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Abstract: Continuous and uncontrolled extraction of groundwater (GW) often creates tremendous 

pressure on groundwater levels (GWL). As a part of sustainable planning and effective management 

of water resources, it is crucial to assess the existing as well as future GWL conditions. In the current 

study, an attempt was made to model and forecast GWL using artificial neural networks (ANN) 

and multivariate time series models. Autoregressive integrated moving average (ARIMA) and 

ARIMA incorporating exogenous variables (ARIMAX) were adopted as the time series models. 

Kushtia district in Bangladesh was selected as the case study area, and GWL data of five monitoring 

wells in the study are used to demonstrate the modeling exercise. Rainfall (RF) was taken as the 

exogenous variable to explore whether its inclusion enhanced the performance of GWL forecasting 

using the developed models. The performance of each time series and ANN model was assessed 

based on various model evaluation criteria. It was evident from the results that the multivariate 

ARIMAX model (SSE of 15.143) performed better than the univariate ARIMA model with an SSE of 

16.585 for GWL forecasting. This demonstrates the fact that the multivariate time series models 

generated enhanced forecasting of GWL compared to the univariate time series models. When 

comparing the time series and ANN models, it was found that the ANN-based model outperformed 

the time series models with the enhanced forecasting accuracy (SSE of 9.894). Results also exhibit a 

significant correlation coefficient value R of 0.995 (ANN 6-8-1) for the existing and predicted data. 

The current study conclusively proves the superiority of ANN over the time series models for the 

enhanced forecasting of GWL in the study area. Thus, the ANN approach was not only carried out 

for model building and simulation but also to provide a valuable tool for managing water resources 

amidst changing environmental conditions. 

Keywords: groundwater level; exogenous variable; ANN; multivariate time series; ARIMAX 

 

1. Introduction 

Bangladesh is one of the most densely populated countries in the world. There is population 

growth and increasing urbanization in addition to climate change. For this reason, stress on GW is 

increasing rapidly. This earthly resource is important, particularly for developing countries that 

support agricultural necessity and crop production, drinking purposes, and ecosystems. For this 

reason, accurate and reliable forecasting of GWL is necessary. Furthermore, it is also necessary for 
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sustainable management of water resources and to facilitate the consumptive use of. Additionally, it 

plays a crucial role in the earth’s water cycle. Like many districts in Bangladesh, Kushtia relies heavily 

on agriculture, as a large irrigation project named the Ganges-Kobadak (G-K) Project that covers an 

area of 197,500 hectares serves the region. In this project, pumps are used to supply water from the 

river Ganges to the irrigation areas. According to the “Statistical Yearbook Bangladesh 2022” by the 

Bangladesh Bureau of Statistics (BBS), irrigation in Kushtia district is being carried out using different 

types of tube wells, including deep, shallow, and hand, as well as power pumps. The district’s 

approximately 68% area is covered by irrigation [1]. Forecasting of GW can help farmers optimize 

water use and improve crop yields. Besides that, the area experiences a substantial variation of 

rainfall (RF) (a rainfall pattern that can impact GW recharge rates); GWL prediction will help in 

planning for dry periods to minimize the severe impacts of droughts and floods. At times of drought, 

GW can play an important role when surface water is reduced by giving a buffer to help stabilize the 

water supply. The authors [2] analyzed the importance of safe water sources and assessed the 

conventional water sources, including GW. 

GWLs in Bangladesh usually fluctuate on a seasonal basis due to the monsoon rains and dry 

periods, resulting in a significant impact on water availability all over the year. Urbanization as well 

as population growth are also matters of concern because the demand for GW is increasing due to 

these factors. GWL forecasting can help to manage this demand. Irrigation in this country heavily 

relies on GW due to sufficient surface water in the dry season, and future water demand will greatly 

depend on GW resources. GW is also affected by pollution; for instance, chemical fertilizers and 

pesticides used in fields contribute tremendously to its quality. Over-extraction of GW and the levels 

of the sea can lead to salinity intrusion problems in coastal areas in Bangladesh. Deforestation is a big 

problem in this country nowadays; it can change the recharge process of GW, which may decrease 

GW recharge. Studies from authors identified that RF is an important factor for the GW recharge 

potential [3]. Furthermore, RF is a significant influence on GW recharge potential [4]. Over-extraction 

of GW can be caused by inefficient irrigation practices because of the use of outdated or inadequate 

technology, which is widely recognized in the country; as a result, it can affect GW accessibility. The 

quality and availability of GW are decreasing gradually due to factors (man-made or natural) such 

as over-extraction, contamination (due to various reasons such as poor management of industrial or 

domestic wastewater), and climate change. The attenuation of GWLs is also a matter of concern. 

The goals of this study are to model and predict GWLs using the ANN, the statistical time series 

autoregressive integrated moving average (ARIMA), and to incorporate an exogenous variable (RF) 

to analyze its effects. It is widely accepted that ANN- and ARIMA-based time series models (ARIMA, 

which is a univariate time series model and ARIMA incorporating exogenous variables (ARIMAX), 

which is essentially a multivariate time series model) are powerful tools for predicting various data. 

In recent times, time series analysis has gained significant popularity as a statistical method for 

creating forecast models, and its application has expanded worldwide [5]. GW is sometimes the only 

dependable supply of fresh water in many developing nations since it is widely accessible, relatively 

inexpensive to collect, and typically of higher quality than surface water [6,7]. This dependence on 

GW is especially noticeable in areas with little or highly contaminated surface water [8]. Over 70% of 

all irrigated land in Bangladesh is sustained by GW resources. The nation’s dense population, 

expanding agricultural needs, and quick industrialization are the main causes of this widespread 

reliance [9]. Lowering GWLs in agricultural areas might result in reduced crop yields because of 

limited water supplies, which exacerbates problems with food security [10,11]. Apart from the 

physical loss of GW, another major worry is its quality, especially in areas where contamination is 

common [12]. 

GWLs can be significantly impacted by the fluctuation of RF, which is a key source of GW 

recharge [13]. It is generally acknowledged that one of the most important ways to increase the 

precision of GWL predictions is to incorporate RF data into both ANN and ARIMA models [14]. 

Because of Bangladesh’s monsoon climate, the relationship between RF and GWL is especially 

significant there [15]. This study compares the ARIMA-based time series models and ANN models’ 

performances to determine which modeling strategy is best for forecasting GWL variations in the 
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area. In summary, GW is an essential resource that needs to be managed carefully to maintain its 

sustainability. A crucial aspect of GW management is the prediction of GWL changes, which offer 

important insights into GW availability in the future and assist in formulating policies for its 

sustainable use [16,17]. 

GW is an almost worldwide source of superior freshwater [18]. The study is mainly focused on 

the modeling of GWLs using ANN- and ARIMA-based time series models and finding the best 

models based on their various performance evaluation criteria. Furthermore, a key focus of the 

research will be to find the future GWL conditions beyond the available well data to understand the 

upcoming situations in Kushtia, Bangladesh. 

2. Study Area and Data Description 

In the current study, Kushtia district, covering an area of 1608.8 km2 in the Khulna division of 

Bangladesh, is selected. Figure 1 shows the location of the study area, which is positioned in 

southwest Bangladesh. Encompassing the coordinates of 23°42′ to 24°12′ north and 88°42′ to 89°22′ 

east. Located in this area, the Ganges-Kobadak (G-K) irrigation project is an extensive surface 

irrigation network that serves the southwestern districts of Kushtia, Chuadanga, Magura, and 

Jhenaidah. The district has six upazilas, of which Daulatpur is the largest, totaling a population of 

2,149,692 (according to the Population and Housing Census, 2022). For GWL modeling and 

prediction in the current study, five GW monitoring stations from each upazila (i.e., Bheramara, 

Daulatpur, Kushtia Sadar, Kumarkhali, and Mirpur) with an RF station are selected. The GWL data 

collected was on a weekly basis. Accordingly, data consisting of 414 weekly GWL readings from 1999 

to 2006 were sourced from the Bangladesh Water Development Board (BWDB). The RF data obtained 

here is exogenous input and collected for the same periods. The GWL data available on a weekly 

basis has a unit of m.PWD, which is the public works datum (PWD) used by BWDB. The m.PWD is 

located at 0.46 m below the mean sea level (MSL). 

 

Figure 1. Location of the study area (Kushtia district) in Bangladesh showing the GWL and RF 

Stations. 

The area is characterized by several rivers, such as the Ganges, Mathabhanga, Kaligonga, and 

Kumar, which flow across the district. Additionally, the district has a flat, alluvial landscape, which 

is typical for the delta region. The area is flat terrain and has fertile soil that makes it favorable to 

agriculture, which is highly dependent on irrigation. Moreover, Kushtia relies on GW as the main 

water source for irrigation, especially during the dry season when there is limited surface water 
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availability. The area experiences an average maximum temperature of 37.8°C and an average 

minimum of 9.2°C. The yearly RF averages 1,467 millimeters. 

The aquifers in the area consist of alluvial deposits, which include sand, silt, and clay. These are 

part of the Ganges-Brahmaputra Delta. These formations typically exhibit varying permeability that 

influences groundwater (GW) movement. Shallow aquifers are typically found at lesser depths and 

are mainly composed of alluvial deposits, and they are highly permeable. They are directly 

influenced by surface water and recharge primarily through RF and seasonal flooding. They are 

essential for local water supply, particularly for irrigation and domestic use. The deep aquifers may 

be recharged by lateral flow from surrounding areas. Recharge to the aquifers occurs through direct 

RF infiltration, irrigation return flows, and riverbank infiltration during the monsoon season. GW 

quality can vary, with some areas facing issues of salinity and arsenic contamination, which pose 

significant health risks. Authors found that the diffusivity (degrees of flow) varies from 181,143 

m2/day to 256,788 m2/day, and the overall estimated parameter results of the aquifer system show 

that the area is hydrogeologically favorable for GW development provided the other conditions are 

fulfilled [19]. Information on the selected GWL monitoring stations and RF stations with locations 

are given in Table 1. 

Table 1. GWL and RF station details. 

SL 

No 

Station 

ID 

Station 

Type 

Location of Station 

(Sub-District Name) 

Latitude 

(Degree) 

Longitude 

(Degree) 

1 KG-1 GWL Bheramara 24.09 88.96 

2 KG-2 GWL Daulatpur 23.98 88.83 

3 KG-3 GWL Kushtia Sadar 23.83 89.10 

4 KG-4 GWL Kumarkhali 23.84 89.20 

5 KG-5 GWL Mirpur 23.93 89.02 

6 KR-1 RF Mirpur 24.05 88.99 

3. Methodology 

The primary objective of this study is to model and forecast GWL changes using ANN and 

statistical ARIMA-based time series models. To study the connection between climate variation and 

GWL and to forecast GWL, time series modeling is considered one of the most robust statistical 

methods. [18]. Both univariate and multivariate models are studied to find the best predicting model. 

Univariate models rely solely on GWL data, whereas multivariate models include RF data as an 

additional external factor alongside GWL data. The main advantage of using ANN models over 

conventional techniques is that it does not require the underlying processes, which are complex in 

nature, to be explicitly defined in mathematical form [20]. Previous research by authors [21] 

employed ANN models to forecast GWL changes for future periods. 

Univariate and multivariate, both ANN models were constructed, and the top-performing 

model was identified. Results from other authors [22] showed that forecasting time series is more 

accurate in ANN models than in ARIMA-based models. Accepting all complex parameters as input, 

ANN models generate patterns during model training, and then they use the same patterns to 

generate the forecasts or predictions [23]. The strength of ANN models in prediction lies in their data-

driven nature, their ability to detect previously unseen patterns, and their efficiency with large 

datasets. [24]. In both cases, model development and evaluation have been carried out. After that, 

100 weeks of future predictions of the GWL data have been carried out based on the existing data 

and variables. 

Several researchers found that there are two main approaches used in GWL prediction: the data-

driven models and the numerical models. They also found that data-driven models are useful in 

assessing different aspects such as uncertainty, variability, and complexities in water resources and 

environmental problems [25]. The ANN model is inspired by the human brain, more specifically, its 

function as structure; for example, the neurons. There are several neurons in the NN to process the 

information given. Additionally, ANN has shown strong potential to capture complex patterns in 
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data and showed the ability to learn. Consequently, these characteristics make the ANN model a 

good choice for forecasting. In recent decades, artificial intelligence has been widely applied in 

studies related to water resources [25]. For example, ANN is used for daily weather forecasting [23], 

for rainfall forecasting [24], and for GWL prediction purposes [25,26]. However, this method (ANN) 

was not used widely until recently [26]. 

Because of the limited understanding of aquifer properties in Bangladesh, the conventional 

GWL prediction models’ applicability is limited; for this reason, soft computing tools are good 

alternatives that provide higher efficacy [27]. The ANN model can tell the connection between the 

historical data that cannot be seen, and this way, it helps to predict and forecast: authors [28] working 

on water quality forecasting. ARIMAX (an ARIMAX time series model is an extension of the ARIMA 

model that includes one or more external variables.) ARIMAX models are applied in predicting 

electricity usage [29], to forecast grain production [30], to forecast domestic water consumption [31], 

and to forecast drought [32]. “ARIMA models are well-known for their notable forecasting accuracy 

and flexibility in representing several different types of time series” [33]. 

3.1. ANN Model Development 

There are numerous techniques to create and simulate a neural network [34]. Different ANN 

models are developed, and several model architectures are analyzed by using a trial-and-error 

approach to find the most accurate prediction model in the MATLAB platform using the neural 

network toolbox. This toolbox offers proficiency in designing various neural network configurations 

with so many applications [34]. Creating an ANN model requires steps such as defining its type, 

structure, variable processing, training algorithm, and stopping criteria [35]. 

Neurons are the basic units of an ANN, similar to brain cells, and each neuron takes inputs, 

processes them, and produces an output. ANNs are organized into three layers (these are discussed 

in detail in the later sections). The input layer is where the network receives data. Each neuron here 

represents a feature of the input. Hidden layers are the layers between the input and output. They do 

the main processing and can be one or many layers in number. The output layer produces the final 

result or prediction of the network. Each neuron in these layers transforms the inputs using weights 

and activation functions. Activation functions decide whether a neuron should send an output based 

on its input. Neurons in one layer are connected to neurons in the next layer through weighted 

connections. These weights determine how much influence one neuron’s output has on another’s 

input, which is described later in the manuscript. Some authors [25] selected the hidden layer node 

count based on a trial-and-error procedure. Therefore, the hidden layer size was specified by 

following the trial-and-error approach in the current study based on the best model performance. 

3.1.1. Dataset Processing, Model Architecture and Training 

At first, the datasets are taken and prepared as input in the model. The GWL data and RF data 

are on a weekly basis with 414 data points (weeks). Then, the model inputs are specified. For 

univariate models, only GWL data is used. However, for multivariate models, both GWL and RF data 

were taken as inputs. Typically, data is allocated as 70% for training, 15% for validation, and 15% for 

testing. The multilayer perceptron (MLP) feed-forward ANN model is applied, as it is widely used 

in hydrological modeling [35]. 

The structure of the ANN model means how many layers and nodes are there in the model. 

Before driving the data in the ANN model, the data should be processed or organized. In this study, 

weekly GWL and RF data are prepared on a one-week lag basis. It means the data is sorted like GWLt, 

GWLt-1, RFt, and so on, depending on the number of inputs. Common stopping criteria include setting 

a maximum number of epochs (iterations), and training stops after this limit. An epoch is a 

fundamental unit of training that helps the model learn from the entire dataset multiple times, 

gradually improving its performance. Below, a description is provided of how the training and ANN 

model works. 

An MLP is a type of ANN that consists of multiple layers of nodes (neurons). It is particularly 

used for supervised learning tasks. The multilayer perceptron, particularly those with a single hidden 
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layer, is one of the most widely used ANNs for time series modeling and prediction [36]. The 

structure of MLP consists of an input layer, which contains neurons that represent input features. If 

there are n input features, this layer will have n neurons and hidden layers (one or more layers where 

computations occur). Each hidden layer can have hi neurons, where i indexes the hidden layer (e.g., 

h1, h2,…, hk) and the output layer (produces the final output). Connections between neurons have 

weights, and each neuron has a bias. To compute the output σj of a neuron, the weighted inputs are 

summed up and a bias is added, then an activation function is applied. In short, MLPs compute 

outputs by combining inputs with weights and biases, then learn by adjusting these parameters to 

minimize prediction errors. This can be expressed mathematically as Equation 1. A widely used 

typical ANN architecture is provided later in the manuscript. For instance, ANN 6-3-1 means this 

model has 6 neurons in the input layer (or 6 inputs), 3 neurons in the hidden layer, and 1 neuron in 

the output layer. 

�� = �(� ��� × �� + ��) (1)

where wij is the weight connecting input i to neuron j, xi is the input value (from the previous layer), 

and bj is the bias term for neuron j. 

In an ANN, the bias acts as an additional parameter that helps the model fit the data better by 

shifting the activation function, enabling the model to learn patterns more effectively. Without bias, 

the output depends solely on the input and its weight, and with bias, the output can be adjusted 

independently of the input. This allows for greater flexibility in learning. 

In the current study, the sigmoid activation function is used in the hidden layer of the ANN 

model with the linear activation function in the output layer. The input and output variables are 

standardized between 0 and 1, to make them fall within a specified range following the ANN 

modeling framework. The function introduces non-linearity into the network, enabling it to learn and 

model intricate patterns more effectively. The sigmoid activation function is one of the most widely 

used activation functions. Activation functions are mathematical functions used in neural networks 

to introduce non-linearity into the model. In an artificial neural network (ANN), the sigmoid 

activation function helps determine the output σj of a neuron. They determine the output of a neuron 

based on its input. Many real-world problems involve complex relationships that cannot be captured 

by linear models. The sigmoid function transforms the input (the weighted sum (∑ ��� × �� + ��) is 

passed through the sigmoid activation function) into an output f(x). This output serves as an input to 

the next layer. The sigmoid activation function transforms the inputs into a range of (0, 1) so that the 

input value of the next layer is within a fixed range and the weight is more stable. In summary, the 

sigmoid activation function helps determine the output of a neuron. The mathematical expression 

(Equation 2) and the graphical representation (Figure 2) express that for given input x. 

xj
e1

1
)x(fy


  (2)

 

Figure 2. The sigmoid function. 
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A weight is a parameter that determines the strength and direction of the connection between 

two neurons. Weights in a neural network influence the output based on input data. It adjusts the 

input signal as it passes from one neuron to another by influencing how much impact that input has 

on the neuron’s output during training and prediction. Here, a quantitative breakdown of their 

determination during training is provided. At first, weights w are set to small random values (e.g., w 

= 0). Then input xi produces output σj using the previously discussed formula (Equation 1). After that, 

the loss L is computed using Equation 3 (e.g., Mean Squared Error): 

� =  
1

�
�(� − �)� (3)

where y is the actual output and N is the number of samples. Then gradients 
��

��
 are calculated to 

determine how each weight affects the loss. Finally, weights are adjusted using � ← � − �
��

��
. Where 

η is the learning rate (e.g., η = 0.01; Fixed Learning Rate: A constant value is chosen before training). 

The Levenberg–Marquardt (LM) backpropagation algorithm, a commonly used supervised learning 

method, is employed by several authors to train the ANN model by adjusting connection weights 

and biases in the backward direction [37]. 

A typical ANN architecture is shown in Figure 3. It demonstrates how weight (Wi), bias (bi), 

neurons (nodded), inputs, outputs, and different layers are connected and work together as described 

in MLP. 

 

Figure 3. The ANN model architecture adopted in the current study. 

3.2. ARIMA-Based Model Development 
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Besides ANN models, the study adopts time series models for predicting GWL changes: 

ARIMAX and ARIMA. One of the most frequently used time series models for analyzing and 

forecasting hydrologic data is ARIMA, which combines autoregressive (AR) and moving average 

(MA) components. Since they are univariate, they cannot deal with exogenous variables. 

The ARIMA-based time series model contains three parts (p, d, and q), where p = order of auto-

regression, d = order of integration (differencing), and q = order of moving average, and it can be 

expressed by. ARIMAX models proved effective in predicting various extreme weather events, 

including heavy RF and droughts [38]. ARIMAX models demonstrated superiority over multiple 

regression models in both calibration and validation periods [5]. The general mathematical form, or 

multiplicative equation, of an ARIMAX (p, d, q) model with one exogenous variable is given by 

Equation 4. 

ϕ (L)(1−L)dYt = c+ βXt +θ (L)εt (4)

where C is the constant, εt is the error term, L = lag operator, ϕ(L) = (1 − ϕ1L − ϕ2L2 −… −ϕpLp), the 

autoregressive polynomial, θ(L) = (1 + θ1L + θ2L2 +… + θqLq), the moving average polynomial and β is 

the coefficients for the exogenous variables. 

The AR part of the models is the relationship between an observation and a specified number of 

lagged observations (previous values). Mathematically, this can be expressed as Equation 5. 

��(�) ∶ �� = � +  � ������ +  �� (5)

Here, Yt is the value at time t, c is a constant, ϕi are the parameters of the model, p is the number 

of lagged observations, and ϵt is the error term. 

The MA part models the relationship between an observation and a residual error from a moving 

average model applied to lagged observations. It is defined as Equation 6. 

��(�) ∶ �� = � +  � ������ +  �� (6)

where q is the number of lagged forecast errors, μ is the mean of the series, θj are the parameters, and 

ϵt−j are the lagged error terms. For example, the study considers a time series with AR(2), d(1), and 

MA(1), Exogenous variable: one exogenous variable. The model could be specified as Equation 7. 

Here Yt is the prediction output. 

�� = � +  ������ + ������ + ������ + ������ + �� (7)

For ARIMA and ARIMAX models, the procedure involves specifying the model structure, 

estimating parameters, conducting residual diagnostics, and ultimately forecasting the data series. In 

this study, future predictions are also carried out to determine the upcoming GWL conditions. The 

study is carried out using the econometric modeler toolbox in the MATLAB platform. 

In order to make the process more comprehensive, a model is selected (ARIMA 2,0,1 with station 

ID: KG-5 and location: Mirpur) for explanation among the models tested in this study, which includes 

ARIMA-based models from (0,0,0) to (3,2,3). At first, the weekly time series GWL data is prepared. 

Since it is a univariate model, only GWL data is provided in the model for input. In the next step, 

model identification (described in the model identification section) is carried out (which means 

determining the values of p, d, and q). Here, p and q are taken as 2 and 1, respectively. These values 

are found in the autocorrelation function (ACF) and the partial autocorrelation function (PACF) plots 

(described later in detail). Next, the value of d for this particular example is taken as 0 (the value of d 

can be obtained from the degree of differencing) as part of the large iterative process to find the best 

performing mode. After that, model parameters are estimated (here, constant = 0.131533, ϕ1 = 

1.969639, ϕ2 = -0.98431, θ1 = -0.93165, variance = 0.040065). All these parameters play a significant role 

in the model equation to predict. After getting the prediction Yt, the model performance is evaluated 

by various criteria. For instance, the SSE found is 16.585. This process is repeated from (0,0,0) to (3,2,3) 

models for every station to get the lowest possible errors (SSE or others as described later in this 

manuscript). The afore-described process is visually illustrated in Figure 4. 
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Figure 4. ARIMA Based Model Building Process. 

3.2.1. Model Identification 

For the ARIMA-based models, at first, the time series (GWL) is to be transformed to stationary 

by differencing (d = 1, 2, 3,…). The stationarity of a time series can be assessed using the Augmented 

Dickey-Fuller Test. The values for p (autoregressive order) and q (moving average order) are selected 

based on ACF and PACF plots. With no significant correlation beyond lag 3, p and q are both set to 

3. Once the model was identified, its parameters were estimated through the maximum likelihood 

approach. To obtain the best model possible, these p, d, and q terms (AR1, AR2, AR3, d = 1, MA1, 

MA2, and MA3) should be applied using the ACF and PACF plots. After that, each possible 

combination is analyzed (ARIMA (0,0,0) to ARIMA (3,2,3)) and evaluated for accuracy (using AIC 

and BIC) to pick the best model. The ACF and PACF plots are shown in Figure 5(a) and Figure 5(b), 

respectively (Station ID: KG-1). 
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Figure 5. (a) ACF and (b) PACF plots for GWL fluctuation of Station ID: KG-1, Location: Bheramara. 

3.3. Model Evaluation Criteria 

In any model, during forecasting, accuracy is the main concern and not the processing time, and 

it is observed that there aren’t any models that can forecast with full accuracy, but the errors can be 

reduced using various techniques [23]. There are different widely used model evaluation methods to 

assess the efficiency of the adopted techniques, including the mean squared error (MSE), root mean 

square error (RMSE), Nash-Sutcliffe efficiency (NSE), and the sum of squared errors (SSE). Model 

evaluation criteria are essential for assessing the performance of predictive models like ANN and 

ARIMA. In general, these criteria help us understand models’ accuracy (indicates how close the 

model’s predictions are to the actual values), error measurement (quantify the difference between 

predicted and actual values allow to gauge the model’s performance in terms of error), model 

comparison (criteria allow comparisons between different models or configurations, helping to 

identify the best-performing approach), generalization ability (indicate how well a model might 

perform on unseen data, which is crucial for practical applications). Overall, these metrics guide 

model selection, tuning, and validation to ensure robust predictive performance. ANNs have proven 

to be an essential tool for accurate groundwater level (GWL) modeling, along with various other AI 

methods [39]. Many authors used RMSE values to evaluate the ANN model performance [40]. 

3.3.1. ANN Model Performance Evaluation 

In the current study, RMSE, NSE, and SSE were used for ANN models to validate their 

performance. Generally, the model with the lowest error (RMSE, NSE, or SSE) will have the highest 

efficiency, and that will be the best model. Mathematically, MSE, RMSE, NSE, and SSE can be 

expressed by Equations 8-11, respectively. The residual sum of squares (RSS), sometimes called the 

sum of squared residuals (SSR) or the SSE, is the aggregate of squared differences between predicted 

values and actual data. It serves as an indicator of model error in statistics. SSE is a widely used metric 

for assessing the accuracy of predictive models, as it quantifies the discrepancy between the observed 

and predicted values. In our study, we consider SSE to be a crucial component of model performance 

evaluation; however, we also recognize the importance of complementing it with additional metrics 

as described earlier to provide a more comprehensive assessment of model performance. 

The data is provided in the supplementary file for feasibility reasons. The GWL and RF values, 

consisting of 414 data observation points for each station (totaling 2484 data observations), are 

provided in the supplementary Tables S1-S6. 

N
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where ���� is the observed data, ���� is the estimated data, �����  is the mean value of estimated data 

and N is the number of observations. 

3.3.2. ARIMA-Based Model Performance Evaluation 

In order to analyze the accuracy of ARIMAX models, in addition to MSE, SSE, and RMSE, the 

Akaike Information Criterion (AIC), presented as Equation 12, and Bayesian Information Criterion 

(BIC), presented as Equation 13, were applied to evaluate the models. The model with the lowest 

error indicates the best model. The corresponding mathematical expressions are expressed as the 

following equations: 

numParam2+-2logL AIC   (12)

numParamlog(N)+-2logL=BIC   (13)

where −2logL is the goodness of fit. The likelihood L reflects how well the model explains the data, 

and the logarithm of L is used to simplify the calculations, and 2×numParam penalizes the model for 

having too many parameters. log(N)×numParam: this term penalizes the model for having too many 

parameters. 

4. Results and Discussion 

The current study focuses on analyzing ANN and multivariate time series ARIMAX models to 

predict GWLs in the Kushtia district in Bangladesh after developing, testing, and evaluating the 

models. In addition, an attempt has also been made to predict the future scenario of the GWLs. The 

results indicate that incorporating exogenous variable (as RF data used in the current study) provides 

better results. Also, the study showed that ANN models yield more accurate predictions compared 

to ARIMAX models. The modeling is performed considering both multivariate (GWL and RF data) 

and univariate (only GWL data) inputs. Studies from some authors indicate that the relationship 

between GWL changes and meteorological parameters such as precipitation is very significant [41]. 

4.1. Performance of ANNs 

It was found from the results that the lowest SSE for the station KG-1 was found to be 9.894 for 

the ANN-based multivariate models; the model architecture was ANN 6-8-1. On the other hand, for 

univariate models, the best-performing model was found for the same station (KG-1) with a value of 

10.809 (SSE); the model architecture was ANN 3-7-1. It is clear that for GWL prediction in this study, 

the multivariate model performed better than the univariate model, which includes an exogenous 

input. Results of the best-performing models for each station are shown in Tables 2–3. 

Table 2. Performance of the best selected ANN (multivariate) model. 

Station ID Model Architecture 
Model Performance 

RMSE NSE SSE 

KG-1 ANN 6-8-1 0.1546 0.988 9.894 
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KG-2 ANN 7-8-1 0.1688 0.979 11.799 

KG-3 ANN 10-4-1 0.2319 0.965 26.910 

KG-4 ANN 6-7-1 0.2550 0.986 22.273 

KG-5 ANN 8-9-1 0.1801 0.984 13.434 

Table 3. Performance of the best selected ANN (univariate) model. 

Station ID Model Architecture 
Model Performance 

RMSE NSE SSE 

KG-1 ANN 3-7-1 0.1616 0.987 10.809 

KG-2 ANN 2-3-1 0.1715 0.979 12.171 

KG-3 ANN 4-9-1 0.2588 0.957 26.802 

KG-4 ANN 2-4-1 0.2544 0.986 27.725 

KG-5 ANN 5-10-1 0.1812 0.9841 13.595 

The model architecture was determined by a trial-and-error method for five GWL monitoring 

stations. Table 4 presents the thorough results for the KG-5 station for the models’ training, 

validation, and testing stages. The table illustrates the models’ performance in different stages of 

ANN model building. Performance is evaluated using MSE and NSE for all stages. Since ANN 

modeling has three stages, the performance of each stage is compared for better understanding and 

comprehensiveness of the model. Here, two model evaluation criteria (MSE and NSE) are used 

sufficiently, and these two terms provide an overall understanding of the model performance. 

Table 4. Performance of the selected ANN (multivariate) models for Station ID: KG-5. 

Model 
Training Validation Test 

MSE NSE MSE NSE MSE NSE 

ANN 8-2-1 0.030 0.984 0.066 0.964 0.046 0.978 

ANN 8-3-1 0.032 0.982 0.061 0.967 0.045 0.978 

ANN 8-4-1 0.046 0.975 0.069 0.963 0.076 0.963 

ANN 8-5-1 0.036 0.980 0.074 0.960 0.037 0.982 

ANN 8-6-1 0.031 0.983 0.078 0.958 0.042 0.980 

ANN 8-7-1 0.030 0.983 0.201 0.892 0.040 0.981 

ANN 8-8-1 0.035 0.981 0.079 0.958 0.042 0.980 

ANN 8-9-1 0.032 0.983 0.083 0.955 0.032 0.984 

ANN 8-10-1 0.027 0.985 0.071 0.962 0.039 0.981 

The scatterplot shown in Figure 6(a) depicts the model’s actual versus predicted data at station 

KG-5 with model structure ANN 8-9-1. Among the large numbers of models studied, this model is 

chosen to explain the iterative procedure involved to find the best predictive model and to show how 

the comparative model performed. The close alignment of the circular points indicates a high degree 

of similarity between the observed and predicted values. Here, the correlation coefficient R-value is 

0.99324. So, they are considered very related. A graphical representation of the actual and predicted 

data plot for that station is shown in Figure 6(b) (with model architecture ANN 8-9-1). The notation 

‘Y = T’ indicates the relationship between actual and predicted data (GWL in this case). In other 

words, it is a graphical representation where each point corresponds to a pair of actual and predicted 

GWL values. This helps visualize how well the models’ predictions match the actual outcomes. It 

represents the ideal scenario where predicted values equal actual values. It is a 45-degree line (slope 

of 1) that indicates perfect prediction. Points lying on this line indicate perfect predictions, while 

points above or below the line indicate overestimations or underestimations, respectively. The “fit 

line” refers to the trend line, which is a line that represents the relationship between the actual and 

predicted values and summarizes the overall pattern in the data. For linear regression, it would be 

the line of best fit, showing the average relationship between the actual and predicted values. It can 

be different from the Y = T line, as the fit line is based on the model’s predictions, while the Y = T line 
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indicates perfect predictions. In summary, in the scatterplot, the trend line (fit line) would show how 

well the model captures the underlying relationship, while the Y = T line serves as a benchmark for 

perfect prediction. Figure 6(b) shows the performance of the model, indicating the actual GWL and 

predicted GWL data together. 

 

Figure 6. (a) Scatterplot and (b) Actual and Predicted GWL plot based on the ANN 8-9-1 model for 

Station ID: KG-5, Location: Mirpur. 

4.2. Performance of ARIMA-Based Models 

ARIMA-based multivariate models (ARIMAX) showed an SSE of 15.143 with the model 

architecture ARIMAX (3,0,2) for the station KG-5. However, the univariate models’ best performance 

was found in the same station (KG-5), model architecture ARIMA (2,0,1), and an SSE of 16.585. It is 

noticeable from the SSE that multivariate models performed better than univariate models. Detailed 

results are provided in Tables 5 and 6. 

Table 5. Selected best ARIMAX model results. 

Station ID Model Architecture Model Performance (SSE) 

KG-1 ARIMAX (3,0,3) 15.361 

KG-2 ARIMAX (3,0,2) 18.721 

KG-3 ARIMAX (1,0,3) 25.449 

KG-4 ARIMAX (2,0,0) 63.680 

KG-5 ARIMAX (3,0,2) 15.143 

Table 6. Selected best ARIMA model results. 

Station ID Model Architecture Model Performance (SSE) 

KG-1 ARIMA (2,0,1) 17.217 

KG-2 ARIMA (2,0,1) 26.880 

KG-3 ARIMA (2,0,3) 28.207 

KG-4 ARIMA (3,0,1) 64.582 

KG-5 ARIMA (2,0,1) 16.585 

Several ARIMA-based models are built after the identification of the model, and selected 

ARIMA (p, d, q) models detailed results for Station KG-5 are provided in Table 7 with AIC and BIC. 

This table provides a comprehensive overview of different models’ performance. Since the best model 

is obtained by the iteration method, the table shows insights on how the process is incorporated to 
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find an appropriate prediction model. The table illustrates various model evaluation criteria with 

AIC and BIC values. In general, models with low AIC or BIC (or any other error terms) values are 

better models. 

Table 7. Performance of the selected ARIMA (p, d, q) models for Station ID: KG-5. 

Model SSE MSE RMSE AIC BIC 

ARIMA (0,2,1) 20.688 0.050 0.224 -59.599 -47.521 

ARIMA (1,2,2) 20.688 0.050 0.224 -55.600 -35.471 

ARIMA (1,2,3) 20.680 0.050 0.223 -53.750 -29.594 

ARIMA (2,0,0) 21.220 0.051 0.226 -47.077 -30.974 

ARIMA (2,0,1) 16.585 0.040 0.200 -147.100 -126.971 

ARIMA (2,0,2) 16.519 0.040 0.200 -146.764 -122.609 

ARIMA (3,0,1) 16.537 0.040 0.200 -146.317 -122.162 

ARIMA (3,2,1) 20.627 0.050 0.223 -54.820 -30.665 

ARIMA (3,2,2) 20.563 0.050 0.223 -54.092 -25.911 

ARIMA (3,2,3) 20.021 0.048 0.220 -63.151 -30.944 

Additionally, the model parameters (constant, AR{1}, AR{2}, MA{1}, variance) and their statistics 

for ARIMA(2,0,1) of that station (KG-5) are provided in Table 8. Model parameters are crucial factors 

in ARIMA-based modeling. The models’ parameters play a significant role in the performance of the 

predictive models. The parameter values are the estimated coefficients for each parameter (e.g., AR 

coefficients); standard error measures the variability or uncertainty of the coefficient estimate (a 

smaller standard error means the estimate is more reliable); T statistic tests whether the coefficient is 

significantly different from zero or helps assess the significance. A p-value less than 0.05 generally 

means the parameter is significant, meaning it’s likely to have a real effect. 

Table 8. Model Parameters for ARIMA (2,0,1) (Station ID: KG-5). 

Parameters Value Standard Error T Statistic P Value 

Constant 0.131533 0.009164 14.35275 1.02×10-46 

AR{1} 1.969639 0.008054 244.5408 0 

AR{2} -0.98431 0.007999 -123.057 0 

MA{1} -0.93165 0.020288 -45.9215 0 

Variance 0.040065 0.002092 19.1474 1.02×-81 

For the ARIMA-based model analysis, a main observation was the decay pattern in the ACF 

plot. Typically, the ACF shows a gradual decay. The PACF plot was used to determine the presence 

of significant partial autocorrelations. The initial inspection of the ACF and PACF plots provided 

information about the potential orders of the AR and MA components of the ARIMA-based model. 

For instance, if the ACF displays a significant spike at lag 1 and the PACF cuts off after lag 0, this 

suggests an ARIMA-based model with an AR(1) and MA(0) component might be suitable. The 

selection of AR and MA terms based on ACF and PACF helps in fitting the ARIMA-based time series 

model more accurately. Variations in the plots can impact the interpretation, and it requires careful 

consideration and validation of the ARIMA time series-based model chosen. 

A residual plot displays the residuals (the differences between the observed values and the 

model’s predictions) on the vertical axis and the predicted values or time on the horizontal axis. It 

helps evaluate the model’s performance by showing various aspects of ARIMA-based models. 

Ideally, the residuals should be randomly scattered around zero. This randomness indicates that the 

ARIMA-based model has effectively captured the underlying patterns in the data. If the spread 

increases or decreases, it suggests that the model may need adjustments. 

Detailed graphical representations (ACF, PACF, QQ plot, histogram, actual and model 

prediction, and residual plots) of the ARIMA (2,0,1) model for Station ID: KG-5 are shown in Figure 7(a)-

(f). It should be noted that 48 unique (specifically ARIMA) models for each of the five GWL stations 
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were tested (totaling 240 ARIMA models) to evaluate their fits. The plots show a part of the iterative 

process of how a better model is picked up by observing the result. 

 

Figure 7. (a) ACF; (b) PACF; (c) QQ plot; (d) Histogram; (e) Actual and model prediction; (f) Residuals 

based on ARIMA (2,0,1) model for GWL prediction of Station ID: KG-5: Location: Mirpur. 

4.3. Forecasting of GWL 

Finally, using the best-performing models (ANN 6-8-1 and ARIMAX 3,0,2), 100 weeks of future 

GWL data is predicted using the existing data. Future GWL values were forecasted using the ANN 

model. It was observed that the GWL ranged from a maximum of 10.797 meters to a minimum of 

5.875 meters. However, for the existing data, the highest and lowest values were 12.61 m and 5.73 m, 

and besides that, the highest, lowest, and average future GWL values indicate differences in the 

predicted water levels compared to the observed raw data. The key findings are summarized in Table 

9 for the corresponding station where best performing models (with their corresponding station ID) 
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were obtained from the analysis. The ANN models’ performances are due to the model’s architecture 

or training parameters. The ARIMAX results could be attributed to its incorporation of exogenous 

regressors, which might better account for factors influencing water levels. Future work should also 

consider incorporating a wider range of models and hybrid approaches to balance the strengths of 

each predictive technique. Moreover, additional validation against independent datasets will be 

crucial to confirm the robustness of the models and ensure their generalizability. 

Table 9. Predicted highest, lowest, and average GWL values. 

Station ID Model/Data 
Highest 

(m.PWD) 

Lowest 

(m.PWD) 

Average 

(m.PWD) 

KG-1 Existing raw data 12.610 5.730 8.148 

KG-1 ANN 6-8-1 (MV) 10.797 5.875 7.742 

KG-5 ARIMAX (3,0,2) 11.694 6.622 8.951 

The graphical representation of future (100 weeks beyond the current 414 weekly data points) 

GWL data is shown in Figure 8(a) for the ARIMAX (3,0,2) model (KG-5 station) and in Figure 8(b) for 

the ANN 6-8-1 model (KG-1 station). 

 

Figure 8. Existing and predicted GWL based on (a) ARIMAX (3,0,2), Station ID: KG-5, Location: 

Mirpur and (b) ANN 6-8-1, Station ID: KG-1, Location: Bheramara. 

4.4. Relative Enhancement of the Models’ Performance 

In order to validate the models’ performance and to get the overall performance comparison 

between the ANN- and ARIMA-based model, a detailed illustration has been carried out. 

Comparative performance metrics of different forecasting models for stations (the stations where the 

best-performing models were obtained: KG-1 and KG-5) are presented in Table 10. It is provided as 

evaluated based on three key performance metrics: ΔPE (performance enhancement, which indicates 

an improvement in predictive performance), ΔPD (performance degradation, which indicates a 

decline in predictive performance), and BRM (baseline reference metric). 

Table 10. Evaluation Metrics and Comparative Performance Improvement of the Predictive Models. 

   
Improvement in Performance  

(ΔPE, ΔPD or BRM)  

Remarks 

Station ID 
Results 

(SSE) 

Model 

Architecture 

ANN 

(MV) 

(%) 

ANN 

(UV) 

(%) 

ARIMAX 

 

(%) 

ARIMA 

 

(%) 

KG-1 9.89 ANN 6-8-1 (MV) 0 (BRM) 
-8.45 

(∆PD) 

-34.65  

(∆PD) 
-40.34 (∆PD) 

In contrast to 

ANN(MV) 

ΔPE: -, 

∆PD: ANN (UV), 

ARIMAX, 

ARIMA;  
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KG-1 10.80 ANN 3-7-1 (UV) 
9.24 

(∆PE) 
0 (BRM) 

-28.62  

(∆PD) 
-34.82 (∆PD) 

In contrast to 

ANN (UV) 

ΔPE: ANN 

(MV), 

∆PD: ARIMAX, 

ARIMA;  

KG-5 15.14 ARIMAX (3,0,2) 53.04 (∆PE) 40.09 (∆PE) 
0  

(BRM) 
-8.69 (∆PD) 

In contrast to 

ARIMAX 

ΔPE: ANN 

(MV), ANN 

(UV), 

∆PD: ARIMA;  

KG-1 16.58 ARIMA (2,0,1) 67.61 (∆PE) 53.43 (∆PE) 
9.52  

(∆PE) 

0  

(BRM) 

In contrast to 

ARIMA 

ΔPE: ANN 

(MV), ANN 

(UV), ARIMAX 

∆PD: -;  

Compared to the ANN model with architecture 6-8-1 (MV), the results of other models indicate 

a notable drop; specifically, the ANN (MV) outperforms the ANN UV, ARIMAX, and ARIMA models 

with reductions of -8.45%, -34.65%, and -40.34%, respectively. In contrast to the ANN model with 

architecture 3-7-1 (UV), ANN (MV) showed an enhancement of the performance with an increase of 

9.24%, while ARIMAX and ARIMA experienced performance declines of -28.62% and -34.82%, 

respectively. It indicates that, although ANN (UV) delivers enhanced predictive accuracy, it also 

exhibits substantial prediction deviations. 

For the ARIMAX (3,0,2) configuration, both ANN (MV) and ANN (UV) show significant 

performance improvements, with increases of 53.04% and 40.09%, respectively. However, the 

ARIMA model underperforms, demonstrating a performance decline of -8.69%. With the ARIMA 

(2,0,1) architecture, all models demonstrate a marked performance enhancement: ANN (MV) 

achieves a 67.61% improvement, ANN (UV) improves by 53.43%, and ARIMAX shows a 9.52% 

enhancement. 

5. Conclusions 

The current study focuses on the modeling and prediction of GWL in Kushtia, a district of 

Bangladesh. For modeling and prediction, mainly two types of models (with two subcategories each) 

were used, named ANN (UV, MV) and ARIMA and ARIMAX. Modeling was carried out in five 

separate sub-districts in Kushtia using GWL monitoring well data. The best model predicted that the 

future GWL will experience a change of approximately 0.5 m on average. ANNs achieved higher 

accuracy in forecasts (SSE 9.894) than ARIMA-based models (SSE 15.143). The correlation coefficient 

value (0.993) R is very significant and satisfactory for the actual and predicted GWL data for the 

selected model, ANN 8-9-1. It was observed that the ANN MV model predicted with 9.24% greater 

accuracy than the ANN UV model. Besides that, ARIMAX’s best model’s accuracy showed an 

enhancement of 9.52% over the ARIMA model. The ANN best model experienced an improvement 

of 53.04% over the ARIMA-based best model. In this study, climatic RF data was used as an 

exogenous variable with GWL data, as it heavily influences groundwater. Overall, the current study 

concludes that models incorporating exogenous variables generate enhanced prediction of GWL in 

both types of techniques, as the multivariate model gives better prediction over the univariate model. 
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