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Abstract: Estimating the amplitude of a sinewave from a set of data points is a common procedure in various 

applications. This is typically achieved using a least-squares method that provides closed-form estimators. The 

sampling process itself is often affected by different non-ideal phenomena like additive noise, phase noise or 

sampling jitter, for example. Here we study the precision of the estimation of a sinewave amplitude when the 

samples are affected by phase noise or sampling jitter. The mathematical expression derived is useful in 

obtaining the confidence intervals for the estimated sinusoidal amplitude. It is also valuable at the time of 

choosing the proper number of samples to acquire from a signal from which we need to estimate the sinusoidal 

amplitude in order to reach a certain desired level of estimation precision. The analytical expression presented 

is validated using both numerically generated data and experimental data. Various non-ideal factors, such as 

a fixed, uncontrollable amount of jitter in the setup, additive noise, analog-to-digital converter non-linearity, 

and limited signal bandwidth, are observed and discussed. Additionally, this work presents an exhaustive 

overview of the technical aspects involved in the experimental validation, including the implementation of the 

Monte Carlo type procedure, instrument interface, programming language, and the general development of 

automated measurement systems, which may be useful to other engineers. 
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1. Introduction 

Estimating the amplitude of a sinewave from a set of data points is a fundamental task in 

numerous scientific and engineering applications, encompassing fields such as telecommunications, 

signal processing, and instrumentation. This process is crucial for analyzing and interpreting various 

phenomena accurately. 

In mechanical engineering, monitoring the amplitude of mechanical vibrations is vital for 

predicting and preventing mechanical failures in engines, turbines, and other machinery [1]. By 

analyzing vibration amplitudes, engineers can identify early signs of wear and tear, thus 

implementing timely maintenance to avoid catastrophic failures. For instance, in predictive 

maintenance systems, vibration amplitude analysis is used to monitor the health of rotating 

machinery, ensuring optimal performance and longevity. 

In seismology, estimating the amplitude of seismic waves is critical for assessing their 

magnitude and potential impact. Accurate amplitude measurements enable scientists to evaluate the 

energy released during an earthquake and predict the likely effects on buildings and infrastructure. 

This information is essential for designing earthquake-resistant structures, ensuring they can 

withstand seismic forces and protect lives and property [2]. 

Also, in instrumentation and measurement, one often uses sinewaves as a stimulus signal to 

measure the characteristics of different electronic devices like amplifiers, filters and analog-to-digital 

converters among many other devices and systems. One also often uses sinewaves to measure 

different quantities like temperature [3] or distance [4]. 

In modern systems, often the signals from the real world are sampled, digitized and input into 

computers for storage and processing. It is thus important to have signal processing algorithms that 

are able to estimate the various parameters of a sinewave like amplitude, initial phase, offset and 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 November 2024 doi:10.20944/preprints202411.1522.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202411.1522.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

frequency. This estimation is generally done using a least squares procedure that minimizes the 

average of the squares of the differences between the data points and the sinusoidal modal [5]. 

Typically, least-squares estimation methods are employed for this purpose, offering closed-form 

solutions that are both efficient and robust. In the case of amplitude, initial phase and offset, there 

are closed form analytical expression for those estimates. In the case of frequency, usually an iterative 

procedure is employed. 

In real world applications the signals that would ideally be sinusoidal are affected by a myriad 

of phenomena that distort it in some way. Examples of these are the non-linear behavior of systems 

and devices that introduce extra additive sinusoidal components with different frequencies, additive 

random noise, usually normally distributed, quantization error introduced by the use of 

analog-to-digital converters with a finite number of bits, phase noise in the signal generators and 

uncertainty in the sampling instant, just to name a few. All those non-ideal phenomena affect the 

metrological characteristics of the sinewave parameter estimation (bias and standard deviation) as 

well as of those quantities that are derived from them like gain, bandwidth, total harmonic distortion 

and signal to noise ratio, just to name a few. 

The work presented here deals specifically with the estimation of sinewave amplitude obtained 

from data points sampled from real signals where the sampling process is affected by jitter, which is 

random, normally distributed with null mean and known standard deviation. Despite extensive 

research on signal estimation techniques, including the thorough treatment of estimation theory by 

Kay [5] on the impact of jitter on digital systems [6,7], there remains a need for comprehensive studies 

that analytically and experimentally address the impact of sampling jitter on amplitude estimation. 

The analytical expressions derived here are validated in a wide range of signal and data 

acquisition parameters using numerically generated data and a Monte Carlo type procedure. Even 

with the numerical validation carried out there are some important questions that should be posed, 

namely, how well the assumptions introduced in the mathematical derivations cover the range of 

cases that one might find in practice using data from the real world. For example, does the non-

linearity of the data acquisition module affects the results obtained? Is the independence between the 

signal and the type of noise considered valid? Have all relevant factors been accounted for in the 

numerical simulations carried out? In order to answer this questions, it is important also to carry out 

some validation using real data which is also done in the present work. Specifically, we will use 

voltage samples acquired and digitized with a data acquisition module. The values obtained will be 

used with a least-squares fitting procedure in order to estimate the underlying sinewave amplitude. 

The experimental setup used in this research comprises a data acquisition module and two 

function generators. The primary function generator produces the main sinusoidal signal, while the 

secondary generator creates a rectangular clock signal that controls the sampling instants. The 

estimation procedure is repeated a large number of times and the estimates made, in this case the 

sinusoidal amplitude, are used to compute their standard deviation. Note that the amplitude values 

obtained are not equal due to the random phenomena present in the signals generated and the 

hardware used. The amount of jitter present will be controlled by phase modulating the clock signal 

with normally distributed noise produced by a function generator. It will thus be necessary to 

calibrate the amount of jitter being introduced prior to carrying out the main study. 

In addition to validating the theoretical models, this work provides a detailed presentation of 

the technical aspects involved in the experimental validation. This includes the implementation of 

the Monte Carlo procedure, instrument interfacing, programming languages used, and the 

development of automated measurement systems. These insights are intended to assist other 

engineers and researchers in replicating and extending the findings presented here. 

One should note that the bias of this estimator in the presence of jitter has been addressed in [8]. 

Also, relative to the initial phase estimation of the sinewave, previous work on the precision of the 

estimator and its bias can be found in [9,10] respectively. Regarding the effect of additive noise on 

the amplitude and initial phase estimation one can also find studies published in [11,12]. 
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2. Least-Squares Sinusoidal Fitting Procedure 

Here we will derive an analytical expression for the standard deviation of sinewave amplitude 

estimation in the presence of jitter in the sampling instant. We start by considering the mathematical 

model of our periodically sampled sinusoidal signal, namely 

𝑥𝑖 = 𝐶 + 𝐴 ⋅ 𝑐𝑜𝑠(𝜔𝑥𝑡𝑖 + 𝜑), (1) 

where 𝑥𝑖 are the sample voltages and 𝑖 is the sample index that runs from 1 to 𝑀. Parameters 𝐴, 𝜑, 

𝐶 and 𝜔𝑥 are the signal amplitude, initial phase, offset and angular frequency respectively. The ideal 

sampling instants are represented by 𝑡𝑖 . In this work these instants will be affected by normally 

distributed sampling jitter 𝜏𝑖 with null mean and standard deviation given by 𝜎𝜏. 

Due to this random phenomenon under study here, the actual sample voltages become, from 

(1) and replacing 𝑡𝑖 by 𝑡𝑖 + 𝜏𝑖, 

𝑧𝑖 = 𝐶 + 𝐴 ⋅ 𝑐𝑜𝑠[𝜔𝑥(𝑡𝑖 + 𝜏𝑖) + 𝜑]. (2) 

The sinusoidal stimulus signal is also often affected by phase noise due to non-idealities in the 

signal generator. This phenomenon can be easily added to our mathematical model using the random 

variable 𝜓: 

𝑧𝑖 = 𝐶 + 𝐴 ⋅ 𝑐𝑜𝑠[𝜔𝑥(𝑡𝑖 + 𝜏𝑖) + 𝜑 + 𝜓]. (3) 

It is thus easy to consider the effect of sampling jitter and stimulus signal phase noise together 

by using the random variable 

𝜃𝑖 = 𝜔𝑥 ⋅ 𝜏𝑖 +  𝜓. (4) 

Note that in the current work we are assuming that the phase noise and the sampling jitter are 

statistically independent. We will consider that this random variable is normally distributed with 

null mean and standard deviation 𝜎𝜃. Furthermore, we assume homoscedasticity, that is, the spread 

of residuals is uniform across the range of values of jitter and phase noise. The standard deviation 

can be easily obtained from the standard deviation of the jitter and the phase noise using 

𝜎𝜃 = 𝜔𝑥 ⋅ 𝜎𝜏 + 𝜎𝜓. (5) 

The samples are then used to estimate the sinusoidal amplitude using a least-squares procedure, 

commonly known as “sine-fitting”. The estimated value of the amplitude 𝐴 is designated here with 

a hat over the symbol: 𝐴̂. This estimated amplitude is thus a random variable due to the randomness 

of 𝜏𝑖  and the least-squares procedure used. This mathematical procedure consists in building a 

matrix 𝐷 given by 

𝐷 = [

𝑐𝑜𝑠(𝜔𝑥𝑡1) 𝑠𝑖𝑛(𝜔𝑥𝑡1) 1

𝑐𝑜𝑠(𝜔𝑥𝑡2) 𝑠𝑖𝑛(𝜔𝑥𝑡2) 1
. . . . . . . . .

𝑐𝑜𝑠(𝜔𝑥𝑡𝑀) 𝑠𝑖𝑛(𝜔𝑥𝑡𝑀) 1

]. (6) 

and then using it, together with the samples 𝑧𝑖 to estimate the sinewave parameters using 

[

𝐴𝐼̂

𝐴𝑄̂

𝐶̂

] = (𝐷𝑇𝐷)−1𝐷𝑇 [

𝑧1

𝑧2

. . .
𝑧𝑀

]. (7) 

Note that from the estimated in-phase amplitude, 𝐴𝐼̂  and the estimated in-quadrature 

amplitude, 𝐴𝑄̂ we can obtain the estimated sinusoidal amplitude using 

𝐴̂ = √𝐴𝐼̂
2
+ 𝐴𝑄̂

2
. (8) 

The matrix product 𝐷𝑇𝐷 in (7) is equal to 
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𝐷𝑇𝐷 = [

∑ 𝑐𝑜𝑠2(𝜔𝑥𝑡𝑖)
𝑀−1
𝑖=0 ∑ 𝑐𝑜𝑠(𝜔𝑥𝑡𝑖) 𝑠𝑖𝑛(𝜔𝑥𝑡𝑖)

𝑀−1
𝑖=0 ∑ 𝑐𝑜𝑠(𝜔𝑥𝑡𝑖)

𝑀−1
𝑖=0

∑ 𝑐𝑜𝑠(𝜔𝑥𝑡𝑖) 𝑠𝑖𝑛(𝜔𝑥𝑡𝑖)
𝑀−1
𝑖=0 ∑ 𝑠𝑖𝑛2(𝜔𝑥𝑡𝑖)

𝑀−1
𝑖=0 ∑ 𝑠𝑖𝑛(𝜔𝑥𝑡𝑖)

𝑀−1
𝑖=0

∑ 𝑐𝑜𝑠(𝜔𝑥𝑡𝑖)
𝑀−1
𝑖=0 ∑ 𝑠𝑖𝑛(𝜔𝑥𝑡𝑖)

𝑀−1
𝑖=0 𝑀

]. (9) 

Considering that the sinusoidal frequency is known, which we will do here, we can use coherent 

sampling and acquire the signal samples which cover exactly an integer number of signal periods. 

Some of the terms in (9) vanish and we are left with a diagonal matrix: 

𝐷𝑇𝐷 = [
∑ 𝑐𝑜𝑠2(𝜔𝑥𝑡𝑖)

𝑀−1
𝑖=0 0 0

0 ∑ 𝑠𝑖𝑛2(𝜔𝑥𝑡𝑖)
𝑀−1
𝑖=0 0

0 0 𝑀

]. (10) 

Inserting this into (7) leads to 

[

𝐴𝐼̂

𝐴𝑄̂

𝐶̂

] =

[
 
 
 
 
2

𝑀
∑ 𝑧𝑖 𝑐𝑜𝑠(𝜔𝑥𝑡𝑖)

𝑀−1
𝑖=0

2

𝑀
∑ 𝑧𝑖 𝑠𝑖𝑛(𝜔𝑥𝑡𝑖)

𝑀−1
𝑖=0

1

𝑀
∑ 𝑧𝑖

𝑀−1
𝑖=0 ]

 
 
 
 

. (11) 

and the estimated sinusoidal amplitude, given by (8), becomes 

𝐴̂ =
2

𝑀
√∑ 𝑧𝑖𝑧𝑗 𝑐𝑜𝑠[𝜔𝑥(𝑡𝑖 − 𝑡𝑗)]𝑖,𝑗 . (12) 

In the next section we will derive the standard deviation of this estimated amplitude as a 

function of the jitter/phase noise standard deviation and number of acquired samples. 

3. Estimated Amplitude Standard Deviation 

Having presented the analytical expression used to obtain an estimate of the sinusoidal 

amplitude, 𝐴̂, from the acquired samples 𝑧𝑖 we will proceed to determine the standard deviation of 

that estimate. To begin, we will first determine the variance of the estimative of the square amplitude. 

Using eq. 7.21 in [13], which makes use of a first order Taylor series approximation, we have  

𝜎𝐴
2 ≈ (

𝜕𝐴̂

𝜕𝐴𝐼̂

)

2

𝜎𝐴𝐼̂

2 + 2
𝜕𝐴̂

𝜕𝐴𝐼̂

𝜕𝐴̂

𝜕𝐴𝑄̂

𝐶𝑜𝑣{𝐴𝐼̂ , 𝐴𝑄̂} + (
𝜕𝐴̂

𝜕𝐴𝑄̂

)

2

𝜎𝐴𝑄̂

2 , (13) 

where the derivatives are to be evaluated at 𝐴𝐼̂ = 𝜇𝐴𝐼̂
 and 𝐴𝑄̂ = 𝜇𝐴𝑄̂

. The variances of the in-phase 

and in-quadrature amplitudes have been determined in [10], eq. 74 and eq. 75 respectively: 

𝜎𝐴𝐼̂

2 =
𝐴2

𝑀
(1 − 𝑒−𝜎𝜃

2
) −

𝐴2

2𝑀
𝑐𝑜𝑠(2𝜑) (𝑒−𝜎𝜃

2
− 𝑒−2𝜎𝜃

2
). (14) 

𝜎𝐴𝑄̂

2 =
𝐴2

𝑀
(1 − 𝑒−𝜎𝜃

2
) +

𝐴2

2𝑀
𝑐𝑜𝑠(2𝜑) (𝑒−𝜎𝜃

2
− 𝑒−2𝜎𝜃

2
). (15) 

So has the covariance between these two amplitudes which can be found in eq. 80 of [10]: 

𝐶𝑜𝑣{𝐴𝐼̂ , 𝐴𝑄̂} =
𝐴2

2𝑀
𝑠𝑖𝑛(2𝜑) (𝑒−𝜎𝜃

2
− 𝑒−2𝜎𝜃

2
). (16) 

It remains for us to determine the partial derivatives in (13).  

𝜕𝐴

𝜕𝐴𝐼̂
|
𝐴𝐼̂=𝜇𝐴𝐼̂

,𝐴𝑄̂=𝜇𝐴𝑄̂

=
𝜇𝐴𝐼̂

√𝜇
𝐴𝐼̂

2 +𝜇
𝐴𝑄̂

2
. (17) 

and 

𝜕𝐴

𝜕𝐴𝑄̂
|
𝐴𝐼̂=𝜇𝐴𝐼̂

,𝐴𝑄̂=𝜇𝐴𝑄̂

=
𝜇𝐴𝑄̂

√𝜇
𝐴𝐼̂

2 +𝜇
𝐴𝑄̂

2
. (18) 

The expected values can also be obtained from [10], eq. 20 and eq. 21: 

𝜇𝐴𝐼̂
= 𝐴 ⋅ 𝑐𝑜𝑠(𝜑) ⋅ 𝑒−

1

2
𝜎𝜃

2

. (19) 
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and 

𝜇𝐴𝑄̂
= −𝐴 ⋅ 𝑠𝑖𝑛(𝜑) ⋅ 𝑒−

1

2
𝜎𝜃

2

. (20) 

The partial derivatives then become simply 

𝜕𝐴

𝜕𝐴𝐼̂
|𝐴𝐼̂=𝜇𝐴𝐼̂

,

𝐴𝑄̂=𝜇𝐴𝑄̂

=
𝐴⋅𝑐𝑜𝑠(𝜑)⋅𝑒

−
1
2𝜎𝜃

2

√𝐴2⋅𝑐𝑜𝑠2(𝜑)⋅𝑒
−𝜎𝜃

2
+𝐴2⋅𝑠𝑖𝑛2(𝜑)⋅𝑒

−𝜎𝜃
2

= 𝑐𝑜𝑠(𝜑). (21) 

and 

𝜕𝐴

𝜕𝐴𝑄̂
|𝐴𝐼̂=𝜇𝐴𝐼̂

,

𝐴𝑄̂=𝜇𝐴𝑄̂

=
𝐴⋅𝑠𝑖𝑛(𝜑)⋅𝑒

−
1
2𝜎𝜃

2

√𝐴2⋅𝑐𝑜𝑠2(𝜑)⋅𝑒
−𝜎𝜃

2
+𝐴2⋅𝑠𝑖𝑛2(𝜑)⋅𝑒

−𝜎𝜃
2

= 𝑠𝑖𝑛(𝜑). (22) 

Inserting these two partial derivatives into (13) leads to 

𝜎𝐴
2 ≈ 𝑐𝑜𝑠2(𝜑) ⋅ 𝜎𝐴𝐼̂

2 − 2𝑐𝑜𝑠(𝜑)𝑠𝑖𝑛(𝜑) ⋅ 𝐶𝑜𝑣{𝐴𝐼̂ , 𝐴𝑄̂} + 𝑠𝑖𝑛2(𝜑) ⋅ 𝜎𝐴𝑄̂

2 . (23) 

Finally, inserting the variances given by (14), (15) and the covariance given by (16) leads to 

𝜎𝐴
2 ≈ [𝑐𝑜𝑠2(𝜑) + 𝑠𝑖𝑛2(𝜑)] ⋅

𝐴2

𝑀
(1 − 𝑒−𝜎𝜃

2
) + 

−[𝑐𝑜𝑠2(𝜑) − 𝑠𝑖𝑛2(𝜑)] ⋅
𝐴2

2𝑀
𝑐𝑜𝑠(2𝜑) (𝑒−𝜎𝜃

2
− 𝑒−2𝜎𝜃

2
) + 

−2𝑐𝑜𝑠(𝜑)𝑠𝑖𝑛(𝜑) ⋅
𝐴2

2𝑀
𝑠𝑖𝑛(2𝜑) (𝑒−𝜎𝜃

2
− 𝑒−2𝜎𝜃

2
). 

(24) 

Simplifying leads to 

𝜎𝐴
2 ≈

𝐴2

𝑀
(1 − 𝑒−𝜎𝜃

2
) + 

−𝑐𝑜𝑠(2𝜑) ⋅
𝐴2

2𝑀
𝑐𝑜𝑠(2𝜑) (𝑒−𝜎𝜃

2
− 𝑒−2𝜎𝜃

2
) + 

      − 𝑠𝑖𝑛(2𝜑) ⋅
𝐴2

2𝑀
𝑠𝑖𝑛(2𝜑) (𝑒−𝜎𝜃

2
− 𝑒−2𝜎𝜃

2
). 

(25) 

Combining the trigonometric terms leads to 

𝜎𝐴
2 ≈

𝐴2

𝑀
(1 − 𝑒−𝜎𝜃

2
) −

𝐴2

2𝑀
(𝑒−𝜎𝜃

2
− 𝑒−2𝜎𝜃

2
). (26) 

Further simplification results in 

𝜎𝐴
2 ≈

𝐴2

2𝑀
(2 − 3𝑒−𝜎𝜃

2
+ 𝑒−2𝜎𝜃

2
). (27) 

Note that for small values of jitter standard deviation this expression can be reasonably well 

approximated by 

𝜎𝐴
2|

𝜎𝜃<<1
≈

𝐴2

2𝑀
𝜎𝜃

2. (28) 

These derivations allow one to compute the standard deviation of the estimated sinusoidal 

amplitude given the actual amplitude, the number of samples and the jitter/phase noise standard 

deviation. 

4. Numerical Simulation 

To validate the analytical expressions derived here that can be used to determine the standard 

deviation of the estimated amplitude of a sinusoidal signal from a set of data points corrupted by 

jitter or phase noise, several numerical simulations have been carried out. These simulations 
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consisted in numerically creating a sinusoidal signal with the desired parameters, extract a set of data 

points affected be jitter or phase noise with the desired statistics and fit, in a least square sense, a 

sinusoidal model to estimate the signal amplitude, offset and initial phase. In this work we consider 

the frequency of the signal to be known and thus it does not have to be estimated from the data points. 

In Figure 1 we can see an example of 100 data points obtained from a sinusoidal model corrupted by 

phase noise with a standard deviation of 0.1 rad. 
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Figure 1. Simulated data points (100 points) for a sinewave with an amplitude of 3 V, an initial phase 

of p/3 rad and a frequency of 1 Hz, corrupted with phase noise, normally distributed, with null means 

and a standard deviation of 0.1 rad. 

By repeating this procedure a large number of times, we obtain several estimates for the 

sinusoidal parameters. Here we focus on its amplitude. With all those values we are able to compute 

their standard deviation and study how it varies with different settings like the number of samples 

used or the phase noise standard deviation, for example. In the following we will show the results 

obtained. 

In the case of Figure 2 we show the standard deviation of the estimated amplitude as a function 

of phase noise standard deviation. The range of values of injected phase noise go from 0 (no phase 

noise created) to 1 rad. The average of the 2000 values obtained for the sinusoidal amplitude standard 

deviation, for each value of phase noise, are plotted using solid filled circles. The vertical bars 

represent the confidence intervals for the estimated standard deviation considering a 99.9% 

confidence level and the case of a chi-squared distribution. The solid line depicts the analytical values 

given by (27). As observed, these values agree very well with the numerically simulated data, 

validating the analytical derivations presented here. 
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Figure 2. Standard deviation of the estimated sine wave amplitude as a function of phase noise 

standard deviation. The circles represent the values obtained with the Monte Carlo analysis. The 

confidence intervals for a confidence level of 99.9% are represented by the vertical bars. The solid line 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 November 2024 doi:10.20944/preprints202411.1522.v1

https://doi.org/10.20944/preprints202411.1522.v1


 7 

 

represents the value given by the theoretical expression (27). The number of repetitions made (R) was 

2000. 

In Figure 3 we present the same data but now we compare it with the simpler analytical 

expression given in (28) where the relation between estimated amplitude standard deviation and 

phase noise standard deviation is linear. For this range of values, we conclude also that this analytical 

expression is very accurate. 
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Figure 3. Standard deviation of the estimated sine wave amplitude as a function of phase noise 

standard deviation. The circles represent the values obtained with the Monte Carlo analysis. The 

confidence intervals for a confidence level of 99.9% are represented by the vertical bars. The solid line 

represents the value given by the approximate expression (28). 

Repeating the procedure for a large range of phase noise standard deviation, up to 3 rad, we see 

that the agreement is not so good as observed in Figure 4. 
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Figure 4. Standard deviation of the estimated sine wave amplitude as a function of phase noise 

standard deviation. The circles represent the values obtained with the Monte Carlo analysis for a 

number of samples of 9. The confidence intervals for a confidence level of 99.9% are represented by 

the vertical bars. The solid line represents the value given by the approximate expression (27). 

This agreement is also visible in Figure 5 where a larger number of samples, 100, was used. 
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Figure 5. Standard deviation of the estimated sine wave amplitude as a function of phase noise 

standard deviation. The circles represent the values obtained with the Monte Carlo analysis for a 

number of samples of 100. The confidence intervals for a confidence level of 99.9% are represented by 

the vertical bars. The solid line represents the value given by the approximate expression (27). 

As we have seen with the numerical simulations presented, the approximations used are quite 

good if the phase noise standard deviation is lower than 1 rad. In order to justify the applicability of 

the current work to everyday application, despite the approximations made, we present a short list 

with some typical values of phase noise encountered: 

• Ethernet (Gigabit Ethernet, 125 MHz): 4 mrad [14]. 

• PCIe Gen3 (8 GHz): 0.1 rad [15]. 

• Digital Audio (192 kHz DAC): 0.15 mrad [16]. 

• High-Speed ADC (500 MHz): 0.5 mrad [17]. 

• FPGA/ASIC Clock Signals (200 MHz): 40 mrad [18]. 

• GPS Receivers (10 MHz): 0.3 mrad [19]. 

• HDMI 2.0 (3.4 GHz): 0.8 rad [20]. 

As we can see in these random examples, the values of phase noise standard deviation are lower 

than 1 rad. There are, however, some applications where the amount of phase noise is higher like, for 

example: 

• 5G NR Base Stations (3.5 GHz): 7 rad [21]. 

• PLL in RF Transceivers (2.4 GHz): 5 rad [22]. 

Evidently the current study is not applicable to these two example applications. 

Finally, we varied the number of samples and represented the result in Figure 6. We observe 

that expression (27) is not so good when the number of samples used is very low (less than 10). In 

practice, however, the number of samples is generally much higher than this. 
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Figure 6. Standard deviation of the estimated sine wave amplitude as a function of the number of 

samples. The circles represent the values obtained with the Monte Carlo analysis. The confidence 
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intervals for a confidence level of 99.9% are represented by the vertical bars. The solid line represents 

the value given by the approximate expression (27). 

The results of the Monte Carlo type analysis using numerically simulated data justify the 

correctness of the analytical expressions derived and give confidence to the user that they can be used 

in real live settings. Furthermore, they are valuable to the engineer design a given acquisition system 

since they allow one to easily estimate the number of samples that should be acquired in order to 

attain a specified confidence in the sinusoidal amplitude estimation. 

In the following we will validate the analytical expression derived also using experimental data. 

In the next section we describe the experimental setup. The following sections describe the calibration 

carried out and the experimental results obtained. 

5. Experimental Setup 

In Figure 7 we can see the hardware setup used in this work. It is composed of three devices and 

a personal computer (to the right on the figure). The top device observed in Figure 7 is a data 

acquisition module from National Instruments, model NI-USB-6218 (seen on top) connected through 

a USB interface with the personal computer. This module has an analog-to-digital converter with 

16-bits. Although it can operate at different sampling rates the value used throughout this work was 

100 kHz. It also has many input ranges but here we just used the bipolar ±1 V range. 

 

Figure 7. Hardware setup used to experimentally validate the relationship between jitter and 

estimated sinewave amplitude. Two function generators were used together with a 16-bit data 

acquisition module from National Instruments, model NI-USB-6218 (seen on top) connected through 

a USB interface with a personal computer (seen partially on the right). One of the function generators, 

model DS360 from Stanford Research (bottom) was used to create the sinusoidal stimulus signal. The 

other function generator, model AG3320A from Agilent (middle), was used to create the clock signal 

that controlled the sampling instants, and which was modulated by internally generated, normally 

distributes, phase noise. 
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In the same figure we can also observe two general purpose function generators. The one seen 

at the bottom of the figure is a low distortion function generator from Stanford Research, model 

DS360, used here to produce a sinusoidal signal which is applied to channel ai0 of the data acquisition 

module (pins 15 and 16, Figure 8. 

 

Figure 8. Pinout of the data acquisition module from National Instruments, model NI-USB-6218. 

The top function generator seen in Figure 7 is an Agilent 33220A general purpose function 

generator setup to produce a rectangular signal that is input into the acquisition module to determine 

the sampling instants (clock signal). This is connected to the data acquisition module inputs PFI3 and 

GND which correspond to pins 4 and 5 (Figure 8). The rectangular signal produced is phase 

modulated by an internally generated signal which is random noise with a normal distribution and 

whose peak-to-peak value can be adjusted by the user. 

A block diagram of the test setup can be observed in Figure 9. There we can see the personal 

computer, the data acquisition module, the two function generators and the connections between the 

different modules with indication of the terminal names and pin numbers. 
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Figure 9. Block diagram of the test setup where one can observe the personal computer, the data 

acquisition module and the two general purpose function generators. 

The personal computer is able to control the two function generators. In the case of the function 

generator producing the clock signal, an USB interface is used. In the case of the other function 

generator, which produced the sinusoidal stimulus signal, it does not have a USB interface. It only 

has a General-Purpose Interface Bus. It is thus connected to the personal computer using an interface 

module from Keysight shown in Figure 10. This module is not visible in Figure 7 where a photograph 

of the entire hardware setup is shown. 

 

Figure 10. Photograph of the USB/GPIB Interface module from Keysight, model 82357B connected to 

the Stanford Research DS360 generator to the right. The cable to the left of the image has an USB 

interface and goes to the personal computer. 

The hardware setup shown here can create a sinusoidal voltage signal which is sampled and 

converted from analog to digital by a data acquisition module that times the sample taking using a 

rectangular voltage signal produced by a second function generator. The data points acquired are 

sent to the personal computer where a software developed using the National Instruments LabVIEW 

programming language is running, as described in the next section. 

6. Software Development  

The goal of this work was to create an automated measurement system to study the uncertainty 

of the least squares sine fitting procedure. In order to achieve this, a personal computer was used 

which is able to run an application which controls, without user intervention, two function 

generators. It is able to set up automatically the waveform shapes (sinusoidal and rectangular) as 
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well as their parameters (amplitude, frequency and DC component). Furthermore, it configures the 

data acquisition module to acquire a specified number of samples at a chosen rate and send them to 

the personal computer for storage and processing. 

This application was developed entirely by the author and written in National Instruments 

LabVIEW graphical language. This application is made of several “virtual instruments” which is the 

name it is given in this language to the traditionally named “function”. Besides controlling the 

function generators and gathering the samples, the application is also responsible for the data 

processing necessary for this study. This includes computing the statistics of the acquired data points, 

like averages and standard deviations as well as computing the theoretical expected values and 

depicting them in a graphical way. This application is also responsible for storing the data and 

computation results made in text files which were used to build the charts presented in this paper. 

It is too cumbersome and unnecessary, from a scientific perspective, to present and described all 

the virtual instruments (VIs) developed, which are more than 100. Instead, we will present only a 

couple of them. 

Each VI has two parts, namely a “Front Panel” through which the user interacts with the 

application, and a “Block Diagram” which contains the source code. The application developed has 

been used by the author to study the uncertainty of several signal processing algorithms and analog-

to-digital characterization methods. There are thus many parts which are not relevant to the study at 

hand. For this reason, the author chose to present here just some cut-outs of the front panels and 

block diagrams. It serves just for illustration purposes since this paper is not about software 

development. It is about the precision of sinusoidal amplitude estimation in the presence of phase 

noise and sampling jitter. 

In Figure 11 we present a partial front panel of one of the virtual instruments created using 

LabVIEW. Note that some parts shown in the figure were used in other research works and are not 

relevant to the current goals. On the left side of the figure, we observe the data acquisition module 

settings like range, sampling frequency, number of samples and terminals used. We can see that a ±1 

V range was used and that the samples were acquired at a rate of 100 kHz. In the center of the image, 

we can see the ADC parameters: number of bits and transfer function type. On the right side we see 

the function generators configuration with addresses as well as other parameters like amplitude, 

frequency and waveform shape. 

 

Figure 11. Partial image of one of the front panels of the LabVIEW application developed. Some parts 

shown are not relevant to the present work. On the left side we observe the data acquisition module 

settings like range, sampling frequency, number of samples and terminals used. In the middle we the 
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ADC parameters like the number of bits and the type of transfer function of the ADC. On the right-

side e see the function generators used with their addresses as well as their configuration like 

amplitude, frequency and waveform shape. 

In Figure 12 it is shown the block diagram of the virtual instrument responsible for carrying out 

the sinewave test where least squares fit of the data points to a sinusoidal model is carried out. It 

starts by computing the setup parameters to use in the subVI named “Prepare Sinewave Test”. Those 

parameters are then used to program the function generators in the “Control FGs” subVI. The data 

acquisition samples are then acquired in the “Acquire or Simulate” subVI and finally the data points 

gathered are used to estimate different parameters like sinewave amplitude and initial phase, for 

example. 

 

Figure 12. Image of the block diagram of the virtual instrument that carries out the sinewave test. It 

starts by computing the setup parameters to used (left part) in the subVI “Prepare Sinewave Test” 

which are then used to program the function generators in the “Control FGs” subVI. The data 

acquisition samples are then acquired in the “Acquire or Simulate” subVI and finally the data points 

gathered are used to estimate different parameters like sinewave amplitude and initial phase. 

There is another top-level VI which repeats the sinewave test for different values of clock 

generator phase noise. The sinewave amplitude is estimated several times for each value of clock 

generator phase noise and the mean and standard deviation of estimated amplitudes are computed. 

There are then graphically represented using error bars as can be seen in Figure 13. Each data point 

is represented by a circle and an error bar. The more repetition of the test the shorter the error bars 

becomes but longer the execution takes. The theoretical expected values are shown with a solid line. 
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Figure 13. Image of the front panel portion that shows the result of amplitude estimation as a function 

of the clock generator phase noise. Each data point is represented by a circle and an error bar. The 

theoretical expected values are shown with a solid line. 

Each data point represented in Figure 13, including the error bars, is obtained by repeating the 

least-square sine fitting test many times. The image of the block diagram of the VI that carries out 

this repetition is presented in Figure 14. It has a for-loop with N iterations inside which the sinewave 

test subVI is called. The value of the desired estimates is obtained from the test results. In this case it 

is the amplitude, initial phase and offset. The set of values obtained is then input the the subVIs 

named “Compute Stats & Update Results” in order to compute the means and standard deviations 

of the estimates and from there the error bars of the different estimates. 

 

Figure 14. Image of the block diagram responsible for repeating the test a certain number of times in 

order to compute the mean and standard deviation of the estimated values of sinewave amplitude, 

initial phase and offset. 

Figure 15 shows the block diagram of the virtual instruments that compute the sinewave 

amplitude, initial phase and DC offset (3-parameter sine-fitting) given the data points and the 

sinusoid frequency. In essence it implements in LabVIEW the computations described in equation 

(7). 

 

Figure 15. Image of the block diagram responsible estimating the sinewave amplitude, initial phase 

and DC value given the data points and the sinewave frequency. 

This section is just meant as a quick illustration of the software developed in the context of this 

research work. Many of the VIs created and used are not covered here. This is not meant to be an 

exhaustive description of the software created. 
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The next section presents the experimental data results and compares with the analytical 

expressions derived previously. 

7. Experimental Results 

The goal of the present study was to experimentally validate the analytical expression that 

relates the standard deviation of the estimate of sinusoidal amplitude obtained by fitting a set of data 

points to the amount of jitter present in the sampling instants.  

The experimental setup described earlier was used to determine the precision of the amplitude 

estimation for different amounts of jitter. The standard deviation of the sampling jitter was controlled 

by phase modulating the sampling clock with normally distributed random noise. This was achieved 

by using the functionality of the Agilent 33220A function generator which has the capability of 

producing a rectangular signal with chosen frequency and amplitude. In the present work a 

rectangular signal with 100 kHz frequency and an amplitude from 0 to 5 V was used. Furthermore, 

this generator has the capability of modulating several parameters of the main signal (like amplitude 

and phase) using a second internal generator. This secondary generator can produce periodic signal 

with different shapes (sinusoidal, triangular, rectangular, …) as well as random noise. In the present 

study we chose to use random noise with a normal distribution. The phase of the main rectangular 

signal was thus phase modulated by a second normally distributed random signal. This rectangular 

signal was then used in the data acquisition module to control the timing of the sample acquisition. 

In order to control the amount of jitter present we chose to use as the clock signal a rectangular 

wave phase modulated by normally distributed random noise with a range of peak-to-peak values 

from 0 to 50º. For each value of jitter, the sine fitting test was carried out to using a set of 100 points 

sampled from a sine wave produced by another function generator (Stanford Research DS 360) with 

an amplitude of 900 mV and a frequency of 5 kHz. For each value of phase noise setting the 

sine-fitting test was repeated 500 times and the confidence interval for the estimated amplitude was 

computed. 

The estimate of the standard deviation was obtained from the square root of the sample variance 

using 

𝑠 =
1

√𝑛 − 1
√∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

, (29) 

as per [13], eq. (9-13). Note that the variance of the population is unknown. The confidence interval 

for the standard deviation estimation is thus 

𝐶𝐼 = ]
𝑠 ⋅ √𝑛 − 1

𝛸
1−

𝛿
2

(𝑛 − 1)
  ;

𝑠 ⋅ √𝑛 − 1

𝛸𝛿
2
−1

(𝑛 − 1)
[ (30) 

where the confidence level used () was 99.9% and 𝛿 = 1 − 𝛾. The number of data points (n) was 500. 

These confidence intervals were used to represent the error bars in the experimental data obtain 

which is depicted in Figure 15. 
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Figure 15. Chart containing the experimentally estimated sinewave standard deviation as a function 

of the injected amount of phase noise. 

To estimate the amount of jitter present we used the IEEE 1057 recommended test namely the 

one in section 4.9.2.2 [23]. In this test one applies a low frequency (𝑓1) sinewave to the waveform 

digitizer, and compute the root-mean-square error from the residuals obtained from subtracting the 

data points from the least-squares fitted sinewave obtaining σ1. One than repeats the data acquisition 

for a high frequency compared to the waveform digitizer bandwidth (𝑓2) and computes a second 

value of root-mean-square error obtaining 𝜎2. The amount of jitter present is then estimated using 

𝜎𝑡 =
√𝜎2

2 − 𝜎1
2

2𝜋𝑓2𝐴
, (31) 

where 𝐴 is the sinusoid amplitude. 

The values obtained for the different function generator settings of phase noise modulation are 

the ones represented in Figure 16 using again error bars to represent the confidence intervals for the 

same 99.9 % confidence level and 50 repetitions (𝑛 = 50). The low frequency value used was 10 Hz 

and the high frequency was 10 kHz. The amplitude was 900 mV and the number of acquired samples 

was 100 at a rate of 100 kHz. 

 

Figure 16. Representation of the relation between the measured values of phase noise standard 

deviation and the configured values of phase noise standard deviation. 
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We are thus now able to represent the estimated amplitude standard deviation as a function of 

jitter. This can be seen in Figure 17. The vertical and horizontal error bars represent the confidence 

intervals for the estimated sinusoidal amplitude and jitter as shown in the previous two figures. One 

can observe a linear relationship between the two variables as expected from eq. (28). 

 

Figure 17. Experimental estimated amplitude standard deviation as a function of sampling jitter 

present. The error bars represent the confidence intervals for the estimation of both the amplitude 

estimation carried out with the least-squares sine-fitting method and the estimated amount of jitter 

present. The dashed line represents the straight line that best fits the data points. 

A straight line was fitted, in a least squares sense, to the data points and the following relation 

was obtained: 

𝜎𝐴 = 2328.373𝑉/𝑠 ⋅ 𝜎𝑡 − 21.185 ⋅ 10−6   [𝑉]. (32) 

Comparing this with the expected relation given in (28) we obtain 

𝜎𝐴 ≈
0.9

√2⋅100
∙ 2𝜋 ⋅ 5000 ∙ 𝜎𝑡 ∙ 𝐾. (33) 

with 

𝐾 ≈ 1,16. (34) 

This straight line is depicted in Figure 17 using the dotted trace. A discrepancy was this found 

between the slopes of the analytical and experimental relationships. This discrepancy is given be the 

coefficient 𝐾 ≈ 1,16 which was expected to be 𝐾 = 1. 

8. Conclusions 

In this work a simple analytical expression was derived for the standard deviation of the 

estimate of the amplitude of a sinewave made using the least squares procedure in the presence of 

jitter or phase noise. The derivation used a first order Taylor series approximation which was 

validated using both numerical simulations and experimental data through a Monte Carlo type 

procedure. The resulting expression can be used not only to compute the confidence interval for 

sinusoidal amplitude estimation, but also to help choose the number of signal samples to acquire in 

order to achieve a given bound in estimation precision. 

The hardware used in the experimental setup was described in detail. It consisted of two 

function generators and a data acquisition module. The software developed using National 

Instruments LabVIEW graphical programming language was presented mentioned but without 

much detail due to its complexity. The amount of jitter/phase noise present was controlled by phase 
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modulating the clock signal responsible for timing the sample acquisition by the data acquisition 

module. The type of injected jitter/phase noise was a null-mean normal distributed random one with 

a controllable standard deviation.  

A Monte Carlo method is used to determine the standard deviation of the estimated amplitude, 

repeated for different levels of injected jitter/phase noise. The results obtained confirm a linear 

relationship between estimated sinusoidal amplitude and jitter standard deviation. There was, 

nonetheless a 16% discrepancy between the slope of that relationship whose cause remains unknown. 

Note that several non-ideal phenomena are present in the experimental setup, namely, additive 

voltage noise, quantization error, intrinsic jitter in the sampling module, phase noise in the stimulus 

signal and clock generators and limited noise bandwidth both in the function generator as well as in 

the data acquisition module. All these factors, however, are believed to be independent of the amount 

of injected jitter/phase noise and would thus contribute a constant offset to the experimental results 

and not an error proportional to the amount of injected jitter/phase noise standard deviation as 

observed. Furthermore, they are present both in the sinewave amplitude estimation and in the 

jitter/phase noise estimation procedures. The non-accounted for non-ideal phenomena at play must 

be proportional to the amount of jitter/phase noise produced. Recall that for the numerically 

simulated tests performed there was no discrepancy found which gave us confidence in the analytical 

derivations and in the software developed. We thus conclude that it must be due to a hardware 

phenomenon not accounted for in this work. 

In the future one might continue the work presented here by considering, for example, the 

uncertainty in both amplitude and initial phase in the presence of jitter or phase noise when using 

the 4-parameter sine fitting algorithm where the signal frequency on not known and must be 

estimated using an iterative procedure. Other endeavors one might pursue, making use of this work, 

is the uncertainty of the estimation of other signal parameters like signal-to-noise ratio (SNR) or 

signal-to-noise and distortion (SINAD) or even the uncertainty of parameters associated with devices 

or circuits that are inferred from sine fitting of data points like, for example, total harmonic distortion 

(THD) or amplifier gain. 

We hope that this work might be useful to others involved in experimental applications of the 

sine-fitting procedure and also in the experimental validation of the uncertainty of sine-fitting 

parameters and their dependence on non-ideal factors. 
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