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Abstract

The LAVA method has been proposed for detecting local genetic correlations between traits. We show,
using theoretical analysis and simulations, that LAVA’s “fixed-effects” model does not estimate genetic
correlation in the statistical genetics sense, but instead detects the presence of regional genetic effects.
This mis-specification leads to inflated type-I error under the null, particularly when causal variants
are sparse, and can produce apparent “correlations” arising solely from unshared, trait-specific signals.
In contrast, the random-effects model implemented in HDL-L correctly targets variant-level genetic
correlation and remains well-calibrated. Our results indicate that LAVA findings may be widely
misinterpreted, and we recommend caution and the use of random-effects—based approaches such as
HDL-L for valid inference.
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We thank de Leeuw et al.[1] for their interest in our work and their clarification of the modeling
assumptions underlying LAVA[2] (based on what they call the “fixed-effects” model) in contrast to
HDL-L[3] (based on the random-effects model) for genetic correlation analysis. Unfortunately, we
believe that there are some flaws in the statistical and biological basis of the LAVA model. Here,
we offer the rationale for our modeling framework, highlighting why the random-effects model is
statistically more appropriate and biologically more interpretable than the fixed-effects model for
genetic effects modeling. Second, we demonstrate the reason why LAVA’s “fixed-effects” model does
not reflect the underlying shared genetic architecture between two traits. Finally, we describe how
LAVA detects statistical artifacts under null genetic correlation.

Regarding the second issue that de Leeuw et al. pointed out in our previous simulation on the
use of different LD references, we agree that this may have introduced additional sources of bias. We
used the 1000 Genomes reference data for LAVA because it was the only reference data provided for
LAVA at the time. Nevertheless, in their Figure 1, de Leeuw et al. have now shown that the problem of
false positives when using LAVA for the random-effects model remains even when the LD reference is
corrected. Therefore, here we will focus on the issue of the underlying models. As they suggested, the
problem of bias from using an LD reference from a different cohort requires further investigation.

Why the Random-Effects Model Is More Natural

In the random-effects model for a bivariate phenotype, a causal variant j's effect a; = (1), a;) is
assumed to vary randomly across the genome according to

2
o o010
th ~ N 0, 1 8 12 2 ’
re0102 75
where 07 and 07 are the genetic variance components, and rg is the genetic correlation. In this
formulation, heritability and genetic correlation are simple and transparent parameters of an underly-
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ing distribution, not statistics from an unspecified collection of unknown numbers. This modeling
approach is natural for polygenic traits and standard in statistical genetics[4]. The LD Score Regres-
sion (LDSC)[5,6] method framework also assumes the same random-effects model when estimating
genome-wide heritability and genetic correlation.

We shall discuss the statistical differences between the models below, but first, it is appropriate to
explain the differences in terms of de Leeuw et al.’s simulation, as it explains how the data could have
arisen and hence how natural the models are. In the random-effects model (coded in generate.rfx
on LAVA’s GitHub page), effect sizes for each phenotype are sampled from the bivariate normal
distribution above according to a specified heritability and genetic correlation. The genetic components
are then computed as

G| =Xy, Gy = Xay,

where X is the genotype matrix, and «; and «; are the vectors of variants effects for each phenotype.
So, each phenotype has its own causal variants and effect sizes, and the genetic components reflect
the structure of their respective traits. This model is simple, interpretable, and matches the way
phenotypes arise from their genotype.

In the fixed-effects model (coded in generate.ffx), the genetic components G; and G, are first
generated in a similar way as in the random-effects model, but then G, is modified as follows. (i)
For rg = 0, two independent candidates for G, are generated; call this Gy (1) and Gy(3). Then, Gy is
computed as

G2 = w - Gyq) + Gya),

using the weight w = —G2T(2> G/ G;r(l) G1, so that G, have an exact zero correlation with Gy. (ii) For
r¢ # 0, a candidate G, is regressed on G, and the residual R is combined with G; in order to achieve

Gzzrg'Gl%»w/l*T’é'R.

(The vectors G and G are scaled to have the specified heritabilities exactly; this does not change their

the target correlation:

correlation.)

Notwithstanding the name ‘fixed” effects, G1 and G are actually computed using normal random
genetic effects, not arbitrary fixed constants. In fact, G; is exactly the same as in the random-effects
model. The distinctive element is apparent in the construction of G,, which now depends on the realized
G. The steps guarantee a desired subject-level correlation between G and Gy, but the resulting G,
is no longer determined by its causal variants. In other words, G, has no meaningful independent
biological model, as it is defined in relation to G;. This represents a significant departure from how
we understand multivariate complex traits, where we still attribute each trait its own causal structure.
Such ‘fixed-effects’ construction will become conceptually more complicated and biologically less
meaningful if we consider more than two traits.

Thus, we argue that the random-effects model offers a more natural and interpretable foundation
for evaluating local genetic correlation. It respects the biological assumption that each trait has its own
causal basis and allows the correlation to arise from genuine shared genetic effects.

Discrepancy Between Subject-Level and Variant-Level Realized Genetic
Correlations

RN*M and

Following the LAVA fixed-effects model, suppose we have a genotype matrix X €
two genetic effect vectors a;,ay € RM, generating genetic components: G; = Xa; and Gy = Xay.
We perform a linear regression of G, on Gy, and define the residual: R = G, — Gy, where § =

(G1,G3)/||G1]|*>. Then we define a modified genetic component with target correlation ry:

G3':=ry-Gi+/1-73 R
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By construction, R L Gy, so we obtain: cor(Gy, G;“) = rg. Suppose that Gglt € col(X), i.e., there exists
a vector a3't such that: G3!* = Xa3!t. Then, since G; = Xa; and R = XJ for some § € RM, it follows
that:

G = X(rg-a1+4/1-12-8) = w%“ZVg'“ﬁm"S'

The correlation between a1 and aglt is:

. 2 — 2.
alt):rg ar||* + /1 =13 <0¢1,5>'

cor(ay, a5
' o[ - [|a3"
Hence, unless (a1, 5) = 0 and [|a3"|| = ||a1||, we do not obtain cor (e, a3"*) = r,. In practice, the vector

¢ is not orthogonal to a1, because it is induced by residualizing G, with respect to G; in phenotype
space, not in genetic effect space. This means that forcing cor(G1, Ga!t) to be an exact value would not
remove the randomness in the realized cor(a;, a3't). Therefore, the so-called “fixed-effects model” is
not a proper statistical genetics model, but rather a procedure for dealing with a special case of realized
data. Below, we conduct a simulation to further demonstrate this point.

Based on the UK Biobank genotype data on the first region of chromosome 22, where we have
M = 185 genotyped variants, we randomly selected N; = 10,000 and N, = 10,000 individuals,
standardized the X € RMN+N2)*M matrix column-wise to have mean 0 and variance 1. We then
split the matrix into two independent subcohorts, X; € RN*M and X, € RN2*M corresponding
to cohorts 1 and 2 respectively. Two independent genetic effect vectors ay ~ N (0,071)) and ap ~
N(0,031)) (where 07 and o, were set to 1 and 2 respectively) were drawn to construct the genetic
components: G; = Xa1 and G, = Xap. We then regressed G, on G; and extracted the residual vector:
R =Gy — Gy, where B = G] G2/G/ G. To force a desired subject-level genetic correlation of zero
between G; and a new genetic component G3*, we constructed:

Gglt:rg-él—s—\/l—r(%-ﬁ,

where both Cl and R were standardized to have zero mean and unit variance. Next, we used the
observed individuals in cohort 2 to compute a3!t by regressing the corresponding entries of G3'* on
Xy via least squares: ugh = (X; Xo) " 1XJ G§1t|cohort 2. We repeated this procedure over 100 simulations,
each time recording: (i) the subject-level correlation cor(Gy, G3'); (ii) the variant-level correlation
cor(ocl, aglt). The simulation procedure was repeated for 10% and 4% of M causal variants randomly
selected from the region.

Despite enforcing cor(Gy, G3!') = ro, we observed that cor(aq, #3') was highly variable across
simulations (Figure 1R). Note that as the proportion of causal variants decreased, the apparent
correlation at variant-level, i.e., cor(aq, a) increased in magnitude. This discrepancy confirms that
the forced subject-level genetic correlation does not imply variant-level genetic correlation. So, the
way that de Leeuw et al. conducted their simulation did not reflect the true underlying shared genetic
architecture between the two traits.
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Figure 1R: Comparison of the forced subject-level genetic correlation, i.e., cor(Gi, Gz) = 0 and the corresponding realized
variant-level genetic correlation defined by cor(a1, a2) across 100 simulations. Three different settings of the proportion of

causal variants were simulated.

Statistical Artifact in Realized Genetic Correlations

By using the random-effects model, HDL-L is more stringent than LAVA, in the sense that to
detect a genuine genetic correlation, the sharing of genetic effects must be beyond what we could
expect from random arrangements of the genetic effects across the genome. LAVA’s main goal is to
detect realized correlations — This may sound reasonable, but it is actually a serious statistical flaw:
Certain arrangements of genetic effects that produce an apparent correlation will be detected as a real
correlation. Let us consider de Leeuw et al.’s Figure 1 (bottom-left panel) for the random-effects model
under null genetic correlation. First, note that when the proportion of causal variants is 100%, the
false-positive rate is at the correct/nominal rate. The type-I error inflation appears only for smaller
proportions of causal variants, which appears counterintuitive.

We explain this pattern in Figure 2R below, where we simulated two completely independent traits
under the random-effects model, so that the true cor(a1, ay) was null. Again, we used the first region
of chromosome 22 (M = 185 variants) and the genotype data from the UK Biobank (n = 335,272 White
British individuals) to define the X matrix. For 100% causal variants, the distribution of the realized
cor(G1, G) was much wider than that of cor(aq, ap). This shows that randomness in the realized
cor(G1, Gy) under the random-effects model per se was not the necessary reason for LAVA’s inflated
false positive rates.
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Figure 2R: Distribution of the realized genetic correlations for two independent traits under different proportions of causal
variants. The true genetic correlation between the effects of causal variants &1 and &, was zero. Smaller proportions of causal
variants generate larger apparent correlations (in magnitude), but those large correlations are only a statistical artifact due to a

mixture of true zero and nonzero effects.

Figure 2R shows that smaller proportions of causal variants would generate wider distributions
of the realized correlations cor(a, #p) and cor(G1, G2). Moreover, to maintain the specified heritability,
the smaller proportion of causal variants must have larger genetic effects. Altogether, they lead to
higher detection rates by LAVA, but this result is clearly a statistical artifact generated by a mixture of
zero and larger nonzero effects, not by any genuine correlation between the genetic effects. Therefore,
LAVA detects certain patterns of regional genetic effects, not genetic correlations.

(As seen in de Leeuw et al.’s Figure 1, under the null, HDL-L is not affected by such a mixture.
Moreover, the appearance of higher “power” of LAVA vs HDL-L under non-null settings in the
randome-effects model is an invalid comparison, because LAVA is based on higher type-I error rates.)

Discussion

For the random effects model in de Leeuw et al.’s Figure 1, LAVA produces inflated type-I error
under the null hypothesis r¢ = 0, while HDL-L remains well-calibrated. They considered this inflation
not as a flaw, but rather as a result of LAVA’s “power” to detect non-zero realized correlations. This
interpretation is incorrect for the following reasons:

1. Valid testing requires calibration under a data-generating process. When simulating from a model
with true genetic correlation r¢ = 0, the realized genetic components G; = Xaq and G, = Xap
will exhibit non-zero correlation purely due to stochastic variation, especially in small regions
or with limited number of causal variants. A valid testing procedure must control type-I error
under this null model - that is, it must not declare significance at a rate higher than the nominal
level, regardless of fluctuations in observed correlations.

2. Inflated type-I error rate is not power. The assertion that the observed inflation in LAVA is due to
“power” is misleading. Power refers to the probability of detecting a true effect when it exists.
Under the null hypothesis 7, = 0, there is no true effect to detect. Thus, any rejection of the null
in this setting is a false positive. Mistaking sensitivity to random noise as “power” indicates a
failure to properly model uncertainty in the null distribution.

3. Artificial orthogonality does not address the problem. de Leeuw et al. suggest that when subject-
level orthogonality is enforced — that is, when cor(G1, G,) = 0 is forced in simulations, LAVA’s
calibration improves. While true, this is not a valid argument. In real data, the subject-level
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correlation under the null of no genetic effects will never be zero. A robust method must
accommodate such fluctuations and remain conservative. HDL-L achieves this by modeling the
variance of the local covariance estimator, thereby avoiding inflation under the null.

4. Counterintuitive type-I error inflation for a small proportion of causal variants. We observed that
type-I error inflation in LAVA worsens for a smaller proportion of causal variants, even when the
true genetic correlation remains zero. Two factors are involved: (i) the mixture of zero and sparse
nonzero effects tends to produce higher realized correlations, and, (ii) to maintain a specified
heritability, the smaller proportion of causal variants are assigned larger genetic effects. Overall,
the fact that LAVA becomes more inflated in these settings suggests that its test statistic is overly
sensitive to the presence of a genetic effect, regardless of whether the signal is shared across traits.

Data Availability Statement: The individual-level genotype data are available by application via the UK Biobank
at https:/ /www.ukbiobank.ac.uk.

Code Availability: The source code for reproducing the simulations and figures in this manuscript is available at
https:/ / github.com/YuyingLi-X/HDL-L/tree/main/Response
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