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Abstract: Composite electrolytes for applications in electrochemical energy technology, i.e. in
batteries and supercapacitors, are gaining increasing attention. In the absence of a commonly
accepted definition a ternary combination of materials, e.g. a polymer with an electrolyte salt or
electrolyte salt solution and a third conductivity-enhancing constituent, is assumed as a definition of
a composite electrolyte in the following review. Relevant fundamentals and reported research results
up to explanations of the observed effects and improvements are reviewed. Future perspectives and
directions of further research are indicated.
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1. Introduction

The ionically conducting phase between the electrodes of a battery or a supercapacitor is
frequently and rather imprecisely called the electrolyte. By definition an electrolyte is composed of
ions (a true electrolyte according to standard textbooks [i], e.g. NaCl) or of molecules, which
dissociate into ions upon interaction with a suitable solvent (potential electrolytes, e.g. HCl in water),
accordingly in most cases electrolyte solutions are actually employed [ii - iv]. Ionicliquids composed
of ions only and liquid already at room temperature (room temperature ionic liquids RTIL) are the
rare exemption. In this text, the distinction between electrolyte and electrolyte solution is ignored for
the sake of simplicity only. Mostly because of safety concerns and of risks associated with leakage of
devices the use of liquid electrolyte (solution)s is not welcome in most applications [v]. Consequently,
numerous attempts to replace them with non-liquid or even solid materials have been proposed and
examined. The absence of any non-liquid electrolyte in a most recent wide-ranging review on
supercapacitors appears to be an aberration and not representative of the current research trend [vi].
These attempts started with the general “wishing list” for an electrolyte system in mind [v, vii]:

e  Wide available electrode potential window

e  high ionic conductivity

e  sufficient chemical and electrochemical stability

e thermal stability

e  compatibility with electrode and separator materials
e  environmental compatibility

e low price

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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° sustainable resources

Given the stated flaws, limitations and challenges of liquid electrolytes reported attempts to
improve in particular solid electrolytes have addressed implicitly or explicitly these aspects:

e  Enhanced ionic conductivity

e  wider range of operating temperatures
e improved mechanical stability

e  Dbetter long-term stability

¢ increased thermal stability

Further aspects like improved electrode/electrolyte interaction, lower prices, flexibility and
bendability [viii] etc. may also have come into play; they are mostly of minor importance only. For
an example wherein cotton added into a hydrogel of sodium alginate and starch improved flexibility
of a supercapacitor see [ix].

Added or improved catalytic properties of a further constituent may be relevant for selected
applications as with separators in lithium-sulfur batteries. Most frequently improved ionic
conductivity is a major aim of composite-formation. The case of membrane-electrode assemblies with
mixed conduction (ionic and electronic one) has been examined also [x].

Based on the preceding lists already the combination of poly(ethyleneoxide) PEO with LiCIOa4
may be called linguistically correct a composite as in [xi], in another case combinations of two ionic
liquids with a lithium salt [xii] or of clay with an ionic liquid [xiii] have been called a composite
electrolyte. The definition of a composite as a two-phase combination formed by distributing a small
fraction of a filler into a solid or gel electrolyte seems to cover only part of the material presented
below [xiv].

Nevertheless, in this report the result of addition of a further performance-enhancing ingredient
to an electrolyte will be called a composite electrolyte only. Thus all presented examples below may
be classified as ternary composites. A slightly different classification of composite electrolytes as
always being a combination of organic and inorganic material classified into layered composite
electrolytes and polymer electrolytes with inorganic fillers appears to be less suitable and is not
followed here [xv]. In a very rare example of the first class a laminated electrolyte has been proposed
[xvi]. A layered electrolyte structure (not laminated) of PEO and MoOs further handled in a rather
complicated procedure has been proposed [xvii]. To call graphene or CNTs a composite may be a bit
of a stretch [xviii]. The sometimes-encountered eye-catcher “nano” like in “nanocomposite” or
“nanofiller” is ignored as being meaningless in the present content. The “good charge storage
capacity” requested from an electrolyte [xviii] will certainly not by discussed below, instead it seems
to suggest a fundamental misunderstanding — which can be found elsewhere again [xix]. The
meaning of “composite nature” invoked frequently in a report [xx] could not be identified.
Dimensionalities of the added ceramic material have been considered in a review of ceramic
material/polymer composite electrolytes [xxi].

Composite electrolytes in the meaning assumed in this reports have also attracted attention for
polymer electrolyte membrane fuel cells in particular with respect to opening up avenues to higher
operating temperatures [xxii]. Already addition of highly thermally conductive nanoparticles can
yield an ink-jet printable composite electrolyte liquid [xxiii].

Following a first mentioning of composite electrolytes in a conference proceeding in 1985 [xxiv]
the report on in situ formation of a solid/liquid composite electrolyte for a lithium-iodine battery in
1986 may be considered as the starting point of the development reviewed here. This report addresses
an early and until today successful application of a solid electrolyte in a lithium battery: In
pacemakers, which have been using a solid layer of Lil formed between the lithium metal negative
electrode and the positive electrode of iodine and poly-2-vinylpyridin as solid electrolyte successfully
for years [xxv]. This is a very low current application, the already mentioned flaw of poor ionic
conductivity is barely relevant, whereas the very low self-discharge is a remarkable advantage. A
report on a solid polymer electrolyte modified with an inert filler for lithium batteries in 1982 may be
considered as a starting point for that field [xxvi], for an overview see [xxvii].
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Early reports on composites, mostly on solid/solid composites, were few, and only around 2018
the rate of publications quickly increased as depicted in Figure 1.
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Figure 1. A search with the string “composite AND electrolyte AND (supercapacitor OR
battery)” found anywhere in the title, keywords or abstract (Data from Scopus® and Web of
Science® retrieved on December 16t%, 2024 yielded 16059 hits. Upon closer inspection it turned out,
that a large number of research reports were not dealing with composite electrolytes at all. Given
the later detected inspired phantasy of many authors manifested in the creation of terms like
“electrolyte composite” or “polymer electrolyte composites” [xxviii] the apparently logical search
string "*composite* *electrolyte*' AND (supercapacitor OR battery) yielded only 1591 hits missing
many products of said inspired creativity. For this report finally the search string “composite AND
electrolyte AND supercapacitor” was used yielding 4178 hits, irrelevant reports were removed
manually. Searches using various Al-based tools were rather similar in terms of results. The results
are depicted above as annual publication numbers of reports. Further publications with these
keywords somewhere in the text could initially not be counted; but when noticed and considered
relevant in the present context they were included below. A particularly noteworthy example
reports on polyvinylidenefluoride-co-hexafluoropropylene co(PVDF-HFP) (or simply PVDF-HFP,
see below for figure) plasticized with DMF (not even mentioned) and added zinc acetate providing
mobile ions but called a dopant [xxix]. The result is called a composite electrolyte! Elsewhere
authors could not decide whether to call a solution of two magnesium salts in water a composite or
a compound electrolyte [xxx].

Organization of the material aiming at optimized accessibility for the reader and at keeping a
systematic overview enabling identification of details and trends of particular interest to the reader
follows a scheme primarily determined by the chemical identity of the host or major material.
Although the fields “batteries” and “supercapacitors” appear to be in some merger as reviewed
elsewhere [xxxi, xxxii] the traditional separation is kept here given the vast difference in the number
of reports (56 on supercapacitors, 1187 on batteries. A corresponding overview dealing with batteries
will be provided elsewhere, a first general overview is available [xxxiii]. Obviously the arrangement
electrolyte/electrolyte (solution)/electrode in a supercapacitors is very similar to that in a secondary
battery; actually a supercapacitor may be called an extreme version of a high power battery whereas
a secondary battery may be considered as a high-energy version of a supercapacitor. Not surprisingly
some of the problems faced with secondary batteries show up with supercapacitors again. The
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assumed merger of both fields and the congruence of principles of operation as highlighted in [xxxi,
xxxii] should not be confused with hybridization of components addressed elsewhere [xxxiv]. The
term hybrid may actually also be applied to some of the composite electrolytes discussed below
because apparently one condition for the proper application of this term of Greek origin Ufo1g
(hybris) meaning arrogance or presumptuous in the common usage but meaning in the present
context something bundled, mixed or interbreeded with interactions going beyond plain addition is
met in many cases. The terms and overlaps are illustrated in Figure 2.

PO
E+
S-

redox capacitor

P power
E energy
S stability

+ good
E+ 0 average
S+ - poor

Figure 2. The merger of batteries and various types of supercapacitors, for details see text.

As shown combinations of electrodes from two different “families” yields hybrids, from two
similar “families” yields asymmetric devices. When looking for advantages of the combinations
power P, energy E and stability S are major criteria. Realized or at least expected advantages are
tentatively marked in the figure, the “holy grail” frequently placed in the top right corner of Ragone-
plots [xxxv] is marked in the center.

Nevertheless the term composite has prevailed so far on the materials level. Apparently the term
mixture may have been correct in many examples where the reason for combining specific
constituents remains as mysterious as the reason for the particular mixing ratio. Presumably the term
“composite or hybrid supercapacitors” found in [xxxvi] will hardly help.

Given the obvious differences between batteries and supercapacitors first the slightly different
tasks of electrolytes (although the distinction between electrolyte and electrolyte solution has been
stated above and the need to keep this distinction is obvious for the sake of brevity in the following
text electrolyte and electrolyte solution (the latter are not in the focus of attention anyway) will be
used as synonyms) in both devices will be briefly laid out. The main part of this report is finally
dedicated to studied examples organized as described above. Particular attention is paid to the
function and role of the constituents, this will initially help to understand the operation of the
electrolyte, in addition, data pertaining to stability are mentioned because stability will finally decide
about the practical value of a battery or supercapacitor component. This has been stressed before
[xxxvii], more attention to unified reporting has been requested elsewhere again [xxxviii].

2. Electrolyte tasks and challenges

In conventional electrolytes as well as electrolyte solutions the roles played by the ingredients is
perfectly obvious in almost every case [ii - iv]. Once a further ingredient is added into an electrolyte,
e.g. another ionic liquid or salt into one ionic liquid or a further salt into an electrolyte solution there
should be a reason specified together with the suggestion of the addition. Unfortunately, this may
not always be the case, the reader is left wondering about conceivable ideas behind the addition.

2.1. Composite electrolytes
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Beyond the trivial statement, that any combination of two materials enabling ionic conduction
without showing electronic conduction — this may even qualify as the definition of an electrolyte —
combining materials is commonly pursued with particular improvements in mind. These may range
from obvious improvements in terms of the electrochemical properties listed above in the wishing
list to further technical and even economical improvements. When examining composites with a
polymer the mechanical scaffold provided by the macromolecular material serving as a welcome stiff
material rendering a separator possibly superfluous combined with an improvement of the ionic
conductivity of the polymer are in the focus of attention. In case of composites composed of two or
more non-polymeric materials the welcome mechanical contribution of a polymeric scaffold remains
absent, other advantages beyond improved ionic conductance will be the driving force behind
mixing. Use of the sometimes-encountered term filler (see above) appears to be a bit unclear, at least
undefined. The distinction between passive (insulting) fillers not providing internal ionic conduction
and active (conducting) fillers suggested in [xxxix] has apparently not found widespread use.

2.1.1. Composites with polymer hosts

Overviews on polymer electrolytes are available [x] - xlii], more specific ones on the use of
polymer electrolytes in supercapacitors are available also [xliii], a recent review presents the current
status [vii]. Starting a composite electrolyte with a polymer or a polymer electrolyte is very rational:
The polymer will provide the mechanical support (or backbone) providing the scaffold desired for
an application not needing an extra separator. The added (composite) constituent may e.g. reduce
crystallinity of a polymer like PEO thus increasing ionic conductivity [xliv, xlv] or may provide
particularly transport-accelerating particle/host interfaces as demonstrated in [xlvi]. There is also
evidence that effects may depend on particle size with small particles increasing conductivity only
and larger ones increasing conductivity and transport number [xlvii]. This applies to all added
particular materials. In another highly unsystematic study of several inorganic components with
different particle sizes and dielectric constants no coherent conclusions were obtained [xlviii]. Ion-
conducting materials may add further ionic conduction pathways inside the particles. Possibilities of
enhanced ionic conductivity mechanisms have been reviewed [xlix]. Further advantages may be
gained by starting from a polymer blend of e.g. poly(vinylalcohol) PVA (Figure 3) and
poly(ethyleneoxide) PEO (Figure 4) with addition of 3 wt.% TiO: [1]. Similar beneficial effects were
observed upon addition of BaTiOs to a polymer blend of PVA and poly(ethylenglycol) PEG (Figure
5) [li], of LiosLaosTiOs to a blend of PEO and PVDF [lii], or of ZrO: to PVDF-HFP [liii]. Actual modes
of operation of the added ceramic may differ from material to material depending on the exact
chemical composition.

partially hydrolyzed fully hydrolyzed

Figure 3. Poly(vinylalcohol)

H2 H2 Hz
\ﬁ/c\ﬁ/o\ﬁ/c\ lO/C\(H:/
2 2 2 + 2
H2 N\a H2 Hz
\C/C\C/O\C/C\ O/C\C/

H, H, H, H,

Figure 4. Poly(ethyleneoxide) and a scheme of interactions between a sodium ion and PEO.
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H{/O\/hO/H

Figure 5. Poly(ethylene glycol)

Some general procedural aspects of polymer and composite polymer electrolytes (preparation
and handling) have been summarized in [liv]. (Gel) Electrolytes obtained by plastification (gelling)
of a polymer with a suitable solvent (this may be a solvent or a solvent mixture but also an electrolyte
solution) have been called composite electrolytes infrequently (for an example see [1v]). An overview
covering PEO-based composite electrolytes with a major focus on batteries is available [lvi].

2.1.2. Binary composites

Instead of a polymer acting as a host and providing in most cases the major fraction of a
composite electrolyte an inorganic material like fumed silica may act as a highly porous host material
which is subsequently soaked with an electrolyte solution yielding a solid material which may not
possess the mechanical properties enabling its use as separator or similar, for typical examples see
[Ivii,lviii]. Mixtures of two inorganic compounds have also been suggested and examined as
composite electrolyte. Composites based on a ceramic component like in Al20s with Lil [lix] show a
lithium ion conductivity three orders of magnitude larger than that of plain Lil. Possibly
microstructural features in the composite are the reason of the major conductivity increase.
Procedures towards composite electrolytes based on casting of polymer electrolytes into 3-D ceramic
frameworks have been collected and reviewed in [Ix].

3. The materials

3.1. Composite electrolytes in supercapacitors

Following the classification suggested above identification of true examples of a composite
electrolyte turns out to be difficult because of the generous use of the term composite for whatever
material combination as in [Ixi]. In this example, none of the ingredients qualifies as an “enhancing”
constituent for an already established electrolyte.

3.1.1. Composites with polymer hosts

PEO

Addition of 0.1 wt.% silica nanoparticles to a copolymer of poly(ethylene oxide)-poly(propylene
oxide) with an ionic liquid as ion source [Ixii]. Increased ionic conductivity and mechanical strength
were attributed to cross-linking between “silane groups present in the precursor and the SiO:
surface”. Surprisingly none of the precursors contained silicon. The assembled EDLC-supercapacitor
kept 94 % of its initial capacitance after 10000 cycles.

Transport parameters of charge carriers in PEO-LiTf-based polymer electrolyte with added
Al20s have been studied in detail [Ixiii].

Addition of an inorganic constituent for enhanced mechanical stability was demonstrated in a
study of PEO containing an ionic liquid as ion source reinforced with electrospun silica nanofiber
[Ixiv].

Increased thermal stability measured as slower thermal decomposition rate of a PEO-based
composite has been observed when an inorganic (NASICON-type ceramic) compound like
Li14AlosGe16(PO4)s was added at 50 wt.% [Ixv], for a further similar example with a stable capacitance
of the EDLC-device up to 16000 cycles see [Ixvi] and also [Ixvii]. The effect was attributed to a lower
organic fraction in the electrolyte, in particular of potentially volatile organic solvent. Further
influences of the participating organic solvent were noticed [Ixviii]. Beneficial effects of this ceramic
in PEO have also been identified in [Ixix], similar observations were reported after incorporation of
nanocrystalline NasZr25i2P3012 into PEO [xxxix]. An overview of PEO-based composite electrolytes
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with added ceramic particles is available [Ixx]. Advantages of added ceramics instead of plastification
with some liquid in particular with respect to stability have been highlighted [Ixxi]. Clays as ceramic
constituents have been studied in detail [Ixxii - Ixxiiilxxiv]. By cation exchange the original
montmorillonite was modified into “organic clays”. Nanosized alumina has been tested as another
constituent [Ixxv].
PVDF

To ameliorate the inferior mechanical properties of otherwise attractive PVDF it has been
reinforced with woven fabrics of polyamide and poly(ethylene terephthalate) [Ixxvi]. The major
improvement of mechanical properties did not affect ionic conductivity. Incorporation of silica
particles into an electrolyte of co(PVDF-HFP) and an electrolyte solution of TEABF. in a carbonate
solvent mixture yielded a composite electrolyte with significantly increased ionic conductivity at 15
wt.% addition of silica [Ixxvii]. A similar approach with PVDF only dissolved in DMF with 5 % silica
(called nanostructured only in the title of the report) added to the solution has been reported [Ixxviii].
Why silica addition resulted in the lowest ESR, highest capacitance, elevated operation temperature
and 91 % capacitance retention of the EDLC-device after 2000 cycles remains unclear. Infiltration of
co(PVDF-HFP) into alumina nanotubes arrays arranged perpendicularly between the electrodes of
an EDLC-device subsequently soaked with a 1 M tetraethylammonium tetrafluoroborate/propylene
carbonate electrolyte solution yielded a solid electrolyte [Ixxix]. Some general advantages in
comparison to commercial separators were claimed.

W e
- S

"E Fer, TF FOCR

PVDF HFP  co(PVDF-HFF)

Figure 6. PVDF, HFP and co(PVDF-HFP)

Polyurethane

Addition of 4 wt.% fumed silica to an electrolyte of thermoplastic polyurethane and an ionic
liquid yielded a free-standing film with increased ionic conductivity and decreased interfacial
resistance between electrodes and electrolyte [Ixxx]. The composite also acted as separator.

PVA

PVA grafted with dimethyloctadecyl[3-(trimethoxysilyl)propyllammonium chloride with KOH
as electrolyte and added GO for increased ionic conductivity has been suggested for use in an
asymmetric supercapacitor [Ixxxi]. After 5000 cycles, 87 % of the initial capacitance were retained.
Hypergrafted poly(amine-ester) nano silica added to a PVA-KOH electrolyte was used in an EDLC-
supercapacitor with improved performance when compared with a device not containing said
additive [Ixxxii]. The improvement was attributed to the enhanced ionic conductivity of the
electrolyte. Silica nanoparticles added to a PVA/H250: electrolyte immobilized the sulfate ions
shifting ionic conduction to protons for use as electrolyte and separator in a symmetric redox
supercapacitor with polyaniline as active material in both electrodes [Ixxxiii]. Addition of cellulose
dissolved in phosphoric acid added to PVA resulted in crosslinking of the polymer [xix]. Already at
a cellulose content of 5 wt.% major improvements of mechanical properties were reported. Addition
of ZnCl2 to a PVA/cellulose mixture with added CaClz and LiCl as ion source resulted in improved
mechanical strength and deep temperature performance [Ixxxiv].

Porous montmorillonite with heteroatom-doped graphene-like carbon added to a PVA-based
electrolyte sulted in improved mechanical properties and increased conductivity [Ixxxv]. The
assembled EDLC-device kept a stable capacitance along 500 cycles (!).

PAA

Addition of GO to a polyacrylic acid/H2SOs-based electrolyte yielded at an optimum content of
0.5 % of GO a significant increases of mechanical stability and ionic conductance [Ixxxvi].
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Figure 7. Polyacrylic acid PAA

Enhanced conduction was attributed to hydrogen-bonded networks formed with the help of the
oxygen-containing surface groups of the GO. These groups may also contributed to higher
mechanical strength by forming hydrogen bonds with the by the polyacrylic acid chain. After 10000
cycles 103 % of the initial capacitance were retained. Poly(methacrylic acid-methyl methacrylate) was
added as mechanical reinforcement to a hydrogel lectrolyte of poly(sodium acrylate-vinyl
phosphonic acid) [Ixxxvii]. Coulombic efficiency of an EDLC-device was stable along 10000 cycles
whereas capacity retention was not reported.

Biopolymers

Addition of 9 wt.% of GO to a blend of chitosan and potato starch with LiClOs as ion source and
glycerol as plasticizer yielded a solid electrolyte [Ixxxviii]. Increased ionic conductivity was attributed
to formation of “ion highways” along polymer/GO particle interfaces. Addition of zwitter ion-
bearing nano-hydroxyapatite grafted zwitterionic silane to a carboxylated chitosane-based yielded a
solid hydrogel electrolyte with improved mechanical strength and ionic conductivity because of
reduced crystallization [Ixxxix]. With an optimized addition at 20 % the EDLC-supercapacitor kept
98 % of its initial capacitance after 5000 cycles. Addition of chitosan to an animal gelatin-based
hydrogel electrolyte yielded a material with greater mechanical robustness and better performance
atlow temperatures [xc]. The assembled EDLC-type supercapacitor kept 81 % of its initial capacitance
after 2000 cycles.

Addition of 1 wt.% of hierarchical porous carbon HPC to a gel polymer electrolyte yielded an
improvement of ionic conductivity by about 116 % [xci]. The macropores in the added HPC serve as
electrolyte solution reservoir preventing leakage of solution. How the interconnected microtunnels
in the HPC shorten the pathways for ions remains unclear, the wealth of oxygen-containing surface
groups in turn may facilitate ion movement by e.g. forming a particularly amorphous interphase on
the HPC surface.

Nanofibrillated cellulose of biological origin with its internal structure filled with an aqueous
electrolyte solution containing proton-transporting polystyrene sulfonic acid was used as solid
electrolyte with two paper-based electrodes in an EDLC-device [xcii]. Although the perfomance data
were not overwhelming a proof-of-concept of a cellulose-based supercapacitor was provided.

Miscellaneous polymer host materials

Addition of Bi2Os nanoparticles and nanosheets of graphitic carbon nitride to a polyelectrolyte
of polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene yielded a composite membrane
electrolyte tested in an EDLC-type supercapacitor [xciii]. Increased water uptake due to the added
constituents was claimed as the cause of improved proton conductivity. The device showed 97.8 %
capacitance retention after 10000 cycles.

The insufficient mechanical strength of highly sulfonated polyether ether ketone (SPEEK) can be
ameliorated by addition of an inorganic components like heteropolyacids [xciv]. This also increases
the proton conductivity of the heteropolyacid. Further addition of reduced graphene oxide GO was
suggested, the reasons for this remain unclear.

An epoxy matrix soaked with an electrolyte solution of TEABF. in propylene carbonate has been
used in a structural EDLC-type supercapacitor [xcv]. Further examples of solid polymer electrolytes
with added silica for use in structural supercapacitors have been reported [xcvi]. Different from most
other reports addition of the silica resulted in decreased ionic conductivities. Addition of Al:Osto a
mixture prepared for epoxy polymer preparation with an ionic liquid added later for ionic
conduction resulted in improved mechanical properties [xcvii]. With a composite electrolyte based
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on an epoxy matrix with Li14+Alo4Tiis(PO4)s a large capacitance increase of the assembled structural
EDLC-supercapacitor was observed after addition of 6.5 wt.% of single wall carbon nanotubes to the
composite [xcviii].

A microporous poly(arylene ether ketone)/poly(ethylene glycol)-grafted poly(arylene ether
ketone) polymer membrane was soaked with an aqueous electrolyte solution of LiClOs containing
added chitosan for increased solution uptake [xcix]. Capacitance was stable for 5000 cycles, compared
with a control cell with the liquid electrolyte only self-discharge was much smaller. How the
“excellent electric insulation characteristics of the electrolyte” contributed to this outcome remains
unclear.

The poor wetting of polypropylene used as separator by ionic liquids could by overcome by
soaking it with a solution containing in addition dissolved PEO in acetone [c]. Whether the added
PEO changed the wetting properties of the PP surface was not addressed.

The inherent limitations of poor mechanical strength and narrow operating temperature range
of poly dimethyl diallyl ammonium chloride as a potential solid electrolyte could be ameliorated by
adding sodium montmorillonite [ci]. With various electrode materials, capacitance rententions above
90 % during 1000 cycles were found.

Establishment of a sufficiently large electrode/electrolyte interface already addressed as a major
challenge with both batteries and supercapacitors elsewhere [v, vii] has been reviewed for polymer-
based composite electrolytes [cii].

After addition of Na-montmorillonite to poly(2-acrylamide-2-methyl propanesulfonic acid) a
composite (hydro)gel with increased ionic conductivity and enhanced tensile strength was obtained [ciii], for
a further example see [civ]. Elsewhere Na-montmorillonite was used as a crosslinker in a mixed
poly(acrylamide)/poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) electrolyte [cv].

Hollow silica spheres in a polymer matrix as cavities filled with ionic liquid increased ionic
conductance by suppressing the braking effect of polymer strands on ionic movement outside of such
cavities [cvi].

3.1.2. Binary composites

A proton-conducting SnossAloosHoosP207 powder was pressed into a pellet with PTFE as a binder
yielding a solid electrolyte membrane [cvii]. Carbon electrodes used as EDLC-type electrodes were
soaked with 105 % HsPOs (called for unknown reasons ionomer) and assembled with this electrolyte
membrane into a supercapacitor showing stable cycling behavior for 7000 cycles at 150 °C. Addition
of fumed silica (also called a filler) to an ionic liquid resulted in increased ionic conductivity and a
significantly higher possible operating temperature [lvii, cviii]. Particles with a diameter of 10 nm
showed best improvements. The meaning of “33-time improvement of device performance” remains
mysterious.

0.1 wt.% of reduced GO added to an ionic liquid yielded improved performance of an EDLC-
type supercapacitor [cix]. Why this electrolyte which even does not escape the drawbacks of liquid
electrolytes is called a composite electrolyte remains mysterious.

3.2. Miscellaneous materials and observations

Using an organohydrogel as binder in the electrodes and as electrolyte enabled a supercapacitor
with a wider range of operating temperatures and a capacitance stable along 2000 cycles at room
temperature [cx].

In a consistently mysterious report a composite of reduced GO and poly(methyl methacrylate)
constitutes a supercapacitor [cxi].

Delignified wood was used as a scaffold and filled with a polymer mixture with LiClOx as ion
source yielding a solid electrolyte for an EDLC-supercapacitor [cxii]. The many internal cavities in
the wood scaffold accelerated ion transport, the device kept a stable capacitance during 4000 cycles.
For similar studies of analogous constituents see [cxiii, cxiv]. The influence of the degree of
delignification of wood as additive to a poly(acrylic acid-acrylamide)-based solid electrolyte on


https://doi.org/10.20944/preprints202501.1926.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 January 2025 d0i:10.20944/preprints202501.1926.v1

10 of 16

supercapacitor performance was examined [cxv]. Significantly, improved ionic conductivity was
attributed to the directing effect of the straight pores in the wood. Delignified balsa wood was added
to a hydrogel of quaternized gelatin with cross-linked poly(acrylic acid-co-acrylamide) effecting
increased ionic conductivity, reduced swelling and enhanced mechanical strength of the obtained
electrolyte [cxvi]. 94.6 % of the initial capacitance were retained after 10000 cycles.

Ionic liquids added to various powdered ceramic ion conductors yielded much better
conducting electrolytes [cxvii]. The electrolyte discs were mounted between EDLC-type electrodes
by applying substantial mechanical pressure. Performance was much improved when compared
with a cell having only an ionic liquid electrolyte. Circumstances — details were not revealed — suggest
that an unknown separator has been used increasing the internal resistance of the cell considerably.

A solidified mixture of ordinary Portland cement, KsFe(CN)s, KOH and polyacrylic acid in water
has been suggested as electrolyte for supercapacitors in building engineering [cxviii]. A similar
approach with alkali-activated slag and polyacrylamide with KOH for use in a structural
supercapacitor has been described [cxix]. Again the high compressional strength of the material has
been highlighted with regard to the intended application. In another study improvements were
achieved by adding recycled steel slag and waste glass powder [cxx]. Further examples of structural
supercapacitors with cement in composite electrolytes have been reported [cxxi - cxxvii]. Further
highly complex electrolyte mixtures have been examined with respect to their use in structural
supercapacitors [cxxviii], see also [cxxix, cxxx]. Incorporation of water supporting good ionic
conduction without compromising mechanical properties of composite electrolytes for structural
supercapacitors has been achieved [cxxxi].

4. Concluding remarks and conclusions

A wide variety of material combinations has been studied as solid composite electrolyte
materials for supercapacitors. Substantial progress in terms of performance data has been reached.
Stability data are reported only infrequently and mostly up to rather low cycle numbers. Further
progress up to commercialization seems to require much more rigorous stability testing of materials
and devices.

Understanding of the beneficial effects of the added material making up the composite finally
in the terminology stated in the introduction appears to be developing. Interactions at the interface
between the host material and the added (mostly nanoparticular) additive play a major role, actually
sometimes the material may even be called a hybrid material. On a more fundamental-practical level,
the establishment of a sufficiently large contact interface area between a solid electrolyte and an
electrode is of outmost importance. The application of high mechanical pressure on electrode/elec-
trolyte/electrode-assemblies sometimes tried hardly seems to be a practically useful solution. The
pressure may damage the porous structure of the electrolyte; penetration of electrolyte material into
the porous electrode body may be insufficient. An attempt mentioned a few times and mostly only
in passing is soaking of the electrode with an ion-containing liquid component of the electrolyte. This
may sound like a contradiction to the “all-solid-state” concept strenuously advertised (and may be
the reason for not mentioning this detail), but actually there will be no free liquid around posing any
of the risks deplored when critically examining the use of liquid electrolyte (solutions).
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