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Abstract: Estimating the amplitude of a sinewave from a set of data points is a common procedure in various
applications. This is typically achieved using a least-squares method that provides closed-form estimators. The
sampling process itself is often affected by different non-ideal phenomena like additive noise, phase noise or
sampling jitter, for example. Here we study the precision of the estimation of a sinewave amplitude when the
samples are affected by phase noise or sampling jitter. The mathematical expression derived is useful in
obtaining the confidence intervals for the estimated sinusoidal amplitude. It is also valuable at the time of
choosing the proper number of samples to acquire from a signal from which we need to estimate the sinusoidal
amplitude in order to reach a certain desired level of estimation precision. The analytical expression presented
is validated using both numerically generated data and experimental data. Various non-ideal factors, such as
a fixed, uncontrollable amount of jitter in the setup, additive noise, analog-to-digital converter non-linearity,
and limited signal bandwidth, are observed and discussed. Additionally, this work presents an exhaustive
overview of the technical aspects involved in the experimental validation, including the implementation of the
Monte Carlo type procedure, instrument interface, programming language, and the general development of
automated measurement systems, which may be useful to other engineers.

Keywords: least squares; sine fitting; amplitude estimation; phase noise; sampling jitter

1. Introduction

Estimating the amplitude of a sinewave from a set of data points is a fundamental task in
numerous scientific and engineering applications, encompassing fields such as telecommunications,
signal processing, and instrumentation. This process is crucial for analyzing and interpreting various
phenomena accurately.

In mechanical engineering, monitoring the amplitude of mechanical vibrations is vital for
predicting and preventing mechanical failures in engines, turbines, and other machinery [1]. By
analyzing vibration amplitudes, engineers can identify early signs of wear and tear, thus
implementing timely maintenance to avoid catastrophic failures. For instance, in predictive
maintenance systems, vibration amplitude analysis is used to monitor the health of rotating
machinery, ensuring optimal performance and longevity.

In seismology, estimating the amplitude of seismic waves is critical for assessing their
magnitude and potential impact. Accurate amplitude measurements enable scientists to evaluate the
energy released during an earthquake and predict the likely effects on buildings and infrastructure.
This information is essential for designing earthquake-resistant structures, ensuring they can
withstand seismic forces and protect lives and property [2].

Also, in instrumentation and measurement, one often uses sinewaves as a stimulus signal to
measure the characteristics of different electronic devices like amplifiers, filters and analog-to-digital
converters among many other devices and systems. One also often uses sinewaves to measure
different quantities like temperature [3] or distance [4].

In modern systems, often the signals from the real world are sampled, digitized and input into
computers for storage and processing. It is thus important to have signal processing algorithms that
are able to estimate the various parameters of a sinewave like amplitude, initial phase, offset and
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frequency. This estimation is generally done using a least squares procedure that minimizes the
average of the squares of the differences between the data points and the sinusoidal modal [5].
Typically, least-squares estimation methods are employed for this purpose, offering closed-form
solutions that are both efficient and robust. In the case of amplitude, initial phase and offset, there
are closed form analytical expression for those estimates. In the case of frequency, usually an iterative
procedure is employed.

In real world applications the signals that would ideally be sinusoidal are affected by a myriad
of phenomena that distort it in some way. Examples of these are the non-linear behavior of systems
and devices that introduce extra additive sinusoidal components with different frequencies, additive
random noise, usually normally distributed, quantization error introduced by the use of
analog-to-digital converters with a finite number of bits, phase noise in the signal generators and
uncertainty in the sampling instant, just to name a few. All those non-ideal phenomena affect the
metrological characteristics of the sinewave parameter estimation (bias and standard deviation) as
well as of those quantities that are derived from them like gain, bandwidth, total harmonic distortion
and signal to noise ratio, just to name a few.

The work presented here deals specifically with the estimation of sinewave amplitude obtained
from data points sampled from real signals where the sampling process is affected by jitter, which is
random, normally distributed with null mean and known standard deviation. Despite extensive
research on signal estimation techniques, including the thorough treatment of estimation theory by
Kay [5] on the impact of jitter on digital systems [6,7], there remains a need for comprehensive studies
that analytically and experimentally address the impact of sampling jitter on amplitude estimation.

The analytical expressions derived here are validated in a wide range of signal and data
acquisition parameters using numerically generated data and a Monte Carlo type procedure. Even
with the numerical validation carried out there are some important questions that should be posed,
namely, how well the assumptions introduced in the mathematical derivations cover the range of
cases that one might find in practice using data from the real world. For example, does the non-
linearity of the data acquisition module affects the results obtained? Is the independence between the
signal and the type of noise considered valid? Have all relevant factors been accounted for in the
numerical simulations carried out? In order to answer this questions, it is important also to carry out
some validation using real data which is also done in the present work. Specifically, we will use
voltage samples acquired and digitized with a data acquisition module. The values obtained will be
used with a least-squares fitting procedure in order to estimate the underlying sinewave amplitude.

The experimental setup used in this research comprises a data acquisition module and two
function generators. The primary function generator produces the main sinusoidal signal, while the
secondary generator creates a rectangular clock signal that controls the sampling instants. The
estimation procedure is repeated a large number of times and the estimates made, in this case the
sinusoidal amplitude, are used to compute their standard deviation. Note that the amplitude values
obtained are not equal due to the random phenomena present in the signals generated and the
hardware used. The amount of jitter present will be controlled by phase modulating the clock signal
with normally distributed noise produced by a function generator. It will thus be necessary to
calibrate the amount of jitter being introduced prior to carrying out the main study.

In addition to validating the theoretical models, this work provides a detailed presentation of
the technical aspects involved in the experimental validation. This includes the implementation of
the Monte Carlo procedure, instrument interfacing, programming languages used, and the
development of automated measurement systems. These insights are intended to assist other
engineers and researchers in replicating and extending the findings presented here.

One should note that the bias of this estimator in the presence of jitter has been addressed in [8].
Also, relative to the initial phase estimation of the sinewave, previous work on the precision of the
estimator and its bias can be found in [9,10] respectively. Regarding the effect of additive noise on
the amplitude and initial phase estimation one can also find studies published in [11,12].
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2. Least-Squares Sinusoidal Fitting Procedure

Here we will derive an analytical expression for the standard deviation of sinewave amplitude
estimation in the presence of jitter in the sampling instant. We start by considering the mathematical
model of our periodically sampled sinusoidal signal, namely

x; = C+ A - cos(wyt; + @), @)

where x; are the sample voltages and i is the sample index that runs from 1 to M. Parameters 4, ¢,
C and w, are the signal amplitude, initial phase, offset and angular frequency respectively. The ideal
sampling instants are represented by t;. In this work these instants will be affected by normally
distributed sampling jitter 7; with null mean and standard deviation given by o,.

Due to this random phenomenon under study here, the actual sample voltages become, from
(1) and replacing t; by t; + 1,

z; =C+ A coslw,(t; + ;) + @]. 2)

The sinusoidal stimulus signal is also often affected by phase noise due to non-idealities in the
signal generator. This phenomenon can be easily added to our mathematical model using the random
variable :

z; =C+ A cos[w,(t; + 7)) + @ + ] 3)

It is thus easy to consider the effect of sampling jitter and stimulus signal phase noise together
by using the random variable

9i=wx-‘[i+ 'l,b (4)

Note that in the current work we are assuming that the phase noise and the sampling jitter are
statistically independent. We will consider that this random variable is normally distributed with
null mean and standard deviation gy. Furthermore, we assume homoscedasticity, that is, the spread
of residuals is uniform across the range of values of jitter and phase noise. The standard deviation
can be easily obtained from the standard deviation of the jitter and the phase noise using

Og = Wy * O T Oy, (5)

The samples are then used to estimate the sinusoidal amplitude using a least-squares procedure,
commonly known as “sine-fitting”. The estimated value of the amplitude A is designated here with
a hat over the symbol: A. This estimated amplitude is thus a random variable due to the randomness
of 7; and the least-squares procedure used. This mathematical procedure consists in building a
matrix D given by

cos(wyty) sin(w,ty) 1
cos(wyty) sin(w,ty) 1

D= (6)
cos(.(;).xtM) sin(.a-);ctM) 1
and then using it, together with the samples z; to estimate the sinewave parameters using
A o
A,| = @™D)"p7 |72 | )
¢ Zu

Note that from the estimated in-phase amplitude, 4, and the estimated in-quadrature
amplitude, A, we can obtain the estimated sinusoidal amplitude using

A= |4+ A, (8)

The matrix product D™D in (7) is equal to
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4
ot cos? (wyt;) ot cos(wyty) sin(wyt) XLt cos(wyty)
DTD = |¥M ! cos(wyt;) sin(w,t;) M sin? (wyt;) Mt sin(wyty) |- 9)
ot cos(wyty) ot sin(wyty) M

Considering that the sinusoidal frequency is known, which we will do here, we can use coherent
sampling and acquire the signal samples which cover exactly an integer number of signal periods.
Some of the terms in (9) vanish and we are left with a diagonal matrix:

Mot cos?(wyty) 0 0
D'D = 0 Motsin?(wet)) 0 (10)
0 0 M

Inserting this into (7) leads to

D>)

Zz o'z sin(wyty) | (11)
Zl 0 Zl

and the estimated sinusoidal amplitude, given by (8), becomes

Q

:4\1] Zl 0 Zl COS(thi)
o

A= %\[Zi.j z;7j cos[w(t; — t;)]- o

In the next section we will derive the standard deviation of this estimated amplitude as a
function of the jitter/phase noise standard deviation and number of acquired samples.

3. Estimated Amplitude Standard Deviation

Having presented the analytical expression used to obtain an estimate of the sinusoidal
amplitude, 4, from the acquired samples z; we will proceed to determine the standard deviation of
that estimate. To begin, we will first determine the variance of the estimative of the square amplitude.
Using eq. 7.21 in [13], which makes use of a first order Taylor series approximation, we have

~ AN 2

L2
i)\ 04 94 0A
aﬁz ~ <ﬁ) JA% + 26 Py COU{A,, Q} + ( ;15) 0;26, (13)

I I

where the derivatives are to be evaluated at 4; = ug a4; and AQ = Uy The variances of the in-phase

and in-quadrature amplitudes have been determined in [10], eq. 74 and eq. 75 respectively:

A2 _ 2 A2 _.2 5.2
O'A% = ﬁ(l —e "9) - ﬁcos(Zga) (e 9% —e 2"9). (14)
2 _ A% (. —ad) A -04 _ p—205
955 = (1 e 9) o cos(2¢) (e 6 —e 9). (15)

So has the covariance between these two amplitudes which can be found in eq. 80 of [10]:
e 2
Cov{A, 4,} = :—Msin(Z(p) (3—05 - e'z"é). (16)
It remains for us to determine the partial derivatives in (13).

04 Ha

977 |~ _ - [.2 2 17
IAI:”Zl\I'AQzl"% HII*—“% ( )

and

Hag

— . = 2 2 " 18
AI:MA\I‘AQ:H% HZ\I'HIA’(‘? ( )

The expected values can also be obtained from [10], eq. 20 and eq. 21:

0A
o7

1
tz = A-cos(e) - e™2%. (19)
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5
and
12
hi = —A - sin(g) - e 2%, 20)
The partial derivatives then become simply
04 A-cos(¢) ‘%"5
- _ -cos(p)-e _
6_‘74\1|AAI=“/TI‘ - \/A2~cosz( )'3_65+A2~sin2( )»e_oé - COS((p). (21)
A=z ® ®
and
12
04 A-sin(p)-e 2%6

Ai=ug, = = = sin(g). (22)

94q _ o2 -
Q \/Az'cosz(qo)'e %9+42.sin2(¢p)-e %0

A=ty
Inserting these two partial derivatives into (13) leads to
of ~ cos?(¢) - 0212«1 — 2cos(p)sin(ep) - Cov{A;, A,} + sin?(p) - 6;12-&. (23)

Finally, inserting the variances given by (14), (15) and the covariance given by (16) leads to

A2
oZ ~ [cos?(p) + sin?(p)] -M(l - e“’g) +

A? 2 2
_ 2000 _ cin? i -6% _ -2 (24)
[cos®(¢) — sin*(¢)] oM cos(2¢) (e 6—e 9) +
2
—2cos(¢)sin(p) -:—Msin(Zgo) (e“ft3 - e‘z"g).
Simplifying leads to
2 2
of ~ ﬁ(l - e“’G) +
A? 2 2 (25)
— —_ =0y _ p,—20,
cos(2¢) M cos(2¢) (e 6—e 6) +
2
—sin(2¢) -:—Msin(Z(p) (e'”tg - e'z‘fg).
Combining the trigonometric terms leads to
A2 _.2 A2 _.2 52
aﬁzz;(l—e ”9)—5(9 % —e 2”0). (26)
Further simplification results in
A2 _.2 52
of~i-(2-3e% +e 209). (27)

Note that for small values of jitter standard deviation this expression can be reasonably well
approximated by

2
2 ~ 2L 52, (28)

af| ~
Alggect ~ 2m 0

These derivations allow one to compute the standard deviation of the estimated sinusoidal
amplitude given the actual amplitude, the number of samples and the jitter/phase noise standard
deviation.

4. Numerical Simulation

To validate the analytical expressions derived here that can be used to determine the standard
deviation of the estimated amplitude of a sinusoidal signal from a set of data points corrupted by
jitter or phase noise, several numerical simulations have been carried out. These simulations
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consisted in numerically creating a sinusoidal signal with the desired parameters, extract a set of data
points affected be jitter or phase noise with the desired statistics and fit, in a least square sense, a
sinusoidal model to estimate the signal amplitude, offset and initial phase. In this work we consider
the frequency of the signal to be known and thus it does not have to be estimated from the data points.
In Figure 1 we can see an example of 100 data points obtained from a sinusoidal model corrupted by
phase noise with a standard deviation of 0.1 rad.

4
0-F"~f
2, ) L
(J .ﬂ by
-. (]
) [ 4
— °® ‘e
29 K °
rd
N o ..
° o %
_9 ow 00-0 é/fz 3 \I\jl I\(Blz T[l/gO
L { ] = =
o > X
™ os=0.1 rad
o 0.2 0.4 06 08 1

t(s)

Figure 1. Simulated data points (100 points) for a sinewave with an amplitude of 3 V, an initial phase
of /3 rad and a frequency of 1 Hz, corrupted with phase noise, normally distributed, with null means
and a standard deviation of 0.1 rad.

By repeating this procedure a large number of times, we obtain several estimates for the
sinusoidal parameters. Here we focus on its amplitude. With all those values we are able to compute
their standard deviation and study how it varies with different settings like the number of samples
used or the phase noise standard deviation, for example. In the following we will show the results
obtained.

In the case of Figure 2 we show the standard deviation of the estimated amplitude as a function
of phase noise standard deviation. The range of values of injected phase noise go from 0 (no phase
noise created) to 1 rad. The average of the 2000 values obtained for the sinusoidal amplitude standard
deviation, for each value of phase noise, are plotted using solid filled circles. The vertical bars
represent the confidence intervals for the estimated standard deviation considering a 99.9%
confidence level and the case of a chi-squared distribution. The solid line depicts the analytical values
given by (27). As observed, these values agree very well with the numerically simulated data,
validating the analytical derivations presented here.

1
A=3V ¢=n/3
ffii=M M=9
07| R = 2000 ;
— 3R
\2/ 0.5
b<(
0.25
0
0 0.25 0.5 0.75 1

oy (rad)

Figure 2. Standard deviation of the estimated sine wave amplitude as a function of phase noise
standard deviation. The circles represent the values obtained with the Monte Carlo analysis. The
confidence intervals for a confidence level of 99.9% are represented by the vertical bars. The solid line
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represents the value given by the theoretical expression (27). The number of repetitions made (R) was
2000.

In Figure 3 we present the same data but now we compare it with the simpler analytical
expression given in (28) where the relation between estimated amplitude standard deviation and
phase noise standard deviation is linear. For this range of values, we conclude also that this analytical
expression is very accurate.

1
A=3V ¢o=n/3
fffix=M M=9
07| R = 2000
\>_/ 0.5
b<(
0.25
0
0 0.25 0.5 0.75 1

oy (rad)

Figure 3. Standard deviation of the estimated sine wave amplitude as a function of phase noise
standard deviation. The circles represent the values obtained with the Monte Carlo analysis. The
confidence intervals for a confidence level of 99.9% are represented by the vertical bars. The solid line
represents the value given by the approximate expression (28).

Repeating the procedure for a large range of phase noise standard deviation, up to 3 rad, we see
that the agreement is not so good as observed in Figure 4.

0.75

}#}Hﬁiﬁﬁi}}}f}ﬂ;;H;m}iwm

Z s :
S
0.25 A=3V ¢=n/3
ffk=M M=9
R =2000
0
0 1 2 3

oy (rad)

Figure 4. Standard deviation of the estimated sine wave amplitude as a function of phase noise
standard deviation. The circles represent the values obtained with the Monte Carlo analysis for a
number of samples of 9. The confidence intervals for a confidence level of 99.9% are represented by
the vertical bars. The solid line represents the value given by the approximate expression (27).

This agreement is also visible in Figure 5 where a larger number of samples, 100, was used.
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f/fe=M M =100
R = 2000

oy (rad)

Figure 5. Standard deviation of the estimated sine wave amplitude as a function of phase noise
standard deviation. The circles represent the values obtained with the Monte Carlo analysis for a
number of samples of 100. The confidence intervals for a confidence level of 99.9% are represented by
the vertical bars. The solid line represents the value given by the approximate expression (27).

As we have seen with the numerical simulations presented, the approximations used are quite
good if the phase noise standard deviation is lower than 1 rad. In order to justify the applicability of
the current work to everyday application, despite the approximations made, we present a short list
with some typical values of phase noise encountered:

e Ethernet (Gigabit Ethernet, 125 MHz): 4 mrad [14].
o PCle Gen3 (8 GHz): 0.1 rad [15].

o Digital Audio (192 kHz DAC): 0.15 mrad [16].

e High-Speed ADC (500 MHz): 0.5 mrad [17].

e FPGA/ASIC Clock Signals (200 MHz): 40 mrad [18].
e  GPS Receivers (10 MHz): 0.3 mrad [19].

e HDMI2.0 (3.4 GHz): 0.8 rad [20].

As we can see in these random examples, the values of phase noise standard deviation are lower
than 1 rad. There are, however, some applications where the amount of phase noise is higher like, for
example:

¢ 5G NR Base Stations (3.5 GHz): 7 rad [21].
e PLL in RF Transceivers (2.4 GHz): 5 rad [22].

Evidently the current study is not applicable to these two example applications.

Finally, we varied the number of samples and represented the result in Figure 6. We observe
that expression (27) is not so good when the number of samples used is very low (less than 10). In
practice, however, the number of samples is generally much higher than this.

1.4

A=3V ¢=mn/3
12 fsfx=M ocp=1rad
R =1000

0.4

M

Figure 6. Standard deviation of the estimated sine wave amplitude as a function of the number of
samples. The circles represent the values obtained with the Monte Carlo analysis. The confidence


https://doi.org/10.20944/preprints202411.1522.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 November 2024 d0i:10.20944/preprints202411.1522.v1

intervals for a confidence level of 99.9% are represented by the vertical bars. The solid line represents
the value given by the approximate expression (27).

The results of the Monte Carlo type analysis using numerically simulated data justify the
correctness of the analytical expressions derived and give confidence to the user that they can be used
in real live settings. Furthermore, they are valuable to the engineer design a given acquisition system
since they allow one to easily estimate the number of samples that should be acquired in order to
attain a specified confidence in the sinusoidal amplitude estimation.

In the following we will validate the analytical expression derived also using experimental data.
In the next section we describe the experimental setup. The following sections describe the calibration
carried out and the experimental results obtained.

5. Experimental Setup

In Figure 7 we can see the hardware setup used in this work. It is composed of three devices and
a personal computer (to the right on the figure). The top device observed in Figure 7 is a data
acquisition module from National Instruments, model NI-USB-6218 (seen on top) connected through
a USB interface with the personal computer. This module has an analog-to-digital converter with
16-bits. Although it can operate at different sampling rates the value used throughout this work was
100 kHz. It also has many input ranges but here we just used the bipolar +1 V range.

Figure 7. Hardware setup used to experimentally validate the relationship between jitter and
estimated sinewave amplitude. Two function generators were used together with a 16-bit data
acquisition module from National Instruments, model NI-USB-6218 (seen on top) connected through
a USB interface with a personal computer (seen partially on the right). One of the function generators,
model DS360 from Stanford Research (bottom) was used to create the sinusoidal stimulus signal. The
other function generator, model AG3320A from Agilent (middle), was used to create the clock signal
that controlled the sampling instants, and which was modulated by internally generated, normally
distributes, phase noise.
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In the same figure we can also observe two general purpose function generators. The one seen
at the bottom of the figure is a low distortion function generator from Stanford Research, model
DS360, used here to produce a sinusoidal signal which is applied to channel ai0 of the data acquisition
module (pins 15 and 16, Figure 8.

PFI /P00 {In} PFI &/F0.4 (In)
PFI 1/PO.T (In} I‘i | | hF'FI HWPO.5 (Im)
PFI 2/P0.2 {In} PFI 10/P0.8 {In)
GEGCETLN N | |PF111PO.7 (i)
D GND D GND
PEI4/P1.0 (Out) || | | JPFI12/P1.4 (Cut)
PFI &/F1.1 {Cut) PFI 13/P1.5 (Out)
PFI 6/P1.2 (Out) | | | | PFI14/P1.6 (Out)
PFI 7/P1.53 (Qut) PFI15/P1.T (Out)
5V | || +5v
D GND D GND
#01 . e
AO GND | | | AIGND
AlD Al 16
Alg ‘ ‘ Al 24
Al AlT
AlQ | | | 125
A2 Al1B
Al1D | | | A2
A3 Al1g
Al || || A127
Al SENSE Al GND
A A
AlS || || Az
A3 Al 20
Al GND (il | [l a1 GND
Alg 22
Al 14 Il | |] A0 s0
AT Al23
Al1S Al 31

N —

MNC = No Connect

Figure 8. Pinout of the data acquisition module from National Instruments, model NI-USB-6218.

The top function generator seen in Figure 7 is an Agilent 33220A general purpose function
generator setup to produce a rectangular signal that is input into the acquisition module to determine
the sampling instants (clock signal). This is connected to the data acquisition module inputs PFI3 and
GND which correspond to pins 4 and 5 (Figure 8). The rectangular signal produced is phase
modulated by an internally generated signal which is random noise with a normal distribution and
whose peak-to-peak value can be adjusted by the user.

A block diagram of the test setup can be observed in Figure 9. There we can see the personal
computer, the data acquisition module, the two function generators and the connections between the
different modules with indication of the terminal names and pin numbers.
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Data Acquisition Module
National Instruments

NI-USB-6218
Coaxial Cable ai0 PFI0  USB PFI3
\ 15,16 15 2,11
Al
out SYNC OUT our
Stimulus Signal Clock
Function Generator Function Generator
Stanford DS360 Agilent 33220A
GPIB uss

GPIB Cable —m

-4—— USB Cable

GPIB/USB Personal
Interface Computer

Figure 9. Block diagram of the test setup where one can observe the personal computer, the data
acquisition module and the two general purpose function generators.

The personal computer is able to control the two function generators. In the case of the function
generator producing the clock signal, an USB interface is used. In the case of the other function
generator, which produced the sinusoidal stimulus signal, it does not have a USB interface. It only
has a General-Purpose Interface Bus. It is thus connected to the personal computer using an interface
module from Keysight shown in Figure 10. This module is not visible in Figure 7 where a photograph
of the entire hardware setup is shown.

Figure 10. Photograph of the USB/GPIB Interface module from Keysight, model 82357B connected to
the Stanford Research DS360 generator to the right. The cable to the left of the image has an USB
interface and goes to the personal computer.

The hardware setup shown here can create a sinusoidal voltage signal which is sampled and
converted from analog to digital by a data acquisition module that times the sample taking using a
rectangular voltage signal produced by a second function generator. The data points acquired are
sent to the personal computer where a software developed using the National Instruments LabVIEW
programming language is running, as described in the next section.

6. Software Development

The goal of this work was to create an automated measurement system to study the uncertainty
of the least squares sine fitting procedure. In order to achieve this, a personal computer was used
which is able to run an application which controls, without user intervention, two function
generators. It is able to set up automatically the waveform shapes (sinusoidal and rectangular) as
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well as their parameters (amplitude, frequency and DC component). Furthermore, it configures the
data acquisition module to acquire a specified number of samples at a chosen rate and send them to
the personal computer for storage and processing.

This application was developed entirely by the author and written in National Instruments
LabVIEW graphical language. This application is made of several “virtual instruments” which is the
name it is given in this language to the traditionally named “function”. Besides controlling the
function generators and gathering the samples, the application is also responsible for the data
processing necessary for this study. This includes computing the statistics of the acquired data points,
like averages and standard deviations as well as computing the theoretical expected values and
depicting them in a graphical way. This application is also responsible for storing the data and
computation results made in text files which were used to build the charts presented in this paper.

It is too cumbersome and unnecessary, from a scientific perspective, to present and described all
the virtual instruments (VIs) developed, which are more than 100. Instead, we will present only a
couple of them.

Each VI has two parts, namely a “Front Panel” through which the user interacts with the
application, and a “Block Diagram” which contains the source code. The application developed has
been used by the author to study the uncertainty of several signal processing algorithms and analog-
to-digital characterization methods. There are thus many parts which are not relevant to the study at
hand. For this reason, the author chose to present here just some cut-outs of the front panels and
block diagrams. It serves just for illustration purposes since this paper is not about software
development. It is about the precision of sinusoidal amplitude estimation in the presence of phase
noise and sampling jitter.

In Figure 11 we present a partial front panel of one of the virtual instruments created using
LabVIEW. Note that some parts shown in the figure were used in other research works and are not
relevant to the current goals. On the left side of the figure, we observe the data acquisition module
settings like range, sampling frequency, number of samples and terminals used. We can see that a 1
V range was used and that the samples were acquired at a rate of 100 kHz. In the center of the image,
we can see the ADC parameters: number of bits and transfer function type. On the right side we see
the function generators configuration with addresses as well as other parameters like amplitude,
frequency and waveform shape.

|Acquisition System Signal Generation System|
e . AT ""'FS
OversampingRate o e | 000000 | :
Full Scale [Vl low[V] R USBO-0x0957-0x0407
DAQ Board Settings| fioo0000 | 1500000 — Fs
Range [V] % am
— Transter unction Type Pl | [ | w
e - S lmwimnomzm Ampitude V]  AmplB[V]
MRS ) N Boaosom | fom |
: - 2l FreqBHal stter [s]
F‘D’""'"‘ [ioooox | fooese | fooooo |
‘,:nm Fl PhaseB 7]
e | B> e
prerm— Noise [V Phase Nose [F]
= — bowo | Boson [Ramcomotier @)
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Figure 11. Partial image of one of the front panels of the LabVIEW application developed. Some parts
shown are not relevant to the present work. On the left side we observe the data acquisition module
settings like range, sampling frequency, number of samples and terminals used. In the middle we the
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ADC parameters like the number of bits and the type of transfer function of the ADC. On the right-
side e see the function generators used with their addresses as well as their configuration like
amplitude, frequency and waveform shape.

In Figure 12 it is shown the block diagram of the virtual instrument responsible for carrying out
the sinewave test where least squares fit of the data points to a sinusoidal model is carried out. It
starts by computing the setup parameters to use in the subVI named “Prepare Sinewave Test”. Those
parameters are then used to program the function generators in the “Control FGs” subVI. The data
acquisition samples are then acquired in the “Acquire or Simulate” subVI and finally the data points
gathered are used to estimate different parameters like sinewave amplitude and initial phase, for
example.

[Prepare A&C | H True ~k
i)

[Fatse P

v
£

B

rorin ADC Test Parameters.Sinewave Test Parameters Repetitions

Last Execution?

Figure 12. Image of the block diagram of the virtual instrument that carries out the sinewave test. It
starts by computing the setup parameters to used (left part) in the subVI “Prepare Sinewave Test”
which are then used to program the function generators in the “Control FGs” subVI. The data
acquisition samples are then acquired in the “Acquire or Simulate” subVI and finally the data points
gathered are used to estimate different parameters like sinewave amplitude and initial phase.

There is another top-level VI which repeats the sinewave test for different values of clock
generator phase noise. The sinewave amplitude is estimated several times for each value of clock
generator phase noise and the mean and standard deviation of estimated amplitudes are computed.
There are then graphically represented using error bars as can be seen in Figure 13. Each data point
is represented by a circle and an error bar. The more repetition of the test the shorter the error bars
becomes but longer the execution takes. The theoretical expected values are shown with a solid line.

w

¢

Estimated Amplitude Standard Deviation [V]

o'o-l ] ] 1 1 ] ] 1 1 ] ] 1 ] ] I 1 ] ] 1 1 ]
025 5751012 15 18 20 22 25 28 30 32 35 38 40 42 45 48 50
Phase Noise []



https://doi.org/10.20944/preprints202411.1522.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 November 2024 d0i:10.20944/preprints202411.1522.v1

14

Figure 13. Image of the front panel portion that shows the result of amplitude estimation as a function
of the clock generator phase noise. Each data point is represented by a circle and an error bar. The
theoretical expected values are shown with a solid line.

Each data point represented in Figure 13, including the error bars, is obtained by repeating the
least-square sine fitting test many times. The image of the block diagram of the VI that carries out
this repetition is presented in Figure 14. It has a for-loop with N iterations inside which the sinewave
test subVI is called. The value of the desired estimates is obtained from the test results. In this case it
is the amplitude, initial phase and offset. The set of values obtained is then input the the subVIs
named “Compute Stats & Update Results” in order to compute the means and standard deviations
of the estimates and from there the error bars of the different estimates.
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Figure 14. Image of the block diagram responsible for repeating the test a certain number of times in

Confidence Level (n)
===

order to compute the mean and standard deviation of the estimated values of sinewave amplitude,
initial phase and offset.

Figure 15 shows the block diagram of the virtual instruments that compute the sinewave
amplitude, initial phase and DC offset (3-parameter sine-fitting) given the data points and the
sinusoid frequency. In essence it implements in LabVIEW the computations described in equation

@)-
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;: Reshape Array
o
inefit] |
Parameters
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Figure 15. Image of the block diagram responsible estimating the sinewave amplitude, initial phase
and DC value given the data points and the sinewave frequency.

This section is just meant as a quick illustration of the software developed in the context of this
research work. Many of the VIs created and used are not covered here. This is not meant to be an
exhaustive description of the software created.
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The next section presents the experimental data results and compares with the analytical
expressions derived previously.

7. Experimental Results

The goal of the present study was to experimentally validate the analytical expression that
relates the standard deviation of the estimate of sinusoidal amplitude obtained by fitting a set of data
points to the amount of jitter present in the sampling instants.

The experimental setup described earlier was used to determine the precision of the amplitude
estimation for different amounts of jitter. The standard deviation of the sampling jitter was controlled
by phase modulating the sampling clock with normally distributed random noise. This was achieved
by using the functionality of the Agilent 33220A function generator which has the capability of
producing a rectangular signal with chosen frequency and amplitude. In the present work a
rectangular signal with 100 kHz frequency and an amplitude from 0 to 5 V was used. Furthermore,
this generator has the capability of modulating several parameters of the main signal (like amplitude
and phase) using a second internal generator. This secondary generator can produce periodic signal
with different shapes (sinusoidal, triangular, rectangular, ...) as well as random noise. In the present
study we chose to use random noise with a normal distribution. The phase of the main rectangular
signal was thus phase modulated by a second normally distributed random signal. This rectangular
signal was then used in the data acquisition module to control the timing of the sample acquisition.

In order to control the amount of jitter present we chose to use as the clock signal a rectangular
wave phase modulated by normally distributed random noise with a range of peak-to-peak values
from 0 to 50°. For each value of jitter, the sine fitting test was carried out to using a set of 100 points
sampled from a sine wave produced by another function generator (Stanford Research DS 360) with
an amplitude of 900 mV and a frequency of 5 kHz. For each value of phase noise setting the
sine-fitting test was repeated 500 times and the confidence interval for the estimated amplitude was
computed.

The estimate of the standard deviation was obtained from the square root of the sample variance
using

(29)

as per [13], eq. (9-13). Note that the variance of the population is unknown. The confidence interval
for the standard deviation estimation is thus

s-Vyn—1 s-\/n—ll

Cl = ;
X s(n—1) 'Xs (n—1)
1-3 5-1

(30)

where the confidence level used () was 99.9% and § = 1 — y. The number of data points (1) was 500.
These confidence intervals were used to represent the error bars in the experimental data obtain
which is depicted in Figure 15.
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Figure 15. Chart containing the experimentally estimated sinewave standard deviation as a function
of the injected amount of phase noise.

To estimate the amount of jitter present we used the IEEE 1057 recommended test namely the
one in section 4.9.2.2 [23]. In this test one applies a low frequency (f;) sinewave to the waveform
digitizer, and compute the root-mean-square error from the residuals obtained from subtracting the
data points from the least-squares fitted sinewave obtaining o,. One than repeats the data acquisition
for a high frequency compared to the waveform digitizer bandwidth (f;) and computes a second
value of root-mean-square error obtaining o,. The amount of jitter present is then estimated using

vz — ot (31)

T TonfA

where A is the sinusoid amplitude.

The values obtained for the different function generator settings of phase noise modulation are
the ones represented in Figure 16 using again error bars to represent the confidence intervals for the
same 99.9 % confidence level and 50 repetitions (n = 50). The low frequency value used was 10 Hz
and the high frequency was 10 kHz. The amplitude was 900 mV and the number of acquired samples
was 100 at a rate of 100 kHz.
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Figure 16. Representation of the relation between the measured values of phase noise standard
deviation and the configured values of phase noise standard deviation.
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We are thus now able to represent the estimated amplitude standard deviation as a function of
jitter. This can be seen in Figure 17. The vertical and horizontal error bars represent the confidence
intervals for the estimated sinusoidal amplitude and jitter as shown in the previous two figures. One
can observe a linear relationship between the two variables as expected from eq. (28).
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Figure 17. Experimental estimated amplitude standard deviation as a function of sampling jitter
present. The error bars represent the confidence intervals for the estimation of both the amplitude
estimation carried out with the least-squares sine-fitting method and the estimated amount of jitter
present. The dashed line represents the straight line that best fits the data points.

A straight line was fitted, in a least squares sense, to the data points and the following relation
was obtained:

0; = 2328373V /s - g, — 21.185- 107¢ [V]. (32)

Comparing this with the expected relation given in (28) we obtain

0.9
O'A~m'27'['5000'0't'1{. (33)

with
K ~ 1,16. (34)

This straight line is depicted in Figure 17 using the dotted trace. A discrepancy was this found
between the slopes of the analytical and experimental relationships. This discrepancy is given be the
coefficient K ~ 1,16 which was expected tobe K = 1.

8. Conclusions

In this work a simple analytical expression was derived for the standard deviation of the
estimate of the amplitude of a sinewave made using the least squares procedure in the presence of
jitter or phase noise. The derivation used a first order Taylor series approximation which was
validated using both numerical simulations and experimental data through a Monte Carlo type
procedure. The resulting expression can be used not only to compute the confidence interval for
sinusoidal amplitude estimation, but also to help choose the number of signal samples to acquire in
order to achieve a given bound in estimation precision.

The hardware used in the experimental setup was described in detail. It consisted of two
function generators and a data acquisition module. The software developed using National
Instruments LabVIEW graphical programming language was presented mentioned but without
much detail due to its complexity. The amount of jitter/phase noise present was controlled by phase
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modulating the clock signal responsible for timing the sample acquisition by the data acquisition
module. The type of injected jitter/phase noise was a null-mean normal distributed random one with
a controllable standard deviation.

A Monte Carlo method is used to determine the standard deviation of the estimated amplitude,
repeated for different levels of injected jitter/phase noise. The results obtained confirm a linear
relationship between estimated sinusoidal amplitude and jitter standard deviation. There was,
nonetheless a 16% discrepancy between the slope of that relationship whose cause remains unknown.
Note that several non-ideal phenomena are present in the experimental setup, namely, additive
voltage noise, quantization error, intrinsic jitter in the sampling module, phase noise in the stimulus
signal and clock generators and limited noise bandwidth both in the function generator as well as in
the data acquisition module. All these factors, however, are believed to be independent of the amount
of injected jitter/phase noise and would thus contribute a constant offset to the experimental results
and not an error proportional to the amount of injected jitter/phase noise standard deviation as
observed. Furthermore, they are present both in the sinewave amplitude estimation and in the
jitter/phase noise estimation procedures. The non-accounted for non-ideal phenomena at play must
be proportional to the amount of jitter/phase noise produced. Recall that for the numerically
simulated tests performed there was no discrepancy found which gave us confidence in the analytical
derivations and in the software developed. We thus conclude that it must be due to a hardware
phenomenon not accounted for in this work.

In the future one might continue the work presented here by considering, for example, the
uncertainty in both amplitude and initial phase in the presence of jitter or phase noise when using
the 4-parameter sine fitting algorithm where the signal frequency on not known and must be
estimated using an iterative procedure. Other endeavors one might pursue, making use of this work,
is the uncertainty of the estimation of other signal parameters like signal-to-noise ratio (SNR) or
signal-to-noise and distortion (SINAD) or even the uncertainty of parameters associated with devices
or circuits that are inferred from sine fitting of data points like, for example, total harmonic distortion
(THD) or amplifier gain.

We hope that this work might be useful to others involved in experimental applications of the
sine-fitting procedure and also in the experimental validation of the uncertainty of sine-fitting
parameters and their dependence on non-ideal factors.
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