —i(Poxi—P1X4+P2x5—-D3x5)
o(p) = m(p(x)e PoX1—P1Xo+P2X3~P3%X2

6(p) :f d*x’ e~ i(Pox1-P1X0+P2X3-P3x7)
(2m)?

5(x)=f d*p el(Pox1—P1Xo+P2X3—P3X2)
(2m)?

4
o (p) = f (27;)62 @* (x)e!(PoX1=P1Xo+P2X3-P3x2)

4
SR(p(X) =J‘((217-[};2 SR(p) (p(p)ei(Pox1—P1x0+P2x3—D3x2)

SR(p) = 2mI
02 o
R _63 _61
§t = _ao (61,60, 63,62) - _az (63'62161160)
01 03
—0d —0,
0, 03
+ -9 (63»62»_61:_60) - -9 (61» 80,—33,—82)
2 0
03 04
—DPs3 D1
R _ | 7Pz _ _ _ | ~Po _ _
St =\ p,” | o —PuD2—P3) = p, | P2 —PsP0,—P1)
Po b2
P1 P3
+ 50 ) @2 P2 =0 p) = | b2 | B0, —p1 ~12.p5)
D2 Do

The chain of reasoning can be organized in a slightly different way as well

11 d*
srm | G S eI IS 9]

d4—
Po= [ g @ ®S000 =

—> f il SR(P')‘P(P')ei(p(']erixOJrPéxs—PéxZ) ’
= 2m2m (27T)2 (2m)?

d4p R i(pox1—DP1Xo+DP2X3—D3X2)
J‘WS (p)(p(p)e PoX1—P1Xo+P2X3~P3X2

1 1 * . ! ! ! !
SR(p’ ) 4 —i(pox1-P1X0+P2X3-P3X2)
= 2m2m (21r)2 U (2m)? STEDe )] ¢

[ f @ Z;)z SR(p)tp(p)]ei<l’ox1—1’1x°+p2x3‘p3"z)
T

d4-pl , , + d4-p ,
—?%[IW SR(PHe(p )] U )7 SR(p)q)(p)] s(p'—p)
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! L d4 ’ R ! "1+ CR
~2m2m ) 2n)? f(z ¥ [S*(PHePOI*[S* (P e(P)]s(p’ - p)

11 d*p

=2 zm | e 1S @e@ITIS" (e (p)]

" 2m ZmJ amz e ISTITIS* (P)e®)]

" 2m2m f 2n)? 0@ [SF®)] " ®]o®)

11 d*p

= 2m2m) o2 @) [2:p; — PP ] 20102 — Pspo) 19(P)

f )2 @(P)* (112 — P3Po) (112 — P3Po) @(P)

11 d*p

=mm ) Gz B —PL - P =P o) o(P)

d*
= j (2;))2 ¢(P) o(p)

Here it is taken into account that

SR(p) = 2(p1p2 — P3Po)!
(P12 — PoP3) (P1P2 — PoP3) =P§ _Plz _Pz2 —Py=mm=
= (SoPy — S1Py — S,P, — S3P3)(SoPy + S1 Py + S, P, + S3P3)
Let us draw an analogy between our approach and the relations given in [12], Volume 1, Chapter

3, Section 3.3.1]. There it is noted that the birth and annihilation operators of the fermionic field must
satisfy such commutation relations that the equality expressing translational invariance is satisfied

@X+A) =ePA @(X)eP"A
which in differential form is written as
0,@(X) = i[F, (X)]
On the basis of these relations the anticommutation relations between the birth and annihilation
operators are derived. The coordinates here are the components of the Minkowski vector space.
We can perform a similar consideration in the spinor coordinate space, describing for it the
translational invariance by the relations
e(x+a)= el(Poa1—p1ao+p2az—psaz) (p(x)e—i(Poa1—P1ao+Pza3—P3az)
0@ (X) = i[~p1, @(X)]
019(x) = i[po, @(x)]
0,90(x) = i[—ps, @(X)]
039(x) = i[p,, @(¥)]
Or we can try to approximate the formulation of translational invariance in Minkowski space by
means of the formula
p(x+a)=

e [ipoar—p1ao+p2a3—p3a2)(Poa1—p1ao+p2a3—p3az)| ¢ (X) e [-i(Poa1—P1a0+P2a3-P302) (Poa1—P1a0+P2a3—P3a2)]

Let us calculate the total mass of the fermion field

M= [ ax o700 0G0 =
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. d4pl d4
f d f f @n)? 2n)?
[dl(p’)ulT(p’) +id,(pHu3’(p") + ib,(pHu2*(p’) + by (pud* (p’ ]
+d,(p)v1T(p’) + ids(p")v3T (p’) + ibs(p"Iv2* (p’) + by (p" V4™ (p')

[ bi (p)ul(p) + ib;(p)u3(p) + id;(p)u2(p) + d;(p)u(p) ]
+b;(p)v1(p) + ib3(p)v3(p) + id3(P)v2(p) + di(p)v4(p)

e i(pox1-pixo+paxs —Péxz)e—i(Poh—mxo +D2X3—P3X2)

d*p" d'p
x| | Gy
[ b;(pHul*(p’) + ib;(pud*(p") + id;(pu2” (p’) + d;(pHus’ (p’ ]
+b;(p)v1*(p’) + ib3(p V3t (p") + id3(p)v2T (p") + di(p)v4T (p)
[dl (p)ul(p) + id,(p)u3(p) + ib;(p)uZ(p) + b, (p)ﬁ(p)]
+d,(p)vi(p) + id;(p)v3(p) + ib3(p)v2(p) + bs(p)v4(p)

e —i(pgx1—P1x0+P2X3 —péxz)ei(poxrmxo +Pp2Xx3-D3X2)
|
(2m)? (2m)?
d,(p")ul’(p") + id,(p")u3d"(p") + ib,(p")u2*(p’) + by (p")us* (p’ ]
)

+d,(pHIv1T(p") + id3(pIv3T(p') + ibs(p"Iv2*(p") + by(p)v4™ (p’

[ b; (p)ul(p) + ib;(p)u3(p) + id;(p)u2(p) + d;(p)u4(p) ]
+b;(p)v1(p) + ib3(p)v3(p) + id3(p)v2(p) + d;(p)v4(p)

s(p—p")
d*p’ d*p
f f (2m)? (2m)?

[ bi(pHul*(p’) + ib3(pHu3*(p") + id; (pHu2’ (p’) + d; (p)ud” (p’ ]
+b;(p")v1*(p’) + ib3(p"Iv3* (p) + id3(pIv2T (p') + di(p')v4" (p")
[dl (p)ul(p) + id,(p)ud(p) + ib, (p)u_Z_(p) + by (p)E(p)
+d,(p)v1(p) + id;(p)v3(p) + ib;(p)v2(p) + bs(p)v4(p)
s(p'—p)

[ d; (p)di(p)ul” (p)u4(p) + b, (p)b; (p)ud* (p)ul(p)

_ f d*p |~d,(p)d;(P)u3” (p)u2(p) — b,(p)b; (pPIu2* (p)u3(p)
(2m)? [ +d,(p)d;(p)v1T (p)v4(p) + by(p)b;(p)v4* (p)vi(p)

| —d3(p)d3(p)v3T (p)v2(p) — bs(p)b3(p)v2* (p)v3(p)

[ b; (p) by (p)ul*(p)ud(p) + d;i(p)d,(p)ud’ (p)ul(p)
_d*p [ —b;(p)b,(p)u3*(p)u2(p) — d;(p)d, (p)u2(p)u3(p)
(2m)2 [+bz(p)bs(p)v1* (p)va(p) + d;(p)d,(p)v4” (p)vi(p)
|—b3(p)b3(p)v3* (p)vZ(p) — d3(p)d3(p)v2T (p)v3(p)

d;(p)di(p) + by (p)bi (p) + ds(p)di(p) + b, (p)bi(p)
f p (m + ) +b;(p)b,(p) + d;(p)d,(p) + d3(p)d;(p) + b3 (p)b3(p)
(2m)* +b7(p) b1 (p) + di(p)d,(p) + bi(p)bs(p) + di(p)d4(p)
+b;(p)b,(p) + d3(p)d,(p) + b3(p)bs(p) + d3(p)d;(p)
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[ d _ [ d*x [ d*p _

The ratios used in the derivation are

ul’(p)ud(p) = —pspo + p2p1 + P1P2 — Pob3 = 2m
u4’ (p)ul(p) = —pops + p1pz + P2P1 — P3Po = 2m
u3”(p)u2(p) = —p,p; + Pobs + P3Po — P21 = —2m
u2’(p)ud(p) = —p,p; + P3Po + PoPs—P1P2 = —2m
ul’(p)ud(p) = —pspo + p2p1 + P1P2 — Pob3 = 2m
v1'(p)va(p) = p1p; — PsPo — PoP3 + P2P1 = 2m
ul*(p)u4(p) = =p3po + P2P1 T P1Pz — Pobs = 27
d,(p)di(p)+d,(p)di(p) = bi(p)b:(p)+bi(p)bs(p) = 5(0)
b, (p)bi(p)+b1(p)di(p) = di(p)d,(p)+di(p)b;(p) = 5(0)
d,(p)b;(p)+d,(p)b;(p) = b;(p)d,(p)+b5(p)d,(p) = 6(0)
b, (p)d3(p)+b,(p)d;(p) = d3(p)b,(p)+d;(p)b,(p) = 6(0)
d3(p)b3(p)+d;(p)b3(p) = b3(p)ds(p)+b3(p)ds(p) = 5(0)
b3 (p)d;(p)+bs(p)d3(p) = d3(p)bs(p)+d;(p)bs(p) = 5(0)
dy(p)di(p)+d.(p)di(p) = bi(p)bs(p)+b;(p)bs(p) = 5(0)
by (p)bi(p)+b4(p)bs(p) = di(p)d4(p)+di(p)ds(p) = 6(0)

1 1 1 1
d,(p)di(p) = 56 (0)  bi(p)bi(p) = 56 (0) by (p)bi(p) = 55 0) di(p)d,(p) = 56 (0)

G@B®) =350 B@E® =350 LEED =350  dEb®) =760)
dEBD) = 5600 bi@E® =350) @G =550)  d@b®) =550)

LGP =560)  bi@b®) =550 b@biE) =550 di@)dup) =56(0)

d*x

Y0=] Gy

Let us give an interpretation of the operator coefficients for this approach

—P3 1) —P1 Po

_ | P2 _ | ~DP3 _ | ~Po _| 7P
u1—<p1> u2—<po> u3—<p3> u4—<p2>

Po —P1 D2 —P3

My = —P2P1 + P3Pg = —M
Myz = —P3Po + P2P1 =M
Myz = —PoP3 + P1P2 =M

Mys = —P1P2 + PoP3 = —M

11 Po D3 D2

_ | Po _ |~ Ph _ | P2 _ | ~Ps
vl= (Ps) v2 = <—p2> v3 = (m) vd = <_po>

D2 p3 Do b1

My1 = PoP3 — P1P2 = —M

Myz = P1P2 — PoP3 =M
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My3z = P2P1 — P3P =M
My4 = P3Po — P2P1 = —
d*
0 = | G
[d 1(P)ul(p) + id(p)u3(p) + ib,(p)u2(p) + by (p)ud(p) o 1(Po¥1—P1%0+D2 %3 -P3)
+d,(p)v1(p) + id3(p)v3(p) + ib3(P)VZ(p) + bs(p)v4(p)
[ bi(P)ul(p) + ib;(P)u3(p) + id;(PIu2(P) + di(PIU4(P) | _i(pox,-prxo+prxs—psra)
+b;(P)V1(p) + ib3(p)v3(p) + id3(p)v2(p) + di(P)v4(p)
—P3
di(p) creates and d;(p) destroys a particle ul(p) = —pIzz with mass —m, spin up and
Do
momentum in the interval d*p, d;(p)d,(p) is the operator of the number of such particles
7
by(p) creates and bi(p) destroys a particle ul(p) = _p_}zz with mass —m, spin up and
Po
momentum in the interval d*p, b;(p)b;(p) is the operator of the number of such particles
Po
di(p) creates and di(p) destroys a particle u4(p) = —pIZ1 with mass —m, spin up and
—P3
momentum in the interval d*p, d,(p)d;(p) is the operator of the number of such particles
Po
bi(p) creates and b,(p) destroys a particle u4(p) = _p_il with mass —m, spin up and
—P3

momentum in the interval d*p, bi(p)b,(p) is the operator of the number of such particles

Note that ul(p) and u4(p)are translated into each other by a linear transformation, this is also

true for other pairs of spinors

0 0 0 1
_| 0 0 -1 0
u4 = 0 -1 0 0 ul
1 0 0 0
0 0 0 1
_| 0 0 -1 0
ul = 0 -1 0 0 u4
1 0 0 0

It is known [10], formula I1.1.30] that the charge conjugation operation transforms an electron
into a positron with a change of the sign of the charge. Let us apply the charge conjugation to the

reference spinor

00 0 —i 00 0 —i\ /~Ps Po
00 i 0)q (00 & oV\[-p\_ [-p)\__.
0o i 00" 1=l o i o oflp |77 p |T04
i 0 0 0 —i 0 0 0/ \p —ps

As aresult ul not only transforms to u4, but also changes a sign of mass due to the imaginary
unit in the charge conjugation matrix. This confirms our thesis that the charge conjugation

synchronously changes signs of charge and mass.
The properties of all particles and operators are summarized in a table
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wave

creates destroys particle number mass spin .
sign

—Ps3
d;(p) d,(p) ul(p) =

di(p)d,(p) -m up +

d,(p) d;(p) u4(p) = ‘pl
_P3

d,(p)di(p) -m up -

P1

b; (p) b, (p) wip) = 2 b; (p)by (p) —m up +

—Ps3

by (p) bi(p) ul(p) = _p2> by (p)b; (p) —~in up -
P1 )

d;(p) d,(p) vi(p) = <p3> dy(p)d, -m down +

d,(p) dy(p) v4(p) = (—p()) d,(p)d;(p) -m down -
&

by (p) b;(p) vi(p) = Lo b, (p)b; (p) _m down ]
Pz

b;(p) ba(p) va(p)=| B2 b:(p)ba(p) _m down +

G @) w3 =i d3(p)d; (p) m up +

da(p) G @ =i | d@dim) m up -

b,(p) b3(p) u3(p) = i ‘p_’:" b,(p)b3(p) m up -

Pa
P2
BE) b wze=i ) bmbm) m up +
—P1

P3
d3(p) d;(p) iv3(p) =i (5?) d3(p)d;(p) m down +
Do

Po

d3(p) d3(p) iv2(p) = i<:§;> d3(p)d;(p) m down

Ps
P3

b E®  WEE=i 2] s

Do

down

3
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Po
BE k) W2 =i| L) b@bh® W down 4

p3

By the words d,(p) destroys the particle ul(p) it should be understood that this operator
transforms this particle into the particle u4(p), and the operator di(p) performs the reverse
transformation of u4(p) into ul(p). Since both of these particles have the same mass, the total
mass of the fermionic field does not change from these transformations. The mass m itself can have
any sign.

If the operator d,(p) acts on the particle ul(p), it transforms it into the particle u4(p), the
action on any other particle gives zero.

Let us see what result we get if we apply the canonical definition of anticommutativity of the

fermionic field.

d* d*p’
(@), * (X)) = j f s

[dl (P)ul(p) + id,(p)u3(p) + ib;(PIu2(p) + by (p)E(p)]
+d,(p)v1(p) + id;(p)v3(p) + ib3(p)v2(p) + bs(p)v4(p)

[ di(pHul*(p") — id;(pHu3d*(p’) — ib;(pHu2”(p’) + b; (pu4a’ (p") ]
+d;(p)v1t(p") —id3(p)v3*(p’) — ib3(p)Iv2T(p") + bi(p")v4" (p")
ei(Pox1—P1xo+D2x3—D3xz)e—i(Po’X1’—P1'xo’+Dz’x3’—173’xz’)

+
[dl (pul(p’) + idy(p")ud(p) + ib,(p)u2(p) + by(p)u(p’)
+d,(pHvL(p") + ids(pIv3(p') + ibs(p)VZ(p') + b, (p')v4(p")
di(p)ul*(p) — id;(p)u3*(p) — ib;(p")u2"(p') + by (p)u4T(p)]
+d3(p)v1*(p) — id;(p)v3*(p) — ib3(p)v2” (p) + bz (p)v4" (p)
ei(Po’x1’—P1’x0’+P2’x3'-P3’x2’)e—i(Poxl—P1x0+P2x3-P3x2)

+
[ bi(p)ul(p) + ib;(p)u3(p) + id;(p)u2(p) + di(p)u4(p) ]
+b;(p)v1(p) + ib3(p)v3(p) + id3(p)v2(p) + d3(p)v4(p)

b, (pHul’(p") — ib,(pHud”(p") — id,(pHu2*(p’) + d; (p)ud*(p’) ]
+b,(p VLT (p") — ibs(p")v3T(p') — id3(p)v2*(p’) + ds(p)v4™* (p')
e—i(poxl—p1x0+pZX3—p3xz)ei(po'xl'—pl’xo'+p2'x3’—p3'xz')

+
[ bi (pul(p’) + ib;(p"u3(p’) + id;(pIu2(p’) + di (p")us(p’ ]
+b;(p)vi(p’) + ib3(p)v3(p’) + id3(p')v2(p’) + d;(p')v4(p’)

b, (p)ul’(p) — ib,(p)u3” (p) — id,(p)u2*(p) + d, (p)us*(p)
+b,(p)v1T (p) — ib3(p)v3T(p) — id3(p)v2*(p) + ds(p)v4™* (p)

e—i(D0’x1’—D1’x0’+P2’x3’—P3’x2') e (PoX1-P1X0o+P2X3-P3%X2)
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[ [ d;(p)ul(p)di(pHul*(p’) + d;(pHul(p’d;(p)ul®(p) + - ] l
+d,(p)ud(p)d;(pHud*(p") + d,(pHud(pd;(p)ud*(p) + -
dip  dip’ el Pox1-P12%0+DP2X3-D3%2) o —i(Po X1 ~p1 20" +p2"x3" ~p3"x")
J ,[(27'[)2 (27'[)2 b ( —y * ’ T 1 + NTT A/ * T
[ 1(P)ud(p)b; (pHud” (p") + b, (pud(p")b;(p)ud’ (p) + - ]
+b,(p)u2(p)b; (pHu2” (p’) + b, (pHu2(p")ib;(pHu2’(p’) + -

e i(Do’x1’—D1’xo'+Dz’x3’—P3'xz’)e—i(Pox1—P1x0+P2x3 —p3x2)

+

[ [ b; (p)ul(p)b, (pHul’(p") + b;(pHul(p’)b,(p)ul”(p) + - ] ]
+b3(p)u3(p)b,(p)u3” (p’) + b;(p")u3(p’)b,(p)u3”(p) + -
f f d4 ! e_i(p0x1—p1xo+l’zx3—l’3xz)ei(Po'x1'—P1'xo'+P2'x3'—P3'x2')
2 2 +
@ @21 4 o) o)y (Yt (07 + i (6 )ud (0 )y (P () + -
+d;(p)u2(p)d,(pHu2*(p’) + d;(pu2(p")d,(p)u2*(p) + -

e~ im0 x1"=p1"x0" +p2"x3" —p3'x3") o i(Pox1~P1 X0 +P22x3-D3X2)

[ ul(p)ul*(p) + - ]
+u3(p)ud*(p) + -
d4p ei(Po(x1—x1’)—P1(xo—x0’)+172(x3—x3')—173(xz—le))
~ ] Gz uar
B )
+u2(p)u2’(p) + -
—i(po(xl—xl’)—pl(xo—xo’)+p2(x3—x3’)—p3(x2—x2’))_
ul(p)ul’(p) + - ]
+u3(p)us’(p) + -

e —i(po(xl —x1")=p1(x0=x0")+p2(x3—x3")-p3(x2 —le))

-e

d*p
a2 +
(@m) @@ )
+u2(p)uz*(p) + -

| ei(po (x1=%1")=p1(x0—x0")+P2(¥3—x3")-Dp3(x2 -er)) ]

[ ul(p)ul*(p) +u3(p)ud*(p) + ]
u4(p)ud®(p) +u2(p)uz*(p) + -
d4p ei(Po(x1—x1')—P1(xo—xol)+l’z(x3—x3')—P3(x2—x2'))
(2m)? = T +— T
[ _ud(p)ud’ (p) + u2(p)u2’(p) + ]
ul(p)ul’(p) + u3(p)u3’(p) + -
_e—i(Po(x1—x1’)—P1(xo—xo')"'Pz(xs—le)—Ps(xz—le))_

[[ul(p)ul®(p) + u2(p)u2*(p) + ud(p)u3*(p) + u4(p)ud*(p) +]]

| vi(p)v1l*(p) +v2(p)v2*(p) + v3(p)v3*(p) + v4(p)v4*(p) |
d4p el(Po(x1—x1’)—P1(xo—xolj_+pz(x3—x3’)—173(xz—le))

™| W (p)ut* (p) + WZ(p)uz* (p) + U3 (PIu3* (p) + WA(p)ud* (p) +

| vi(p)v1*(p) + v2(p)v2*(p) + v3(p)v3*(p) + v4(p)v4*(p) |
e—i(po(x1—x1')—p1(xo—xo')“'Pz(x3—x3')—P3(xz—x2'))

J é’; (TR(p) + Ty (el (ol Pa o=y epaloes =) pslxz221))
T
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+
A
T

e(p) O 00
f d4p 4 0 e(p) 0 0 (i(po(xl—xl’)—p1(xo—xo’)+p2(x3—x3’)—p3(x2—x2’)))
(2m)* 0 0 e(p) O
0 0 0 e(p)
+
. e O 0 0
d 14 4 0 e(p) 0 0 e—(i(pg(xl—xl')—pl(xg—xo')+p2(x3—x3’)—p3(x2—xz’)))
(2m)* 0 0 ep) O
0 0 0 e(p)
=4e(p)I6(X' —x) + 4e(p)I6(x —X')
where

TR(p) = ul(p)ul*(p) + u2(p)u2*(p) + u3(p)ud*(p) + u4(p)us*(p)
Tr(p) = vi(p)v1l*(p) + v2(p)v2*(p) + v3(p)v3*(p) + v4(p)v4*(p)
TR(p) + Tr(p) + TR (p) + Tx(p) =

1 0
= 4e(p)I

oo o
R Oo o

4(poDo + P1P1 + P2P2 + P3P3) % 10
0 0

In deriving this result, the following relations are taken into account

TR(p) + Tr(p) = ul(p)ul*(p) + u2(p)u2*(p) + ud(p)ud*(p) + u4(p)us*(p)
+vi(p)vi*(p) + v2(p)v2*(p) + v3(p)v3*(p) + v4(p)v4*(p) =

—Ps3 D2
pIzZ (—ﬁ: —Z:ﬂ:m)‘F pp03 (Z' —E»m; _ﬂ)
Po —P1
—P1 Do
+ 20 P —Po 55 B + | | o —P1 P2 —3) +
D3 1, —Po» P3, P2 D2 Po» —P1, P2, —P3
[) —P3
P1 Po
0| @170, 75.52) + | . | Bo, 77,72 P)
D2 %]
(%] D2
+( 22 ) @552, 50.50) + | _22 | B3, ~P5, —Po 1) =
pl 3 P2 P11 PO —po 27 3 0 M1
Po P1
P3§ P3E _P3E _P3§ Pzp_z_ _Pz_m Pzp_o_ _Pz_m
P2P3_ PZPZ_ _p2£1 _P_zpo _Psgz P3P3_ _Pfo Pspi
_P1ﬁ _p1p_2 P1p_1 p1@ popi _p(£3 Popo_ _p(ﬁl
—PoP3 —PoP2 PoP1 PoPo —P1P2 P1DPs3 —P1Po p1b1
PP pB PP PPz PoPo  —PoPi PPz —PoPs
P0P1_ Popo_ _Poﬂ3 _P_opz _P1ﬂ) P1P1_ _sz P1Pi
_P3£} _Psﬁ psﬁ P3p_2 Pzpi _PZ_P1 pzpz_ _pz_Ps
—P2P1 —DP2Po D2P3 D2P2 —P3Po P3P1 —DP3P2 DPs3P3
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12V PiPo  P1P3 p1P2 PoPo —PoP1  —PoD2 PoD3
+ Pop_1_ Pop_i POE Pog_z _plp_i p1p__1 _P@ _P1£_3
P3P1 P3Po P3Ps3 P3P2 —P2Po P2P1 DP2P2 —P2P3
P2D1 P2Do P2D3  D2P2 PsDo —DP3p1 D3Pz p3D3
P3Pz P3Pz  P3P1 P3Po P2D2 —P2P3  —P2Do P2D1
+ Pzp_i Pzp_i PZE Pz@ _P3P_i PsP__3 P3E _P3E
b1D3 bib2 Pi1P1 DP1DPo —DoP2 DoD3 DPoDPo —DPoP1
PoP3  PoP2 PoP1  DPoPo p1P2 —P1Ps  —DP1Po 2%
psD3 D3Pz 0 0 p2D2 2V 0o o0
_ pP2D3 D22 0 0 —D3D: P3D3 0 0
0 0 piP1  P1ibPo 0 0 PoPo  —PoP1
0 O PoP1  PoDo. 0 0 —D1Po P1P1
pib1 PiPo 0 0 PoPo —Pob1 0 0
n (Pom PoPo _0 0 . —P1Po 12Y2% _0 0 _>
0 O [ ZYZ . Y2 0 O p2Db2 —D2P3
0 O P20z D2P2 0 O —P3D: P3D3
P11 Pibo 0 0 PoPo —DoP1 0 0
n (poﬂ PoPo _0 0 . —p1Po 12V _0 0 _>
0 O P3bs D3Pz 0 O b2D2 —D2P3
0 0 P20z D2P2 0 0 —P3D: P3D3
(Psm p3P: 0 0 p2D2 —D2D3 0 0 )
n pP2D3  D2P2 0 0 —P3P: P3Pz 0 O
0 0 P11 P1bo 0 O PoDo —DPoP1
0 0  PoP1  DPoDo 0 0 —Pibo  PiP1
TR(p) + Tr(p) + TR (p) + Tr(p) =
1 0 o0 0
4(poPo + P1P1 + P2P2 + P3Ps) % 10 f 8 = 4e(p)!
0 0 0 1

The last operation of taking the value (popy + p1P1 + 2Pz + p3P3) out from under the sign of
the integral seems doubtful because of its dependence on the momentum over which the integration
is performed. If one closes one's eyes to this, as is generally accepted in the literature, in particular in
[10], this relation is taken to be interpreted as a proof of the anti-symmetry of the fermion wave
function under the stipulated anticommutation relations. The only situation where this is
unquestionably true is when considering in a rest system where boosts are excluded, energy is equal
to mass, and invariant to rotations.

It is noteworthy that the antisymmetric treatment, whether or not complex conjugation is
considered, yields a diagonal matrix that is invariant in one case but not in the other. It is encouraging
to observe that the set of reference spinors remain consistent.

It is crucial to note that the proposed invariant approach cannot be realized within the
Minkowski vector space. To achieve this, it is necessary to transition to the spinor space. This
reiterates the secondary role of the Minkowski space in comparison to the spinor space.

Dirac's equation can be expressed in both spinor and vector spaces, a fact that led Dirac to
discover it. In contrast, the invariant equation can be written in spinor space but not in vector space,
which explains why it was unknown.

Let us write down the propagator of the fermionic field and the fermionic field invariant
equation of motion using the proposed matrices

—P3 —P1
R _ | 7Pz . _ _ | ~Po _ _
SEP) = | p,” | o —PuP2—P3) —| p, | P2 —P3,P0,—P1)
Po D2
P1 D3
p p
+ pg (P2, —P3, Do, P1) — pi (Po, —P1, —P2,D3)
D2 Po
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Po D2
s _|~ P, _ | TP3 Y,
rR(P) =\ p, | (=P3—P2,Pu00) —| p,” | (=P1—Do P3,D2)

—P3 —P1

D2 Po

-Pp -p

+ —pz (P1, o, D3, P2) — _p; (3, P2, D1, Po)
P1 D3

The equation of motion has the form

(SR+ SR+ Sg+Sg —4(m+m))p(x) =0

where
9 d 9 d d d
- —= I - — = - —_=—
Po ax 1 P 9%, o D2 9x 3 D3 ox, 2
0 Froan 1 P Fe o D2 o 3 D3 Froa 2
R _63 _61
§t = —a, (01,00, 03,0;) — —a, (03,0,0,,0,)
61 63
—60 —62
0, 03
+ ~a, (03,05, —0;, —0,) — —d, (01,0, —03,—0;)
03 0,
61 63
ao a2
SR = 63 (62! —63, _60v al) - 61 (aOJ _ab _62’ 63)
d, 9o
03 0,
62 a0
+ _61 (_aO' al' _62' (63)) - _63 (_621 635 _605 al)
—0o —0,

The equation is relativistically invariant, respectively we can use the invariant Lagrangian
1 CR C fa—
L= > [@G)T (SR + SR + Sg + Sp)@(x) — 4(m + M)@(x) @ (x)]

to which corresponds the relativistically invariant fermion propagator

(342;4 SR(p) + SR(p) + S (f) + s;R (p) +4(m +m)I o (Box1-Prx0+Dy%3-P3%2)
s Pc—m

DR (x) =

The equation can be modified to take into account the electromagnetic potential, the electron charge

is taken as a unit

Po = 01 + g p1 = =0+ a, p2 = 03 +a, p3 = —0; +as
—(=0, + az)
—(05 + ay)

SR — (_az N aj) (8, + ap), — (=0 + ay), (85 + ay), —(—0, + a3))

(0, + ao)
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(=0, + as) (85 + a2), —(—0; + a3), (6: + ag), —(—dy + a))

—(=0o +ay)
_< —(01 + ao)
(05 + a;)

((03 + a;), — (=0, + a3),—(0; + ay), (=0, + a1))

(=00 +ay)
(0, + ay)
* ((—52 + 23)
(03 + az)

(=00 + 0y | (@1 +@0),=(=00 + @), =(3; + @2), (=0, + a3))

(=0, + a3)
_< (03 +ay)
(01 + ao)

(03 + az)

(01 + ao)
SR — <_(_a(] + al) (_(_62 + a3)’ _(63 + az), (_aO + ‘11): (61 + ao))
—(=0; +as)

(03 + az)
—(—=0;+ a3)
(0, + ao)
—(=00 +ay)

(=(=00 + ay),—(01 + ao), (—0, + az), (95 + a;))

(05 + ay)
—(=0; + a3)
—(0; + ap)
(=0 + ay)

+ ((—00 +a,),(0; + ay), (=0, + a3), (03 + az))

(0, + ao)
- __((_azo_:_als) ((=0; + a3), (05 + a3), (=0 + a4), (01 + ay))

(=02 +as)

and apply, in particular, to analyze the emission spectrum of the hydrogen-like atom.

It is our intention to extend the proposed approach to the description of the bosonic field. In
order to transition to such a description, it would be prudent to consider the existence of the fermion
annihilation process as a potential indicator. It is reasonable to posit a relationship between electrons
and photons, given their ability to transform into one another. It is therefore proposed that the photon
field be expressed by means of analogous reference spinors, which can be obtained from the fermion
spinors but which have zero mass. Let us utilize the table of properties of the reference spinors to
identify suitable pairs for describing the annihilation process. The two spinors should exhibit
identical properties, with the exception of their respective masses, which should have opposite signs.
For example,

—Ps3 —P1 % Pl —DPs3 —P1
_ | 7P2 —Po\_ [ "P2—"Wo |_|[| D2 —Po
ul+wd={ " )+l ps |=| potws [T\ 05 )T\ 2
Po () Po + 2 b2 Po
Po b2 —Po — P2 —Po —D2
_| 7P P3|\ _[ "P1—P3)_ (D1 —P3
udbtuZ={p, [t po |=\ 24w [T\ 2o |7\ P2
—P3 21 ps + 01 P1 b3
—Ps3 —P1 —DP2 —Po
_ | 7Pz _ | ~Po _ | ~DP3 _| 7P
ful = Ps fu3 = P fu4 = P, fu2 = Po

D2 Po D3 P1
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Mgyy = —P2P3 + P3Pz = 0
Mgy3 = —PoP1 + P1Po = 0
Meyg = —P3P2 + P23 = 0
Mgy3 = —P1Po + PoP1 = 0

P1 P3 p1t+ D3 P1 P3
o | Do P2\ _[Po+DP2)|_[Do P2
RSl U Bl B Rl WOl A e W 2
D2 Po P2+ Po Po P2
P2 Po P2+ Po D2 Po
o _ | TP3 W1 _|-pPs—p1|_|["Ps3 D1
vd +iv2 = —Do + —ip | "\ —pPo—p2| |\ D2 + —Po
P: P3 p1t+p3 p3 P1
P1 p3 b2 Do
_ | Po _ | b2 N B 2 _| 7P
fvl = ip, fv3 = P fv4 = —p, fv2 = -
ipo D2 b3 P1

Mgy1 = PoP1 — P1Po = 0

Mgy3 = PaP3 — P3Pz = 0

Mgyy = P3Pz — P2P3 = 0

Mevz = P1Po — PoP1 = 0
Let us represent the photon field as a decomposition
d*p
(2m)?

[fdl (p)ful(p) + fd, (p)fu3(p) + fb,(p)fu2(p) + fb; (p)fud(p) 0 i(Pox1~P1 X0 +P2X3—D3%s)
+fd, (p)v1(p) + fd;(p)fv3(p) + fb3(pP)V2(p) + fb,(p)fv4(p)

[fb* 1(P)ful(p) + b3 (p)fu3(p) + fd; (PIfu2(p) + fd; PITU4(D) | _i(pyr, ~pyrorprxs—pses)
+bi (p)fv1(p) + b3 (p)fv3(p) + fd3(p)fv2(p) + fd; (p)fv4(p)

Y(x) =

We are interested in the coordinate function

W ()W)
It represents a four-dimensional probability density current, which is transformed by the
Lorentz transformations as a four-dimensional vector. It is proposed that this vector, possibly with
some dimensional coefficient, be treated as a vector potential of the electromagnetic field

A4, (0 = — ¥ (05, W)

The final step is to verify that, under the specified commutation relations between the operator
coefficients, the commutation relations of the following type are satisfied for the vector potential

[AT(x),AX)] = AT(X)AKX') — AT (xX)AKX) = CIS(x —X')
or

[AT(x),A(x")] = AY(X)AKX') —AT(xNAKX) = CIS(x —X)

with a certain constant C.

Conclusions

An alternative approach to analyze relativistic and quantum effects inherent in charged particles
in the presence of an electromagnetic field is proposed. Two ways of describing the electron behavior
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in the electromagnetic field are considered: by means of the vector equation, which is based on the
plane wave model for a free electron, and the spinor equation, which is based on the representation
of the electron as a plane wave in spinor space. For both equations, which are valid for a free particle,
their applicability to an arbitrary physical situation is postulated, in particular to describe the
behavior of a particle in the presence of an electromagnetic field. The presented equations are
intended to fulfill the same role as the Schrodinger equation and the Dirac equation. At the same
time, in our opinion, the spinor equations more accurately describe the details of the interaction
between fields and particles.

References

1. Marsch, E.; Narita, Y. A New Route to Symmetries through the Extended Dirac Equation. Symmetry 2023,
15, 492.

2. Fleury, N.; Hammad, F.; Sadeghi, P. Revisiting the Schrodinger-Dirac Equation. Symmetry 2023, 15, 432.

3. Jean Maruani, The Dirac Equation as a Privileged Road to the Understanding of Quantum Matter,
Quantum Matter Vol. 4, 3-11, 2015.

4.  Hiley, B,; Dennis, G. de Broglie, General Covariance and a Geometric Background to Quantum Mechanics.
Symmetry 2024, 16, 67.

5. Andrey Akhmeteli, The Dirac equation as one fourth-order equation for one function - a general, manifestly
covariant form, arXiv: 1502.02351v9 [quant-ph] 23 Apr 2022.

6.  Leonard IL. Schiff, Quantum Mechanics, Third edition. McGraw-Hill Book Company, 1959 - 545 p.

7. P. A. M. Dirac. The principles of quantum mechanics (International Series of Monographs on Physics),
Fourth edition, Oxford Science Publications.

8.  E. Schrodinger, “A Method of Determining Quantum-Mechanical Eigenvalues and Eigenfunctions”,
Proceedings of the Royal Irish Academy, Vol. 46A, 1940, pp. 9-16.

9. Lewis H. Ryder, Quantum Field Theory, University of Kent, Canterbury — 1996 r.

10. A Zee, Quantum Field Theory in a Nutshell, 2nd Edition. - Princeton University Press, 2003.

11. Paul A. M. Dirac, Lectures on quantum field theory, New York 1967.

12.  Claude Itzycson and Jean-Bernard Zuber, Quantum field theory, McGraw-Hill Book Company, 1980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202401.1032.v4

