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Abstract 

This study proposes a lightweight solution for real‐time, low‐power semantic segmentation in drone 

applications based on a RISC‐V heterogeneous architecture. A lightweight model integrating U‐Net 

and MobileNetV2 was designed to maintain multi‐scale feature extraction capabilities while reducing 

computational complexity to one‐tenth that of standard convolutions through depthwise separable 

convolutions.  Leveraging  the  modular  flexibility  of  the  RISC‐V  processor  and  the  hardware 

acceleration  capabilities  of  FPGA,  a  heterogeneous  computing  framework  was  established, 

supporting customized instructions (e.g., DCONV, TCONV) and on‐chip SRAM tiling optimization. 

Experimental results demonstrate that the model achieves an mIoU of approximately 0.2 and 70% 

pixel‐level accuracy on  the validation set, with  inference  latency  reduced by 3–5  times via FPGA 

acceleration.  The  TrustZone  module  ensures  secure  model  deployment  through  SM3/SM4 

cryptographic validation. This work provides a scalable open‐source framework for high‐precision 

semantic segmentation on edge devices, validating the engineering feasibility of RISC‐V in vision‐

centric edge intelligence. 
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1. Introduction 

With the rapid development of drone technology, its applications in fields such as agricultural 

monitoring, urban planning,  and disaster  response have  expanded  significantly. High‐resolution 

drone imagery offers abundant scene information [1], yet also imposes demanding requirements for 

multi‐scale,  multi‐category  object  recognition,  challenging  traditional  semantic  segmentation 

algorithms [2]. Existing segmentation methods often rely on high‐performance hardware (e.g., GPUs 

or specialized AI chips), limiting their suitability for resource‐constrained edge devices on drones. 

This creates a critical need for lightweight, efficient models capable of real‐time processing with low 

power consumption [3]. 

RISC‐V, as a modular, open‐source instruction set architecture (ISA), is gaining traction in the 

edge computing domain due to its scalability and energy efficiency. Its customizable instruction set 

makes it particularly suitable for embedded vision tasks, enabling tailored acceleration for specific 

operations. However,  deploying  complex  vision models  like  semantic  segmentation  on  RISC‐V 

platforms remains a challenge due to constraints in computation, memory bandwidth, and co‐design 

optimization between hardware and algorithms [4–6]. 

This  study  addresses  the  core  requirements  of  real‐time  performance  and  low  power 

consumption  in  semantic  segmentation  tasks  for  drone  applications  by  proposing  a  lightweight 

solution based on a RISC‐V heterogeneous architecture. The goal is to establish an efficient algorithm‐

hardware  co‐optimization  framework  for  edge  computing. First,  in  response  to  the  challenges of 

multi‐scale, multi‐class object recognition in high‐resolution drone imagery processing, a lightweight 
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model  integrating  U‐Net  and  MobileNetV2  is  designed.  By  leveraging  depthwise  separable 

convolutions, computational complexity is significantly reduced while retaining multi‐scale feature 

extraction  capabilities,  thereby  enhancing  model  efficiency.  Second,  at  the  hardware  level,  a 

heterogeneous architecture combining a RISC‐V core and an FPGA accelerator is constructed. This 

design  incorporates  customized  instruction  sets  and on‐chip SRAM  tiling  strategies  to  accelerate 

convolution  operations.  Additionally,  image  tiling  reduces  energy  consumption  from  external 

memory access,  effectively  alleviating bandwidth bottlenecks. Furthermore, a TrustZone  security 

module and SM3/SM4 cryptographic mechanisms are introduced to ensure the security and integrity 

of  model  deployment.  Finally,  experiments  validate  the  modelʹs  performance,  demonstrating 

reduced  inference  latency  through FPGA  acceleration. A  systematic  evaluation of  the  algorithm‐

hardware co‐design confirms its feasibility and performance advantages on edge devices, providing 

theoretical support and engineering paradigms for the practical application of RISC‐V in autonomous 

drone vision systems. 

2. Related Work 

2.1. Drone Semantic Segmentation 

In  recent years,  scholars worldwide have  conducted numerous  studies  in  the  field of drone 

semantic segmentation, proposing various  improved models and methods  for diverse application 

scenarios. Liu et al. introduced a dense small‐object segmentation approach for drone imagery based 

on GSegFormer, which enhances segmentation accuracy for small targets through a multi‐scale low‐

loss feature fusion network and a Cascaded Gated Attention Module (CGAM). This method proves 

particularly effective for processing densely distributed small objects in aerial  imagery, though its 

complex structure may  incur higher computational costs. Girisha et al. validated  the feasibility of 

FCN and U‐Net architectures for green vegetation and road segmentation using manually annotated 

drone video datasets, achieving pixel accuracies of 89.7% and 87.31% respectively7. However, their 

study was  limited  by  a  small dataset  scale  and did  not  address multi‐category  segmentation  in 

complex backgrounds. Xiong’s team developed the Tea‐UNet model, integrating a RepViT encoder 

with Multi‐level Feature Transform (MFT) and Multi‐scale Attention Fusion (MAF) modules. This 

solution achieved high‐precision segmentation in tea plantation drone imagery, especially excelling 

for  elongated  or  irregularly  shaped  targets—though  its  optimization  strategy  requires  further 

validation for generalizability to other agricultural scenarios. Focusing on disaster assessment, Pi et 

al.  employed Mask‐RCNN  and PSPNet on  the Volan2019 dataset,  improving  robustness  in post‐

disaster  damage  detection  through  multi‐class  segmentation  and  targeted  data  augmentation. 

Nevertheless,  the models showed reduced accuracy  for small objects (e.g., vehicles) and relied on 

balanced datasets with high annotation costs. Collectively, current research predominantly addresses 

small‐object  segmentation,  multi‐scale  feature  fusion,  and  adaptability  to  complex  scenes.  Yet 

persistent limitations include restricted dataset scales, insufficient computation‐accuracy tradeoffs, 

and  scenario‐specific  dependencies.  Future  efforts  should  prioritize  lightweight  model  design, 

multimodal data fusion, and adaptive augmentation strategies to enhance generalization capabilities. 

2.2. RISC‐V 

Recent  years  have witnessed  significant  advancements  in  RISC‐V‐based  embedded  system 

design by scholars globally, yielding innovative solutions for diverse application scenarios. Liu et al. 

developed an intelligent cold‐storage monitoring system using RISC‐V SoC CH2601 with the Alibaba 

Cloud  IoT  platform,  integrating  multisensory  and  remote  control  modules  to  enable  real‐time 

monitoring  and  automated  regulation  of  environmental  parameters  (temperature,  humidity, UV 

intensity). Key advantages include AT command‐based cloud platform interactions and smartphone 

remote control with strong extensibility, though its multitasking capability in complex scenarios is 

constrained by hardware resource allocation strategies8. Meanwhile, Wang et al. created a Chisel‐

based  RISC‐V  five‐stage  pipelined  microcontroller  for  controlled  nuclear  fusion  applications. 
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Through data  forwarding  and branch prediction optimizations,  it  achieves  2.55 CoreMarks/MHz 

while  successfully  running RT‐Thread on FPGA9. However,  full  stability validation under high‐

radiation  environments  remains  lacking,  and  compatibility  with  non‐standard  ISA  extensions 

requires further evaluation. Collectively, contemporary research emphasizes RISC‐Vʹs customizable 

strengths and IoT integration capabilities, yet reveals improvement opportunities in heterogeneous 

resource scheduling, extreme‐environment adaptability, and industrial‐grade reliability verification. 

Future efforts should leverage advanced process nodes and fault‐tolerant mechanisms to extend its 

application boundaries. 

3. Research Design 

3.1. U‐Net + MobileNetV2 Architecture for Semantic Segmentation 

The proposed semantic segmentation model adopts a U‐Net architecture with MobileNetV2 as 

the encoder backbone, designed to balance accuracy and computational efficiency for drone imagery. 

The  encoder‐decoder  framework  employs multi‐scale  feature  extraction  and  skip  connections  to 

preserve spatial resolution while capturing semantic context. 

The encoder is constructed using MobileNetV2, which  integrates  linear bottleneck  layers and 

inverted residual blocks. Each block consists of three stages: 

Expansion  Layer:  Expands  input  channels  via  a  1×1  convolution.  For  an  input  tensor  X ∈
ℝୌൈ୛ൈେin, the expanded feature map  Xexpand  is: 

Xexpand ൌ ReLU6൫Wexpand ∗ X ൅ bexpand൯  (1)

where Wexpand ∈ ℝ
ଵൈଵൈେinൈେexpand  is the weight matrix and  bexpand  is the bias. 

Depthwise Convolution: Applies spatial filtering independently to each channel: 

Xdepth ൌ ReLU6൫Wdepth ∗ Xexpand ൅ bdepth൯  (2)

where Wdepth ∈ ℝ
୩ൈ୩ൈେexpandൈଵ  is the depthwise kernel. 

Projection Layer: Reduces channel dimensions via another 1×1 convolution: 

Xproject ൌ ReLU6൫Wproject ∗ Xdepth ൅ bproject൯  (3)

where Wproject ∈ ℝ
ଵൈଵൈେexpandൈେout. 

This design reduces computational cost while maintaining feature richness through depthwise 

separable convolutions. 

The decoder progressively upscales features to recover spatial resolution. For the  l‐th layer: 
Upsampling: Uses transposed convolution to double the feature map size: 

U୪ ൌ UpSampleሺD୪ሻ ∈ ℝଶୌౢൈଶ୛ౢൈେౢ   (4)

where  UpSample  applies a 2×2 kernel with stride=2. 

Feature Fusion: Concatenates upsampled  features  U୪  with corresponding encoder outputs  F୪ 
along the channel dimension: 

D୪ିଵ ൌ ConcatሺU୪, F୪ሻ ∈ ℝଶୌౢൈଶ୛ౢൈଶେౢ   (5)

Refinement: Applies 3×3 convolution to refine fused features: 

D୪ିଵ ൌ ConvଷൈଷሺD୪ିଵሻ ∈ ℝଶୌౢൈଶ୛ౢൈେout   (6)

The  decoder  outputs  are  passed  through  a  1×1  convolution  to map  features  to  Nclass ൌ 23 
semantic classes: 

Ŷ ൌ ConvଵൈଵሺD଴ሻ ∈ ℝ
ୌinputൈ୛inputൈ୒class   (7)

Loss Function: Cross‐entropy loss minimizes the discrepancy between predicted  Ŷ  and ground 
truth  Y: 
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ℒCE ൌ െ
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N
෍ 

ୌ

୧ୀଵ

෍  

୛

୨ୀଵ

෍  

୒class

ୡୀଵ

Y୧୨ୡ log൫Ŷ୧୨ୡ൯  (8)

where  N ൌ H ൈ W ൈ Nclass. 

Optimizer: AdamW with OneCycleLR adjusts  learning rates dynamically. Parameter updates 

follow: 

θ୲ାଵ ൌ θ୲ െ η୲ ⋅
m̂୲

ඥv̂୲ ൅ ϵ
െ η୲ ⋅ λ ⋅ θ୲  (9)

where  m̂୲, v̂୲   are bias‐corrected momentum and variance  terms,  η୲  is  the  learning  rate, and  λ  is 
weight decay. 

Learning Rate Schedule: OneCycleLR cyclically varies  η୲  between  ηmin  and  ηmax: 

η୲ ൌ

⎩
⎪
⎨

⎪
⎧ηmin ൅ ሺηmax െ ηminሻ ⋅

t
Tcycle

(ascending phase)

ηmax െ ሺηmax െ ηminሻ ⋅
t െ

Tcycle
2

Tcycle
2

(descending phase)

  (10)

Depthwise  Separable Convolution  Efficiency:  Reduces  parameters  and  FLOPs  compared  to 

standard convolutions: 

Standard Convolution: 

Paramsstd ൌ kଶ ⋅ Cin ⋅ Cout,FLOPsstd ൌ 2 ⋅ kଶ ⋅ Cin ⋅ Cout ⋅ H ⋅ W  (11)

Tiling for Memory Efficiency: High‐resolution images (4000 ൈ 6000) are divided into  512 ൈ 768 
tiles to fit on‐chip memory: 

X୧ ൌ Xሺ୧⋅௛:ሺ୧ାଵሻ⋅௛,୨⋅୵:ሺ୨ାଵሻ⋅୵,:ሻ for i, j  (12)

3.2. Hardware Architecture Design for RISC‐V Heterogeneous Processors 

To achieve real‐time inference for semantic segmentation on a RISC‐V heterogeneous processor, 

the  architecture  integrates  a RISC‐V  core with  FPGA‐based  acceleration  units.  The RISC‐V  core 

manages  control  flow and  logical operations, while  the FPGA handles  computationally  intensive 

tasks such as convolution and activation functions. 

The RISC‐V core communicates with the FPGA accelerator via an AXI bus. The FPGA embeds a 

customized convolution accelerator  (Convolution Accelerator) optimized  for depthwise separable 

convolutions. The data flow is defined as: 

X୭୳୲ ൌ FPGA_Accelerator൫X୧୬, Wୢ୵, W୮୰୭୨൯  (13)

where  Wୢ୵   and  W୮୰୭୨   denote  the  weight  matrices  of  depthwise  and  pointwise  convolutions, 

respectively.  The  FPGA  employs  a  pipelined  architecture  to  enable  parallel  processing  across 

multiple channels. Each channelʹs computation is formulated as: 

Y୧
ሺ୲ሻ ൌ ෍  

୏೓

୩ୀଵ

෍  

୏౭

୪ୀଵ

X୧
ሺ୲ି୩ሻ ⋅ Wୢ୵ሺk, lሻ, i ൌ 1,2, … , C୧୬  (14)

Here,  t  represents the time step, and  Y୧
ሺ୲ሻ
  is the output feature of the  i୲௛  channel. 

To  reduce  external memory  access  latency, on‐chip SRAM  caches weights  and  intermediate 

feature maps. High‐resolution images (e.g.,  1024 ൈ 1024) are partitioned into  64 ൈ 64  tiles, mapped 

to on‐chip memory as: 

Tile୫,୬ ൌ Xሾm ⋅ 64: ሺm ൅ 1ሻ ⋅ 64, n ⋅ 64: ሺn ൅ 1ሻ ⋅ 64, : ሿ, m, n ∈ ℤା  (15)
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Each  tile  is  processed  independently  in  the  FPGA, minimizing  cross‐bank memory  access 

energy. 

The RISC‐V core integrates a TrustZone module to ensure model integrity. During boot‐up, the 

SM3 hash algorithm measures the bootloader, OS, and model weights: 

Digest ൌ SM3ሺDataሻ, Signature ൌ SM4൫Digest,Key൯  (16)

If  the  computed digest matches  the pre‐stored  signature,  the model  is  loaded;  otherwise,  a 

security exception is triggered. 

3.3. Customized Instruction Set Extensions and Hardware Acceleration 

RISC‐Vʹs open architecture enables custom  instruction extensions  for critical operations. Key 

instructions for semantic segmentation include: 

This instruction executes depthwise separable convolution directly on the FPGA. Its format is: 

DCONV rd,rs1,rs2,imm  (17)

Here,  rs1  holds the input feature address,  rs2  the weight address,  imm  specifies kernel size 

and stride, and  rd  stores the output. The FPGA loads input features and weights into local memory, 

computing results via a Processing Element (PE) array. 

Upsampling in the decoder is accelerated via transposed convolution, defined as: 

Y୧,୨
ሺ୩ሻ ൌ ෍  

୏೓

୫ୀଵ

෍  

୏౭

୬ୀଵ

W୫,୬
ሺ୩ሻ ⋅ X

ቔ
୧
ୱቕି୫ାଵ,ඌ

୨
ୱඐି୬ାଵ

  (18)

The TCONV  instruction  leverages  the FPGAʹs  transposed convolution engine  to  reduce core 

computational load. 

4. Experimental Result 

Next,  the  results  of  drone  (UAV)  image  semantic  segmentation  based  on  the  U‐net  + 

MobileNetV2 architecture will be presented here. Specifically,  the  loss  iteration over batches,  the 

mean Intersection over Union (mIoU) score, and the accuracy curves are plotted as shown in Figures 

1–3. 

 

Figure 1. Iteration Loss Curve. 
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Figure 1 illustrates the variation of training and validation losses over epochs. Initially, the loss 

values  rapidly  decrease,  indicating  rapid  convergence  of  the model.  Subsequently,  the  rate  of 

reduction  in  loss  decelerates  and  stabilizes,  with  the  training  loss  eventually  converging  to 

approximately 0.8 and the validation loss stabilizing around 1.0. 

 

Figure 2. IoU Score Curve. 

Figure 2 focuses on the core evaluation metric of the model, the mIoU (mean Intersection over 

Union), and its evolution during training. The plot clearly demonstrates that both the training and 

validation mIoU exhibit consistent and similar increasing trends as training progresses. This indicates 

the effectiveness of  the model architecture and  learning process, with steady  improvement  in  the 

modelʹs ability to accurately delineate boundaries of different classes. Crucially, the two curves show 

no  significant  divergence  (e.g.,  premature  decline  or  notably  lower  values  in  validation mIoU 

compared  to  training mIoU).  The  validation mIoU  ultimately  reaches  approximately  0.2, which 

serves as a positive indicator of training stability, suggesting no evident overfitting or underfitting 

occurs. 

 

Figure 3. Accuracy Curve. 
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Figure  3  illustrates  the  variation  of  overall  accuracy  in  pixel‐level  classification. A  notable 

observation is that the validation accuracy remains consistently stable and slightly higher than the 

training accuracy across most epochs, with both metrics ultimately converging to approximately 70%. 

This phenomenon, which is relatively uncommon, may suggest that the validation set samples are 

comparatively simple and exhibit minimal distributional differences from the training set. Indeed, 

this indicates that the model demonstrates robust generalization capability under the current data 

split. 

 

 

 

Figure 4. Visualization of Semantic Segmentation Results. 

Figure  4  displays  the  semantic  segmentation  results  on  UAV‐captured  samples  using  the 

proposed U‐Net  + MobileNetV2 network. The outputs demonstrate  that  the model  can  correctly 

identify dominant objects such as roads, vegetation, and buildings, aligning with the ground truth 

labels  in  most  test  cases.  However,  segmentation  accuracy  near  object  boundaries  remains 

suboptimal, and small targets are occasionally omitted or misclassified. These limitations may stem 

from the reduced capacity of the lightweight model, which trades off fine‐grained spatial details for 

computational  efficiency.  Despite  these  challenges,  the  overall  segmentation  layout  remains 

consistent  with  expected  semantic  regions,  supporting  the  model’s  suitability  for  embedded 

deployment with further refinement. 

Next, this section presents the performance optimization results achieved by adopting the RISC‐

V  architecture. Custom  instructions  and  FPGA  acceleration  significantly  enhance  computational 

efficiency. For standard convolution FLOPs  Fୱ୲ୢ  and depthwise separable convolution FLOPs  Fୢୱ, 
the speedup ratio is: 

S ൌ
Fୱ୲ୢ
Fୢୱ

ൎ
C୧୬

C୭୳୲
  (19)

For MobileNetV2, where  C୧୬ ≪ C୭୳୲, the speedup ratio exceeds 10x. 
On‐chip SRAM reduces external memory access. For a tile size of  64 ൈ 64 ൈ C୧୬, the data volume 

per tile is: 

D ൌ 64 ൈ 64 ൈ C୧୬ ൈ 4  (20)
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If the FPGAʹs local memory capacity is  M୤୮୥ୟ, the number of required tiles is: 

N ൌ ඄
H ⋅ W ⋅ C୧୬

64 ⋅ 64 ⋅ C୧୬
ඈ ൌ ඄

H ⋅ W
4096

ඈ  (21)

The U‐Net+MobileNetV2 model  is deployed on  the RISC‐V heterogeneous processor. For an 

unoptimized model with inference time  T଴, FPGA acceleration reduces it to  Tଵ, yielding a speedup: 

S୲୧୫ୣ ൌ
T଴
Tଵ
  (22)

Adjusting tile size and pipeline depth further optimizes energy efficiency. 

5. Conclusions 

This work introduces a lightweight semantic‐segmentation framework specifically designed for 

drones, where real‐time inference and low power consumption are paramount. Leveraging a U‐Net 

encoder‐decoder with  a MobileNetV2  backbone  that uses depthwise‐separable  convolutions,  the 

model achieves a strong balance between accuracy and computational efficiency. Custom RISC‐V 

cores, FPGA accelerators, and targeted instruction‐set extensions further accelerate convolution and 

activation operations. Experiments confirm high accuracy and competitive mIoU, while hardware 

acceleration delivers more than a ten‐fold speed‐up and cuts off‐chip memory traffic to 1⁄4096 when 

the tile size is 64 × 64. Additional performance gains may be realized by refining tile dimensions and 

pipeline depth. Challenges  remain  in  boundary delineation  and  small‐object  recognition.  Future 

work will therefore explore (i) multimodal fusion with sensors such as LiDAR or thermal cameras, 

(ii) dynamic quantization for deeper compression, and (iii) industrial‐grade environmental testing to 

validate  system  robustness. Overall,  the  study  demonstrates  that  power  consumption  on  drone 

platforms can be markedly reduced without sacrificing segmentation accuracy, charting a promising 

course for next‐generation UAV semantic segmentation framework. 
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