
Article Not peer-reviewed version

A Hybrid Framework for RBC Labeling

Using Elliptical Fitting, Autoencoding,

and Data Augmentation

Bundasak Angmanee * , Surasak Wanram * , Amorn Thedsakhulwong *

Posted Date: 8 August 2025

doi: 10.20944/preprints202508.0575.v1

Keywords: red blood cell morphology; autoencoder; ellipse fitting; unsupervised clustering; data

augmentation; anemia; thalassemia

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4628138
https://sciprofiles.com/profile/4655736
https://sciprofiles.com/profile/4655737


 

 

Article 

A Hybrid Framework for RBC Labeling Using 

Elliptical Fitting, Autoencoding, and Data 

Augmentation 

Bundasak Angmanee 1, Surasak Wanram 2,* and Amorn Thedsakhulwong 1,* 

1 Department of Physics, Faculty of Science, Ubon Ratchathani University, 34190, Ubon Ratchathani, Thailand 

2 Department of Pathology, College of Medicine and Public Health, Ubon Ratchathani University, 34190, 

Ubon Ratchathani, Thailand 

* Correspondence: amorn.t@ubu.ac.th (A.T.); mdsurawa@ubu.ac.th (S.W.) 

Abstract 

Red blood cell (RBC) morphology is critical for diagnosing hematological disorders, particularly in 

regions such as Southeast Asia where anemia and thalassemia are highly prevalent. However, 

manual microscopic assessment is labor-intensive, subjective, and dependent on expert availability, 

while existing automated methods often rely on small, curated datasets that fail to represent real-

world smear variability. This study proposes a hybrid framework integrating preprocessing, 

unsupervised autoencoding, k-means clustering, ellipse fitting, expert-in-the-loop validation, and 

targeted data augmentation to establish a robust RBC labeling pipeline. High-resolution smear 

images from confirmed anemia and thalassemia cases were processed to extract over 14,000 single-

cell patches, filtered systematically into quality-assured subsets. Latent features from a CNN 

autoencoder enabled clustering into 80 morphological groups, quantified using ellipse-based 

geometric metrics and validated by hematology experts. Data augmentation addressed class 

imbalance, expanding rare morphologies while preserving realistic cell structure. The resulting 

dataset captures clinically relevant morphological diversity specific to the Thai population and 

provides a scalable, interpretable framework for medical analysis and future AI model development 

in hematology. 

Keywords: red blood cell morphology; autoencoder; ellipse fitting; unsupervised clustering; data 

augmentation; anemia; thalassemia 

 

1. Introduction 

RBC morphology plays a vital role in the diagnosis of various hematological disorders, including 

thalassemia, iron deficiency anemia, and hemolytic diseases [1,2]. In clinical practice, this 

morphological assessment traditionally relies on manual microscopic examination of peripheral 

blood smears by experienced hematologists. This process, while effective, is time-consuming, prone 

to human error, and inherently subjective [3]. These challenges are especially critical in low-resource 

settings such as Southeast Asia, where the burden of inherited hemoglobinopathies—particularly 

thalassemia—is notably high, and access to expert hematologists remains limited. For instance, in 

Thailand—a country with one of the highest thalassemia burdens in Southeast Asia—carrier rates are 

estimated at 30–40% of the population, particularly in the northern and northeastern regions. HbE 

carriers alone account for over 52% with a mortality rate of 1.13 per 100,000 individuals. These figures 

underscore the urgent need for scalable [12–15]. 

Recent advances in computer vision and deep learning have enabled significant progress in 

automating RBC classification tasks [4,5]. However, most existing models are trained and evaluated 

on datasets collected predominantly from Western populations (e.g., U.S., Europe) [6,7], whose blood 

smear characteristics—such as cell size, staining patterns, and prevalence of morphological 
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abnormalities—differ considerably from those in Southeast Asian patients. This discrepancy 

introduces potential performance bias when such models are deployed cross-regionally. Moreover, 

widely used public datasets such as ALL-IDB [9], Rezatofighi, S.H. [2], Buczkowski, M. [10], and 

BCCD [11] have facilitated benchmarking in RBC classification research. However, they exhibit 

critical limitations that hinder their applicability in real-world clinical settings. These datasets are 

typically curated under ideal laboratory conditions—containing well-separated, uniformly stained 

cells—and rarely include real-world artifacts such as overlapping cells, uneven staining, or 

background debris. Additionally, they are modest in scale—usually fewer than 10,000 labeled cells—

and insufficient for training robust models for complex use cases [8]. Furthermore, public RBC 

datasets often lack key technical variations—such as differences in microscope type, staining 

protocol, magnification, and scanner settings—leading to poor model generalization across clinical 

environments. This “technical reality gap” hinders reliable deployment in settings with diverse 

imaging conditions. Moreover, most models trained on these datasets are not clinically validated or 

interpretable, as they lack expert oversight. In low-resource settings, the absence of an expert-in-the-

loop mechanism further reduces trust and usability, especially when the training data fails to reflect 

local morphological patterns. These limitations underscore the importance of frameworks that 

combine automation with human validation. 

To address the limitations of existing RBC annotation approaches, we propose a novel hybrid 

pipeline that integrates geometric analysis, unsupervised deep learning, and expert-in-the-loop 

verification. The process begins with the extraction of high-resolution blood smear images in SVS 

format, scanned from real patient samples. These digital slides are then reviewed to identify 

appropriate regions of interest (ROIs), which are manually cropped into rectangular patches based 

on visual quality and cell density. Each ROI is subdivided into uniformly sized subregions to isolate 

candidate single-cell areas. To capture morphological features without requiring manual labels, we 

evaluate two unsupervised learning architectures: convolutional neural networks and dense 

autoencoders. The latter is selected for its superior latent representation capability. Autoencoder-

derived feature vectors are subsequently clustered using the k-means algorithm to group 

morphologically similar cells, functioning as a pre-labeling step for downstream analysis. To further 

characterize individual cells, ellipse fitting is applied to each candidate, enabling shape- and size-

based discrimination. This quantitative description enhances the interpretability of cell morphology 

across clusters. Finally, to address class imbalance—particularly for rare abnormal morphologies 

such as teardrop, sickle, or fragmented cells—we employ a targeted data augmentation strategy 

based on deformable ellipse transformations, thereby enriching underrepresented classes with 

plausible synthetic variants. This study makes the following three key contributions: 

1. It presents a novel combination of shape-based segmentation and deep unsupervised learning 

for RBC morphology analysis, a pairing that remains underexplored in prior literature. 

2. It proposes a scalable annotation framework capable of generating clinically relevant pseudo-

labels with minimal expert involvement, reducing annotation cost while enabling model 

generalization to underrepresented populations. 

3. It introduces one of the largest real-world abnormal RBC datasets to date, consisting of over 

10,000 peripheral smear images and corresponding metadata from Thai patients, helping to 

bridge both geographic and morphological gaps in current datasets. 

2. Related Works 

2.1. Whole Slide Image Processing and ROI Extraction 

In recent years, the use of whole-slide imaging (WSI) formats such as SVS format has become 

increasingly important in digital pathology workflows, enabling high-resolution scanning of entire 

blood smear slides for downstream computational analysis. However, many previous studies in RBC 

or WBC morphology classification have utilized cropped or pre-segmented images obtained under 

controlled conditions, often bypassing the challenges inherent in real-world smear interpretation 
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[2,16]. These studies typically rely on fixed-field images or single-cell views without addressing how 

to navigate or extract diagnostically relevant regions from full WSI data. While a few works have 

explored automatic ROI selection using heuristic or random sampling methods [17], they lack 

adaptive strategies based on morphological density, cell aggregation, or diagnostic saliency—factors 

crucial for analyzing heterogeneous slides collected from clinical environments. Moreover, the 

absence of standardized protocols for ROI identification in large-scale smear datasets has limited 

reproducibility and model generalizability. Therefore, the integration of intelligent ROI selection in 

WSI analysis remains an underexplored yet essential component of scalable morphological 

annotation systems. 

2.2. Single-Cell Extraction and Instance Separation 

Accurate extraction of single RBCs from peripheral blood smear images remains a critical pre-

processing step in morphology-based classification pipelines. Traditional methods for RBC 

segmentation often rely on thresholding, edge detection, and watershed algorithms [18]. While these 

methods are computationally efficient, they tend to struggle in the presence of touching or 

overlapping cells, resulting in under- or over-segmentation artifacts. To mitigate this, more recent 

approaches have incorporated deep learning techniques such as U-Net and Mask R-CNN, which 

enable instance-level segmentation with improved accuracy [19]. However, these models require 

extensive pixel-level annotations for training and often generalize poorly to real-world smear slides 

with noisy backgrounds, variable staining, and densely clustered cells. Furthermore, most studies do 

not enforce constraints on ROI size or uniformity during extraction, which can affect downstream 

morphological analysis. Despite these advances, the field still lacks a simple yet robust framework 

that can extract uniformly sized single-cell instances from real-world smear images in a scalable and 

generalizable manner. 

2.3. Unsupervised Learning and Morphological Clustering 

While supervised learning has dominated recent advances in RBC and WBC classification, the 

increasing cost and time required for manual annotation have driven growing interest in 

unsupervised and semi-supervised approaches. Autoencoders, in particular, have shown promise in 

capturing latent morphological representations of blood cells without requiring explicit labels [20]. 

These latent spaces can be clustered using algorithms such as k-means or DBSCAN to group 

morphologically similar cells, offering an alternative route to pseudo-label generation [21]. Despite 

their potential, most studies have focused on white blood cells (WBCs), and applications to abnormal 

RBC morphology—especially in real-world smears—remain limited. Furthermore, the comparison 

between different encoder backbones, such as CNNs versus fully connected (dense) autoencoders, 

has not been systematically explored in hematological image analysis. Such comparison is critical, as 

morphological cues in RBCs are often subtle and shape-dependent, and the optimal encoder 

architecture may vary based on image resolution, background noise, and dataset characteristics. Our 

work addresses this gap by evaluating both CNN and dense autoencoder models in the context of 

unsupervised RBC clustering from real Thai patient smears. 

2.4. Shape-Based Modeling and Ellipse Fitting 

Shape-based analysis has long been utilized in hematological image processing to quantify 

cellular morphology through geometric features such as area, perimeter, circularity, and eccentricity 

[22]. These hand-crafted descriptors provide interpretable and computationally inexpensive 

measures that are useful for distinguishing between normal and abnormal RBC types. However, they 

often fail to generalize when applied to real-world smears where cell boundaries are unclear or 

distorted due to touching or staining artifacts. To enhance shape-guided representation, several 

studies have explored advanced contour modeling techniques, including active contours and Hough 

transform-based ellipse detection [23,24]. Among these, ellipse fitting has shown promise in 
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capturing the overall geometry of RBCs, which are inherently biconcave and approximately elliptical 

in healthy forms. Nonetheless, the integration of ellipse fitting into modern deep learning pipelines—

particularly in the context of unsupervised representation learning—remains scarce. Few studies 

have treated the ellipse not merely as a post-hoc measurement, but as a structural prior to guide 

downstream feature extraction or clustering [25]. This gap presents an opportunity to revisit classical 

shape modeling within contemporary machine learning frameworks for robust morphological 

analysis. 

2.5. Human-in-the-Loop Expert Refinement 

Manual annotation by domain experts remains the gold standard in hematological image 

labeling; however, it is notoriously time-consuming and prone to inter-observer variability, 

particularly for abnormal RBC morphologies. To address this challenge, several recent studies have 

explored human-in-the-loop (HITL) frameworks, where experts iteratively refine or verify AI-

generated outputs rather than annotating from scratch [26]. This approach has been shown to 

significantly reduce labeling effort while maintaining diagnostic reliability. In medical imaging 

domains such as histopathology, HITL strategies have improved both model accuracy and user trust 

through interactive feedback cycles [27,28]. Despite these advantages, the adoption of HITL in RBC 

morphology remains limited. Most existing studies focus either on supervised classification or post 

hoc validation, without integrating expert judgment during the unsupervised clustering or pseudo-

label generation phase. Moreover, few systems offer intuitive interfaces that allow experts to filter, 

correct, or reassign morphological clusters efficiently [29]. Our study builds upon these insights by 

incorporating expert-guided refinement into the unsupervised annotation loop, enabling more 

efficient pseudo-label validation and improving the overall quality of the dataset for downstream 

training. 

2.6. Data Balancing and Rare-Class Augmentation 

Class imbalance remains a persistent challenge in medical image datasets, particularly in 

hematology, where rare abnormal RBC morphologies—such as teardrop cells, fragmented cells, or 

target cells—are often underrepresented. This imbalance can bias deep learning models toward 

majority classes, resulting in poor sensitivity for clinically critical but infrequent phenotypes [30]. 

Traditional approaches such as oversampling and SMOTE (Synthetic Minority Over-sampling 

Technique) have been adopted to alleviate this issue, but they are limited by their tendency to 

generate redundant or unrealistic samples [31]. More recent efforts have explored the use of 

generative models, including GANs (Generative Adversarial Networks), to synthesize realistic 

minority-class cell images [32]. While promising, many of these models lack shape constraints or 

morphological priors, which are crucial for preserving biologically plausible features in RBCs. 

Additionally, only a few studies have attempted to apply domain-specific transformations—such as 

deformable ellipse fitting—to simulate natural variation in cell size, eccentricity, and contour, 

particularly for data-starved classes [33]. These methods offer a more explainable and geometry-

aware alternative to black-box generators.  

2.7. Summary and Research Gap 

In summary, prior research has contributed significantly to various components of RBC image 

analysis—ranging from WSI preprocessing, ROI selection, single-cell segmentation, to supervised 

classification. However, most existing pipelines address these tasks in isolation and are rarely 

integrated into a unified framework capable of handling the complexity of real-world smear slides. 

The underutilization of unsupervised learning for RBC morphology, limited incorporation of 

geometric priors such as ellipse fitting, lack of expert-in-the-loop refinement strategies, and 

inadequate methods for augmenting rare phenotypes collectively highlight the need for a more 

holistic approach. Our work addresses these gaps by proposing an end-to-end hybrid framework 
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that combines shape-based segmentation, latent space clustering, expert-guided pseudo-label 

validation, and deformable augmentation. This integrated methodology is specifically designed for 

real-world abnormal RBC annotation and aims to facilitate large-scale, efficient, and biologically 

interpretable dataset generation for hematological AI applications.  

3. Materials and Methods 

This study presents a multi-stage pipeline for the semi-automated annotation and 

morphological analysis of RBCs derived from digitized peripheral blood smear slides. The proposed 

workflow integrates WSI processing, unsupervised representation learning, shape-based priors, and 

expert-in-the-loop validation to address the challenges of manual annotation and data imbalance in 

hematological image analysis. The pipeline, illustrated in Figure 1, begins with the acquisition of 

high-resolution WSIs from clinically confirmed hematological cases (Section Error! Reference source 

not found.), followed by the extraction of diagnostically relevant ROIs (Section Error! Reference 

source not found.). From each ROI, uniformly sized single-cell patches are derived using a systematic 

grid sampling and filtering procedure (Section Error! Reference source not found.). Subsequently, 

latent morphological features are learned using autoencoder-based representation learning (Section 

Error! Reference source not found.) and clustered through unsupervised methods (Section Error! 

Reference source not found.) to group cells with similar appearances. To incorporate structural 

information, ellipse fitting is applied for geometric characterization and filtering of abnormal shapes 

(Section Error! Reference source not found.). The clustered results are then refined through expert-

in-the-loop validation (Section Error! Reference source not found.), where hematology specialists 

confirm or adjust pseudo-labels. Finally, to address class imbalance among rare morphological 

subtypes, synthetic minority augmentation based on deformable ellipse transformations is 

performed (Section Error! Reference source not found.). 

 

Figure 1. Workflow of the proposed semi-automated RBC annotation and analysis pipeline. 

3.1. Dataset Collection and Image Acquisition 

This study utilized six WSIs of peripheral blood smears obtained from patients in Thailand with 

confirmed hematological diagnoses. The samples encompassed a range of anemic and thalassemic 

conditions: Sample ID 1: Iron Deficiency Anemia (IDA), Sample ID 2: Thalassemia Trait (TT), Sample 

ID 3: Hb H Disease (HbH), Sample ID 4: Thalassemia Hb E Disease (HbE/β-thal), Sample ID 5: 

Thalassemia Hb E Disease with Severe Symptoms (HbE/β-thal Sx), and Sample ID 6: Homozygous 

Hb E Thalassemia (Homo HbE). All diagnoses were clinically confirmed by hematologists based on 

standard laboratory tests and microscopic examination prior to slide preparation. No additional 
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demographic or clinical data were collected in accordance with ethical guidelines for de-identification 

and patient privacy protection [34]. Blood smears were prepared following standard hematology 

protocols and stained using the Wright–Giemsa technique to enhance RBC morphology visualization 

[35]. The slides were digitized using a WSI scanner at 40× magnification, producing high-resolution 

digital slides in SVS format as shown in Figure 2(a). The scanning resolution was set to 0.1658 

µm/pixel, providing sufficient detail for subsequent single-cell segmentation and morphological 

analysis [36]. Each WSI covered the entire smear area and served as the primary image source for all 

downstream experiments. 

3.2. ROI Selection from WSI 

From each WSI, two ROIs were manually selected by an expert hematologist, resulting in a total 

of 12 ROIs across the six slides. These ROIs were subsequently divided into two datasets for 

downstream experiments. The ROI dimensions were not fixed, as they were determined adaptively 

based on the distribution and density of RBCs in diagnostically relevant areas identified by the 

expert. Selection criteria for ROIs included (i) areas containing well-spread red blood cells without 

significant clumping or overlap, (ii) regions free from staining artifacts, debris, or scanning errors, 

and (iii) areas representative of typical morphological patterns for the corresponding hematological 

diagnosis [37]. These criteria ensured that ROIs captured diagnostically informative cells while 

minimizing noise as shown in Figure 2(b). ROIs were annotated using expert-driven selection and 

extracted automatically via the OpenSlide library to guarantee precise coordinate mapping and 

accurate image cropping from native-resolution WSIs [38]. All ROIs were retained at the original 

scanning resolution and subsequently downsampled only during visualization or model input 

preparation. Each ROI underwent independent review by a hematology expert to confirm diagnostic 

relevance. The extracted ROIs were stored in PNG format, preserving high-quality, lossless images 

suitable for computational analysis.  

 

Figure 2. Workflow of slide scanning and ROI selection using OpenSlide: (a) Glass slides were scanned with 

Aperio AT2. (b) ROIs were selected from SVS thumbnails. 

3.3. Single-Cell Patch Extraction 

A total of 12 ROIs selected from WSIs were processed to extract single-cell patches of RBCs for 

downstream analysis. Cell detection was performed using a segmentation-based approach 

incorporating global thresholding, contour detection, and morphological operations. Segmentation 

masks were generated and refined using the watershed algorithm [39] to separate individual cells 

from touching clusters. For each segmented cell, a bounding box was derived from the binary mask 

and cropped to create a single-cell patch. To ensure accurate identification of isolated cells versus 

touching cells, a maximum local peak detection method was applied to centroid distributions within 

clusters [40]. Validated single-cell patches were overlaid on a clean background and centered to 
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standardize positioning. Patches were saved in PNG format with a structured directory system 

separating: (i) single isolated cells, (ii) overlapping cells, (iii) broken or artifact cells, (iv) background 

or staining artifacts, (v) small particles, and (vi) cells touching image edges. This systematic 

organization facilitated both quality control and downstream dataset preparation [2]. The patch size 

for this study was set at 128 × 128 pixels, optimized for our ROI resolution (0.1658 µm/pixel) and 

compatibility with subsequent deep learning models. For other contexts, patch sizes can be adapted 

(e.g., 16, 32, 128, 256, or 512 pixels) depending on the desired field of view and computational 

constraints [41]. Filtering criteria were strictly applied to exclude: (i) overlapping cells, (ii) fragmented 

cells or artifacts, (iii) background regions or staining debris, (iv) small non-cellular particles, and (v) 

cells truncated at image edges. The detailed cell extraction process is visualized in Figure 3, while 

Algorithm 1 formally outlines the procedural steps, including segmentation, bounding box 

generation, artifact filtering, and patch centering. 

Algorithm 1. Pseudocode of the RBC single-cell extraction and resizing technique. 

RBC_Extraction(image_path, output_dir) 

    load image from image_path 

    apply mean-shift filtering to image  → shifted 

    convert shifted image to grayscale  → gray 

    apply Otsu thresholding to gray  → thresh 

    find contours from thresh   → cnts 

    for each contour c in cnts do 

        crop image and mask around contour → image_crop, mask_crop 

        if mask_crop is valid then 

            check if cell touches border: 

                if true: 

                    save touching cell to "touching" folder 

                else:  

                    extract RBC from mask 

                    determine RBC size: 

                    if size ≤ 16px: overlay to 32×32 and save as “small” 

                    else if size ≤ 32px: overlay to 32×32 and save as “32 size” 

                    else if size ≤ 128px: overlay to 128×128 and save as “128 size” 

                    else if size ≤ 256px: overlay to 256×256 and save as “256 size” 

                    else if size ≤ 512px: overlay to 512×512 and save as “512 size” 

                    else if size ≤ 1024px: overlay to 1024×1024 and save as “1024 size” 

                    else: save as "oversize" 

        else: 

             increment error_count number 

    end for 

    save processing results (original, filtered, gray, mask, contours) 

    return success 
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Figure 3. Processing pipeline for single-cell patch extraction from ROIs. The figure illustrates the step-by-step 

workflow including segmentation, watershed-based separation, bounding box generation, artifact filtering, cell 

centering, and final patch export. 

3.4. Latent Feature Learning Using Autoencoders 

Latent morphological features of single-cell RBC patches were extracted using two encoder 

architectures: a dense autoencoder and a convolutional autoencoder (CNN-based). Both models were 

implemented using TensorFlow and Keras libraries [42], and their architectural diagrams are 

illustrated in Figure 4. Input cell patches (128 × 128 pixels, grayscale) were normalized to [0,1] before 

training. The dense autoencoder comprised a flattened input layer, a 64-unit latent layer with ReLU 

activation, followed by two decoding layers with sigmoid activation and reshaping back to the 

original size. The CNN-based autoencoder consisted of sequential convolutional and max-pooling 

layers for feature encoding, followed by mirrored upsampling and convolutional layers for 

reconstruction. Model training employed cross-validation, with 80% of the dataset used for training 

and 20% reserved for validation in each fold. Both models were trained for 200 epochs with a batch 

size of 64 on an NVIDIA GeForce RTX 1650 GPU. The binary cross-entropy loss function was used, 

and model performance was monitored using reconstruction loss as the primary metric [43]. Training 

histories were saved in CSV format, and loss curves were visualized to assess convergence. Encoders 

from both models were subsequently extracted for downstream unsupervised clustering tasks. 

 

Figure 4. Architectures for latent feature extraction: (a) dense and (b) CNN-based autoencoders. 

3.5. Unsupervised Clustering 
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The best-performing encoder selected from the autoencoder experiments (Section 3.4) was 

utilized to extract latent features of single-cell RBC images for clustering. These latent feature vectors 

were subsequently grouped using k-means clustering, implemented via the scikit-learn library [44]. 

The optimal number of clusters (k) was determined experimentally by iterative testing and 

qualitative expert evaluation, as no fixed ground truth labels were available. The quality of clustering 

was assessed primarily through expert visual review, wherein representative cell images from each 

cluster were inspected by a hematology specialist to verify morphological coherence within clusters 

[27]. To aid interpretation, the high-dimensional latent space was reduced to two dimensions using 

Uniform Manifold Approximation and Projection (UMAP) [45], enabling visualization of cluster 

separability and distribution patterns. The clustering process was conducted using TensorFlow (for 

latent feature generation) and scikit-learn (for clustering and evaluation). Resulting clusters were 

saved as image directories grouped by cluster ID to facilitate manual review and downstream 

analysis. Representative examples of clustered images were visualized to demonstrate intra-cluster 

similarity and inter-cluster distinctiveness. The detailed clustering procedure is summarized in 

Algorithm 2, which outlines the steps for latent feature extraction, cluster initialization, assignment, 

and qualitative validation. 

Algorithm 2. Unsupervised clustering of RBC latent features using k-means. 

RBC_Clustering_Encoder(samples, encoder_models, n_clusters_list) 

    for each sample_id in samples do 

        initialize paths for model, images, and outputs 

        create output folders if not exist 

 

        load pre-trained encoder model for current sample_id 

        load and preprocess RBC images  → x_test 

        normalize pixel values (0–1) 

        encode images using encoder  → encoded_imgs 

 

        remove existing clustering score CSV if exists 

        for each n_clusters in n_clusters_list do 

            apply KMeans clustering (n_clusters) 

            compute clustering labels  → labels 

            calculate Silhouette Score  → sil_score 

            calculate Davies-Bouldin Index → dbi_score 

 

            save scores to CSV log 

            create cluster folders and copy images based on labels 

            plot silhouette visualization per cluster 

            plot metrics comparison (Silhouette vs. DBI) 

            save plots 

 

            apply UMAP to reduce encoded_imgs to 2D 

            plot and save UMAP scatter plot with cluster coloring 

            save UMAP coordinates to CSV 

        end for 

        compile per-sample clustering report summarizing metrics and plots 

        append results to global clustering summary (multi-sample CSV) 

    end for 

    compute total execution time and display summary 

    return clustering results and diagnostic visualizations 

3.6. Morphological Prior via Ellipse Fitting 
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Ellipse fitting was applied to accurately quantify RBC morphology and provide shape-based 

priors for classification. The primary objectives were to (i) measure cell size precisely and (ii) evaluate 

shape characteristics such as circularity, ellipticity, and completeness, which are essential for 

distinguishing subtle morphological variations [46]. Ellipse fitting was implemented using edge-

based contour fitting via the cv2.fitEllipse() function in OpenCV [47]. For each segmented cell, an 

ellipse was fitted to the contour, from which key morphological parameters were derived, including 

the major axis length (𝐿𝑚𝑎𝑗𝑜𝑟), minor axis length (𝐿𝑚𝑖𝑛𝑜𝑟), aspect ratio (AR), and ellipse-to-cell area 

ratio (ER). These were calculated as: 

𝐿𝑚𝑎𝑗𝑜𝑟  =  𝑚𝑎𝑥(𝑎, 𝑏) (1) 

𝐿𝑚𝑖𝑛𝑜𝑟  =  𝑚𝑖𝑛(𝑎, 𝑏) (2) 

𝐴𝑅 =  
𝐿𝑚𝑎𝑗𝑜𝑟

𝐿𝑚𝑖𝑛𝑜𝑟
  (3) 

𝐸𝑅 =  
𝐶𝑒𝑙𝑙 𝑎𝑟𝑒𝑎 

𝑀𝑎𝑗𝑜𝑟 𝑐𝑖𝑟𝑐𝑙𝑒 𝑎𝑟𝑒𝑎
=

𝐶𝑒𝑙𝑙 𝑎𝑟𝑒𝑎

𝜋 ∙ (
𝐿𝑚𝑎𝑗𝑜𝑟

2
)

2  
(4) 

Cells with 𝐴𝑅≈1 were considered circular, whereas higher AR values indicated elongation. The 

classify cell function (see Algorithm 3) applied threshold-based rules using AR, major axis length 

(µm), and ER to categorize cells into predefined groups (e.g., circular, oval, elongated) and filter out 

artifacts. Subsequently, morphological metrics were statistically analyzed, including AR for 

circularity, major axis length for RBC size standardization (6–8 µm), and ER to assess structural 

completeness [35]. This ensured that only morphologically valid cells were retained for downstream 

tasks. The full processing workflow, including contour detection, ellipse fitting, feature computation, 

and classification, is summarized in Algorithm 4, which automated morphological quantification 

while maintaining interpretability. This integration of geometry-based priors improved the reliability 

of subsequent clustering and annotation steps by removing irregular cells and enhancing feature 

quality.  

Algorithm 3. RBC Morphological classification based on geometric features. 

classify_cell(ratio, length, area) 

    if ratio ≤ 1.05:       r_group = "Circle 095/" 

    else if ratio ≤ 1.10:  r_group = "Circle 090/" 

    else if ratio ≤ 1.20:  r_group = "Circle 080/" 

    else if ratio ≤ 1.40:  r_group = "Oval 060/" 

    else if ratio ≤ 1.60:  r_group = "Oval 040/" 

    else:     r_group = "Pencil/" 

 

    if length < 6.0:   l_group = "Micro/" 

    else if length ≤ 8.0:  l_group = "Normal/" 

    else:     l_group = "Macro/" 

 

    if area ≤ 0.80:   a_group = "Area 080/" 

    else if area ≤ 0.90:   a_group = "Area 090/" 

    else if area ≤ 0.95:   a_group = "Area 095/" 

    else:     a_group = "Area 100/" 

 

    return concatenation of l_group, r_group, and a_group 

 

Algorithm 4. Ellipse-based RBC Morphology classification and clustering. 

RBC_Ellipse_Fitting_Clustering(data_list, image_path) 

    for each folder in data_list do 
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        define folder_path 

        if folder_path exists then 

            for each image_file in folder_path do 

                load image     → image_input 

                convert image to grayscale  → gray 

                apply Otsu thresholding  → binary 

                find contours from binary  → contours 

                for each contour cnt in contours do 

                    if contour length ≥ 5 then 

                        fit ellipse to contour  → ellipse 

                        extract ellipse parameters: center, major_ax, minor_ax, angle 

                        compute major/minor axis lines and endpoints 

                        convert axis lengths to micrometers (µm) 

                        determine aspect ratio (AR) 

                        generate contour and ellipse masks 

                        compute overlap region (intersection) → inter_contours 

                        calculate area ratio (ER) 

                        annotate image with ellipse, axes, ratio, and area metrics 

                        classify cell morphology using classify_cell() function 

                        define output directories based on classification 

                        save annotated and raw images into their respective folders 

                        log extracted metrics for statistical analysis 

                        append classification results to CSV for later clustering review 

            end for 

        else: print warning (folder not found) 

    end for 

    export full metrics dataset and classification summary 

    return morphological classification outputs and processed images  

3.7. Expert-in-the-Loop Validation 

To ensure the reliability of the clustering results and improve pseudo-label quality, an expert-

in-the-loop (HITL) validation process was implemented. Initially, RBC images were pre-classified 

based on the unsupervised clustering outputs and theoretical morphological guidelines, after which 

each cluster was reviewed and either approved or rejected by domain experts [48]. Two experts 

participated in this validation process: (i) an Associate Professor of Hematology specializing in 

medical training for physicians, and (ii) a Lecturer in Biomedical Physics with expertise in medical 

image analysis. Their complementary expertise allowed for both clinical and computational 

perspectives to be integrated into the review process. The experts followed specific validation criteria, 

including: (i) verifying the correctness of cluster labels based on RBC morphology, and (ii) approving 

or rejecting pseudo-labels for their suitability in subsequent training phases. During this process, 

representative samples from each cluster were inspected to confirm morphological coherence or 

identify misclassified or noisy samples. This validation was conducted over two refinement cycles, 

where feedback from each round was used to iteratively update the pseudo-label assignments and 

refine cluster integrity. This iterative HITL approach significantly improved label quality and 

reduced error propagation in subsequent model training, serving as a bridge between automated 

clustering and clinically robust annotation standards [49]. 

3.8. Synthetic Minority Augmentation 

To address the issue of class imbalance, data augmentation was applied to increase the 

representation of rare morphological subtypes of RBCs. Imbalanced datasets are a well-known 

challenge in medical imaging, as they often bias model training towards majority classes and degrade 

performance in clinically important but underrepresented categories [30]. Synthetic samples were 
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generated using controlled geometric transformations to preserve biological plausibility. Specifically, 

transformations were limited to rotation, flipping, and scaling down, ensuring that augmented data 

remained consistent with the original morphology and did not introduce unrealistic variations [50]. 

For each rare class, synthetic samples were generated at three scales: 1,000, 2,000, and 4,000 images 

per class, resulting in a more balanced training distribution. Augmentation operations were 

implemented in Python using OpenCV, NumPy, and SciPy libraries [47]. The workflow is described 

in Algorithm 5, which details the sequential application of resizing, rotation, and flipping, followed 

by dataset reorganization and saving augmented images. The effect of augmentation was evaluated 

by comparing model performance before and after augmentation, consistent with prior studies 

demonstrating that augmentation significantly improves classification accuracy in hematological 

imaging tasks [24,51]. These studies showed that class-balancing augmentation enhances sensitivity 

to rare morphological types and stabilizes learning curves, leading to improved generalization. 

Algorithm 5. Automated data augmentation and centering for RBC image dataset. 

Auto_Data_Augmentation(data_list, image_path) 

    for each folder in data_list do 

        define folder_path 

        if folder_path exists then 

            for each image_file in folder_path do 

                load image 

                for each scale_factor in [0.98, 0.99, 1.00, 1.01] do 

                    resize image while embedding onto black background 

                    save augmented image 

                    for each rotation angle based on num_rotations do 

                        rotate resized image 

                        for each flip_code in [0, 1, -1] do 

                            flip rotated image (vertical, horizontal, both) 

        else: Print warning (folder not found) 

    end for 

    for each folder in data_list do 

        define folder_aug 

        for each image_file in folder_aug do 

            load augmented image  → image 

            apply mean-shift filtering  → shifted 

            convert to grayscale and apply Otsu thresholding → thresh 

            detect contours → cnts 

            for each contour c in cnts do 

                extract ROI with small padding 

                generate binary mask and apply bitwise extraction 

                if extracted cell size < 128×128: 

                    embed cell into black 128×128 background, centered 

                    save centered image 

    end for 

    generate augmentation report summarizing transformations applied 

    return augmented dataset and metadata logs  

4. Results 

4.1. Preprocessing Results 

From the WSIs of six hematological conditions, ROIs were extracted and divided into two 

datasets, each comprising representative regions from all disease categories. The specific dimensions 

of each ROI are detailed in Appendix A, where selection was guided by hematology experts to ensure 

diagnostically relevant regions. The number of single-cell patches obtained from ROI extraction is 
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summarized in Table 1 for dataset 1 and Table 2 for dataset 2, which show the distribution of cells 

across different categories for their respective datasets. Single-cell patches, representing isolated 

RBCs, WBCs, or PLTs of suitable size (128 × 128 px), formed the primary dataset for downstream 

classification. Additional categories were also identified during preprocessing. The Extracted cells 

category included small cell clusters of two or three cells that could be separated and morphologically 

identified but were excluded from this study. The Overlapping cells category consisted of larger 

overlapping cell clusters where individual cells could not be distinctly resolved, and thus these were 

discarded. The Small cells category comprised cell fragments and clear platelet regions; while 

fragments were excluded, PLTs were retained as part of the dataset due to their diagnostic relevance. 

The Touching edge category contained cells truncated by ROI boundaries, rendering them unsuitable 

for analysis, while the Other category represented miscellaneous contaminants, which were absent 

in this dataset. Figure 5 presents representative examples of each category, illustrating the diversity 

of cell appearances identified during preprocessing. Notably, across both sample sets, Single-cell 

patches accounted for the majority of valid data, with proportions ranging from 55% to 70%, followed 

by Extract (10–20%) and Overlap (8–15%), while Small and Touching cells collectively contributed 

less than 10%. These results confirm that preprocessing effectively filtered unusable data and 

preserved diagnostically valuable single-cell patches for subsequent analysis. 

Table 1. Cell distribution from dataset 1 across different hematological conditions. 

Sample Single cells Extracted cells Overlapping Small cells Touching edge Other 

IDA 733 132 20 168 25 0 

TT 1,124 65 17 94 50 0 

HbH 1,551 379 427 328 70 0 

HbE/β-thal 5,009 732 476 590 104 0 

HbE/β-thal Sx 930 445 211 853 63 0 

Homo HbE 2,803 148 93 204 68 0 

Total 12,150 1,901 1,244 2,237 380 0 

Table 2. Cell distribution from dataset 2 across different hematological conditions. 

Sample Single cells Extracted cells Overlapping Small cells Touching edge Other 

IDA 785 164 30 853 35 0 

TT 1,874 239 381 298 59 0 

HbH 1,167 270 362 232 68 0 

HbE/β-thal 2,443 640 496 415 71 0 

HbE/β-thal Sx 381 280 174 723 49 0 

Homo HbE 3,013 240 271 291 66 0 

Total 9,663 1,833 1,714 2,812 348 0 

* The cell counts shown in these tables do not directly correlate with the type of hematological 

condition but depend primarily on the size of each ROI. In this study, ROIs varied in size across 

samples. Additionally, the counts in the Extracted cells and Overlapping cells categories represent 

multi-cell clusters rather than one cell per image. 
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Figure 5. Representative examples of cell categories identified during preprocessing: (a) Single cells; (b) 

Extracted cells; (c) Overlapping cells; (d) Small; and (e) Touching edge. 

4.2. Unsupervised Clustering Outcomes 

After expert-guided filtering of single-cell patches, Dataset 1 contained 14,089 images, while 

Dataset 2 contained 11,496 images. These datasets were subsequently used to train both Dense 

Autoencoder and CNN Autoencoder models for unsupervised representation learning. The Dense 

Autoencoder model was trained on both datasets for 200 epochs, requiring approximately 1–1.5 

hours per run. The minimum reconstruction loss values achieved were 6.44% and 6.55%, respectively, 

with stable convergence curves as shown in Figure 6(top). In comparison, the CNN Autoencoder 

model required a longer training duration of 7–8 hours for 200 epochs but yielded lower minimum 

loss values of 6.00% and 6.07%, respectively, with mildly fluctuating loss curves as illustrated in 

Figure 6(bottom). Overall, both models achieved acceptable reconstruction performance, with loss 

values ranging between 6.00–6.55%, supporting their suitability for unsupervised feature extraction. 

Given its superior accuracy, the CNN Autoencoder trained on Dataset 1 was selected for downstream 

clustering and annotation experiments. Nonetheless, the Dense Autoencoder remains advantageous 

for scenarios requiring faster training, reducing training time by up to fourfold while maintaining 

reasonable performance.  

  

Figure 6. Training loss curves over 200 epochs of (top) the Dense Autoencoder model; and (bottom) the CNN 

Autoencoder model. 

Following feature extraction using the CNN Autoencoder model trained on Dataset 1, 

unsupervised clustering was performed using k-means with varying numbers of clusters (k = 2, 3, 4, 

5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100). The analysis revealed that larger cluster counts, 

particularly in the range of k = 50 to k = 100, produced more distinct and morphologically coherent 

groupings compared to lower cluster counts. Cluster quality was evaluated through two 

complementary approaches: (i) direct expert review of representative cell images per cluster, and (ii) 

visual inspection of cluster separation in the UMAP-reduced latent space. Both methods confirmed 

improved intra-cluster homogeneity and inter-cluster separability at higher k values. The optimal 

result was achieved at k = 80, which yielded well-defined morphological clusters and clear separation 

in the UMAP visualization, as shown in Figure 7. Representative examples of clusters are provided 

in Appendix B, demonstrating distinct patterns grouped into their respective clusters. These findings 
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indicate that clustering at k = 80 facilitates effective morphological grouping of RBCs and supports 

downstream classification. However, residual challenges remain in differentiating cell size, degree of 

elongation, and fine-grained shape variations, underscoring the need for the subsequent ellipse 

fitting-based size and shape analysis described in the next section. 

 

 

Figure 7. UMAP visualization of clustered RBC latent features at k = 80, showing clear inter-cluster separation 

and intra-cluster homogeneity. 

4.3. Ellipse Fitting and Expert-Guided Labeling 

Ellipse fitting was applied following k-means clustering, where the algorithm was programmed 

to automatically measure size and AR within each image folder corresponding to a cluster. This 

enabled systematic quantification of morphological features across all clustered cells. Cell circularity 

filtering was based on AR, evaluated at three thresholds: within ±5%, ±10%, and ±20% from perfect 

circularity. For oval cells, AR thresholds were relaxed to ±40%, ±60%, and ±80%, while cells exceeding 

±80% AR were classified as pencil-shaped cells, indicative of extreme elongation. Cell size filtering 

was determined using the major axis length, categorized into three ranges: (i) < 6.00 µm for micro-

sized cells, (ii) 6.00–8.00 µm representing normal-sized RBCs, and (iii) > 8.00 µm, which may also 

include larger cells such as WBCs within certain clusters. Additionally, ellipse-to-boundary ER was 
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used to eliminate false fittings and incomplete cells. Multiple ER thresholds were applied sequentially 

(50%, 60%, 70%, 80%, 90%, 95%, and 100%), ensuring only cells with precise contour fits were retained 

for labeling. After applying these filters, the processed cells were separated into clearly organized 

folders for subsequent expert validation and labeling. Figure 8 provides representative examples of 

ellipse fitting outcomes, where AR and ER are annotated as R and A, respectively, for brevity. This 

figure illustrates the analysis stage only, while the images prepared for labeling were stored 

separately without annotations to maintain clean data for expert review. 

 

Figure 8. Representative examples of ellipse fitting results showing annotated AR (R) and ER (A) values for 

RBCs across clusters. These images illustrate the analytical stage only, while clean images for labeling were 

stored separately. 

After ellipse fitting, the data were pre-clustered into 80 groups without definitive RBC type 

labels. Using hematology references [52–54], clusters were classified into key RBC morphologies such 

as normocytes, Hypochromia, Howell-Jolly bodies, Codocyte (Target cell), Dacrocytes (Teardrop 

cell), Drepanocytes (Sickle cells), Eccentrocyte, Spherocyte, Stomatocyte, Ovalocytes, Elliptocytes, 

WBCs, PLTs, and others. Two hematology experts reviewed all clusters to validate morphological 

consistency and reassign labels where needed. The classification results for Dataset 1 are summarized 

in Table 3, while Figure 9 shows representative RBC morphologies, including normocytes, target 

cells, teardrop cells, and schistocytes. This expert validation ensured accurate labeling of all clusters, 

yielding a clinically reliable dataset for downstream analysis. 

Table 3. Distribution of RBC morphological classifications in Dataset 1 after expert review. 

Class name Morphological name Count Percentage 

Normocytes Normocytes * 805 5.75% 

Alteration  

in staining 

Hypochromia +1 * 1698 12.13% 

Hypochromia +2 * 1059 7.56% 

Hypochromia +3 * 240 1.71% 

Hypochromia +4 * 47 0.34% 

Erythrocyte inclusions 

Basophilic stippling 1 0.01% 

HbH inclusions 0 0.00% 

Diffuse basophilia 0 0.00% 

Cabot ring 0 0.00% 

Hb H 0 0.00% 

Hb C crystal 0 0.00% 
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Hb SC crystal 0 0.00% 

Heinz bodies   2 0.01% 

Howell-Jolly bodies   47 0.34% 

Pappenheimer bodies   16 0.11% 

Variations 

in Hb distribution 

Codocytes - 01 ** 1024 7.31% 

Codocytes - 02 ** 1050 7.50% 

Eccentrocytes   202 1.44% 

Spherocytes - 01 ** 1718 12.27% 

Spherocytes - 02 ** 1205 8.61% 

Stomatocytes   173 1.24% 

Variations 

in RBCs shape 

Acanthocytes   16 0.11% 

Dacrocytes   396 2.83% 

Degmacytes   393 2.81% 

Drepanocytes   25 0.18% 

Echinocytes   27 0.19% 

Elliptocytes * 136 0.97% 

Keratocytes   7 0.05% 

Knizocytes   525 3.75% 

Ovalocytes * 0 0.00% 

Pyknocytes   603 4.31% 

Schistocytes   488 3.49% 

Leukocytes 

Basophil 1 0.01% 

Eosinophil 0 0.00% 

Lymphocyte   21 0.15% 

Monocyte   2 0.01% 

Neutrophil   9 0.06% 

Platelets 
Platelets - 01 ** 312 2.23% 

Platelets - 02 ** 61 0.44% 

Others 

Large - 01 ** 766 5.47% 

Large - 02 ** 537 3.84% 

Small   117 0.84% 

Other   271 1.94% 

Total 14,089 100.00% 

* RBC morphology distribution in Dataset 1 after expert review. Some clusters were classified using 

ellipse fitting due to subtle differences in circularity or elongation, and certain morphologies were 

split into clear and unclear subgroups. 
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Figure 9. Representative examples of RBC morphologies confirmed by expert review. 

4.4. Data Augmentation 

Data augmentation was applied using three controlled geometric transformations: scaling up 

and down (S), rotation (R), and flipping (F) to prevent unrealistic distortions of RBC morphology. 

These operations were iteratively executed in loops, producing a multiplicative increase in sample 
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size with unique, non-redundant variations that enhanced dataset diversity. The augmentation 

process expanded each class to 1,000 and 4,000 images, depending on the target balance 

requirements. While augmentation could be performed on all available images, the selection of input 

images and applied transformations was adjusted systematically to achieve precise target counts, as 

detailed in Appendix C. Representative examples of augmented RBCs generated from scaling, 

rotation, and flipping are shown in Figure 10, demonstrating realistic morphological preservation 

while effectively increasing data diversity for training. 

 

Figure 10. Examples of RBC data augmentation using scaling (S), rotation (R), and flipping (F), demonstrating 

preserved morphology and increased dataset diversity.  

5. Discussion 

RBC morphology is fundamental in diagnosing hematological disorders, particularly in regions 

such as Southeast Asia where thalassemia and anemia are highly prevalent. Traditional microscopic 

examination, while effective, is labor-intensive, subjective, and limited by the availability of trained 

hematologists. Moreover, existing automated approaches often rely on curated Western-centric 

datasets, which fail to capture the variability and artifacts present in real-world blood smears, 

reducing their generalizability. To address these challenges, we developed a hybrid framework 

integrating preprocessing, unsupervised autoencoding, ellipse fitting, expert-in-the-loop validation, 
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and targeted data augmentation, aiming to produce a scalable, interpretable, and clinically relevant 

RBC labeling pipeline suitable for real-world diagnostic settings. 

The preprocessing results demonstrated the effectiveness of our image processing approach in 

systematically isolating single-cell RBC images from high-resolution ROI samples. From the six ROI 

examples, the method successfully generated a substantial dataset, with Dataset 1 exceeding 10,000 

single-cell patches across both datasets. The automated pipeline not only facilitated large-scale cell 

extraction but also implemented a structured filtering process that categorized cells into six groups. 

This systematic grouping significantly simplified expert review and ensured clear traceability of data 

quality. By removing noise such as overlapping clusters, edge-cut cells, and debris, the resulting 

dataset achieved a high level of purity, suitable for subsequent unsupervised clustering and 

morphological analysis. This preprocessing stage served as a crucial foundation, ensuring that 

downstream analysis operated on clean, standardized inputs rather than raw, artifact-laden smear 

images. Additionally, this preprocessing step provided insight into the distribution of cell artifacts 

and sample quality across ROI sources, which could inform further optimization of slide preparation 

and scanning protocols. For example, clusters of overlapping or edge-cut cells observed in specific 

ROIs highlight potential issues in smear spreading or scanner focus that may be addressed upstream. 

Overall, this 8preprocessing pipeline not only supports robust data preparation for computational 

modeling but also offers potential utility in improving hematology laboratory workflows by 

identifying sample preparation inconsistencies and guiding targeted quality control efforts. 

The unsupervised clustering outcomes demonstrated the effectiveness of combining 

autoencoder-based feature extraction with k-means clustering for organizing RBC morphologies in 

an interpretable and scalable manner. After expert-guided filtering, Dataset 1 contained 14,089 

images and Dataset 2 contained 11,496 images, forming a robust foundation for representation 

learning. Both Dense Autoencoder and CNN Autoencoder achieved reconstruction losses of 6.00–

6.55%, consistent with studies indicating that low loss values reflect effective latent feature encoding 

[43,55]. While the Dense Autoencoder offered faster training with stable convergence, the CNN 

Autoencoder achieved lower loss despite requiring 7–8 hours, aligning with evidence that 

convolutional layers better preserve spatial detail for cellular imaging [56]. Thus, CNN Autoencoder 

from Dataset 1 was selected for clustering and annotation. Using its latent representations, k-means 

clustering was tested with k ranging from 2 to 100. Higher cluster counts, produced distinct and 

homogeneous clusters confirmed via expert review and UMAP visualization. The best result was at 

k = 80, yielding optimal intra-cluster consistency and inter-cluster separation, supporting findings 

that fine-grained clustering improves feature grouping in medical imaging [45,57]. These results 

confirm that unsupervised clustering can group RBC morphologies without labels, creating a strong 

basis for semi-automated annotation. Nonetheless, challenges remain in differentiating fine traits 

such as size, elongation, and borderline forms, emphasizing the need for ellipse fitting-based 

geometric analysis to refine classification precision. This approach bridges raw smear images with 

clinically interpretable clusters, enabling scalable pre-labeling for expert review. 

Ellipse fitting was applied following k-means clustering to provide quantitative geometric 

measurements, enabling systematic filtering of cell size and shape. The algorithm automatically 

calculated AR, major axis length, and ER for each cluster, supporting objective evaluation of 

circularity and elongation. Cells were filtered into categories using AR thresholds (±5%, ±10%, ±20% 

for circularity; ±40%, ±60%, ±80% for ovality; >±80% for pencil shapes), size ranges (<6.00 µm for 

microcytes, 6.00–8.00 µm for normocytes, >8.00 µm for macrocytes or WBCs), and ER thresholds (50–

100%) to exclude false fits and incomplete cells. The resulting cleaned images were organized into 

cluster folders for expert validation, as illustrated in Figure 8, where AR and ER are annotated as R 

and A for brevity. Following ellipse fitting, the pre-clustered data (80 groups) were reviewed against 

hematology standards [52–54]. Morphologies were classified into clinically recognized RBC types 

such as normocytes, hypochromic cells, codocytes (target cells), dacrocytes (teardrop cells), 

drepanocytes (sickle cells), spherocytes, elliptocytes, ovalocytes, as well as WBCs, PLTs, and others. 

Two hematology experts validated each cluster for morphological consistency and reassigned labels 
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where needed. The classification results for Dataset 1 (Table 3) confirmed accurate distribution across 

14,089 cells, with major categories including hypochromia (21.7%), spherocytes (20.9%), normocytes 

(5.8%), and rare forms like Howell-Jolly bodies (0.34%) and drepanocytes (0.18%). Representative 

morphologies are shown in Figure 9, illustrating clear visual differences between key cell types. This 

expert-guided review ensured that labeling was both clinically accurate and interpretable, 

establishing a reliable foundation for training and evaluation in downstream machine learning 

applications. 

Data augmentation in this study was implemented through three controlled geometric 

transformations to preserve realistic RBC morphology while expanding dataset diversity. Iterative 

looping of these transformations produced unique, non-redundant samples and increased class sizes 

systematically. Depending on the target balance, augmentation expanded each class to 1,000 or 4,000 

images, with representative examples shown in Figure 10. These results demonstrate that 

augmentation effectively increased data diversity while maintaining morphological integrity. 

Importantly, augmentation is not required for classes that already have sufficient image counts, as 

further expansion offers minimal added benefit. However, for rare or underrepresented classes, 

augmentation improved sample diversity and mitigated class imbalance—critical for robust training 

performance. In this study, lower representation of certain RBC morphologies was anticipated, as the 

dataset primarily focused on anemia and thalassemia cases, where disease-specific patterns 

inherently limited the presence of unrelated RBC types. Thus, data augmentation served as a targeted 

strategy to balance rare classes without introducing artificial distortions, ensuring that the dataset 

reflected realistic morphological variability while remaining aligned with the clinical spectrum of the 

study population. 

This study demonstrates key strengths that advance RBC morphology research. First, we 

developed a hybrid framework combining preprocessing, unsupervised autoencoding, ellipse fitting, 

expert validation, and data augmentation, enabling scalable and clinically interpretable RBC labeling 

using real-world smear images from confirmed anemia and thalassemia cases, unlike prior studies 

reliant on small, curated datasets. Second, integrating ellipse fitting with expert-in-the-loop review 

balanced automation and clinical oversight, reducing annotation workload while ensuring accuracy 

by combining geometric quantification with hematologist expertise. Third, the use of unsupervised 

learning addressed limited labeled data in hematology, allowing effective pre-clustering before 

expert review. Together with augmentation for rare morphologies, the framework produced a large, 

high-quality labeled dataset suitable for AI development. Overall, this approach bridges 

computational modeling and clinical reality, supporting scalable RBC labeling and practical 

diagnostic relevance. 

6. Conclusions 

This study presents a hybrid framework for RBC labeling that integrates preprocessing, 

unsupervised autoencoding, ellipse fitting, expert validation, and targeted data augmentation, 

producing a clinically interpretable and scalable dataset derived from real-world smear images 

specific to Southeast Asia, where hematological profiles differ significantly from Western 

populations. These regional differences underscore the importance of context-specific datasets for 

both clinical analysis and AI training. Our framework not only supports automated and expert-

guided RBC morphology assessment for medical diagnostics but also establishes a high-quality, well-

annotated dataset suitable for future AI model development in hematology. Beyond its immediate 

application, this approach lays the groundwork for adaptable, data-driven pipelines that can be 

extended to other blood-related conditions, contributing to both clinical practice and computational 

medicine research. 
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7. Limitations and Future Work 

This study has several limitations. First, ROI selection should be standardized and further 

investigated to determine the optimal size, which would allow for the analysis of the relationship 

between RBC density and disease-specific patterns. Second, clusters of touching cells were not 

separated into single cells; however, such groups may hold diagnostic significance in clinical 

hematology. Third, certain morphological classes such as Basophilic stippling, HbH inclusions, 

Diffuse basophilia, Cabot ring, Hb H, Hb C crystal, Hb SC crystal, Heinz bodies, Howell-Jolly bodies, 

Pappenheimer bodies, Keratocytes, and rare WBC subtypes (e.g., Basophil, Eosinophil, Lymphocyte, 

Monocyte, Neutrophil) were underrepresented or absent. While this does not affect our focus on 

anemia and thalassemia, a more comprehensive, region-specific dataset would enhance applicability 

across broader hematological disorders. 

Future work will address these points by: (i) optimizing ROI selection and investigating RBC 

density correlations across disease types; (ii) segmenting touching (extracted) cells into single-cell 

images to evaluate their diagnostic contribution; (iii) expanding the dataset to include rare and 

underrepresented cell types for broader coverage; and (iv) studying RBC subtype distributions and 

standardized ratios for anemia and thalassemia cases within Thai populations to improve local 

relevance and clinical utility. In addition, future studies will explore the integration of advanced deep 

learning architectures, such as transformer-based models, to further enhance classification accuracy 

and interpretability. Furthermore, collaborative efforts with multiple regional hospitals will be 

pursued to create a larger, multi-institutional dataset that better reflects the variability of 

hematological profiles across Thailand. 
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The following abbreviations are used in this manuscript: 

AI Artificial Intelligence 

AR Aspect Ratio 

CNN Convolutional Neural Network 

CSV Comma-Separated Values 

DBSCAN Density-Based Spatial Clustering of Applications with Noise 

ER Ellipse-to-cell Area Ratio 

F Flipping 

GAN Generative Adversarial Network 

GPU Graphics Processing Unit 

HbE Thalassemia Hb E Disease 

HbE Sx Thalassemia Hb E Disease with Severe Symptoms 

HbH Hemoglobin H Disease 

Ho HbE Homozygous Hb E Thalassemia 

HITL Human-in-the-Loop 

ID Identifier 

IDA Iron Deficiency Anemia 

k-means K-means Clustering Algorithm 

OpenCV Open Source Computer Vision Library 

PLT Platelet 

PNG Portable Network Graphics 

R Rotation 

RBC Red Blood Cell 

ReLU Rectified Linear Unit 

ROI Region of Interest 

S Scaling up and down 

SMOTE Synthetic Minority Oversampling Technique 

SVS Scanned Virtual Slide Format 

TT Thalassemia Trait 

UMAP Uniform Manifold Approximation and Projection 

U-Net U-shaped Convolutional Neural Network 

WBC White Blood Cell 

WSI Whole Slide Image 

Appendix A 

Appendix A.1 

The study analyzed six WSIs in SVS format representing various hematological conditions: IDA, 

TT, HbH, HbE/β-thal, HbE/β-thal Sx, and Homo HbE. Each WSI was processed using Python with 

the OpenSlide library to extract essential metadata, including pixel size (0.1658 µm), magnification 

power (83×), number of image levels (4), and dimensions at the highest resolution. This metadata is 

critical for validating image quality and ensuring compatibility for downstream image processing 

tasks. In addition, thumbnails were generated and displayed for visual inspection, allowing 

verification of staining quality, smear uniformity, and potential artifacts, as illustrated in Figure A1. 

These thumbnails facilitated rapid screening prior to computational analysis, reducing the likelihood 

of processing flawed images. The extracted metadata and quality assessment outcomes are 

summarized in Table A1, which confirms consistency across all samples. This step ensured 

standardized, high-resolution inputs for subsequent preprocessing and provided a reliable baseline 

for comparing image characteristics across disease-specific samples. Moreover, this process 

demonstrates an effective workflow for digitizing and validating hematological slides, offering 

reproducible methodology for dataset preparation and serving as a reference for future large-scale 

RBC morphology studies. 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure A1. Example thumbnails of hematology samples derived from Whole Slide Image scans for different 

types of anemia and thalassemia, including (a) IDA, (b) TT, (c) HbH, (d) HbE/β-thal, (e) HbE/β-thal Sx, and (f) 

Homo HbE. 

Table A1. The extracted properties of pathology scanning slide. 

Sample Name Pixel (µm) Magnification Levels Dimensions (pixels) 

IDA 0.1658 83 4 34,271 x 74,047 

TT 0.1658 83 4 44,743 x 51,260 

HbH 0.1658 83 4 46,647 x 52,973 

HbE/β-thal 0.1658 83 4 52,359 x 51,740 

HbE/β-thal Sx 0.1658 83 4 39,031 x 73,061 

Homo HbE 0.1658 83 4 39,983 x 55,429 

Appendix A.2 

Appendix A.2 illustrates examples of ROIs extracted from the six hematological samples, as 

shown in Figure A2, highlighting the representative areas selected for analysis based on cell density 

and image quality. Additionally, Table A2 summarizes the dimensions of the two ROIs extracted per 

sample, which were used to ensure coverage of diagnostically relevant areas while maintaining 

variability across datasets. This systematic ROI selection provided standardized inputs for 

subsequent preprocessing and feature extraction steps. 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure A2. Representative examples of ROI extractions from each sample WSI, selected based on diagnostic 

relevance and cell distribution, including (a) IDA, (b) TT, (c) HbH, (d) HbE/β-thal, (e) HbE/β-thal Sx, and (f) 

Homo HbE. 

Table A2. Dimensions of ROI 1 and ROI 2 (in pixels) for each sample analyzed in this study. 

Sample 
Dimensions (pixels) 

ROI 1 ROI 2 

IDA 2,358 x 2,882 2,489 x 2,751 

TT 2,489 x 3,340 4,575 x 3,275 

HbH 4,519 x 3,733 3,733 x 3,471 

HbE/β-thal 7,991 x 4,454 4,454 x 5,043 

HbE/β-thal Sx 3,144 x 5,305 3,013 x 3,471 

Homo HbE 5,305 x 4,061 5,436 x 3,995 

Appendix B 

Appendix B presents the UMAP-based clustering analysis, as illustrated in Error! Reference 

source not found., showing visualizations for (a) 60 clusters, (b) 70 clusters, (c) 80 clusters, and (d) 90 

clusters. It should be noted that repeated colors do not indicate identical cell morphologies but rather 

result from limited color assignments due to the high number of clusters; interpretation relies on the 

grouping of points. Highlighted areas in the figure demonstrate that the 80-cluster configuration 

achieved the clearest separation, providing balanced granularity for morphological grouping. 

However, both 70 and 90 clusters also yielded acceptable results: choosing 70 clusters reduces the 
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number of clusters slightly but requires more expert work for verification, while choosing 90 clusters 

increases cluster detail but adds complexity. These findings support 80 clusters as an optimal choice 

for downstream labeling and morphological interpretation. 

  
(a) (b) 

 
 

(c) (d) 

Figure 1. UMAP visualization of RBC clustering at (a) 60 clusters, (b) 70 clusters, (c) 80 clusters, and (d) 90 

clusters, with highlighted regions indicating clear morphological separations. 

Appendix C 

Appendix C presents the augmentation calculation Error! Reference source not found., showing 

how input selection and transformation strategies were applied to achieve balanced output counts 

for each labeled RBC type. Although all labeled images could be used for augmentation, input 

selection was optimized to minimize redundancy and ensure computational efficiency, focusing on 

generating outputs that precisely meet the 1,000-image and 4,000-image targets. For example, rare 

classes such as Heinz bodies and Monocytes required high rotation multipliers (R) and scaling (S) to 

compensate for their low input counts, whereas abundant classes such as Spherocytes and 

Normocytes required fewer iterations. This demonstrates the principle of matching input-to-output 

ratios, where augmentation factors (e.g., R×F×S) are systematically adjusted to align with desired 

outputs.  

Table 1. The summarizes data augmentation techniques. 
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Label list Input 
Augmentation 

1,000 images 4,000 images 

Normocytes 50 R (5), F (3) R (20), F (3) 

Hypochromia +1 50 R (5), F (3) R (20), F (3) 

Hypochromia +2 50 R (5), F (3) R (20), F (3) 

Hypochromia +3 50 R (5), F (3) R (20), F (3) 

Hypochromia +4 25 R (10), F (3) R (40), F (3) 

Heinz bodies 2 R (125), F (3) S (2), R (250), F (3) 

Howell-Jolly bodies 25 R (10), F (3) R (40), F (3) 

Pappenheimer bodies 10 R (25), F (3) R (100), F (3) 

Codocytes - 01 250 R (1), F (3) R (4), F (3) 

Codocytes - 02 250 R (1), F (3) R (4), F (3) 

Eccentrocytes 125 R (2), F (3) R (4), F (3) 

Spherocytes - 01 250 R (1), F (3) R (4), F (3) 

Spherocytes - 02 250 R (1), F (3) R (4), F (3) 

Stomatocytes 50 R (5), F (3) R (20), F (3) 

Acanthocytes 10 R (25), F (3) R (100), F (3) 

Dacrocytes 50 R (5), F (3) R (20), F (3) 

Degmacytes 25 R (10), F (3) R (40), F (3) 

Drepanocytes 25 R (10), F (3) R (40), F (3) 

Echinocytes 25 R (10), F (3) R (40), F (3) 

Elliptocytes 50 R (5), F (3) R (20), F (3) 

Keratocytes 5 R (50), F (3) R (200), F (3) 

Knizocytes 125 R (2), F (3) R (4), F (3) 

Ovalocytes 125 R (2), F (3) R (4), F (3) 

Pyknocytes 125 R (2), F (3) R (4), F (3) 

Schistocytes 125 R (2), F (3) R (4), F (3) 

Lymphocyte 25 R (10), F (3) R (40), F (3) 

Monocyte 2 R (125), F (3) S (2), R (250), F (3) 

Neutrophil 10 R (25), F (3) R (100), F (3) 

Platelets - 01 50 R (5), F (3) R (20), F (3) 

Platelets - 02 50 R (5), F (3) R (20), F (3) 

Large - 01 250 R (1), F (3) R (4), F (3) 

Large - 02 250 R (1), F (3) R (4), F (3) 

Small 50 R (5), F (3) R (20), F (3) 

Other 250 R (1), F (3) R (4), F (3) 

References 

1. Parab, M.A.; Mehendale, N.D. Red Blood Cell Classification Using Image Processing and CNN. SN 

COMPUT. SCI. 2021, 2, 70. [CrossRef] 

2. Rezatofighi, S.H.; Soltanian-Zadeh, H. Automatic Recognition of Five Types of White Blood Cells in 

Peripheral Blood. Comput. Med. Imaging Graph. 2011, 35, 333–343. [CrossRef] [PubMed] 

3. Fucharoen, S.; Winichagoon, P. Thalassemia in SouthEast Asia: Problems and Strategy for Prevention and 

Control. Southeast Asian J. Trop. Med. Public Health 1992, 23, 647–655. [PubMed] 

4. Shahzad, M.; Umar, A.I.; Shirazi, S.H.; Shaikh, I.A. Semantic Segmentation of Anaemic RBCs Using 

Multilevel Deep Convolutional Encoder-Decoder Network. IEEE Access 2021, 9, 161326–161341. [CrossRef] 

5. Afriyie, Y.; A.Weyori, B.; A.Opoku, A. Classification of Blood Cells Using Optimized Capsule Networks. 

Neural Process. Lett. 2022, 54, 4809–4828. [CrossRef] 

6. Alzubaidi, L.; Fadhel, M.A.; Al-Shamma, O.; Zhang, J.; Duan, Y. Deep Learning Models for Classification 

of Red Blood Cells in Microscopy Images to Aid in Sickle Cell Anemia Diagnosis. Electronics (Basel) 2020, 9, 

427. [CrossRef] 

7. Khalid, U.; Gurung, J.; Doykov, M.; Kostov, G.; Hristov, B.; Uchikov, P.; Kraeva, M.; Kraev, K.; Doykov, D.; 

Doykova, K.; et al. Artificial Intelligence Algorithms and Their Current Role in the Identification and 

Comparison of Gleason Patterns in Prostate Cancer Histopathology: A Comprehensive Review. Diagnostics 

2024, 14(19), 2127. [CrossRef] [PubMed] 

8. Sazak H.; Kotan M. Automated Blood Cell Detection and Classification in Microscopic Images Using 

YOLOv11 and Optimized Weights. Diagnostics 2025, 15, 22. [CrossRef] [PubMed] 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 August 2025 doi:10.20944/preprints202508.0575.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1007/s42979-021-00458-2
https://doi.org/10.1016/j.compmedimag.2011.01.003
https://pubmed.ncbi.nlm.nih.gov/21300521/
https://pubmed.ncbi.nlm.nih.gov/1298071/
https://doi.org/10.1109/ACCESS.2021.3131768
https://doi.org/10.1007/s11063-022-10833-6
https://doi:10.3390/electronics9030427%5d
https://doi.org/10.3390/diagnostics14192127
https://pubmed.ncbi.nlm.nih.gov/39410530/
https://doi.org/10.3390/diagnostics15010022
https://pubmed.ncbi.nlm.nih.gov/39795550/
https://doi.org/10.20944/preprints202508.0575.v1
http://creativecommons.org/licenses/by/4.0/


 28 of 30 

 

9. Labati, R.D.; Piuri, V.; Scotti, F. All-IDB: The Acute Lymphoblastic Leukemia Image Database for Image 

Processing. In Proceedings of the 2011 18th IEEE International Conference on Image Processing (ICIP), 

Brussels, Belgium, 11–14 September 2011; IEEE: New York, NY, USA, 2011; pp. 2045–2048. [CrossRef] 

10. Buczkowski, M.; Szymkowski, P.; Saeed, K. Segmentation of Microscope Erythrocyte Images by CNN-

Enhanced Algorithms. Sensors (Basel) 2021, 21, 1720. [CrossRef] 

11. Mohapatra, B. BCCD Dataset: Blood Cell Count and Detection. Kaggle Dataset Repository, 2015. Available 

online: https://www.kaggle.com/datasets/paultimothymooney/blood-cell-count-detection (accessed on 1 

August 2025). 

12. Wasi, P.; Pootrakul, S.; Pootrakul, P.; Pravatmuang, P.; Winichagoon, P.; Fucharoen, S. Thalassemia in 

Thailand. Ann. N. Y. Acad. Sci. 1980, 344, 352–363. [CrossRef] [PubMed] 

13. V. Panich; M. Pornpatkul; and W. Sriroongrueng. The Problem of Thalassemia in Thailand, Southeast Asian 

J Trop Med Public Health. 1992, 23 Suppl 2, 1–6. [PubMed] 

14. Teawtrakul, N.; Chansung, K.; Sirijerachai, C.; Wanitpongpun, C.; Thepsuthammarat, K. The Impact and 

Disease Burden of Thalassemia in Thailand: A Population-Based Study in 2010. J. Med. Assoc. Thai. 2012, 95 

Suppl 7, S211-6. [PubMed] 

15. Paiboonsukwong, K.; Jopang, Y.; Winichagoon, P.; Fucharoen, S. Thalassemia in Thailand. Hemoglobin 2022, 

46, 53–57. [CrossRef] [PubMed] 

16. Long, F.; Peng, J.-J.; Song, W.; Xia, X.; Sang, J. BloodCaps: A Capsule Network Based Model for the 

Multiclassification of Human Peripheral Blood Cells. Comput. Methods Programs Biomed. 2021, 202, 105972. 

[CrossRef] [PubMed] 

17. Zhong, A.; Li, X.; Wu, D.; Ren, H.; Kim, K.; Kim, Y.; Buch, V.; Neumark, N.; Bizzo, B.; Tak, W.Y.; et al. Deep 

Metric Learning-Based Image Retrieval System for Chest Radiograph and Its Clinical Applications in 

COVID-19. Med. Image Anal. 2021, 70, 101993. [CrossRef] [PubMed] 

18. Nurçin, F. V.; Imanov, E. Segmentation of Overlapping Red Blood Cells for Malaria Blood Smear Images 

by U‑Net Architecture. J. Med. Imaging Health Inform. 2021, 11 (8), 2190–2193. [CrossRef] 

19. Pfeil, J.; Nechyporenko, A.; Frohme, M.; Hufert, F. T.; Schulze, K. Examination of Blood Samples Using 

Deep Learning and Mobile Microscopy. BMC Bioinformatics 2022, 23, 65. [CrossRef] [PubMed] 

20. Dong, Z.; et al. scSemiAE: A Deep Model with Semi‑Supervised Learning for Single‑Cell RNA‑Seq Data 

Analysis. BMC Bioinformatics 2022, 23, 439. [CrossRef] [PubMed] 

21. Ahmadzadeh, E.; Jaferzadeh, K.; Lee, J.; Moon, I. Automated three‑dimensional morphology‑based 

clustering of human erythrocytes with regular shapes: stomatocytes, discocytes, and echinocytes. J. Biomed. 

Opt. 2017, 22 (7), 076015. [CrossRef] [PubMed] 

22. Yi, F.; Moon, I.; Javidi, B. Cell morphology‑based classification of red blood cells using holographic imaging 

informatics. Biomed. Opt. Express 2016, 7 (6), 2385–2399. [CrossRef] [PubMed] 

23. Ersoy, I.; Bunyak, F.; Higgins, J.M.; Palaniappan, K. Coupled Edge Profile Active Contours for Red Blood 

Cell Flow Analysis. In Proceedings of the 2012 9th IEEE International Symposium on Biomedical Imaging 

(ISBI); IEEE, 2012. [CrossRef] 

24. Naruenatthanaset, K.; Chalidabhongse, T.H.; Palasuwan, D.; Anantrasirichai, N.; Palasuwan, A. Red Blood 

Cell Segmentation with Overlapping Cell Separation and Classification on Imbalanced Dataset. arXiv 

[eess.IV] 2020. [CrossRef] 

25. Tofighi, M.; Guo, T.; Vanamala, J.K.P.; Monga, V. Deep Networks with Shape Priors for Nucleus Detection. 

In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP); IEEE, 2018. 

[CrossRef] 

26. Budd, S.; Robinson, E. C.; Kainz, B. A Survey on Active Learning and Human-in-the-Loop Deep Learning 

for Medical Image Analysis. IEEE J. Biomed. Health Inform. 2021, 25, 2742–2756. [CrossRef] 

27. Holzinger, A.; Biemann, C.; Pattichis, C.S.; Kell, D.B. What Do We Need to Build Explainable AI Systems 

for the Medical Domain? arXiv [cs.AI] 2017. [CrossRef] 

28. Tizhoosh, H.R.; Pantanowitz, L. Artificial Intelligence and Digital Pathology: Challenges and 

Opportunities. J. Pathol. Inform. 2018, 9, 38. [CrossRef] [PubMed] 

29. Foy, B.H.; Stefely, J.A.; Bendapudi, P.K.; Hasserjian, R.P.; Al-Samkari, H.; Louissaint, A.; Fitzpatrick, M.J.; 

Hutchison, B.; Mow, C.; Collins, J.; et al. Computer Vision Quantitation of Erythrocyte Shape Abnormalities 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 August 2025 doi:10.20944/preprints202508.0575.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1109/ICIP.2011.6115881
https://doi.org/10.3390/s21051720
https://www.kaggle.com/datasets/paultimothymooney/blood-cell-count-detection
https://doi.org/10.1111/j.1749-6632.1980.tb33674.x.
https://pubmed.ncbi.nlm.nih.gov/2291558/
https://pubmed.ncbi.nlm.nih.gov/1298980/
https://pubmed.ncbi.nlm.nih.gov/23130457/
https://doi.org/10.1080/03630269.2022.2025824
https://pubmed.ncbi.nlm.nih.gov/35950590/
https://doi.org/10.1016/j.cmpb.2021.105972
https://pubmed.ncbi.nlm.nih.gov/33592325/
https://doi.org/10.1016/j.media.2021.101993
https://pubmed.ncbi.nlm.nih.gov/33711739/
https://doi.org/10.1166/jmihi.2021.3757
https://doi.org/10.1186/s12859-022-04602-4
https://pubmed.ncbi.nlm.nih.gov/35148679/
https://doi.org/10.1186/s12859-022-04703-0
https://pubmed.ncbi.nlm.nih.gov/35513780/
https://doi.org/10.1117/1.JBO.22.7.076015
https://pubmed.ncbi.nlm.nih.gov/28742920/
https://doi.org/10.1364/BOE.7.002385
https://pmc.ncbi.nlm.nih.gov/articles/PMC4918591/
https://doi.org/10.1109/ISBI.2012.6235656
https://doi.org/10.48550/arXiv.2012.01321
https://doi.org/10.1109/ICIP.2018.8451797
https://doi.org/10.1016/j.media.2021.102062
https://doi.org/10.48550/arXiv.1712.09923
https://doi.org/10.4103/jpi.jpi_53_18
https://pubmed.ncbi.nlm.nih.gov/30607305/
https://doi.org/10.20944/preprints202508.0575.v1
http://creativecommons.org/licenses/by/4.0/


 29 of 30 

 

Provides Diagnostic, Prognostic, and Mechanistic Insight. Blood Adv. 2023, 7, 4621–4630, [CrossRef] 

[PubMed] 

30. Johnson, J.M.; Khoshgoftaar, T.M. Survey on Deep Learning with Class Imbalance. J. Big Data 2019, 6. 

[CrossRef] 

31. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-Sampling 

Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [CrossRef] 

32. Frid-Adar, M.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. Synthetic Data Augmentation Using 

GAN for Improved Liver Lesion Classification. In Proceedings of the 2018 IEEE 15th International 

Symposium on Biomedical Imaging (ISBI 2018); IEEE, 2018. [CrossRef] 

33. Rana, P.; Sowmya, A.; Meijering, E.; Song, Y. Data Augmentation with Improved Regularisation and 

Sampling for Imbalanced Blood Cell Image Classification. Sci. Rep. 2022, 12, 18101. [CrossRef] [PubMed] 

34. World Medical Association World Medical Association Declaration of Helsinki: Ethical Principles for 

Medical Research Involving Human Subjects: Ethical Principles for Medical Research Involving Human 

Subjects. JAMA 2013, 310, 2191–2194. [CrossRef] 

35. Bain, B.J. Blood Cells: A Practical Guide; 5th ed.; Wiley-Blackwell: Chichester, England, 2015. 

36. Erratum: Introduction to Digital Image Analysis in Whole-Slide Imaging: A White Paper from the Digital 

Pathology Association. J. Pathol. Inform. 2019, 10, 15. [CrossRef] [PubMed] 

37. Komura, D.; Ishikawa, S. Machine Learning Methods for Histopathological Image Analysis. Comput. Struct. 

Biotechnol. J. 2018, 16, 34–42. [CrossRef] [PubMed] 

38. Goode, A.; Gilbert, B.; Harkes, J.; Jukic, D.; Satyanarayanan, M. OpenSlide: A Vendor-Neutral Software 

Foundation for Digital Pathology. J. Pathol. Inform. 2013, 4, 27. [CrossRef] [PubMed] 

39. Beucher, S.; Meyer, F. The morphological approach to segmentation: The watershed transformation. 

Mathematical Morphology in Image Processing 1993, 34, 433–481. [CrossRef] 

40. Vincent, L.; Soille, P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. 

IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13(6), 583–598. [CrossRef] 

41. Sadafi, A.; Bordukova, M.; Makhro, A.; Navab, N.; Bogdanova, A.; Marr, C. RedTell: An AI Tool for 

Interpretable Analysis of Red Blood Cell Morphology. Front. Physiol. 2023, 14, 1058720. [CrossRef] 

[PubMed] 

42. Chollet, F. Deep Learning with Python; Manning Publications: Shelter Island, NY, USA, 2021.  

43. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. 

44. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; et al. Scikit-learn: Machine 

learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [CrossRef] 

45. McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension 

Reduction. arXiv [stat.ML] 2018. [CrossRef] 

46. Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 4th ed.; Pearson: New York, NY, USA, 2018. 

47. Bradski, G. The OpenCV Library. Dr. Dobb’s Journal of Software Tools 2000, 25(11), 120–126. 

48. Gupta, A.; Sabirsh, A.; Wahlby, C.; Sintorn, I.-M. SimSearch: A Human-in-the-Loop Learning Framework 

for Fast Detection of Regions of Interest in Microscopy Images. IEEE J. Biomed. Health Inform. 2022, 26, 4079–

4089. [CrossRef] [PubMed] 

49. Holzinger, A.; Langs, G.; Denk, H.; Zatloukal, K.; Müller, H. Causability and Explainability of Artificial 

Intelligence in Medicine. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1312. [CrossRef] 

50. Shorten, C.; Khoshgoftaar, T.M. A Survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 

6. [CrossRef] 

51. Xu, M.; Papageorgiou, D.P.; Abidi, S.Z.; Dao, M.; Karniadakis, G.E. A deep convolutional neural network 

for classification of red blood cells in sickle cell anemia. PLoS Comput. Biol. 2017, 13(10), e1005746. [CrossRef] 

[PubMed] 

52. Hatton, C.S.R.; Hughes-Jones, N.C.; et al. Lecture Notes: Haematology; 9th ed.; Wiley-Blackwell: New Jersey, 

USA, 2013. 

53. d’Onofrio, G.; Zini, G. Morphology of Blood Disorders; 2nd ed.; Translated by Bain, B.J.; Wiley-Blackwell: New 

Jersey, USA, 2014. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 August 2025 doi:10.20944/preprints202508.0575.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1182/bloodadvances.2022008967
https://pubmed.ncbi.nlm.nih.gov/37146262/
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1613/jair.953
https://doi.org/10.1109/ISBI.2018.8363576
https://doi.org/10.1038/s41598-022-22882-x
https://pmc.ncbi.nlm.nih.gov/articles/PMC9613648/
https://doi.org/10.1001/jama.2013.281053
https://doi.org/10.4103/2153-3539.259372
https://pmc.ncbi.nlm.nih.gov/articles/PMC6547794/
https://doi.org/10.1016/j.csbj.2018.01.001
https://pubmed.ncbi.nlm.nih.gov/30275936/
https://doi.org/10.4103/2153-3539.119005
https://pubmed.ncbi.nlm.nih.gov/24244884/
https://doi.org/10.1201/9781482277234-12
https://doi.org/10.1109/34.87344
https://doi.org/10.1095/biolreprod34.5.849
https://pubmed.ncbi.nlm.nih.gov/3730481/
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.1109/JBHI.2022.3177602
https://pubmed.ncbi.nlm.nih.gov/35609108/
https://doi.org/10.1002/widm.1312
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1371/journal.pcbi.1005746
https://pubmed.ncbi.nlm.nih.gov/29049291/
https://doi.org/10.20944/preprints202508.0575.v1
http://creativecommons.org/licenses/by/4.0/


 30 of 30 

 

54. Keohane, E.M.; Walenga, J.M.; Smith, L.J. Rodak’s Hematology: Clinical Principles and Applications; 5th ed.; 

Saunders: Philadelphia, PA, USA, 2015. 

55. Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 

2006, 313, 504–507. [CrossRef] [PubMed] 

56. LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. Handbook of Brain Theory 

and Neural Networks 1995, 3361, 255–258. 

57. Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-Level 

Classification of Skin Cancer with Deep Neural Networks. Nature 2017, 542, 115–118. [CrossRef] [PubMed] 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

 

 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 August 2025 doi:10.20944/preprints202508.0575.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1126/science.1127647
https://pubmed.ncbi.nlm.nih.gov/16873662/
https://doi.org/10.1038/nature21056
https://pubmed.ncbi.nlm.nih.gov/28117445/
https://doi.org/10.20944/preprints202508.0575.v1
http://creativecommons.org/licenses/by/4.0/

