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Abstract

Red blood cell (RBC) morphology is critical for diagnosing hematological disorders, particularly in
regions such as Southeast Asia where anemia and thalassemia are highly prevalent. However,
manual microscopic assessment is labor-intensive, subjective, and dependent on expert availability,
while existing automated methods often rely on small, curated datasets that fail to represent real-
world smear variability. This study proposes a hybrid framework integrating preprocessing,
unsupervised autoencoding, k-means clustering, ellipse fitting, expert-in-the-loop validation, and
targeted data augmentation to establish a robust RBC labeling pipeline. High-resolution smear
images from confirmed anemia and thalassemia cases were processed to extract over 14,000 single-
cell patches, filtered systematically into quality-assured subsets. Latent features from a CNN
autoencoder enabled clustering into 80 morphological groups, quantified using ellipse-based
geometric metrics and validated by hematology experts. Data augmentation addressed class
imbalance, expanding rare morphologies while preserving realistic cell structure. The resulting
dataset captures clinically relevant morphological diversity specific to the Thai population and
provides a scalable, interpretable framework for medical analysis and future AI model development
in hematology.

Keywords: red blood cell morphology; autoencoder; ellipse fitting; unsupervised clustering; data
augmentation; anemia; thalassemia

1. Introduction

RBC morphology plays a vital role in the diagnosis of various hematological disorders, including
thalassemia, iron deficiency anemia, and hemolytic diseases[1,2]. In clinical practice, this
morphological assessment traditionally relies on manual microscopic examination of peripheral
blood smears by experienced hematologists. This process, while effective, is time-consuming, prone
to human error, and inherently subjective [3]. These challenges are especially critical in low-resource
settings such as Southeast Asia, where the burden of inherited hemoglobinopathies —particularly
thalassemia—is notably high, and access to expert hematologists remains limited. For instance, in
Thailand —a country with one of the highest thalassemia burdens in Southeast Asia—carrier rates are
estimated at 30-40% of the population, particularly in the northern and northeastern regions. HbE
carriers alone account for over 52% with a mortality rate of 1.13 per 100,000 individuals. These figures
underscore the urgent need for scalable [12-15].

Recent advances in computer vision and deep learning have enabled significant progress in
automating RBC classification tasks [4,5]. However, most existing models are trained and evaluated
on datasets collected predominantly from Western populations (e.g., U.S., Europe) [6,7], whose blood
smear characteristics—such as cell size, staining patterns, and prevalence of morphological
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abnormalities—differ considerably from those in Southeast Asian patients. This discrepancy
introduces potential performance bias when such models are deployed cross-regionally. Moreover,
widely used public datasets such as ALL-IDB [9], Rezatofighi, S.H. [2], Buczkowski, M. [10], and
BCCD [11] have facilitated benchmarking in RBC classification research. However, they exhibit
critical limitations that hinder their applicability in real-world clinical settings. These datasets are
typically curated under ideal laboratory conditions—containing well-separated, uniformly stained
cells—and rarely include real-world artifacts such as overlapping cells, uneven staining, or
background debris. Additionally, they are modest in scale—usually fewer than 10,000 labeled cells—
and insufficient for training robust models for complex use cases[8]. Furthermore, public RBC
datasets often lack key technical variations—such as differences in microscope type, staining
protocol, magnification, and scanner settings—leading to poor model generalization across clinical
environments. This “technical reality gap” hinders reliable deployment in settings with diverse
imaging conditions. Moreover, most models trained on these datasets are not clinically validated or
interpretable, as they lack expert oversight. In low-resource settings, the absence of an expert-in-the-
loop mechanism further reduces trust and usability, especially when the training data fails to reflect
local morphological patterns. These limitations underscore the importance of frameworks that
combine automation with human validation.

To address the limitations of existing RBC annotation approaches, we propose a novel hybrid
pipeline that integrates geometric analysis, unsupervised deep learning, and expert-in-the-loop
verification. The process begins with the extraction of high-resolution blood smear images in SVS
format, scanned from real patient samples. These digital slides are then reviewed to identify
appropriate regions of interest (ROIs), which are manually cropped into rectangular patches based
on visual quality and cell density. Each ROl is subdivided into uniformly sized subregions to isolate
candidate single-cell areas. To capture morphological features without requiring manual labels, we
evaluate two unsupervised learning architectures: convolutional neural networks and dense
autoencoders. The latter is selected for its superior latent representation capability. Autoencoder-
derived feature vectors are subsequently clustered using the k-means algorithm to group
morphologically similar cells, functioning as a pre-labeling step for downstream analysis. To further
characterize individual cells, ellipse fitting is applied to each candidate, enabling shape- and size-
based discrimination. This quantitative description enhances the interpretability of cell morphology
across clusters. Finally, to address class imbalance—particularly for rare abnormal morphologies
such as teardrop, sickle, or fragmented cells—we employ a targeted data augmentation strategy
based on deformable ellipse transformations, thereby enriching underrepresented classes with
plausible synthetic variants. This study makes the following three key contributions:

1. It presents a novel combination of shape-based segmentation and deep unsupervised learning
for RBC morphology analysis, a pairing that remains underexplored in prior literature.

2. It proposes a scalable annotation framework capable of generating clinically relevant pseudo-
labels with minimal expert involvement, reducing annotation cost while enabling model
generalization to underrepresented populations.

3. It introduces one of the largest real-world abnormal RBC datasets to date, consisting of over
10,000 peripheral smear images and corresponding metadata from Thai patients, helping to
bridge both geographic and morphological gaps in current datasets.

2. Related Works
2.1. Whole Slide Image Processing and ROI Extraction

In recent years, the use of whole-slide imaging (WSI) formats such as SVS format has become
increasingly important in digital pathology workflows, enabling high-resolution scanning of entire
blood smear slides for downstream computational analysis. However, many previous studies in RBC
or WBC morphology classification have utilized cropped or pre-segmented images obtained under
controlled conditions, often bypassing the challenges inherent in real-world smear interpretation
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[2,16]. These studies typically rely on fixed-field images or single-cell views without addressing how
to navigate or extract diagnostically relevant regions from full WSI data. While a few works have
explored automatic ROI selection using heuristic or random sampling methods [17], they lack
adaptive strategies based on morphological density, cell aggregation, or diagnostic saliency —factors
crucial for analyzing heterogeneous slides collected from clinical environments. Moreover, the
absence of standardized protocols for ROI identification in large-scale smear datasets has limited
reproducibility and model generalizability. Therefore, the integration of intelligent ROI selection in
WSI analysis remains an underexplored yet essential component of scalable morphological
annotation systems.

2.2. Single-Cell Extraction and Instance Separation

Accurate extraction of single RBCs from peripheral blood smear images remains a critical pre-
processing step in morphology-based classification pipelines. Traditional methods for RBC
segmentation often rely on thresholding, edge detection, and watershed algorithms [18]. While these
methods are computationally efficient, they tend to struggle in the presence of touching or
overlapping cells, resulting in under- or over-segmentation artifacts. To mitigate this, more recent
approaches have incorporated deep learning techniques such as U-Net and Mask R-CNN, which
enable instance-level segmentation with improved accuracy [19]. However, these models require
extensive pixel-level annotations for training and often generalize poorly to real-world smear slides
with noisy backgrounds, variable staining, and densely clustered cells. Furthermore, most studies do
not enforce constraints on ROI size or uniformity during extraction, which can affect downstream
morphological analysis. Despite these advances, the field still lacks a simple yet robust framework
that can extract uniformly sized single-cell instances from real-world smear images in a scalable and
generalizable manner.

2.3. Unsupervised Learning and Morphological Clustering

While supervised learning has dominated recent advances in RBC and WBC classification, the
increasing cost and time required for manual annotation have driven growing interest in
unsupervised and semi-supervised approaches. Autoencoders, in particular, have shown promise in
capturing latent morphological representations of blood cells without requiring explicit labels [20].
These latent spaces can be clustered using algorithms such as k-means or DBSCAN to group
morphologically similar cells, offering an alternative route to pseudo-label generation [21]. Despite
their potential, most studies have focused on white blood cells (WBCs), and applications to abnormal
RBC morphology —especially in real-world smears—remain limited. Furthermore, the comparison
between different encoder backbones, such as CNNs versus fully connected (dense) autoencoders,
has not been systematically explored in hematological image analysis. Such comparison is critical, as
morphological cues in RBCs are often subtle and shape-dependent, and the optimal encoder
architecture may vary based on image resolution, background noise, and dataset characteristics. Our
work addresses this gap by evaluating both CNN and dense autoencoder models in the context of
unsupervised RBC clustering from real Thai patient smears.

2.4. Shape-Based Modeling and Ellipse Fitting

Shape-based analysis has long been utilized in hematological image processing to quantify
cellular morphology through geometric features such as area, perimeter, circularity, and eccentricity
[22]. These hand-crafted descriptors provide interpretable and computationally inexpensive
measures that are useful for distinguishing between normal and abnormal RBC types. However, they
often fail to generalize when applied to real-world smears where cell boundaries are unclear or
distorted due to touching or staining artifacts. To enhance shape-guided representation, several
studies have explored advanced contour modeling techniques, including active contours and Hough
transform-based ellipse detection [23,24]. Among these, ellipse fitting has shown promise in
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capturing the overall geometry of RBCs, which are inherently biconcave and approximately elliptical
in healthy forms. Nonetheless, the integration of ellipse fitting into modern deep learning pipelines—
particularly in the context of unsupervised representation learning —remains scarce. Few studies
have treated the ellipse not merely as a post-hoc measurement, but as a structural prior to guide
downstream feature extraction or clustering [25]. This gap presents an opportunity to revisit classical
shape modeling within contemporary machine learning frameworks for robust morphological
analysis.

2.5. Human-in-the-Loop Expert Refinement

Manual annotation by domain experts remains the gold standard in hematological image
labeling; however, it is notoriously time-consuming and prone to inter-observer variability,
particularly for abnormal RBC morphologies. To address this challenge, several recent studies have
explored human-in-the-loop (HITL) frameworks, where experts iteratively refine or verify Al-
generated outputs rather than annotating from scratch [26]. This approach has been shown to
significantly reduce labeling effort while maintaining diagnostic reliability. In medical imaging
domains such as histopathology, HITL strategies have improved both model accuracy and user trust
through interactive feedback cycles [27,28]. Despite these advantages, the adoption of HITL in RBC
morphology remains limited. Most existing studies focus either on supervised classification or post
hoc validation, without integrating expert judgment during the unsupervised clustering or pseudo-
label generation phase. Moreover, few systems offer intuitive interfaces that allow experts to filter,
correct, or reassign morphological clusters efficiently [29]. Our study builds upon these insights by
incorporating expert-guided refinement into the unsupervised annotation loop, enabling more
efficient pseudo-label validation and improving the overall quality of the dataset for downstream
training.

2.6. Data Balancing and Rare-Class Augmentation

Class imbalance remains a persistent challenge in medical image datasets, particularly in
hematology, where rare abnormal RBC morphologies —such as teardrop cells, fragmented cells, or
target cells—are often underrepresented. This imbalance can bias deep learning models toward
majority classes, resulting in poor sensitivity for clinically critical but infrequent phenotypes [30].
Traditional approaches such as oversampling and SMOTE (Synthetic Minority Over-sampling
Technique) have been adopted to alleviate this issue, but they are limited by their tendency to
generate redundant or unrealistic samples [31]. More recent efforts have explored the use of
generative models, including GANs (Generative Adversarial Networks), to synthesize realistic
minority-class cell images [32]. While promising, many of these models lack shape constraints or
morphological priors, which are crucial for preserving biologically plausible features in RBCs.
Additionally, only a few studies have attempted to apply domain-specific transformations—such as
deformable ellipse fitting—to simulate natural variation in cell size, eccentricity, and contour,
particularly for data-starved classes [33]. These methods offer a more explainable and geometry-
aware alternative to black-box generators.

2.7. Summary and Research Gap

In summary, prior research has contributed significantly to various components of RBC image
analysis—ranging from WSI preprocessing, ROI selection, single-cell segmentation, to supervised
classification. However, most existing pipelines address these tasks in isolation and are rarely
integrated into a unified framework capable of handling the complexity of real-world smear slides.
The underutilization of unsupervised learning for RBC morphology, limited incorporation of
geometric priors such as ellipse fitting, lack of expert-in-the-loop refinement strategies, and
inadequate methods for augmenting rare phenotypes collectively highlight the need for a more
holistic approach. Our work addresses these gaps by proposing an end-to-end hybrid framework
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that combines shape-based segmentation, latent space clustering, expert-guided pseudo-label
validation, and deformable augmentation. This integrated methodology is specifically designed for
real-world abnormal RBC annotation and aims to facilitate large-scale, efficient, and biologically
interpretable dataset generation for hematological Al applications.

3. Materials and Methods

This study presents a multi-stage pipeline for the semi-automated annotation and
morphological analysis of RBCs derived from digitized peripheral blood smear slides. The proposed
workflow integrates WSI processing, unsupervised representation learning, shape-based priors, and
expert-in-the-loop validation to address the challenges of manual annotation and data imbalance in
hematological image analysis. The pipeline, illustrated in Figure 1, begins with the acquisition of
high-resolution WSIs from clinically confirmed hematological cases (Section Error! Reference source
not found.), followed by the extraction of diagnostically relevant ROIs (Section Error! Reference
source not found.). From each ROI, uniformly sized single-cell patches are derived using a systematic
grid sampling and filtering procedure (Section Error! Reference source not found.). Subsequently,
latent morphological features are learned using autoencoder-based representation learning (Section
Error! Reference source not found.) and clustered through unsupervised methods (Section Error!
Reference source not found.) to group cells with similar appearances. To incorporate structural
information, ellipse fitting is applied for geometric characterization and filtering of abnormal shapes
(Section Error! Reference source not found.). The clustered results are then refined through expert-
in-the-loop validation (Section Error! Reference source not found.), where hematology specialists
confirm or adjust pseudo-labels. Finally, to address class imbalance among rare morphological
subtypes, synthetic minority augmentation based on deformable ellipse transformations is
performed (Section Error! Reference source not found.).
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Figure 1. Workflow of the proposed semi-automated RBC annotation and analysis pipeline.

3.1. Dataset Collection and Image Acquisition

This study utilized six WSIs of peripheral blood smears obtained from patients in Thailand with
confirmed hematological diagnoses. The samples encompassed a range of anemic and thalassemic
conditions: Sample ID 1: Iron Deficiency Anemia (IDA), Sample ID 2: Thalassemia Trait (TT), Sample
ID 3: Hb H Disease (HbH), Sample ID 4: Thalassemia Hb E Disease (HbE/f-thal), Sample ID 5:
Thalassemia Hb E Disease with Severe Symptoms (HbE/$-thal Sx), and Sample ID 6: Homozygous
Hb E Thalassemia (Homo HbE). All diagnoses were clinically confirmed by hematologists based on
standard laboratory tests and microscopic examination prior to slide preparation. No additional

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.0575.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 August 2025 d0i:10.20944/preprints202508.0575.v1

6 of 30

demographic or clinical data were collected in accordance with ethical guidelines for de-identification
and patient privacy protection [34]. Blood smears were prepared following standard hematology
protocols and stained using the Wright-Giemsa technique to enhance RBC morphology visualization
[35]. The slides were digitized using a WSI scanner at 40x magnification, producing high-resolution
digital slides in SVS format as shown in Figure 2(a). The scanning resolution was set to 0.1658
um/pixel, providing sufficient detail for subsequent single-cell segmentation and morphological
analysis [36]. Each WSI covered the entire smear area and served as the primary image source for all
downstream experiments.

3.2. ROI Selection from WSI

From each WSI, two ROIs were manually selected by an expert hematologist, resulting in a total
of 12 ROIs across the six slides. These ROIs were subsequently divided into two datasets for
downstream experiments. The ROI dimensions were not fixed, as they were determined adaptively
based on the distribution and density of RBCs in diagnostically relevant areas identified by the
expert. Selection criteria for ROIs included (i) areas containing well-spread red blood cells without
significant clumping or overlap, (ii) regions free from staining artifacts, debris, or scanning errors,
and (iii) areas representative of typical morphological patterns for the corresponding hematological
diagnosis [37]. These criteria ensured that ROIs captured diagnostically informative cells while
minimizing noise as shown in Figure 2(b). ROIs were annotated using expert-driven selection and
extracted automatically via the OpenSlide library to guarantee precise coordinate mapping and
accurate image cropping from native-resolution WSIs [38]. All ROIs were retained at the original
scanning resolution and subsequently downsampled only during visualization or model input
preparation. Each ROI underwent independent review by a hematology expert to confirm diagnostic
relevance. The extracted ROIs were stored in PNG format, preserving high-quality, lossless images
suitable for computational analysis.

Loading the slide Start scanning slides Storage of digital images
(Place and hold still in the scanner) (Aperio AT2) (saved in SVS file format)
(a)
L R 'lg\ﬁ thumbnail
! S

]
N

ROI-01

ROI-02

| E i B o |
= 18 o 5
5 =
Y j » ROI-02 "
k B ROI01
e Output parameters were set via OpenSlide .
SVS files input and ROIs were chosen from the thumbnail view ROI files output

(b)

Figure 2. Workflow of slide scanning and ROI selection using OpenSlide: (a) Glass slides were scanned with
Aperio AT2. (b) ROIs were selected from SVS thumbnails.

3.3. Single-Cell Patch Extraction

A total of 12 ROIs selected from WSIs were processed to extract single-cell patches of RBCs for
downstream analysis. Cell detection was performed using a segmentation-based approach
incorporating global thresholding, contour detection, and morphological operations. Segmentation
masks were generated and refined using the watershed algorithm [39] to separate individual cells
from touching clusters. For each segmented cell, a bounding box was derived from the binary mask
and cropped to create a single-cell patch. To ensure accurate identification of isolated cells versus
touching cells, a maximum local peak detection method was applied to centroid distributions within
clusters [40]. Validated single-cell patches were overlaid on a clean background and centered to
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standardize positioning. Patches were saved in PNG format with a structured directory system
separating: (i) single isolated cells, (ii) overlapping cells, (iii) broken or artifact cells, (iv) background
or staining artifacts, (v) small particles, and (vi) cells touching image edges. This systematic
organization facilitated both quality control and downstream dataset preparation [2]. The patch size
for this study was set at 128 x 128 pixels, optimized for our ROI resolution (0.1658 pm/pixel) and
compatibility with subsequent deep learning models. For other contexts, patch sizes can be adapted
(e.g., 16, 32, 128, 256, or 512 pixels) depending on the desired field of view and computational
constraints [41]. Filtering criteria were strictly applied to exclude: (i) overlapping cells, (ii) fragmented
cells or artifacts, (iii) background regions or staining debris, (iv) small non-cellular particles, and (v)
cells truncated at image edges. The detailed cell extraction process is visualized in Figure 3, while
Algorithm 1 formally outlines the procedural steps, including segmentation, bounding box
generation, artifact filtering, and patch centering.

Algorithm 1. Pseudocode of the RBC single-cell extraction and resizing technique.

RBC_Extraction(image_path, output_dir)
load image from image_path
apply mean-shift filtering to image — shifted
convert shifted image to grayscale — gray
apply Otsu thresholding to gray =~ — thresh
find contours from thresh — cnts
for each contour c in cnts do
crop image and mask around contour — image_crop, mask_crop
if mask_crop is valid then
check if cell touches border:
if true:
save touching cell to "touching" folder
else:
extract RBC from mask
determine RBC size:
if size < 16px: overlay to 32x32 and save as “small”
else if size < 32px: overlay to 32x32 and save as “32 size”
else if size < 128px: overlay to 128x128 and save as “128 size”
else if size < 256px: overlay to 256x256 and save as “256 size”
else if size < 512px: overlay to 512x512 and save as “512 size”
else if size < 1024px: overlay to 1024x1024 and save as “1024 size”
else: save as "oversize"
else:
increment error_count number
end for
save processing results (original, filtered, gray, mask, contours)
return success
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Figure 3. Processing pipeline for single-cell patch extraction from ROIs. The figure illustrates the step-by-step
workflow including segmentation, watershed-based separation, bounding box generation, artifact filtering, cell

centering, and final patch export.

3.4. Latent Feature Learning Using Autoencoders

Latent morphological features of single-cell RBC patches were extracted using two encoder
architectures: a dense autoencoder and a convolutional autoencoder (CNN-based). Both models were
implemented using TensorFlow and Keras libraries [42], and their architectural diagrams are
illustrated in Figure 4. Input cell patches (128 x 128 pixels, grayscale) were normalized to [0,1] before
training. The dense autoencoder comprised a flattened input layer, a 64-unit latent layer with ReLU
activation, followed by two decoding layers with sigmoid activation and reshaping back to the
original size. The CNN-based autoencoder consisted of sequential convolutional and max-pooling
layers for feature encoding, followed by mirrored upsampling and convolutional layers for
reconstruction. Model training employed cross-validation, with 80% of the dataset used for training
and 20% reserved for validation in each fold. Both models were trained for 200 epochs with a batch
size of 64 on an NVIDIA GeForce RTX 1650 GPU. The binary cross-entropy loss function was used,
and model performance was monitored using reconstruction loss as the primary metric [43]. Training
histories were saved in CSV format, and loss curves were visualized to assess convergence. Encoders
from both models were subsequently extracted for downstream unsupervised clustering tasks.

Encoder j—Lateant features — Decoder
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Figure 4. Architectures for latent feature extraction: (a) dense and (b) CNN-based autoencoders.
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The best-performing encoder selected from the autoencoder experiments (Section 3.4) was
utilized to extract latent features of single-cell RBC images for clustering. These latent feature vectors
were subsequently grouped using k-means clustering, implemented via the scikit-learn library [44].
The optimal number of clusters (k) was determined experimentally by iterative testing and
qualitative expert evaluation, as no fixed ground truth labels were available. The quality of clustering
was assessed primarily through expert visual review, wherein representative cell images from each
cluster were inspected by a hematology specialist to verify morphological coherence within clusters
[27]. To aid interpretation, the high-dimensional latent space was reduced to two dimensions using
Uniform Manifold Approximation and Projection (UMAP) [45], enabling visualization of cluster
separability and distribution patterns. The clustering process was conducted using TensorFlow (for
latent feature generation) and scikit-learn (for clustering and evaluation). Resulting clusters were
saved as image directories grouped by cluster ID to facilitate manual review and downstream
analysis. Representative examples of clustered images were visualized to demonstrate intra-cluster
similarity and inter-cluster distinctiveness. The detailed clustering procedure is summarized in
Algorithm 2, which outlines the steps for latent feature extraction, cluster initialization, assignment,
and qualitative validation.

Algorithm 2. Unsupervised clustering of RBC latent features using k-means.

RBC_Clustering_Encoder(samples, encoder_models, n_clusters_list)
for each sample_id in samples do
initialize paths for model, images, and outputs
create output folders if not exist

load pre-trained encoder model for current sample_id
load and preprocess RBC images = — x_test
normalize pixel values (0-1)

encode images using encoder — encoded_imgs

remove existing clustering score CSV if exists
for each n_clusters in n_clusters_list do
apply KMeans clustering (n_clusters)
compute clustering labels — labels
calculate Silhouette Score — sil_score
calculate Davies-Bouldin Index — dbi_score

save scores to CSV log

create cluster folders and copy images based on labels
plot silhouette visualization per cluster

plot metrics comparison (Silhouette vs. DBI)

save plots

apply UMAP to reduce encoded_imgs to 2D
plot and save UMAP scatter plot with cluster coloring
save UMAP coordinates to CSV
end for
compile per-sample clustering report summarizing metrics and plots
append results to global clustering summary (multi-sample CSV)
end for
compute total execution time and display summary
return clustering results and diagnostic visualizations

3.6. Morphological Prior via Ellipse Fitting
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Ellipse fitting was applied to accurately quantify RBC morphology and provide shape-based
priors for classification. The primary objectives were to (i) measure cell size precisely and (ii) evaluate
shape characteristics such as circularity, ellipticity, and completeness, which are essential for
distinguishing subtle morphological variations [46]. Ellipse fitting was implemented using edge-
based contour fitting via the cv2.fitEllipse() function in OpenCV [47]. For each segmented cell, an
ellipse was fitted to the contour, from which key morphological parameters were derived, including
the major axis length (Lyqjor), minor axis length (Lp,n,r), aspect ratio (AR), and ellipse-to-cell area
ratio (ER). These were calculated as:

Lingjor = max(a,b) (1)

Loninor = min(a,b) )

AR = ZZL: 3)

ER = Majsflcli:feaarea = Ceffn’f:f;f 2 @)
(22

Cells with AR~1 were considered circular, whereas higher AR values indicated elongation. The
classify cell function (see Algorithm 3) applied threshold-based rules using AR, major axis length
(um), and ER to categorize cells into predefined groups (e.g., circular, oval, elongated) and filter out
artifacts. Subsequently, morphological metrics were statistically analyzed, including AR for
circularity, major axis length for RBC size standardization (68 um), and ER to assess structural
completeness [35]. This ensured that only morphologically valid cells were retained for downstream
tasks. The full processing workflow, including contour detection, ellipse fitting, feature computation,
and classification, is summarized in Algorithm 4, which automated morphological quantification
while maintaining interpretability. This integration of geometry-based priors improved the reliability
of subsequent clustering and annotation steps by removing irregular cells and enhancing feature
quality.

Algorithm 3. RBC Morphological classification based on geometric features.

classify_cell(ratio, length, area)
if ratio <1.05: r_group = "Circle 095/"
else if ratio <1.10: r_group = "Circle 090/"
else if ratio <1.20: r_group = "Circle 080/"
else if ratio <1.40: r_group = "Oval 060/"
else if ratio < 1.60: r_group = "Oval 040/"
else: r_group = "Pencil/"

if length < 6.0: 1_group = "Micro/"
else if length <8.0: 1_group = "Normal/"
else: 1_group = "Macro/"

if area < 0.80: a_group = "Area 080/"
else if area <0.90: a_group = "Area 090/"
else if area<0.95: a_group = "Area 095/"
else: a_group = "Area 100/"

return concatenation of 1_group, r_group, and a_group

Algorithm 4. Ellipse-based RBC Morphology classification and clustering.

RBC_Ellipse_Fitting_Clustering(data_list, image_path)
for each folder in data_list do
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define folder_path
if folder_path exists then
for each image_file in folder_path do
load image — image_input
convert image to grayscale = — gray
apply Otsu thresholding — binary
find contours from binary =~ — contours
for each contour cnt in contours do
if contour length > 5 then
fit ellipse to contour — ellipse
extract ellipse parameters: center, major_ax, minor_ax, angle
compute major/minor axis lines and endpoints
convert axis lengths to micrometers (pum)
determine aspect ratio (AR)
generate contour and ellipse masks
compute overlap region (intersection) — inter_contours
calculate area ratio (ER)
annotate image with ellipse, axes, ratio, and area metrics
classify cell morphology using classify_cell() function
define output directories based on classification
save annotated and raw images into their respective folders
log extracted metrics for statistical analysis
append classification results to CSV for later clustering review
end for
else: print warning (folder not found)
end for
export full metrics dataset and classification summary
return morphological classification outputs and processed images

3.7. Expert-in-the-Loop Validation

To ensure the reliability of the clustering results and improve pseudo-label quality, an expert-
in-the-loop (HITL) validation process was implemented. Initially, RBC images were pre-classified
based on the unsupervised clustering outputs and theoretical morphological guidelines, after which
each cluster was reviewed and either approved or rejected by domain experts [48]. Two experts
participated in this validation process: (i) an Associate Professor of Hematology specializing in
medical training for physicians, and (ii) a Lecturer in Biomedical Physics with expertise in medical
image analysis. Their complementary expertise allowed for both clinical and computational
perspectives to be integrated into the review process. The experts followed specific validation criteria,
including: (i) verifying the correctness of cluster labels based on RBC morphology, and (ii) approving
or rejecting pseudo-labels for their suitability in subsequent training phases. During this process,
representative samples from each cluster were inspected to confirm morphological coherence or
identify misclassified or noisy samples. This validation was conducted over two refinement cycles,
where feedback from each round was used to iteratively update the pseudo-label assignments and
refine cluster integrity. This iterative HITL approach significantly improved label quality and
reduced error propagation in subsequent model training, serving as a bridge between automated
clustering and clinically robust annotation standards [49].

3.8. Synthetic Minority Augmentation

To address the issue of class imbalance, data augmentation was applied to increase the
representation of rare morphological subtypes of RBCs. Imbalanced datasets are a well-known
challenge in medical imaging, as they often bias model training towards majority classes and degrade
performance in clinically important but underrepresented categories [30]. Synthetic samples were
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generated using controlled geometric transformations to preserve biological plausibility. Specifically,
transformations were limited to rotation, flipping, and scaling down, ensuring that augmented data
remained consistent with the original morphology and did not introduce unrealistic variations [50].
For each rare class, synthetic samples were generated at three scales: 1,000, 2,000, and 4,000 images
per class, resulting in a more balanced training distribution. Augmentation operations were
implemented in Python using OpenCV, NumPy, and SciPy libraries [47]. The workflow is described
in Algorithm 5, which details the sequential application of resizing, rotation, and flipping, followed
by dataset reorganization and saving augmented images. The effect of augmentation was evaluated
by comparing model performance before and after augmentation, consistent with prior studies
demonstrating that augmentation significantly improves classification accuracy in hematological
imaging tasks [24,51]. These studies showed that class-balancing augmentation enhances sensitivity
to rare morphological types and stabilizes learning curves, leading to improved generalization.

Algorithm 5. Automated data augmentation and centering for RBC image dataset.

Auto_Data_Augmentation(data_list, image_path)
for each folder in data_list do
define folder_path
if folder_path exists then
for each image_file in folder_path do
load image
for each scale_factor in [0.98, 0.99, 1.00, 1.01] do
resize image while embedding onto black background
save augmented image
for each rotation angle based on num_rotations do
rotate resized image
for each flip_code in [0, 1, -1] do
flip rotated image (vertical, horizontal, both)
else: Print warning (folder not found)
end for
for each folder in data_list do
define folder_aug
for each image_file in folder_aug do
load augmented image — image
apply mean-shift filtering — shifted
convert to grayscale and apply Otsu thresholding — thresh
detect contours — cnts
for each contour c in cnts do
extract ROI with small padding
generate binary mask and apply bitwise extraction
if extracted cell size <128x128:
embed cell into black 128x128 background, centered
save centered image
end for
generate augmentation report summarizing transformations applied
return augmented dataset and metadata logs

4. Results
4.1. Preprocessing Results

From the WSIs of six hematological conditions, ROIs were extracted and divided into two
datasets, each comprising representative regions from all disease categories. The specific dimensions
of each ROl are detailed in Appendix A, where selection was guided by hematology experts to ensure
diagnostically relevant regions. The number of single-cell patches obtained from ROI extraction is
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summarized in Table 1 for dataset 1 and Table 2 for dataset 2, which show the distribution of cells
across different categories for their respective datasets. Single-cell patches, representing isolated
RBCs, WBCs, or PLTs of suitable size (128 x 128 px), formed the primary dataset for downstream
classification. Additional categories were also identified during preprocessing. The Extracted cells
category included small cell clusters of two or three cells that could be separated and morphologically
identified but were excluded from this study. The Overlapping cells category consisted of larger
overlapping cell clusters where individual cells could not be distinctly resolved, and thus these were
discarded. The Small cells category comprised cell fragments and clear platelet regions; while
fragments were excluded, PLTs were retained as part of the dataset due to their diagnostic relevance.
The Touching edge category contained cells truncated by ROI boundaries, rendering them unsuitable
for analysis, while the Other category represented miscellaneous contaminants, which were absent
in this dataset. Figure 5 presents representative examples of each category, illustrating the diversity
of cell appearances identified during preprocessing. Notably, across both sample sets, Single-cell
patches accounted for the majority of valid data, with proportions ranging from 55% to 70%, followed
by Extract (10-20%) and Overlap (8-15%), while Small and Touching cells collectively contributed
less than 10%. These results confirm that preprocessing effectively filtered unusable data and
preserved diagnostically valuable single-cell patches for subsequent analysis.

Table 1. Cell distribution from dataset 1 across different hematological conditions.

Sample Single cells  Extracted cells Overlapping Small cells Touching edge Other
IDA 733 132 20 168 25 0
TT 1,124 65 17 94 50 0
HbH 1,551 379 427 328 70 0
HbE/B-thal 5,009 732 476 590 104 0
HbE/B-thal Sx 930 445 211 853 63 0
Homo HbE 2,803 148 93 204 68 0
Total 12,150 1,901 1,244 2,237 380 0

Table 2. Cell distribution from dataset 2 across different hematological conditions.

Sample Single cells  Extracted cells Overlapping Small cells Touching edge Other
IDA 785 164 30 853 35 0
TT 1,874 239 381 298 59 0
HbH 1,167 270 362 232 68 0
HbE/B-thal 2,443 640 496 415 71 0
HbE/B-thal Sx 381 280 174 723 49 0
Homo HbE 3,013 240 271 291 66 0
Total 9,663 1,833 1,714 2,812 348 0

* The cell counts shown in these tables do not directly correlate with the type of hematological
condition but depend primarily on the size of each ROL In this study, ROIs varied in size across
samples. Additionally, the counts in the Extracted cells and Overlapping cells categories represent

multi-cell clusters rather than one cell per image.

Isolated cells Lightly touching cells Overlapping cells Cell fragment Cell touching the ROI
@) (b) © (d) (e)
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Figure 5. Representative examples of cell categories identified during preprocessing: (a) Single cells; (b)

Extracted cells; (c) Overlapping cells; (d) Small; and (e) Touching edge.

4.2. Unsupervised Clustering Outcomes

After expert-guided filtering of single-cell patches, Dataset 1 contained 14,089 images, while
Dataset 2 contained 11,496 images. These datasets were subsequently used to train both Dense
Autoencoder and CNN Autoencoder models for unsupervised representation learning. The Dense
Autoencoder model was trained on both datasets for 200 epochs, requiring approximately 1-1.5
hours per run. The minimum reconstruction loss values achieved were 6.44% and 6.55%, respectively,
with stable convergence curves as shown in Figure 6(top). In comparison, the CNN Autoencoder
model required a longer training duration of 7-8 hours for 200 epochs but yielded lower minimum
loss values of 6.00% and 6.07%, respectively, with mildly fluctuating loss curves as illustrated in
Figure 6(bottom). Overall, both models achieved acceptable reconstruction performance, with loss
values ranging between 6.00-6.55%, supporting their suitability for unsupervised feature extraction.
Given its superior accuracy, the CNN Autoencoder trained on Dataset 1 was selected for downstream
clustering and annotation experiments. Nonetheless, the Dense Autoencoder remains advantageous
for scenarios requiring faster training, reducing training time by up to fourfold while maintaining
reasonable performance.

— Dense-01 (0.0644)
0.11 — Dense-02 (0.0655)
= CNN-01 (0.0600)
= CNN-02 (0.0607)
0.10 H
0.09 H
w
3 0.08
=
o A&
005 1 L 1 1 1 1 L L 1
0 20 40 60 80 100 120 140 160 180 200
Epoch

Figure 6. Training loss curves over 200 epochs of (top) the Dense Autoencoder model; and (bottom) the CNN

Autoencoder model.

Following feature extraction using the CNN Autoencoder model trained on Dataset 1,
unsupervised clustering was performed using k-means with varying numbers of clusters (k =2, 3, 4,
5,6,7,8,9,10, 20, 30, 40, 50, 60, 70, 80, 90, and 100). The analysis revealed that larger cluster counts,
particularly in the range of k = 50 to k = 100, produced more distinct and morphologically coherent
groupings compared to lower cluster counts. Cluster quality was evaluated through two
complementary approaches: (i) direct expert review of representative cell images per cluster, and (ii)
visual inspection of cluster separation in the UMAP-reduced latent space. Both methods confirmed
improved intra-cluster homogeneity and inter-cluster separability at higher k values. The optimal
result was achieved at k = 80, which yielded well-defined morphological clusters and clear separation
in the UMAP visualization, as shown in Figure 7. Representative examples of clusters are provided
in Appendix B, demonstrating distinct patterns grouped into their respective clusters. These findings
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indicate that clustering at k = 80 facilitates effective morphological grouping of RBCs and supports
downstream classification. However, residual challenges remain in differentiating cell size, degree of
elongation, and fine-grained shape variations, underscoring the need for the subsequent ellipse
fitting-based size and shape analysis described in the next section.

CNN Autoencoder - Model 01 (80 clusters)

: g L . ‘.
PRUR S L

Figure 7. UMAP visualization of clustered RBC latent features at k = 80, showing clear inter-cluster separation

and intra-cluster homogeneity.

4.3. Ellipse Fitting and Expert-Guided Labeling

Ellipse fitting was applied following k-means clustering, where the algorithm was programmed
to automatically measure size and AR within each image folder corresponding to a cluster. This
enabled systematic quantification of morphological features across all clustered cells. Cell circularity
filtering was based on AR, evaluated at three thresholds: within 5%, £10%, and +20% from perfect
circularity. For oval cells, AR thresholds were relaxed to +40%, +60%, and +80%, while cells exceeding
+80% AR were classified as pencil-shaped cells, indicative of extreme elongation. Cell size filtering
was determined using the major axis length, categorized into three ranges: (i) < 6.00 pm for micro-
sized cells, (ii) 6.00-8.00 pm representing normal-sized RBCs, and (iii) > 8.00 um, which may also
include larger cells such as WBCs within certain clusters. Additionally, ellipse-to-boundary ER was
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used to eliminate false fittings and incomplete cells. Multiple ER thresholds were applied sequentially
(50%, 60%, 70%, 80%, 90%, 95%, and 100%), ensuring only cells with precise contour fits were retained
for labeling. After applying these filters, the processed cells were separated into clearly organized
folders for subsequent expert validation and labeling. Figure 8 provides representative examples of
ellipse fitting outcomes, where AR and ER are annotated as R and A, respectively, for brevity. This
figure illustrates the analysis stage only, while the images prepared for labeling were stored
separately without annotations to maintain clean data for expert review.

: 1.24 R: 1.33 R: 1.23

Micro RBC size, < 60% elongation (R), = 60% cell area (A)

R: 1.05 R: 1.02 R: 1.20 R: 1.20 : 1.2 R: 1.21

Normal RBC size, <5% elongation (R Normal RBC size, < 60% elongation (R), = 80% cell area (A)

R: 1.02 : 1.03 e 1.0 R: 1.03 R: 1.82 R: 1.81 R: 1.93

Macro RBC size, < 5% elongation (R), 2 95% cell area (A) Macro RBC size, = 80% elongation (R), > 50% cell area (A)

Figure 8. Representative examples of ellipse fitting results showing annotated AR (R) and ER (A) values for

RBCs across clusters. These images illustrate the analytical stage only, while clean images for labeling were

stored separately.

After ellipse fitting, the data were pre-clustered into 80 groups without definitive RBC type
labels. Using hematology references [52-54], clusters were classified into key RBC morphologies such
as normocytes, Hypochromia, Howell-Jolly bodies, Codocyte (Target cell), Dacrocytes (Teardrop
cell), Drepanocytes (Sickle cells), Eccentrocyte, Spherocyte, Stomatocyte, Ovalocytes, Elliptocytes,
WBCs, PLTs, and others. Two hematology experts reviewed all clusters to validate morphological
consistency and reassign labels where needed. The classification results for Dataset 1 are summarized
in Table 3, while Figure 9 shows representative RBC morphologies, including normocytes, target
cells, teardrop cells, and schistocytes. This expert validation ensured accurate labeling of all clusters,
yielding a clinically reliable dataset for downstream analysis.

Table 3. Distribution of RBC morphological classifications in Dataset 1 after expert review.

Class name Morphological name Count  Percentage
Normocytes Normocytes * 805 5.75%
Hypochromia +1 * 1698 12.13%
Alteration Hypochromia +2 * 1059 7.56%
in staining Hypochromia +3 * 240 1.71%
Hypochromia +4 * 47 0.34%
Basophilic stippling 1 0.01%
HbH inclusions 0 0.00%
. o o
Erythrocyte inclusions g;tg;l:iiﬁzsophlha g 888;{;
Hb H 0 0.00%
Hb C crystal 0 0.00%
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Hb SC crystal 0 0.00%
Heinz bodies 2 0.01%
Howell-Jolly bodies 47 0.34%
Pappenheimer bodies 16 0.11%
Codocytes - 01 ** 1024 7.31%
Codocytes - 02 ** 1050 7.50%
Variations Eccentrocytes 202 1.44%
in Hb distribution Spherocytes - 01 ** 1718 12.27%
Spherocytes - 02 ** 1205 8.61%
Stomatocytes 173 1.24%
Acanthocytes 16 0.11%
Dacrocytes 396 2.83%
Degmacytes 393 2.81%
Drepanocytes 25 0.18%
Variations Echinocytes 27 0.19%
in RBCs shape Elliptocytes * 136 0.97%
Keratocytes 7 0.05%
Knizocytes 525 3.75%
Ovalocytes * 0 0.00%
Pyknocytes 603 4.31%
Schistocytes 488 3.49%
Basophil 1 0.01%
Eosinophil 0 0.00%
Leukocytes Lymphocyte 21 0.15%
Monocyte 2 0.01%
Neutrophil 9 0.06%
Platelets Platelets - 01 ** 312 2.23%
Platelets - 02 ** 61 0.44%
Large - 01 ** 766 5.47%
Large - 02 ** 537 3.84%
Others Small 117 0.84%
Other 271 1.94%
Total 14,089 100.00%

* RBC morphology distribution in Dataset 1 after expert review. Some clusters were classified using
ellipse fitting due to subtle differences in circularity or elongation, and certain morphologies were

split into clear and unclear subgroups.
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Figure 9. Representative examples of RBC morphologies confirmed by expert review.

4.4. Data Augmentation

Data augmentation was applied using three controlled geometric transformations: scaling up
and down (S), rotation (R), and flipping (F) to prevent unrealistic distortions of RBC morphology.
These operations were iteratively executed in loops, producing a multiplicative increase in sample
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size with unique, non-redundant variations that enhanced dataset diversity. The augmentation
process expanded each class to 1,000 and 4,000 images, depending on the target balance
requirements. While augmentation could be performed on all available images, the selection of input
images and applied transformations was adjusted systematically to achieve precise target counts, as
detailed in Appendix C. Representative examples of augmented RBCs generated from scaling,
rotation, and flipping are shown in Figure 10, demonstrating realistic morphological preservation
while effectively increasing data diversity for training.

Normocytes Hypochromia +1

Heinz bodies

Pappenheimer bodies

Eccentrocytes

..

Degmacytes

={-1.

Elliptocytes

Lymphocyte
Neutrophil Macro RBC size, < 5% elongation (R), > 95% cell area (A)

Figure 10. Examples of RBC data augmentation using scaling (S), rotation (R), and flipping (F), demonstrating

preserved morphology and increased dataset diversity.

5. Discussion

RBC morphology is fundamental in diagnosing hematological disorders, particularly in regions
such as Southeast Asia where thalassemia and anemia are highly prevalent. Traditional microscopic
examination, while effective, is labor-intensive, subjective, and limited by the availability of trained
hematologists. Moreover, existing automated approaches often rely on curated Western-centric
datasets, which fail to capture the variability and artifacts present in real-world blood smears,
reducing their generalizability. To address these challenges, we developed a hybrid framework
integrating preprocessing, unsupervised autoencoding, ellipse fitting, expert-in-the-loop validation,
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and targeted data augmentation, aiming to produce a scalable, interpretable, and clinically relevant
RBC labeling pipeline suitable for real-world diagnostic settings.

The preprocessing results demonstrated the effectiveness of our image processing approach in
systematically isolating single-cell RBC images from high-resolution ROI samples. From the six ROI
examples, the method successfully generated a substantial dataset, with Dataset 1 exceeding 10,000
single-cell patches across both datasets. The automated pipeline not only facilitated large-scale cell
extraction but also implemented a structured filtering process that categorized cells into six groups.
This systematic grouping significantly simplified expert review and ensured clear traceability of data
quality. By removing noise such as overlapping clusters, edge-cut cells, and debris, the resulting
dataset achieved a high level of purity, suitable for subsequent unsupervised clustering and
morphological analysis. This preprocessing stage served as a crucial foundation, ensuring that
downstream analysis operated on clean, standardized inputs rather than raw, artifact-laden smear
images. Additionally, this preprocessing step provided insight into the distribution of cell artifacts
and sample quality across ROI sources, which could inform further optimization of slide preparation
and scanning protocols. For example, clusters of overlapping or edge-cut cells observed in specific
ROIs highlight potential issues in smear spreading or scanner focus that may be addressed upstream.
Overall, this 8preprocessing pipeline not only supports robust data preparation for computational
modeling but also offers potential utility in improving hematology laboratory workflows by
identifying sample preparation inconsistencies and guiding targeted quality control efforts.

The wunsupervised clustering outcomes demonstrated the effectiveness of combining
autoencoder-based feature extraction with k-means clustering for organizing RBC morphologies in
an interpretable and scalable manner. After expert-guided filtering, Dataset 1 contained 14,089
images and Dataset 2 contained 11,496 images, forming a robust foundation for representation
learning. Both Dense Autoencoder and CNN Autoencoder achieved reconstruction losses of 6.00—
6.55%, consistent with studies indicating that low loss values reflect effective latent feature encoding
[43,55]. While the Dense Autoencoder offered faster training with stable convergence, the CNN
Autoencoder achieved lower loss despite requiring 7-8 hours, aligning with evidence that
convolutional layers better preserve spatial detail for cellular imaging [56]. Thus, CNN Autoencoder
from Dataset 1 was selected for clustering and annotation. Using its latent representations, k-means
clustering was tested with k ranging from 2 to 100. Higher cluster counts, produced distinct and
homogeneous clusters confirmed via expert review and UMAP visualization. The best result was at
k = 80, yielding optimal intra-cluster consistency and inter-cluster separation, supporting findings
that fine-grained clustering improves feature grouping in medical imaging [45,57]. These results
confirm that unsupervised clustering can group RBC morphologies without labels, creating a strong
basis for semi-automated annotation. Nonetheless, challenges remain in differentiating fine traits
such as size, elongation, and borderline forms, emphasizing the need for ellipse fitting-based
geometric analysis to refine classification precision. This approach bridges raw smear images with
clinically interpretable clusters, enabling scalable pre-labeling for expert review.

Ellipse fitting was applied following k-means clustering to provide quantitative geometric
measurements, enabling systematic filtering of cell size and shape. The algorithm automatically
calculated AR, major axis length, and ER for each cluster, supporting objective evaluation of
circularity and elongation. Cells were filtered into categories using AR thresholds (+5%, £10%, +20%
for circularity; +40%, +60%, +80% for ovality; >+80% for pencil shapes), size ranges (<6.00 um for
microcytes, 6.00-8.00 pm for normocytes, >8.00 um for macrocytes or WBCs), and ER thresholds (50—
100%) to exclude false fits and incomplete cells. The resulting cleaned images were organized into
cluster folders for expert validation, as illustrated in Figure 8, where AR and ER are annotated as R
and A for brevity. Following ellipse fitting, the pre-clustered data (80 groups) were reviewed against
hematology standards [52-54]. Morphologies were classified into clinically recognized RBC types
such as normocytes, hypochromic cells, codocytes (target cells), dacrocytes (teardrop cells),
drepanocytes (sickle cells), spherocytes, elliptocytes, ovalocytes, as well as WBCs, PLTs, and others.
Two hematology experts validated each cluster for morphological consistency and reassigned labels
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where needed. The classification results for Dataset 1 (Table 3) confirmed accurate distribution across
14,089 cells, with major categories including hypochromia (21.7%), spherocytes (20.9%), normocytes
(5.8%), and rare forms like Howell-Jolly bodies (0.34%) and drepanocytes (0.18%). Representative
morphologies are shown in Figure 9, illustrating clear visual differences between key cell types. This
expert-guided review ensured that labeling was both clinically accurate and interpretable,
establishing a reliable foundation for training and evaluation in downstream machine learning
applications.

Data augmentation in this study was implemented through three controlled geometric
transformations to preserve realistic RBC morphology while expanding dataset diversity. Iterative
looping of these transformations produced unique, non-redundant samples and increased class sizes
systematically. Depending on the target balance, augmentation expanded each class to 1,000 or 4,000
images, with representative examples shown in Figure 10. These results demonstrate that
augmentation effectively increased data diversity while maintaining morphological integrity.
Importantly, augmentation is not required for classes that already have sufficient image counts, as
further expansion offers minimal added benefit. However, for rare or underrepresented classes,
augmentation improved sample diversity and mitigated class imbalance—critical for robust training
performance. In this study, lower representation of certain RBC morphologies was anticipated, as the
dataset primarily focused on anemia and thalassemia cases, where disease-specific patterns
inherently limited the presence of unrelated RBC types. Thus, data augmentation served as a targeted
strategy to balance rare classes without introducing artificial distortions, ensuring that the dataset
reflected realistic morphological variability while remaining aligned with the clinical spectrum of the
study population.

This study demonstrates key strengths that advance RBC morphology research. First, we
developed a hybrid framework combining preprocessing, unsupervised autoencoding, ellipse fitting,
expert validation, and data augmentation, enabling scalable and clinically interpretable RBC labeling
using real-world smear images from confirmed anemia and thalassemia cases, unlike prior studies
reliant on small, curated datasets. Second, integrating ellipse fitting with expert-in-the-loop review
balanced automation and clinical oversight, reducing annotation workload while ensuring accuracy
by combining geometric quantification with hematologist expertise. Third, the use of unsupervised
learning addressed limited labeled data in hematology, allowing effective pre-clustering before
expert review. Together with augmentation for rare morphologies, the framework produced a large,
high-quality labeled dataset suitable for AI development. Overall, this approach bridges
computational modeling and clinical reality, supporting scalable RBC labeling and practical
diagnostic relevance.

6. Conclusions

This study presents a hybrid framework for RBC labeling that integrates preprocessing,
unsupervised autoencoding, ellipse fitting, expert validation, and targeted data augmentation,
producing a clinically interpretable and scalable dataset derived from real-world smear images
specific to Southeast Asia, where hematological profiles differ significantly from Western
populations. These regional differences underscore the importance of context-specific datasets for
both clinical analysis and Al training. Our framework not only supports automated and expert-
guided RBC morphology assessment for medical diagnostics but also establishes a high-quality, well-
annotated dataset suitable for future AI model development in hematology. Beyond its immediate
application, this approach lays the groundwork for adaptable, data-driven pipelines that can be
extended to other blood-related conditions, contributing to both clinical practice and computational
medicine research.
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7. Limitations and Future Work

This study has several limitations. First, ROI selection should be standardized and further
investigated to determine the optimal size, which would allow for the analysis of the relationship
between RBC density and disease-specific patterns. Second, clusters of touching cells were not
separated into single cells; however, such groups may hold diagnostic significance in clinical
hematology. Third, certain morphological classes such as Basophilic stippling, HbH inclusions,
Diffuse basophilia, Cabot ring, Hb H, Hb C crystal, Hb SC crystal, Heinz bodies, Howell-Jolly bodies,
Pappenheimer bodies, Keratocytes, and rare WBC subtypes (e.g., Basophil, Eosinophil, Lymphocyte,
Monocyte, Neutrophil) were underrepresented or absent. While this does not affect our focus on
anemia and thalassemia, a more comprehensive, region-specific dataset would enhance applicability
across broader hematological disorders.

Future work will address these points by: (i) optimizing ROI selection and investigating RBC
density correlations across disease types; (ii) segmenting touching (extracted) cells into single-cell
images to evaluate their diagnostic contribution; (iii) expanding the dataset to include rare and
underrepresented cell types for broader coverage; and (iv) studying RBC subtype distributions and
standardized ratios for anemia and thalassemia cases within Thai populations to improve local
relevance and clinical utility. In addition, future studies will explore the integration of advanced deep
learning architectures, such as transformer-based models, to further enhance classification accuracy
and interpretability. Furthermore, collaborative efforts with multiple regional hospitals will be
pursued to create a larger, multi-institutional dataset that better reflects the variability of
hematological profiles across Thailand.
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The following abbreviations are used in this manuscript:

Al Artificial Intelligence
AR Aspect Ratio
CNN Convolutional Neural Network
Ccsv Comma-Separated Values
DBSCAN Density-Based Spatial Clustering of Applications with Noise
ER Ellipse-to-cell Area Ratio
F Flipping
GAN Generative Adversarial Network
GPU Graphics Processing Unit
HbE Thalassemia Hb E Disease
HbE Sx Thalassemia Hb E Disease with Severe Symptoms
HbH Hemoglobin H Disease
Ho HbE Homozygous Hb E Thalassemia
HITL Human-in-the-Loop
ID Identifier
IDA Iron Deficiency Anemia
k-means K-means Clustering Algorithm
OpenCV Open Source Computer Vision Library
PLT Platelet
PNG Portable Network Graphics
R Rotation
RBC Red Blood Cell
ReLU Rectified Linear Unit
ROI Region of Interest
S Scaling up and down
SMOTE Synthetic Minority Oversampling Technique
SVS Scanned Virtual Slide Format
1T Thalassemia Trait
UMAP Uniform Manifold Approximation and Projection
U-Net U-shaped Convolutional Neural Network
WBC White Blood Cell
WSI Whole Slide Image
Appendix A

Appendix A.1

The study analyzed six WSIs in SVS format representing various hematological conditions: IDA,
TT, HbH, HbE/B-thal, HbE/B-thal Sx, and Homo HbE. Each WSI was processed using Python with
the OpenSlide library to extract essential metadata, including pixel size (0.1658 yum), magnification
power (83x), number of image levels (4), and dimensions at the highest resolution. This metadata is
critical for validating image quality and ensuring compatibility for downstream image processing
tasks. In addition, thumbnails were generated and displayed for visual inspection, allowing
verification of staining quality, smear uniformity, and potential artifacts, as illustrated in Figure A1.
These thumbnails facilitated rapid screening prior to computational analysis, reducing the likelihood
of processing flawed images. The extracted metadata and quality assessment outcomes are
summarized in Table Al, which confirms consistency across all samples. This step ensured
standardized, high-resolution inputs for subsequent preprocessing and provided a reliable baseline
for comparing image characteristics across disease-specific samples. Moreover, this process
demonstrates an effective workflow for digitizing and validating hematological slides, offering
reproducible methodology for dataset preparation and serving as a reference for future large-scale
RBC morphology studies.
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Figure Al. Example thumbnails of hematology samples derived from Whole Slide Image scans for different
types of anemia and thalassemia, including (a) IDA, (b) TT, (c¢) HbH, (d) HbE/B-thal, (e) HbE/B3-thal Sx, and (f)
Homo HbE.

Table A1l. The extracted properties of pathology scanning slide.

Sample Name Pixel (um) Magnification Levels Dimensions (pixels)
IDA 0.1658 83 4 34,271 x 74,047
TT 0.1658 83 4 44,743 x 51,260
HbH 0.1658 83 4 46,647 x 52,973
HbE/B-thal 0.1658 83 4 52,359 x 51,740
HbE/B-thal Sx 0.1658 83 4 39,031 x 73,061
Homo HbE 0.1658 83 4 39,983 x 55,429

Appendix A.2

Appendix A.2 illustrates examples of ROIs extracted from the six hematological samples, as
shown in Figure A2, highlighting the representative areas selected for analysis based on cell density
and image quality. Additionally, Table A2 summarizes the dimensions of the two ROlIs extracted per
sample, which were used to ensure coverage of diagnostically relevant areas while maintaining
variability across datasets. This systematic ROI selection provided standardized inputs for
subsequent preprocessing and feature extraction steps.
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number of clusters slightly but requires more expert work for verification, while choosing 90 clusters
increases cluster detail but adds complexity. These findings support 80 clusters as an optimal choice
for downstream labeling and morphological interpretation.

CNN Autoencoder - Model 01 (60 clusters)

(a) (b)
CNN Autoencoder - Model 01 (80 clusters)
2

M IR, CNN Autoencoder - Model 01 (90 clusters)
Wiy, LT P , . 0

(c) (d)
Figure 1. UMAP visualization of RBC clustering at (a) 60 clusters, (b) 70 clusters, (c) 80 clusters, and (d) 90

clusters, with highlighted regions indicating clear morphological separations.

Appendix C

Appendix C presents the augmentation calculation Error! Reference source not found., showing
how input selection and transformation strategies were applied to achieve balanced output counts
for each labeled RBC type. Although all labeled images could be used for augmentation, input
selection was optimized to minimize redundancy and ensure computational efficiency, focusing on
generating outputs that precisely meet the 1,000-image and 4,000-image targets. For example, rare
classes such as Heinz bodies and Monocytes required high rotation multipliers (R) and scaling (S) to
compensate for their low input counts, whereas abundant classes such as Spherocytes and
Normocytes required fewer iterations. This demonstrates the principle of matching input-to-output
ratios, where augmentation factors (e.g., RxFxS) are systematically adjusted to align with desired
outputs.

Table 1. The summarizes data augmentation techniques.
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Label list Input Augmentation
1,000 images 4,000 images
Normocytes 50 R (5),F (3) R (20), F (3)
Hypochromia +1 50 R (5),F (3) R (20), F (3)
Hypochromia +2 50 R (5),F (3) R (20), F (3)
Hypochromia +3 50 R (5),F (3) R (20), F (3)
Hypochromia +4 25 R (10), F (3) R (40), F (3)
Heinz bodies 2 R (125), F (3) S (2), R (250), F (3)
Howell-Jolly bodies 25 R (10), F (3) R (40), F (3)
Pappenheimer bodies 10 R (25),F (3) R (100), F (3)
Codocytes - 01 250 R (1), F(3) R 4),F(3)
Codocytes - 02 250 R (1), F(3) R4),F(3)
Eccentrocytes 125 R(2),F(3) R4),F(3)
Spherocytes - 01 250 R (1), F(3) R4),F(3)
Spherocytes - 02 250 R(1),F(3) R4),F(3)
Stomatocytes 50 R(5),F(3) R (20),F (3)
Acanthocytes 10 R (25),F (3) R (100), F (3)
Dacrocytes 50 R (5),F (3) R (20), F (3)
Degmacytes 25 R (10), F (3) R (40), F (3)
Drepanocytes 25 R (10), F (3) R (40), F (3)
Echinocytes 25 R (10), F (3) R (40), F (3)
Elliptocytes 50 R (5),F (3) R (20), F (3)
Keratocytes 5 R (50), F (3) R (200), F (3)
Knizocytes 125 R (2),F(3) R #4),F(3)
Ovalocytes 125 R (2),F (3) R 4),F(3)
Pyknocytes 125 R (2),F (3) R 4),F(3)
Schistocytes 125 R(2),F@3) R#),F(3)
Lymphocyte 25 R (10), F (3) R (40), F (3)
Monocyte 2 R (125), F (3) S (2), R (250), F (3)
Neutrophil 10 R (25),F (3 R (100), F (3)
Platelets - 01 50 R (5),F(3) R (20), F (3)
Platelets - 02 50 R(5),F(3) R (20),F (3)
Large - 01 250 R (1),F (3) R@4),F(3)
Large - 02 250 R (1),F (3) R@4),F(3)
Small 50 R (5),F (3) R (20), F (3)
Other 250 R (1),F (3) R (4), F (3)
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