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Abstract 

In manufacturing environments, the proper use of Personal Protective Equipment (PPE) is essential 

to prevent workplace accidents. Despite this need, existing PPE monitoring methods remain largely 

manual and suffer from limited coverage, significant errors, and inefficiencies. This article focuses on 

addressing  this  deficiency  by  designing  a  computer  vision  desktop  application  for  automated 

monitoring of PPE use. This system uses lightweight YOLOv8 models, developed to run on the local 

system and operate even in industrial locations with limited network connectivity. Using a Lean Ux 

approach, the development of the system  involved creating empathy maps, assumptions, product 

backlog, followed by high‐fidelity prototype interface components. C4 and physical diagrams helped 

define  the system architecture  to  facilitate modifiability, scalability, and maintainability. Usability 

was verified using the System Usability Scale (SUS), with a score of 87.6/100 indicating “excellent” 

usability.  The  findings  demonstrate  that  a  user‐centered  design  approach,  considering  user 

experience and technical flexibility, can significantly advance the utility and adoption of AI‐based 

safety tools, especially in small and medium‐sized manufacturing operations. This article delivers a 

validated  and  user‐centered  design  solution  for  implementing  machine  vision  systems  into 

manufacturing safety processes, simplifying the complexities of utilizing advanced AI technologies 

and their practical application in resource‐limited environments. 

Keywords: computer vision; Lean Ux in application; Personal Protective Equipment (PPE); real‐time 

monitoring; manufacturing industry; YOLOV8 model; industrial safety 

 

1. Introduction 

Using  personal  protective  equipment  (PPE)  is  one  of  the  most  important  strategies  for 

maintaining safety in many industries in the manufacturing sector where employees are exposed to 

the potential  risks of physical  and mechanical hazards. However,  the overwhelming majority of 

organizations  monitor  compliance  to  PPE  standards  manually  [1].  Thus,  any  kind  of  manual 

monitoring  is  limited  in coverage, efficiency, and reliability. Furthermore, human factors  limit the 

ability to monitor processes continuously and prevent accidents from happening at work. 

In light of this challenge, computer vision is a legitimate solution because it can help automate 

PPE  detection  methods  using  deep  learning.  YOLO‐based  models  have  successfully  provided 

detection of helmets, gloves, and high visibility vests in a quantitative (real‐time detection) fashion 

in constant flux industrial environments [2]. Using these technologies not only improves accuracy, 

but also provides ongoing monitoring without the challenges of human attention, drastically reduces 

scopes of error, and creates a more efficient safety measures for organizations. 

To really change this opportunity to a practical solution, the purpose of this project is to develop 

a desktop application that  includes computer vision methods to secure or validate the use of PPE 

while employees work. For desktop applications installed directly on computers, they do not need 
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any  specific  external  server  to  run  the  application, which  is  very  beneficial  for  small  and  large 

companies  [3]. Additionally,  this  application  approach  is  entailing  efficiency,  data  security  and 

privacy, simplicity of implementation, as well as the desire to better connect advanced technologies 

to the real needs of manufacturers. 

The introduction of automated systems presents some obstacles, such as adapting to less and 

variable  lighting and movements. A current study  identifies these  issues as an active part of real‐

world system testing [4]. Another task is to adapt to the increasing acceptance of new technologies in 

industrial settings where new technology is not commonly adopted. This project aims to overcome 

the  resistance  to  acceptance  of  new  technologies  through  its  intuitive  interface  and  minimal 

computational resource needs. 

Despite these technical difficulties, the encouragement that will continue to push for measures 

to  improve  workplace  safety  remains.  The  current  study  noted  some  positive  early  findings, 

suggesting that computer vision is not merely possible, but indeed required, in the SRM process to 

produce  a  safer  and  more  productive  workplace  [5].  The  aim  is  simple:  minimize  workplace 

incidents, save lives, and take the management of risk prevention beyond the current state of practice 

with the introduction of technology and innovation [6]. 

The primary objective of the article was to concretely put methodology through systematic and 

realistic  processes,  employed  Lean  UX methodology  across  all  development  phases,  to  design 

development to match the actual needs of users and better assure effective iteration using direct user 

feedback. After  the projectʹs completion, usability and effectiveness of  the system were evaluated 

with the System Usability Scale (SUS). This allowed assurances that the solution would be technically 

effective,  and  always  used  at  an  accessible,  intuitive  and  reliable  level  for  users.  Research  has 

demonstrated that using these methodological practices has improved perceived quality in intended 

digital products and reported a SUS score of 81.75 after incorporating Lean UX into web interfaces 

redesign. Both results seem  to suggest  that  these are effective ways  to enhance usability and user 

satisfaction [7]. 

2. Related Work 

2.1. Technologies Used with YOLO 

Recent advances in computer vision have shown promise for automated PPE detection through 

several avenues. Design For Safety (D4S) shares a new architecture, in which visual language models 

(CLIP,  GPT‐4o0)  and  YOLO‐World  are  used  to  differentiate  PPE  detection  while  additionally 

recognizing PPE attributes (e.g., PPE type or color) [8]. Its zero‐shot learning model is impressive for 

its flexibility; however, it relies on expensive computational models such as GPT‐4o, which is why 

the development of a desktop application that runs locally is more suitable for small and medium‐

sized manufacturers who cannot afford cloud‐based AI options. 

The SH17 dataset  is  also useful because  it  contains 8,099  images  from 17  categories of PPE, 

designed  for manufacturing  environments.  In  addition,  the  solution uses  lightweight variants of 

YOLO (v8‐nano) to ensure smooth operation on standard industrial computers without the need for 

specialized hardware [9]. While this dataset could directly benefit the training process, it does not 

address how to create a comprehensive application with intuitive interfaces and real‐time monitoring 

capabilities. 

Agricultural  applications  based  on  YOLO  offer  important  optimization  lessons  for  an  EPP 

detection system. A study achieved efficient weed detection on peripheral devices by incorporating 

BiFPN and LiteDetect into YOLOv8n. While its agricultural context differs from industrial safety, its 

parameter reduction techniques (which achieved a 63.8% reduction in parameters) directly influence 

an  approach  to maintaining model  efficiency  [10]. However,  additional  challenges  remain when 

integrating  these  optimizations  into  a  full  desktop  application  that  must  manage  dynamic 

manufacturing environments with variable lighting and worker movements. 
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Table  1  presents  success  stories  of  the  use  of  deep  learning  in  YOLO‐based  industrial 

applications that validate the viability of this technology in the manufacturing sector and highlight 

key lessons for our project. 

Table 1. Successful applications of deep learning in industry. 

Application 
Method  Results  Lessons for your 

project 

PPE detection  Clip2Safety (YOLO‐

World + GPT‐4o) 

79.7% accuracy in 

attributes 

Avoid cloud 

dependency 

Follow‐up  YOLOv8 + SAM  95.61% MOTA in 

multi‐chambers 

Pre‐processing 

techniques (e.g. 

histogram 

equalization) 

applicable to your 

system 

Optimization  MEAG‐YOLO 

(YOLOv8n) 

98.4% mAP in 

substations 

Using lightweight 

modules 

(GhostConv) for 

CPUs 

2.2. Lean UX in Industrial Applications 

Recent studies highlight the effectiveness of user‐centered approaches in demanding technical 

environments, demonstrating that iterative and collaborative design improves the user experience, 

aligning with Lean UX principles [11]. Likewise, another study showed that integrating Lean UX with 

agile frameworks such as Scrum allows design hypotheses to be validated in short and efficient cycles 

[12]. These  approaches  support  the methodology by  facilitating  the development of  applications 

tailored  to  the  real  needs  of  operators  and  supervisors, while  the  System Usability  Scale  (SUS) 

provides a reliable quantitative assessment of usability. 

In  contrast,  the  traditional  Waterfall  approach  features  rigid  sequential  phases  with  low 

adaptability, making it difficult to incorporate early feedback and often leading to costly rework in 

later phases. A recent comparative study found that projects based on agile methodologies have a 

success rate of 40%, compared to just 15% for those guided by the Waterfall approach, highlighting 

its limitations in changing and demanding environments such as the industrial sector [13]. 

Table  2  compares  traditional  design methodologies with  the  Lean UX  approach  applied  in 

industrial  environments, highlighting how  this methodology  allows  for more  agile development 

cycles, greater  focus on  the end user, and more natural  integration with quantitative assessments 

such  as  the  System Usability  Scale  (SUS). This  combination  not  only  accelerates  the  iteration  of 

functional prototypes but also ensures products with high  levels of acceptance  in contexts where 

resistance to change and resource constraints are common barriers. 

Table 2. Comparison of design methodologies in industrial environments. 

Criteria  Traditional Design  Lean UX + SUS 

Iteration time  Slow  Fast 

Design approach  Requirements based  User centered 

Usability evaluation  Informal  SUS Scale 

Adaptability to change  Low  High 
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2.2. Lean UX in Industrial Applications 

Research on railway security using YOLOv3 and Mask R‐CNN for  intrusion detection shares 

the  focus  on  security  applications,  but differs  in  its  technical  approach  [11]. While  they  address 

challenges  in open environments, such as  low visibility,  it  is  less  focused on controlled  industrial 

environments where regulatory compliance of PPE is critical. The use of the YOLOv8 architecture, 

offers greater advantages in accuracy and speed than its implementation in YOLOv3, crucial for real‐

time PPE monitoring. 

Agricultural  disease  detection  systems  using  YOLOv8/v9  on  drones  and  smartphones 

demonstrate the versatility of the framework [12]. However, to develop an application for medium 

or small industrial companies, we deliberately avoid the use of expensive hardware such as drones, 

opting for conventional webcams to maximize accessibility. We also prioritize data privacy through 

local processing, a crucial concern in industrial environments that is not addressed by its cloud‐based 

approach. 

Comparative  studies  of  YOLO  versions  for  fruit  disease  detection  revealed  that  YOLOv4 

achieves 98 % mAP, validating its efficacy for real‐time detection tasks [13]. While focused on version 

comparison,  these findings  are useful  to  implement  in newer YOLOv8  architectures,  specifically 

optimized  for  dynamic  industrial  environments where workers  and  equipment  are  in  constant 

motion. 

YOLOv8nʹs  specialized  adaptation  of  MEAG‐YOLO  for  electrical  substations  achieved  a 

remarkable 98.4 % accuracy in EPP detection [6]. The use of modules such as MSCA and GhostConv 

could  inspire  future  optimizations  in  our model. However,  our main  innovation  lies  not  in  the 

architecture of  the model,  but  in presenting  the  technology  as  an  accessible desktop  application 

designed  for manufacturing  industries, bridging  the gap  between  advanced machine vision  and 

practical industrial implementation. 

Table 3 contrasts the typical challenges of manual PPE monitoring with the solutions offered by 

YOLOv8, emphasizing how a new approach can improve efficiency, reduce costs and ensure real‐

time monitoring. 

Table 3. Advantages of YOLOV8 over traditional methods. 

Industrial Challenge  Traditional Solution  Limitations  Benefit 

Real‐time monitoring  Cameras + human 

supervisors 

Costly, error prone  Cost reduction and 

increased reliability 

Variable conditions  Random inspection  Limited coverage  Continuous detection 

without gaps 

Regulatory 

compliance 

Manual records  Risk of counterfeiting  Transparent audits 

3. Metodology 

In  the  development  of  technological  solutions  with machine  vision,  the  adoption  of  agile 

methodologies is key to ensure the effectiveness and adaptability of the final product. A current study 

implemented  Lean UX  in  the  design  of  virtual  reality  environments  to  support  the  learning  of 

students with ADHD, which enabled fast, intuitive and collaborative responses adapted to real needs 

[14]. Given this successful experience in complex technological contexts, it is proposed to apply Lean 

UX to design an application that detects the improper use of PPEs in workers in the manufacturing 

sector. Lean UX is composed of 3 stages: Think, Make and Check. 

3.1. Think 

In Lean UX, there is first the “Think” phase, which focuses on thoroughly understanding the 

problem to be solved, formulating clear hypotheses to guide the design and development process. 

This  approach  recognizes  that  proper  problem  identification  is  critical  to  designing  technology 

solutions  that  effectively  respond  to  real  needs.  It  is  important  to  understand  the  difficulties 
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experienced by workers in industrial workplaces, and the variables that impact their experiences of 

protective  equipment,  in  any  development,  especially  in  contexts where  safety  and  efficiency  is 

paramount [15]. 

In this light, Lean UX focuses on the development of hypothesis and assumption tables. These 

tables allow us to clarify the context, needs and behaviors the user is bringing, while allowing us to 

validate or invalidate these hypotheses via experimentation. Regardless of how we organize the data 

related to the userʹs action, thinking, feelings and perceptions, the empathy map  is a very helpful 

model when we want to understand the user within a lean UX framework. This method has proven 

to be effective during recent research with indigenous tribes in participatory design contexts ‐ to find 

out trends in experience and guide user‐centered design [16]. 

Finally, this phase emphasizes the definition of an abstract design framework for the solution. 

This will also sort and prioritize the Product Backlog, which is to include the features and functions 

of  product  development.  The  Product  Backlog will  also  use  the  Fibonacci  system  to  rank  and 

categorize the tasks in their backlog. According to the current study, projects using Lean UX have 

shown improved integration of engineering and risk management viewpoints that encourage better 

development of adaptable solution to an industry with constant change in demands and regulation 

[15]. 

3.2. Make 

In  the  ʺMakeʺ phase of Lean UX, physical and  logical architectures are designed. A physical 

architecture  is  concerned  with  distribution  and  implementation  of  components  within  the 

technological  infrastructure,  logical  architecture  is  concerned with definition of organization  and 

interactions. By combining the two, it ensures a well‐organized system that will be easier to maintain, 

scale and trust, which is particularly important in industrial contexts [17]. 

Interface design  in  this  space must be  intuitive and suited  for  the needs. During  this phase, 

posture using something like C4 architecture (Context, Containers, Components and Code) is very 

relevant  and  valuable.  This model  provides  clear  opportunities  to  visually  understand  how  the 

system  is  architected,  and  how  the  various  components  are mapped  out,  which  supports  the 

collaboration between the design and development teams [18]. This gives great value in a dynamic 

environment when clarity is needed to navigate. 

The stated ideas and concepts are then designed and prototyped with physical representations 

to test the hypotheses and the activities defined in the product backlog. Prototypes are an important 

method that allows for visibility into how the user interacts with technology, according to the cited 

article. Prototypes allow for faster user feedback, and better alignment between development and 

design teams, as well as acting as a mediator between requirements and creating technical decisions 

during  the  systems development process  [19]. These prototypes  allow  for  the  testing of possible 

improvement to user interface and user experience before implementing final products. 

In  addition,  user‐flows  are  a  valuable  tool  and  play  an  essential  role  in  mapping  user 

interactions. User flows are diagrams that visualise the steps users must take in order to complete 

specific tasks. User‐centered visual representations, visual aids like user flows, not only bring clarity 

to processes, but also bring alignment between the systems design and users actual needs, leading to 

greater usability and technology acceptance [20]. 

3.3. Check 

Lastly,  the Check  in  Lean UX  reflects  assessing  and  validating  solutions  to  be  certain  they 

function as  intended and are useful. At  this  stage, users  can provide direct  feedback  in order  to 

validate  your  hypothesis deposition.  Surveys  are  a  great way  to  obtain  information  about  your 

experience with the prototype, while also allowing to watch out for potential usability problems and 

areas for improvement. When you design your survey with well‐crafted questions, evaluating the 

perceived functionality of the design and usability is effective, which helps with adjusting the design 

before it is implemented [21]. 
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The user  interface design principles proposed by Jakob Nielsen are a core component of  this 

framework for usability measurement. The heuristics identified by Nielsen such as visibility of the 

system state, match with the real world, and error prevention should be critical when designing any 

interface within which the user interacts and is indicative of an intuitive and safe interface. Using 

these heuristics in systems supports in proving the user experience, prevents errors and positively 

increases user acceptance of the system [22]. 

Finally, a very popular tool in the area of usability evaluation is the System Usability Scale (SUS). 

The SUS, developed by John Brooke, is a ten‐question Likert‐formatted questionnaire that provides 

a quantitative measure  of usersʹ perception  of usability  [23].  In  this  report,  the  evaluation  of  an 

application designed for the manufacturing sector is used. 

As  shown  in  Table  4,  SUS  is  commonly  used  and  is  best  known  for  its  simplicity  and  for 

providing an overview of user experience from their perspective of system performance. 

Table 4. Questions for the evaluation of the SUS. 

N°  Questions 

1  I would like to use this system frequently. 

2  The system is unnecessarily complex. 

3  I found the system easy to use. 

4  I think I would need the support of a technician to be able to use this 

system. 

5  The various functions of the system are well integrated. 

6  There is too much inconsistency in this system. 

7  I think most people would learn to use this system very quickly.   

8  I find the system very cumbersome to use.   

9  I felt safe using the system.   

10  I needed to learn a lot of things before I could use the system. 

4. Results 

Using  the Lean Ux approach described  in  the methodology, with details on  the  three stages: 

Think, Make and Check. In the Think stage, tools such as Empathy Maps, UX hypothesis building 

and product backlog were used  to  thoroughly understand  the users.  In  the Make stage, solutions 

were materialized  through a coherent  technical architecture and visual prototypes. Finally,  in  the 

Check stage, the user experience was validated using the SUS questionnaire. Each stage provided 

important information to develop a solution that met the real needs of the industrial context, offering 

an effective and satisfactory experience for users. 

4.1. Think 

To  ensure  a user‐centered design,  an Empathy Map was developed  specifically  focused  on 

industrial supervisors, who will be  the main users of  the desktop application  for  the detection of 

personal protective equipment (PPE). 

This tool, shown in Figure 1, allowed us to gain an in‐depth understanding of their motivations, 

frustrations, needs and the actual context in which they interact with technology. By identifying what 

they see, hear, think, feel and do in their work environment, their perceptions revealed that they face 

difficulties due to the lack of effective tools to monitor and the complexity of current systems, which 

generates  frustration  and pressure  to  comply with  safety  regulations. This mapping was  key  to 

aligning the technology solution with usersʹ actual expectations and conditions. 
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Figure 1. Empathy map. 

Table 5 presents a series of key assumptions about user behavior and needs in relation to the 

platform, as well as the associated user experience (UX) hypotheses that will guide the design and 

development of the system. These assumptions arise from the initial understanding of the context of 

use and enable the formulation of hypotheses that can then be validated through testing, interviews 

or prototyping. The goal is to ensure that each design decision responds to real needs, thus improving 

efficiency, usability and overall user satisfaction within the platform. 

Table 5. Assumptions and hypotheses. 

Assumptions  Hypotheses 

The user needs to act quickly in critical 

situations. 

If we design direct action flows with quick 

access and clear visual hierarchy, the user will 

be able to register events in an agile and 

efficient way. 

The user works in multiple windows or 

tabs simultaneously. 

If we offer a modular interface, we facilitate 

the simultaneous handling of tasks and the 

comparison of information in real time. 

Technical information can be dense and 

complex. 

If we structure the information with 

hierarchical design, intelligent filters and clear 

visualization, we will reduce the userʹs 

cognitive load. 

The user expects to see evidence of 

recorded work quickly. 

If we enable  immediate uploading of  images,

files or logs from the browser, we will increase 

confidence  in  the  system  and  reduce

management times. 

The user needs reports ready to 

communicate results. 

If  we  implement  automated  exports  and

customizable  dashboards,  we  will  improve

your productivity and reporting capabilities. 
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Table  6  shows  the  Product  Backlog, which  contains  the main  functionalities  identified  and 

graded in ascending order following the Fibonacci sequence, estimated based on the cost of creating 

each user story. This allows a clear and structured prioritization, facilitating the planning and efficient 

development of the project. 

Table 6. Product backlog. 

Code  Title  Value (1/2/3/5/8) 

US001  Integrate Yolov8 for PPE detection  8 

US002  Integrate OpenCV for real‐time capture  5 

US003  Train a model for PPE detection  8 

US004  Visual interface to see when a worker is not wearing 

PPE 

5 

US005  Quick identification of missing PPE detected on screen  5 

US006  Receive alerts when a worker is without PPE  5 

US007  Keep a history of alerts  3 

US008  Organize alerts  3 

US009  Display detection graphs for the month  5 

US010  Configure alert colors  2 

US011  Review detection statistics  3 

US012  Configure profile and frequency  1 

4.2. Make 

Based on the hypotheses and the product backlog developed in the Thinking phase, we carry 

out the concrete design of the solution, giving shape to a tangible proposal that allows us to validate 

the  initial  ideas.  This  stage  is  divided  into  two  fundamental  components:  Architecture,  which 

describes  the  technical  organization  of  the  system  to  guarantee  its  functionality  and  coherence. 

Prototypes, which allow us to visualize and evaluate the userʹs interaction with the interface. 

4.2.1. Architecture 

The development of  the physical and  logical diagrams was essential  to clearly structure and 

communicate the project architecture. 

The physical diagram, shown in Figure 2, integrates the system components: from the camera 

that captures images, to the Python desktop application that manages the video input, to the YOLOv8 

machine vision model that detects breaches and stores the results in a SQLite database. 
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Figure 2. Physical diagram from PPEYE. 

On the other hand, the  logical diagram depicted  in Figure 3 organizes the system  into  layers 

(client, presentation, business and data), which allows visualizing the separation of responsibilities 

between  modules  such  as  dashboard,  alerts,  camera  flow  control  and  data  persistence.  These 

diagrams are essential to ensure a consistent and scalable implementation, and reflect good software 

design practices aligned with the principles of a clean architecture. 

 

Figure 3. Logical diagram from PPEYE. 

In our project, the use of the C4 model (Context, Container, Component, Code) was key to clearly 

visualize the system architecture at different levels. The context diagram, shown in Figure 4, allowed 

us to identify and communicate in a simple way the relationship between the main stakeholders and 

the systems involved. This high‐level view is critical for any stakeholder to understand the purpose 

and scope of the system without the need for deep technical knowledge. 
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Figure 4. Context diagram. 

In  Figure  5,  the  PPEYE  system was  divided  into  several  technology  containers  to  ensure  a 

modular and scalable architecture. These include: the detection container with YOLOv8, the real‐time 

alerts  container,  the  history  container  for  tracking,  the  configuration  container  for  customized 

management, and the database container (SQLite). This separation facilitates maintenance, reuse and 

efficient deployment of the system. 

 

Figure 5. Content diagram. 

The  component diagram,  shown  in Figure  6, provides  a more detailed view of  the  internal 

modules  that  make  up  each  technological  container,  allowing  a  better  understanding  of  their 

structure and communication between them. New components are incorporated in this view, such 

as  the  Processing Component,  in  charge  of  processing  in  real  time  the  images  captured  by  the 

webcam;  the  Parameters Component, which  defines  the  EPP  detection  criteria  according  to  the 

supervisorʹs configuration; and  the Dashboard Component, which presents a statistical  summary 

based on historical data. This precise division facilitates maintenance, improves the traceability of the 

information flow, and allows for more accurate configuration. 
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Figure 6. Component diagram. 

Finally, in Figure 7, the class diagram shows how the main classes of the system interact to detect 

and manage  EPP  alerts.  The  user  configures  the  system  through  the Config  class,  displays  the 

Dashboard and receives the alerts. Detection is performed by DetectionService, which analyzes the 

images captured by the camera using the parameters defined in Config. If a violation is detected, an 

alert is generated and stored in the history. The user can query this history to view alerts and statistics. 

The diagram reflects a clear object‐oriented architecture, where each class has specific responsibilities 

that allow a structured flow from image capture to results display. 

 

Figure 7. Class diagram. 
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4.2.2. Prototypes 

For prototype design, icons facilitate an intuitive and accessible interface, key in dynamic work 

environments that require quick response. As shown in Figure 8, conventional symbols such as the 

bell  (notifications),  eye  (visualization),  and  pencil  (editing)  were  used,  allowing  immediate 

understanding without the need for text. 

 

Figure 8. PPEYE icons. 

In addition, a clear and  intuitive visual design  is key  to a quick user  response. As shown  in 

Figure  9,  a  sober  and  safe  color palette,  in  line with  the manufacturing  industry, was  chosen  to 

reinforce  confidence, make  alerts  easier  to  read  and  improve  visibility.  This  visual  consistency 

optimizes the supervisorsʹ monitoring experience. 

 

Figure 9. PPEYE color pallete. 

In the first view, as shown in Figure 10, it presents a clear and functional interface that combines 

an image of the industrial environment with a simple access form, which reinforces the context of use 

of the application. The design prioritizes readability and accessibility, with well delimited fields and 

a prominent action button that facilitates quick access for the user. 

 

Figure 10. Login view. 

In  the  application, we  opted  for  the Z  pattern,  a  design model  that  guides  the  userʹs  gaze 

naturally and efficiently. In the Home view, as shown in Figure 11, it features a navigation bar at the 

top, a key  for  scrolling within  the application. This  space  contains  the names of  the main views, 

ensuring that the user can quickly access the different functionalities of the application. The central 

content of the view is dedicated to the camera with the EPP detection system, allowing the user to 

see in real time the security status of the area. Just below, an option is provided to switch between 

the webcams linked to the application. Finally, on the right, a list of alerts generated by the detection 
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system is displayed, with the characteristic color configured for the different PPE, allowing the user 

to quickly review any incident. 

 

Figure 11. Home view. 

The Dashboard view, as shown in Figure 12, provides a detailed overview of EPP monitoring 

over time. At the top, a drop‐down menu allows selecting the month of interest. On the left, a pie 

chart shows alerts of workers without PPE, segmented by equipment type. On the right, there are 

two additional graphs: a pie chart showing how many workers without PPE were detected by the 

different  cameras  registered  in  the  application  and  a  bar  chart detailing  the  number  of workers 

without PPE by week in the selected month. This temporal breakdown allows you to identify patterns 

and make safety decisions, providing both an overview and a more detailed analysis. 

 

Figure 12. Dashboard view. 

The History view, as shown in Figure 13, presents a detailed record of the alerts generated by 

workers without PPE registered  in  the database. This  interface  is designed  to provide a clear and 

organized display of each event, including the description of the alert, the camera that captured it, 

and the exact date and time. The tabular design, along with the ability to sort data by camera name 

or date, responds to the need for supervisors to quickly access critical information, facilitating the 

identification of non‐compliance and timely intervention in specific areas. 
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Figure 13. History view. 

In the Config view illustrated in Figure 14, users benefit from a multi‐level customization panel 

enabling them to configure the system to the specific requirements of their different environments. 

Using the  ʺSafety Alertsʺ user panel, supervisors can elect which optimum equipment (e.g., vests, 

helmets, etc.) that they want the system to monitor thus allowing a modular and scalable response 

depending on operational context.  In addition,  the  ʺAlert Frequencyʺ option can be configured  to 

send an alert every 1 to 5 minutes, avoiding alert saturation while sending alerts as per task loading, 

and the ʺAlert Colorsʺ option enables users to configure the colors allocated to each different type of 

alert  improving  visual  identification  and  lowering  user  task  burden.  This  allows  for  flexible 

configuration based on the empathic design approach of Lean UX, allowing each user to configure 

how to control their alerts while adapting to their workflows and actual monitoring needs. 

 

Figure 14. Config view. 

The Profile view, seen in Figure 15, creates a straightforward and understandable environment 

for the user to control their own information within the system. The Profile view allows the user to 

edit key information such as their name, email and password, and also change their profile picture ‐ 

again creating a more unique and recognizable interaction. The visual design is consistent with basic 

user experience (UX) standards, such as visibility of system status and editing directly using an icon 

next to each field. 
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Figure 15. Profile view. 

The Alerts view, as shown in Figure 16, displays real‐time events about workers not wearing 

their PPE, indicating the time, a clear description and a customized color according to the type of 

alert, previously configured by the user. Its design responds to user experience (UX) principles, such 

as visual  clarity, user  control and operational  efficiency,  ensuring an  immediate  response  to  risk 

situations. 

 

Figure 16. Alerts view. 

4.3. Check 

In this project SUS was used as the main verification tool in the verification phase, providing a 

reliable and standardized measurement of the user experience with the application prototype. The 

evaluation was carried out on 50 people to collect the necessary information, who interacted with the 

prototype and completed the SUS questionnaire. The results we obtained allowed us to find areas of 

improvement  in  the user  interface which  allowed us  to make  important  changes  in making  the 

experience more optimal. 

To perform the evaluation, users were invited to work with the prototype in Figma and answer 

the SUS questionnaire. The questions addressed aspects such as user confidence, ease of  learning, 

system consistency and perceived complexity. The average score obtained was 87.6 out of 100, which, 
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according  to  the  interpretation  of  the  SUS  scale,  is  classified  as  “excellent” usability. This  result 

confirms that the design of the application is highly intuitive, accessible and satisfactory for the end 

user. 

As  a  complement  to  the  overall  score,  a  stacked  horizontal  bar  chart  was  generated  that 

visualizes  the  percentage distribution  of  the  responses  to  each  question  in  the  questionnaire,  as 

shown  in Figure 17. This graph allows us  to observe  in detail  the usersʹ perception of  individual 

aspects of the system. The low proportion of negative responses suggests that there are no critical 

areas that compromise the user experience. This visualization not only quantitatively supports the 

score obtained, but also provides clear visual information to detect specific patterns, strengths and 

possible opportunities for improvement in the evaluated interface. 

 

Figure 17. Bar graph of the SUS responses. 

5. Discussion 

According  to  the  results  obtained  on  the  SUS  scale,  which  was  87.6,  it  was  classified  as 

“excellent”. When comparing the presented solution with a management application, but for emotion 

management from a reference article, whose value was 86 [24], although the difference is subtle, it 

reinforces the effectiveness of the user‐centered approach applied in our design, especially in aspects 

such  as  intuitive  interface,  alert  customization  and  local  data  processing.  This  appears  to  have 

positively  influenced  the  usersʹ  perception  of  efficiency  and  control,  suggesting  a  competitive 

advantage in industrial settings. 

Likewise, when comparing our SUS score with that obtained in the study where an intelligent 

health monitoring system was evaluated, an average of 51.25 was obtained and, according to the SUS 

scale, it was 0.911, where a more marked difference is evident that reaffirms the positive impact of 

key decisions [25]. The use of clear visual components, optimized navigation flows and an adaptive 

approach to the actual conditions of the environment seem to have contributed to a more satisfactory 

user experience. This comparison also highlights opportunities for improvement for future versions. 
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6. Conclusions 

In conclusion, the design of the application was focused from the beginning on the end user, the 

supervisors who need quick responses and easy‐to‐use digital environments. Through the empathy 

map  and  product  backlog,  key  needs  such  as  simplicity,  speed  and  adaptability  to  the  work 

environment were  identified. These  tools  allowed  to  translate  frustrations  and  expectations  into 

concrete UX decisions that guided the entire proposal. 

Consequently, the system architecture was conceived with modularity and scalability criteria. 

The use of  the C4 model made  it possible  to represent each  level of  the system,  from  the general 

context to the internal components. The separation into containers and the use of logical, physical 

and  class  diagrams  ensured  a  clear  and  adaptable  structure,  in  line with  good  software  design 

practices. 

In addition, based on the assumptions and product backlog defined, the functionalities of the 

prototype were  established. These  instruments  allowed  us  to  validate  icons;  have  a  clear  visual 

hierarchy of  elements, and  sobriety of  color  that  enhance  interaction;  ‐each  screen was aimed  to 

specific aims, enabling efficient  interaction  in  the user, while also ensuring visual and  functional 

coherence throughout the system. 

In contrast, in order to validate the usability of the prototype, the System Usability Scale (SUS) 

was employed with 50 users populated in the industrial environment and yielded an average score 

of 87.6 out of 100. This would be considered excellent and indicates that the applicationʹs design and 

function  is both  intuitive,  reliable, and  efficient  for  its  intended users. Apart  from  these positive 

results, the testing process showed other possible future improvements including adjustments to the 

interface  to  accommodate  low visibility  conditions,  adjusting model  accuracy  to  the  face of EPP 

variations, and potentially adding language functionalities. 

These  possibilities will  give  the  product  the  opportunity  to  scale,  develop  greater  value  in 

alternative industrial contexts, and keep focused on the user. This research is part of a multi‐stage 

thesis project; it successfully contributes to addressing the challenge of safety in manufacturing by 

applying  and  iteratively  demonstrating  how  user‐centric  machine  vision‐based  solutions  can 

effectively address this issue. 
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