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Abstract

This study proposes a lightweight solution for real-time, low-power semantic segmentation in drone
applications based on a RISC-V heterogeneous architecture. A lightweight model integrating U-Net
and MobileNetV2 was designed to maintain multi-scale feature extraction capabilities while reducing
computational complexity to one-tenth that of standard convolutions through depthwise separable
convolutions. Leveraging the modular flexibility of the RISC-V processor and the hardware
acceleration capabilities of FPGA, a heterogeneous computing framework was established,
supporting customized instructions (e.g., DCONV, TCONV) and on-chip SRAM tiling optimization.
Experimental results demonstrate that the model achieves an mloU of approximately 0.2 and 70%
pixel-level accuracy on the validation set, with inference latency reduced by 3-5 times via FPGA
acceleration. The TrustZone module ensures secure model deployment through SM3/SM4
cryptographic validation. This work provides a scalable open-source framework for high-precision
semantic segmentation on edge devices, validating the engineering feasibility of RISC-V in vision-
centric edge intelligence.
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1. Introduction

With the rapid development of drone technology, its applications in fields such as agricultural
monitoring, urban planning, and disaster response have expanded significantly. High-resolution
drone imagery offers abundant scene information [1], yet also imposes demanding requirements for
multi-scale, multi-category object recognition, challenging traditional semantic segmentation
algorithms [2]. Existing segmentation methods often rely on high-performance hardware (e.g., GPUs
or specialized Al chips), limiting their suitability for resource-constrained edge devices on drones.
This creates a critical need for lightweight, efficient models capable of real-time processing with low
power consumption [3].

RISC-V, as a modular, open-source instruction set architecture (ISA), is gaining traction in the
edge computing domain due to its scalability and energy efficiency. Its customizable instruction set
makes it particularly suitable for embedded vision tasks, enabling tailored acceleration for specific
operations. However, deploying complex vision models like semantic segmentation on RISC-V
platforms remains a challenge due to constraints in computation, memory bandwidth, and co-design
optimization between hardware and algorithms [4-6].

This study addresses the core requirements of real-time performance and low power
consumption in semantic segmentation tasks for drone applications by proposing a lightweight
solution based on a RISC-V heterogeneous architecture. The goal is to establish an efficient algorithm-
hardware co-optimization framework for edge computing. First, in response to the challenges of
multi-scale, multi-class object recognition in high-resolution drone imagery processing, a lightweight

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1108.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2025 d0i:10.20944/preprints202508.1108.v1

2 of 9

model integrating U-Net and MobileNetV2 is designed. By leveraging depthwise separable
convolutions, computational complexity is significantly reduced while retaining multi-scale feature
extraction capabilities, thereby enhancing model efficiency. Second, at the hardware level, a
heterogeneous architecture combining a RISC-V core and an FPGA accelerator is constructed. This
design incorporates customized instruction sets and on-chip SRAM tiling strategies to accelerate
convolution operations. Additionally, image tiling reduces energy consumption from external
memory access, effectively alleviating bandwidth bottlenecks. Furthermore, a TrustZone security
module and SM3/SM4 cryptographic mechanisms are introduced to ensure the security and integrity
of model deployment. Finally, experiments validate the model's performance, demonstrating
reduced inference latency through FPGA acceleration. A systematic evaluation of the algorithm-
hardware co-design confirms its feasibility and performance advantages on edge devices, providing
theoretical support and engineering paradigms for the practical application of RISC-V in autonomous
drone vision systems.

2. Related Work

2.1. Drone Semantic Segmentation

In recent years, scholars worldwide have conducted numerous studies in the field of drone
semantic segmentation, proposing various improved models and methods for diverse application
scenarios. Liu et al. introduced a dense small-object segmentation approach for drone imagery based
on GSegFormer, which enhances segmentation accuracy for small targets through a multi-scale low-
loss feature fusion network and a Cascaded Gated Attention Module (CGAM). This method proves
particularly effective for processing densely distributed small objects in aerial imagery, though its
complex structure may incur higher computational costs. Girisha et al. validated the feasibility of
FCN and U-Net architectures for green vegetation and road segmentation using manually annotated
drone video datasets, achieving pixel accuracies of 89.7% and 87.31% respectively7. However, their
study was limited by a small dataset scale and did not address multi-category segmentation in
complex backgrounds. Xiong’s team developed the Tea-UNet model, integrating a RepViT encoder
with Multi-level Feature Transform (MFT) and Multi-scale Attention Fusion (MAF) modules. This
solution achieved high-precision segmentation in tea plantation drone imagery, especially excelling
for elongated or irregularly shaped targets—though its optimization strategy requires further
validation for generalizability to other agricultural scenarios. Focusing on disaster assessment, Pi et
al. employed Mask-RCNN and PSPNet on the Volan2019 dataset, improving robustness in post-
disaster damage detection through multi-class segmentation and targeted data augmentation.
Nevertheless, the models showed reduced accuracy for small objects (e.g., vehicles) and relied on
balanced datasets with high annotation costs. Collectively, current research predominantly addresses
small-object segmentation, multi-scale feature fusion, and adaptability to complex scenes. Yet
persistent limitations include restricted dataset scales, insufficient computation-accuracy tradeoffs,
and scenario-specific dependencies. Future efforts should prioritize lightweight model design,
multimodal data fusion, and adaptive augmentation strategies to enhance generalization capabilities.

2.2. RISC-V

Recent years have witnessed significant advancements in RISC-V-based embedded system
design by scholars globally, yielding innovative solutions for diverse application scenarios. Liu et al.
developed an intelligent cold-storage monitoring system using RISC-V SoC CH2601 with the Alibaba
Cloud IoT platform, integrating multisensory and remote control modules to enable real-time
monitoring and automated regulation of environmental parameters (temperature, humidity, UV
intensity). Key advantages include AT command-based cloud platform interactions and smartphone
remote control with strong extensibility, though its multitasking capability in complex scenarios is
constrained by hardware resource allocation strategies8. Meanwhile, Wang et al. created a Chisel-
based RISC-V five-stage pipelined microcontroller for controlled nuclear fusion applications.
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Through data forwarding and branch prediction optimizations, it achieves 2.55 CoreMarks/MHz
while successfully running RT-Thread on FPGA9. However, full stability validation under high-
radiation environments remains lacking, and compatibility with non-standard ISA extensions
requires further evaluation. Collectively, contemporary research emphasizes RISC-V's customizable
strengths and IoT integration capabilities, yet reveals improvement opportunities in heterogeneous
resource scheduling, extreme-environment adaptability, and industrial-grade reliability verification.
Future efforts should leverage advanced process nodes and fault-tolerant mechanisms to extend its
application boundaries.

3. Research Design

3.1. U-Net + MobileNetV2 Architecture for Semantic Segmentation

The proposed semantic segmentation model adopts a U-Net architecture with MobileNetV2 as
the encoder backbone, designed to balance accuracy and computational efficiency for drone imagery.
The encoder-decoder framework employs multi-scale feature extraction and skip connections to
preserve spatial resolution while capturing semantic context.

The encoder is constructed using MobileNetV2, which integrates linear bottleneck layers and
inverted residual blocks. Each block consists of three stages:

Expansion Layer: Expands input channels via a 1x1 convolution. For an input tensor X €

RF*WXCin, the expanded feature map Xeypand is:

Xexpand = ReLU6(Wexpand * X+ bexpand) 1)

where Wypang € RP*CinXCexpand g the weight matrix and bexpand s the bias.
Depthwise Convolution: Applies spatial filtering independently to each channel:

Xdepth = RELU6(Wdepth * Xexpand + bdepth) (2)

kakxcexpandxl

where Wyepm € is the depthwise kernel.

Projection Layer: Reduces channel dimensions via another 1x1 convolution:

Xproject = RELU6(Wpr0ject * Xdepth + bproject) 3)

where Wy gject € R Cexpand*Cout

This design reduces computational cost while maintaining feature richness through depthwise
separable convolutions.

The decoder progressively upscales features to recover spatial resolution. For the I-th layer:

Upsampling: Uses transposed convolution to double the feature map size:
U; = UpSample(D;) € R2Hx2WixCy (4)

where UpSample applies a 2x2 kernel with stride=2.
Feature Fusion: Concatenates upsampled features U; with corresponding encoder outputs F,
along the channel dimension:

D,_; = Concat(U), F}) € RZH>X2W1x2¢ -
Refinement: Applies 3x3 convolution to refine fused features:
Dj_; = Convsy3(D)_1) € RZHIXZWXCout ©)

The decoder outputs are passed through a 1x1 convolution to map features to N, = 23
semantic classes:

? = Conlel(Do) € RHinpu'(XWinPUtXNCIaSS (7)

Loss Function: Cross-entropy loss minimizes the discrepancy between predicted ¥ and ground
truth Y:
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1 H W
Lcg = _NZ Z Yijc log(Vijc) ®)

where N = H X W X N,q-
Optimizer: AdamW with OneCycleLR adjusts learning rates dynamically. Parameter updates

follow:
iy
Br1 =0 =Mt ——=———"Nc A6 9)
\/\Tt + €
where 1y, V; are bias-corrected momentum and variance terms, 1, is the learning rate, and A is
weight decay.
Learning Rate Schedule: OneCycleLR cyclically varies 1, between 1y, and Nyax:
t .
(nmin + (nmax - T]min) : T_ (ascendlng phase)
I cycle
— Teyel
Ne = t— cycle (10)
2 .
Inmax - (nmax - T]min) . T— (descendmg phase)
cycle
2

Depthwise Separable Convolution Efficiency: Reduces parameters and FLOPs compared to
standard convolutions:
Standard Convolution:

Paramsgg = k? - Ci, * Coupy FLOPsgq = 2 - k2« Cjpy + Cope - H- W (11)

Tiling for Memory Efficiency: High-resolution images (4000 x 6000) are divided into 512 x 768
tiles to fit on-chip memory:

Xi = X(i-hi(i+1)-hjw:(+1)-w,) fOT L] (12)

3.2. Hardware Architecture Design for RISC-V Heterogeneous Processors

To achieve real-time inference for semantic segmentation on a RISC-V heterogeneous processor,
the architecture integrates a RISC-V core with FPGA-based acceleration units. The RISC-V core
manages control flow and logical operations, while the FPGA handles computationally intensive
tasks such as convolution and activation functions.

The RISC-V core communicates with the FPGA accelerator via an AXI bus. The FPGA embeds a
customized convolution accelerator (Convolution Accelerator) optimized for depthwise separable
convolutions. The data flow is defined as:

Xout = FPGA_Accelerator(Xin, Waws Wproj) (13)

where Wy,, and W, denote the weight matrices of depthwise and pointwise convolutions,
respectively. The FPGA employs a pipelined architecture to enable parallel processing across
multiple channels. Each channel's computation is formulated as:
Kn Ky
Y® = Z Z X Wy (k1) i = 1,2, ..., Cip (14)
k=1 1=1
Here, t represents the time step, and Yi(t) is the output feature of the iy, channel.
To reduce external memory access latency, on-chip SRAM caches weights and intermediate
feature maps. High-resolution images (e.g., 1024 x 1024) are partitioned into 64 x 64 tiles, mapped
to on-chip memory as:

Tilepn, =X[m-64:(m+1)-64,n-64:(n+1)-64,:],mn € Z* (15)
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Each tile is processed independently in the FPGA, minimizing cross-bank memory access
energy.

The RISC-V core integrates a TrustZone module to ensure model integrity. During boot-up, the
SM3 hash algorithm measures the bootloader, OS, and model weights:

Digest = SM3(Data), Signature = SM4(Digest,Key) (16)

If the computed digest matches the pre-stored signature, the model is loaded; otherwise, a
security exception is triggered.

3.3. Customized Instruction Set Extensions and Hardware Acceleration

RISC-V's open architecture enables custom instruction extensions for critical operations. Key
instructions for semantic segmentation include:
This instruction executes depthwise separable convolution directly on the FPGA. Its format is:

DCONYV rd,rsl,rs2,imm (17)

Here, rsl holds the input feature address, rs2 the weight address, imm specifies kernel size
and stride, and rd stores the output. The FPGA loads input features and weights into local memory,
computing results via a Processing Element (PE) array.

Upsampling in the decoder is accelerated via transposed convolution, defined as:

Kn Kw
y® Z w |y . (18)
Ve g el

The TCONYV instruction leverages the FPGA's transposed convolution engine to reduce core
computational load.

4. Experimental Result

Next, the results of drone (UAV) image semantic segmentation based on the U-net +
MobileNetV2 architecture will be presented here. Specifically, the loss iteration over batches, the
mean Intersection over Union (mloU) score, and the accuracy curves are plotted as shown in Figures
1-3.

Loss per epoch

3.0
—o— val
—8— frain
2.5 4
2.0
I
=]
1.5 A
1.0 A
0 2 4 6 8 10 12 14

epoch

Figure 1. Iteration Loss Curve.
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Figure 1 illustrates the variation of training and validation losses over epochs. Initially, the loss
values rapidly decrease, indicating rapid convergence of the model. Subsequently, the rate of
reduction in loss decelerates and stabilizes, with the training loss eventually converging to
approximately 0.8 and the validation loss stabilizing around 1.0.

Score per epoch

—i— train_mloU

0.225 A
—+— val_mloU

0.200

0.175 1

0.150 4

0.125 4

mean loU

0.100 4

0.075 A

0.050

0.025 4

0 2 4 6 8 10 12 14
epoch

Figure 2. IoU Score Curve.

Figure 2 focuses on the core evaluation metric of the model, the mloU (mean Intersection over
Union), and its evolution during training. The plot clearly demonstrates that both the training and
validation mloU exhibit consistent and similar increasing trends as training progresses. This indicates
the effectiveness of the model architecture and learning process, with steady improvement in the
model's ability to accurately delineate boundaries of different classes. Crucially, the two curves show
no significant divergence (e.g., premature decline or notably lower values in validation mloU
compared to training mloU). The validation mloU ultimately reaches approximately 0.2, which
serves as a positive indicator of training stability, suggesting no evident overfitting or underfitting
occurs.

Accuracy per epoch

0.8

—— ftrain_accuracy
—— val_accuracy

Accuracy

0.2 4

0 2 4 6 8 10 12 14
epoch

Figure 3. Accuracy Curve.
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Figure 3 illustrates the variation of overall accuracy in pixel-level classification. A notable
observation is that the validation accuracy remains consistently stable and slightly higher than the
training accuracy across most epochs, with both metrics ultimately converging to approximately 70%.
This phenomenon, which is relatively uncommon, may suggest that the validation set samples are
comparatively simple and exhibit minimal distributional differences from the training set. Indeed,
this indicates that the model demonstrates robust generalization capability under the current data
split.

‘Ground truth UNet-MobileNet | mloU 0.399

Ground truth

Picture Ground truth

600 800 1000

Figure 4. Visualization of Semantic Segmentation Results.

Figure 4 displays the semantic segmentation results on UAV-captured samples using the
proposed U-Net + MobileNetV2 network. The outputs demonstrate that the model can correctly
identify dominant objects such as roads, vegetation, and buildings, aligning with the ground truth
labels in most test cases. However, segmentation accuracy near object boundaries remains
suboptimal, and small targets are occasionally omitted or misclassified. These limitations may stem
from the reduced capacity of the lightweight model, which trades off fine-grained spatial details for
computational efficiency. Despite these challenges, the overall segmentation layout remains
consistent with expected semantic regions, supporting the model’s suitability for embedded
deployment with further refinement.

Next, this section presents the performance optimization results achieved by adopting the RISC-
V architecture. Custom instructions and FPGA acceleration significantly enhance computational
efficiency. For standard convolution FLOPs Fg4 and depthwise separable convolution FLOPs Fg,
the speedup ratio is:

1:"std " Cin

S =
Fds Cout

(19)

For MobileNetV2, where Cj, < Cgy, the speedup ratio exceeds 10x.
On-chip SRAM reduces external memory access. For a tile size of 64 X 64 X Cj,, the data volume
per tile is:

D = 64 X 64 X Ciy, X 4 (20)
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If the FPGA's local memory capacity is Mgpg,, the number of required tiles is:
H-W-(, H-W
N = [ ] - [ (1)
64 - 64 - Cj, 4096

The U-Net+MobileNetV2 model is deployed on the RISC-V heterogeneous processor. For an
unoptimized model with inference time T,, FPGA acceleration reduces it to Ty, yielding a speedup:

To
Stime = T_l (22)

Adjusting tile size and pipeline depth further optimizes energy efficiency.

5. Conclusions

This work introduces a lightweight semantic-segmentation framework specifically designed for
drones, where real-time inference and low power consumption are paramount. Leveraging a U-Net
encoder-decoder with a MobileNetV2 backbone that uses depthwise-separable convolutions, the
model achieves a strong balance between accuracy and computational efficiency. Custom RISC-V
cores, FPGA accelerators, and targeted instruction-set extensions further accelerate convolution and
activation operations. Experiments confirm high accuracy and competitive mloU, while hardware
acceleration delivers more than a ten-fold speed-up and cuts off-chip memory traffic to 14096 when
the tile size is 64 x 64. Additional performance gains may be realized by refining tile dimensions and
pipeline depth. Challenges remain in boundary delineation and small-object recognition. Future
work will therefore explore (i) multimodal fusion with sensors such as LiDAR or thermal cameras,
(ii) dynamic quantization for deeper compression, and (iii) industrial-grade environmental testing to
validate system robustness. Overall, the study demonstrates that power consumption on drone
platforms can be markedly reduced without sacrificing segmentation accuracy, charting a promising
course for next-generation UAV semantic segmentation framework.
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