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Abstract: In this paper we use the comparison method for investigation of first order polynomial
differential equations. We prove two comparison criteria for these equations. The proved criteria we
use to obtain some global solvability criteria for first order polynomial differential equations. On the
basis od these criteria we prove some criteria for existence of a closed solution (of closed solutions)
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Keywords: comparison criteria; global solvability; Hilbert’s 16th problem; the Riccati equation;
differential inequalities; sub solution; super solution; usable sequence; global solvability; closed
solutions; planar autonomous systems; separator polynomials; generalized Prufer transformation;
periodic orbits; limit cycles

MSC: 34D20

1. Introduction

Let ai(t), k = 1,n be real-valued continuous functions on [ty, Ty) (tp < Ty < o). Consider the
first order polynomial differential equation

y/ + Z {Ilk(t)yk =0, th <t < 1. (1.1)

According to the general theory of normal systems of differential equations for every t; > tg, v € R
and for any solution y(t) of Eq. (1.1) with y(t;) = 7 there exists t, > t; such that y(t) is continuable
on [t1, t7). From the point of view of qualitative theory of differential equations an important interest
represents the case tp = co. One of effective ways to study the conditions, under which the case t, = o
holds, is the comparison method. This method has been used in [10,11] to obtain some comparison
criteria for Eq. (1.1) in the case n = 2 (the case of Riccati equations), which were used for qualitative
study of different types of equations (see e. g. [11-23]). In the general case Eq. (1.1) attracts the
attention of mathematicians in the connection with a relation of the problem of existence of closed
solutions of Eq. (1.1) with the problem of determination of the upper bound for the number of limit
cycles in two-dimensional polynomial vector fields of degree n. (see [1,2,7,24] the 16th problem of
Hilbert [recall that a solution y(t) of Eq. (1.1), existing on any interval [ty, T], is called closed on that
interval, if y(t9) = y(T)]) and many works are devoted to it (see [4,8,9] and cited works therein).
Significant results in this direction have been obtained in [25]. Among them we point out the following
result.

Theorem 1.1. ([25, p.3, Theorem 1]). Let us assume that ag(t) = 0,
T n
Ja1(t)dt > 0. Let us assume that there exists some j = 2,...,n such that ay(t) < 0and Y. ax(t) < 0 for all
k=j

to
k=j,...,nand t € [ty, T|. Then there exists a positive isolated closed solution of Eq. (1.1) on [to, T].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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u
This and other theorems of work [25] were obtained by the use of a perturbation method and the
contracting mapping principle. Note that an interpretation of Theorem 1.1 is the following

Theorem 1.1*. Let us assume that ag(t) = 0, f ai(t)dt > 0. Let us assume that there exists some
to

j=2,...,nsuch that (—1)ka;(t) > 0 and i (—Dkai(t) > 0forallk =j,...,nandt € [ty, T). Then there
k=j

exists a negative isolated closed solution of Eq. (1.1) on [to, T).
|

Note also that the class of equations, described by conditions of Theorem 1.1 (Theorem 1.1%) is
not so wide, whereas the classes of equations described by other theorems of work [25] are very wide,
but unlike of Theorem 1.1 the other theorems of work [25] are conditional (the conditions of these
theorems contain an undetermined parameter Ay, depending (may be) on the coefficients of Eq. (1.1)).

In this paper we use the comparison method for investigation of Eq. (1.1) for the case n > 3. In
section 3 we prove two comparison criteria for Eq. (1.1). These criteria we use in section 4 to obtain
some global solvability criteria for Eq. (1.1). On the basis od these criteria in section 5 we prove some
criteria for existence of a closed solution (of closed solutions) of Eq. (1.1), essentially extending the
class of equations, described by conditions of Theorem 1.1 (of Theorem 1.1%). The results obtained we
compare with results of work [25]. In section 6 we use some results of section 5 to prove criteria of
existence of periodic orbits or limit cycles for planar autonomous systems.

2. Auxiliary Propositions

Denote

D(t,u,v) = i ar(£)Sg(u, v),

k=1

k-1 . .

where S;(u,v) = ¥ w1, wveR, k=1,n, t>t. Let br(t), k = 0,n be real-valued continu-
=0

ous functions on [y, o). Consider the equation

n
v+ Y bty =0 t>t. (2.1)

Let yo(t) and y; (t) be solutions of the equations (1.1) and (2.1) respectively on [t1,ty) C [tp, o0). Then

n n

o(H) —y1 (O] + Y ae(D (1) — yi ()] + X lax(t) — be(B)]yi (1) = 0, t € [ty ).

k=0 k=0

It follows from here and from the obvious equalities y§(t) — y5(t) = [yo(t) — y1()]Sk(yo(t), y1 (1)),
k =1,n, that

o) —y1 (D] + Dt yo(8), 1 (D)) [yo(£) = ya(B)] + X lax(t) — be(B)]yi(£) = 0, t € [ty o).
It is clear from here that yo(t) — y1(t) is a solution of the linear equation
X+ D(t yo XJr Z ﬂk bk(t) yl( ) =0, te [tl,tz).

Then by the Cauchy formula we have

() =(0) = exp{ = [ D 30(r) (D) f[o(t) ~ (1) -
fy

d0i:10.20944/preprints202412.2567.v1
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t

/eXP{/DSyo n(s)is b (Llan(e) - b)) )ae], e ). (2)

4 k=0

Consider the differential inequality
7+ Y ek >0, th<t<T. (23)

Definition 2.1. A continuous on [ty, To) (To < o0) function 5*(t) is called a sub solution of the inequality
(2.3) on [to, o) if for every t1 € [to, To) there exists a solution 1y, (t) of the inequality (2.3) on [to, t1] such that

M (to) 2 117 (fo), 1y (1) = 177 (1)
Consider the differential inequality

7 +lek €k<0 to <t < 1. (2.4)

Definition 2.2. A continuous on [ty, 79) (190 < o0) function (*(t) is called a super solution of the
inequality (2.4) on [to, To) if for every t1 € [to, To) there exists a solution (i, (t) of the inequality (2.4) on [to, t1]
such that g1, (to) < *(to), n(t1) = £ (),

Obviously any solution 7 (t) ({(t)) of the inequality (2.3) ((2.4)) on [to, 1) is also a sub (super)
solution of that inequality on [t, T).

Lemma 2.1. Let y(t) be a solution of Eq. (1.1) on [ty, Tg) and 11" (t) be a sub solution of the inequality
(2.3) on [tg, T9) such that y(ty) < n*(ty). Then y(t) < y*(t), t € [to, T0), and if y(ty) < n*(to), then

y(t) <n*(t), t € [to, 1)
Proof. It is enough to show that if #(t) is a solution of the inequality (2.3) on [tp, T9) with

y(to) < n(tp), then
y(t) < 5(t), t € [ty, 1) 25)

and if y(to) < 7(to), then
y(t) <n(t), t € [to, 1) (2.6)

Wesetdy(t) = —1'(t) — ¥ ap(t)n*(t), t € [to, 10). By (2.3) we have

ﬁo(f) < Llo(f), t e [to,T()). (2.7)

Obviously #(t) is a solution of the equation
y +2ak y +dap(t) =0, t€ [, )

on [tg, Ty). Then in virtue of (2.2) we have

() = (1) = exp / (e, (e), 10D b y(r0) = n(ta) +

+/exp{/D s,y(s )ds}( o(7) —aO(T)>dT:|, t € [to, 10)-

This together with (2.7) implies that if y(ty) < 5(tp) (y(to) < n(to)), then (2.6) ((2.7)) is valid. The
lemma is proved.
By analogy with the proof of Lemma 2.1 one can prove the following lemma
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Lemma 2.2. Let y(t) be a solution of Eq. (1.1) on [ty, To) and {*(t) be a super solution of the inequality
(2.4) on [ty, T0) such that {*(ty) < y(to). Then {*(t) < y(t), t € [to, 1), and if {(ty) < y(to), then
g(t) <y(t), te[to, ).

|

Remark 2.1. It is clear that Lemma 2.1 (Lemma 2.2) remains valid if in the case 19 < oo the interval
[to, T0) is replaced by [to, To] in it.

Let us introduce some denotations "

1) Q, = {P(x)|P(x) >0, x >v}, vER, where P(x) = ¥ pyx¥, x € Ris any polynomial with real
k=0

coefficients py € R, k =0, n.
2) By Q)_o we denote the set ) (.

veR
3) O = {P(x)]ifx > 0, then P(x) > 0, if x < 0, then P(x) < 0, where
P(x) = Z pexk, x € R is any polynomial with real coefficients py € R, k= 0,n}.

It is clear, that if 11 < 1p, then O, C Oy, and if Pj(x) € Q_, Pr(x) is any polynomial,
then Pl(Pz( )) € O . If Pl( ) € Oy, Pz( ) € Oy, then Pl(Pz(x)) e O, v e RU{—OO} If

. N
Pi(x) € Qy, A; > 0, j = 1,N, then jgl)tjP](x) € Oy, v € RU{—oo}. Obviously, if P;(x) €

N
g, Pa(x) € O, then Py(x)P2(x) € Q. If Pi(x) € O, A; >0, j=1,N, then ¥ A;Pj(x) € Q.
=1

Obviously Qf C Q. If Pi(x) € O, A; >0, j=1,N, then ZAP]( x) e Q.
k=

Assume ai(t) = p(t) +r¢(t), k=0,n, where p(t) and (1), , n are real-valued continu-

ous functions on [tg, ). Forany T > tgpand j = 2,...,n we set

MT,]'/ t e [to, T],

My Zmax{l max {2 lre(T |/Zrk }}, My ;(t) =

relto ] Mt,]‘, t>T.
Lemma 23. Let for some j = 2,...,n the inequalities r(t) > 0, k = jn,
n
Z re(t) > 0, t > to be satisfied and let 'Y py(t )x € O, t > tg. Then M%(t) is a sub solution of
k=0 ’

the inequality (2.3) on [tg, 00).
Proof. It is obvious that M7, j (t) is a nondecreasing and continuous function on [f, o). Let t; > ¢t
be fixed. To prove the lemma it is enough to show that 7, (t) = M, ;, t € [to, 1] is a solution of the

— n n ,
inequality (2.3) on [to, t]. Since ¢ (t) > 0, k =j,n, t >ty we have ¥ ri(t)y* > [Z ak(t)]n] for all
k=j k=j

n
1 >1,and t > to. Then under the restriction R;(t) = ¥ r(t) >0, t > to we get
k=j
n . ) j-1
3 (' = Ry |1= X (0] /Ry ()1
k=0

k=0

forally > 1, t > ty. It follows from here that 7, (t) is a solution of the inequality
'+ Z re(t)n* 2 0

on [ty, t1]. This together with the condition Z pe(t)xk € Q of the theorem implies that 7, (t) is a

solution of the inequality (2.3) on [fg, t1]. The lemma is proved.
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Forany v € Rand t; > ty we set

Ny (1) = 'y+exp{—/ta1(’r)dr} [c(tl) — jexp{]al(s)ds}ao(T)dT], t € [to, t1],
where ¢1(t1) = Cgﬁ):ﬂjexp{gal(s)ds}uo(f)dr.

Lemma 2.4. Let the following conditions be satisfied.
(1) ay(t) >0, t>t.
(2) ap(t) = an(t)ep(t) + p(t), k=2,n—1, t > ty, where cx(t), k =2,n— 1 are bounded functions on
[to, t1] for every t1 > to and

n—1
(3) T pr(t)xk € Quy, t > to, where
k=2

n
Ny, = max{l, sup ) |ck(t)|}, t1 > T, forsome T > ty.
te[to,t] k=2

Then
INg,T(E), t € [to, T,
nr(t) =
UNt,t(t)' t>T

is a sub solution of the inequality (2.3) on [tg, ).

Proof. Obviously, 77.(t) € C([tp, )). Therefore, to prove the lemma it is enough to show that for
every t; > T the function 77y, 1, (t) is a solution of the inequality (2.3) on [to, t1] and 1INy, b (to) > n7(to)-
The last inequality follows immediately from the definition of #7n, , (t). Consider the function

c t co(t
F(t, )—1+”;(>+...+u2n(_2, teltot], u>1 (4 >T).

" )
Obviously F(t,u) > 1— 2

Ny, t€ [ty t1]. Hence,

> Oforallt € [to,t1] and for all u > Ny,. Moreover, 7, 1, (t) >

E(t i, (D) 20, £€ [fo, 1] (28)

Itis clear that 7y, 4, (t) € C!([to, t1]) and Uf\]tlztl (t) + a1 ()N, 1 () +ao(t) =0, t € [to, t]. It follows
from here and the condition (2) that

n

77§\]t1,t1 (t) + Z ak(t)ﬂlf\]tl/tl(t) = an(t)ﬂﬁftl,t] (t)F(t’ ;7Nt1 tl + 2 Pk 11Nt tl
k=0

t € [to, t1]. This together with the conditions (1), (2) and the inequality (2.8) implies that 1Ny, (t)isa
solution of the inequality (2.3) on [t, t;]. The lemma is proved.
We set

(1) = exp - / m(o)i) e | oxpf [ mspishaotmar], 121, ecn

Lemma 2.5. Let the following conditions be satisfied.
(4) ax(t) >0, t€ [ty T],
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t
(5) for some c > rr[1ax] fexp{fm s)ds}ao( )dt the inequality
to,T to
Z lag () |72 (1) < ao(t), t € [to, T] is valid.
Then the functzon 1c(t) is a nonnegative solution of the inequality (2.3) on [ty, T).
Proof. Obviously
ne(t) >0, t€t,T] (2.9)
and
ne(t) +ay(H)ne(t) +ag(t) =0, te [ty T (2.10)

It follows from the conditions (4), (5) and the inequality (2.9) that

> a () k2 (1)

k=3
ax(t)

Z ag(H)E2(t)
" ]>o

ﬂz(t)

kéak(t)ﬂf(t) = a (D)2 (1) > ap ()2 (1) ll -

t € [to, T]. This together with (2.9) and (2.10) implies that 7.(t) is a nonnegative solution of the
inequality (2.3) on [ty, T|. The lemma is proved.
We set

T

2 lag(t)| —ar(t), 0:(t) = exp{/toc(r)d'c} {c /texp{/zx(s)ds}ao(r)d"r},

to

t>ty, ceR.

T
Lemma 2.6. Let for some ¢ > n[’lax] fexp{ fa(s)ds}ao(r)dr the inequality 0.(t) <1, t € [to, T
tety, T to

be satisfied. Then 0.(t) is a nonnegative solution of the inequality (2.3) on [to, T|.

Proof. It is obvious that
0:(t) >0, t€lt,T) (2.11)

Show that 0. (f) satisfies (2.3) on [t, T]. We have
n k n

> a(HOE(t) = (3 lae()] )6c(t) + 2 a (D05 (£) + ag(t) — a(£)0c(t), t € [to, T). (2.12)

k=0 k=2
Obviously,

0L(t) +ag(t) —a(t)0c(t) =0, te [to, T) (2.13)
It follows from here and (2.12) that if i lax(t)| = 0 for some fixed t € [ty, T, then 6, (t) satisfies (2.3) in
k=2

t. Assume Z lai(t)] # 0 for a fixed t € [tp, T|. Then it follows from the condition 0.(¢) < 1, t € [y, T)
of the lemma and (2.11) that

¥ |ac()[62(t)
5 ]>0

(fwwﬁm+2mw&m(imm%w*—;
k=2 k=2 k§2 |ak(t)0c ()

for that fixed t. This together with (2.12) and (2.13) implies that 6.(t) satisfies (2.3) in that fixed ¢.
Hence, 0.(t) satisfies (2.3) for all t € [ty, T|. The lemma is proved.

Let F(t,Y) be a continuous in ¢ and continuously differentiable in Y vector function on [t(, %) X
R™. Consider the nonlinear system

Y =F(t,Y), t>t. (2.14)
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Every solution Y (t) = Y(¢,to, Yp) of this system exists either only a finite interval [ty, T) or is continu-
able on [t(, c0)
Lemma 2.7([5, p. 204, Lemmal). If a solution Y (t) of the system (2.14) exists only on a finite interval
[to, T), then
[[Y(H)]| > o0 as t - T—0,

where ||Y (t)]] is any euclidian norm of Y (t) for every fixed t € [to, T).

[ |
Lemma 2.8. For k odd the inequality
Sk(u,v) >0, u,v € R isvalid.
Proof. If u = 0, then
Se(u,0) = 1 =0 >0, veR, (meZy). (2.15)
For u # 0 we have
Se(u,v) = u?P(x), x= %, Pe(x) = k_ixj, x eR. (2.16)
j=0

Since k — 1 is even all roots of Py(x) are complex (not real). Besides P,(0) = 1 > 0. Hence, P¢(x) >
0, x € RR. This together with (2.15) and (2.16) implies that Sy (u,v) > 0 for all u, v € R.. The lemma is
proved.

Lemma 2.9 For k even the inequality

w >0, u,veR isvalid.
Proof. Since % = (k— l)ukf2 +... 4+ 2uv* 3 + 952 3 v € Rand kis even, we have
W = k=Dw 20, uweR,  (meZy). (2.17)
U=

For u # 0 the following equality is valid

9Sk(u, - k=1 ‘
# = Q(x), «x= Z, Qr(x) = Jg(] +1)x/, x€R (2.18)

Consider the polynomials g;(x) = (j+1)x¥(1+x?), j=0,1,.... Obviously,
qj(x) >0, xe€R, j=012,.... (2.19)

and
go(x)+ (k—1)x*" >0, xcR, mecZ,. (2.20)

It is not difficult to verify that

Qu(x) = q0(x) + o+ Gy () + (k= 12", x€R, meZy.

This together with (2.17)-(2.20) implies that % >0, u,v € R. The lemma is proved.
Let f(t, u) be a real-valued continuous function on [tg, T| x R. Consider the first order differential
equation

vy =f(ty), telt,T] (2.21)
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and the differential inequalities
¢ <f(tg), teltT], (2.22)
n' > f(ty), te kT (2.23)
Theorem 2.1 ([3, Theorem 2.1]) Let {(t) and 1 (t) be solutions of the inequalities (2.22) and (2.23) respec-
tively on [to,T] such that {(t) < n(t), t € [to, T], C(to) < ¢(T),
1(to) > 1(T). If any solution y(t) of the Cauchy problem y = f(t,u), y(to) = yo € [{(to), n(to)] is unique,
then Eq. (2.1) has a solution y.(t) on [tg,T] such that vy.(ty) = y«(T),

0(H) <y () < (D), t€ [to,T]

Corollary 2.1. Let {(t) and 1(t) be solutions of the inequalities (2.22) and (2.23) respectively on [to, T|
such that n(t) < (), t € [to, T], {(to) < C(T), n(to) > n(T). If any solution y(t) of the Cauchy problem
y = f(t,u), y(T) = yo € [n(T),(T)] is unique, then Eq. (2.1) has a solution y.(t) on [ty, T| such that
y«(to) = y«(T),
1) < e () < (1), £ € [to,T]

Proof. In Eq. (2.21) and inequalities (2.22), (2.23) we substitute respectively t — —t,, { =¥, 1 —
7. We obtain respectively

v =filty), te[-T —t) (2.24)

7 2>A-T), tel-T,—t),
Z, < fl(trg)/ te [7T,—t0},

where fi(t,u) = —f(t,u), t € [-T,—tp], u € R. Obviously it follows from the conditions of the
corollary that all the conditions of Theorem 2.1 for the last equation with f(t,u) = f1(t,u), {(t) =
Z(t), n(t) = 7(t) are satisfied. Hence, Eq. (2.24) has a closed solution v, (t) on [—T, —to] such that
ve(to) = y(T), (1) < yu(t) < 7j(t), t € [to, T]. It follows from here that y(t) = y.(—t) is the
required closed solution of Eq. (2.21) on [to, T|. The corollary is proved.

Let ty < #; < ... be a finite or infinite sequence such that t; € [ty, 0], k =0,1,....

Definition 2.3. The sequence {t; } we will call an usable sequence for the interval [ty, Ty), if the maximum
of the numbers ty. coincides with Ty for finite {t} , and klgl;lo ty = 10 for infinite {t;}.

Let a(t), b(t) and c(t) be real valued continuous functions on [ty, 7p) (T < o). Consider the
Riccati equation

Y 4+a(t)y* +b(H)y+c(t) =0, t € [ty ). (2.25)

Definition 2.4. A solution of Eq. (2.25) is called t,-regular, if it exists on [, 00) (here ty < t; < Tp = 00).

Definition 2.5 A t-regular solution yo(t) is called t1-normal, if there exists § > 0 such that every
solution y(t) od Eq. (2.25) with |y(t1) — yo(t1)| < & is ty-regular, otherwise it is called t1-extremal.

Lemma 2.10 ([23, Theorem 2.3, I1°]). Let a(t) >0, c(t) <0, t > ty, and let a(t) and c(t) have
unbounded supports. Then the unique ty-extremal solution of Eq. (2.25) is negative.

Denote by reg(t1) the set of initial values v € R for which the solution y(t) of Eq. (2.25) with
y(t1) = <y exists on [t7,00).

Lemma 2.11 ([22, Lemma 2.1]). Let Eq. (2.25) has a ty-reqular solution. If a(t) > 0, t > to and has an
unbounded support, then reg(t1) = [y«(t1), 00), where y.(t) is the unique t1-extremal solution of Eq. (2.25).

Theorem 2.2 ([11, Theorem 4.1]). Assume a(t) >0, t € [ty, Tp) and

f exp{ / ) - ats) / exp - g/ b(é’)dé}C(é‘)dCﬂdS}C(ﬂdT <0, telhtn),

t t t
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k=1,2,..., where {t;} is an usable sequence for [to, Tp). Then for every v > 0 Eq. (2.25) has a solution yo(t)
on [ty, To), satisfying the initial condition yo(tg) = 7y, and yo(t) >0, t € [to, T).

Remark 2.1. Theorem 2.2 remains valid if for 1y < oo we replace [to, T9) by [to, To] in it.

Lemma 2.12. Let a(t) > 0, t > to has an unbounded support and let Eq. (2.25) has a negative to-
regular solution. If a(t) > 0, t € [ty, T, then Eq. (2.25) has a negative solution y_(t) on [to, T] such that
v (k) > y_(T)

Proof. By Lemma 2.11 it follows from the conditions of the lemma that Eq. (2.25) has the unique
to-extremal solution v (t) < 0, t > t. Let y_ be the lower bound of the initial values -y such that the
solutions of Eq. (2.25) with y(t) = <y exists on [ty, T]. Obviously, 7— < y«(tp) < 0. Assume y_ > —oo.
Then since the solutions of Eq. (2.25) continuously depend on their initial values the solution y._(t)
with y,_(tp) = y— exists on [t, T) and lt% 1&10f Yoy_(t) = —co. We claim that there exists a solution
y—(t) of Eq. (2.25) with y(ty) € (77—, y«(to)] such that y_(to) > y—(T) (obviously by the uniqueness
theorem y_(t) < 0, t € [to, T]). Suppose this is not true. Then for every solution y(t) of Eq. (2.25)
with yto) € (7-,y«(to)] the inequality

y(T) > y(to) (2:26)

is valid. Let ty < T, k = 1,2,... be a infinite sequence such that klim t = T,
— 00

lim y,_(tx) = —oo. Since the solutions of Eq. (2.25) continuously depend on their initial values

k—o0

for every k = 1,2,... we chose 7, k = 1,2,... such that for the solutions yy(t) of Eq. (2.25) with
Yi(te) = 10, k=1,2,... the inequalities |yy(tx) —y,_(t)] <1. k=1,2,...are valid. Therefore,

lim yk(tk) = —o0. (2.27)
k—o0

We set my, = rr[dn Ve(t), k=1,2,... and assume yi (1) = my, k = 1,2,.... Then it follows from
telty,

(2.26), (2.27) and the inequalities y,(tg) > v, k =1,2,... that y} (1) = 0 for all enough large k and
’{l%yk(rk) = —ocothensincea(t) > 0, t € [ty, T] we gety; (i) +a(Tk)y,2((Tk) +b(t)yx () + () >0
for all enough large k. We obtain a contradiction. Hence, the claim for the case y_ > —oco. To
complete the proof of the lemma it is enough to show that the supposition y_ = —oo leads to a
contradiction. Assume y_ = —oo. Let then y,(t), k = 1,2,... are the solutions of Eq. (2.25) with

ye(to) = =k, k=1,2,.... Then yi(t), k =1,2,...existon [ty, T]. Let my = rr[ﬁn]yk(t), k=1,2,...
te|tg, T

and yi () = my, k = 1,2,.... Obviously,if 7 = to, then y; (1) > 0, otherwise y (1) = 0 (since
according to assumption (2.26) yx(to) < yx(T)). Hence, since a(t) > 0, t € [tp, T|, we have

Yk () +a()yi () + by () + c(7) = a()k? — [b(we) [k = [e(T)| > 0

for all enough large k. We obtain a contradiction, completing the proof of the lemma.
For any real-valued continuous functions r¢(t), k =0,1,2 on [ty, c0) we set

I(t) = fyexp{—/trl(‘r)dr} —|—/texp{—/trl(s)ds}|r0(r)|d'c, £ > fo.

fo to

Theorem 2.3. Assume ap(t) = pp(t) +r(t), k = 0,2, t > ty, where pr(t), r(t),
_ 2

k = 0,2 are real-valued continuous functions on [to,T0), r2(t) > 0, ¥ pr(t)x* +
k=0

n
+ ¥ ar(H)xF € Qo, t € [to, 1) and

k=3
/texp{][rl(s) —12(s) (/5 exp{—Zrl(g)dg}ro(g)dé’)}ds}ro(T)dT <0, (2.28)

te te te
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t € [te, tkr1), k=1,2,... where {t } is an usable sequence for [ty, Ty). Then for every -y > 0 the inequality
(2.3) has a solution qg(t) on [ty, To), satisfying the initial condition ﬂg(to) =,and 0 < Ug(t) <Iy(t), te
[to, T0)-

Proof. By Theorem 2.2 it follows from the conditions r,(t) > 0, t € [ty, Tp) and (2.28) that for
every y > 0 any solution y, (t) of the Riccati equation

Y 4y +ri(y+ro(t) =0, € [to,T0)

with v, (tg) = 7 exists on [fg, Tp) and is nonnegative. It follows from here and from the condition
w n

¥ pe(t)xF + ¥ ar(t)xF € Qq, t € [to, 1) of the theorem that 7 (t) = y,(t) is a nonnegative solution
k=0 k=3

of the inequali;y (2.3) on [ty, 19) for every v > 0. Note that we can interpret y (t) as a solution of the
linear equation

X'+ [ra(E)y (1) + 1 (B)]x +7o(t) =0, t > to.
Then by the Cauchy formula we have

t

mawrwm{/meAﬂ+nuWh}/wd:

to to

Ne—

[m@Wﬂ@+h@H%}mﬁMt

t > tg. Hence, 0 < Ug(t) =y, (t) < Iy(t), t > to. The theorem is proved.
Consider the differential inequalities

g <f(t,Q), telt,T), (2.29)

n'>fty), teltoT] (2.30)

Lemma 2.13([25. Lemma A2]) Let us assume that f is continuous in t and analytic in y. If there
exist solutions {(t) and n(t) of the inequalities (2.29) and (2.30) respectively on [to, T| such that {(ty) <
o(T), ylte) = (1), &(t) < n(b), t € [to, T (or (ko) = C(T), nlto) < n(T), T(t) > n(t), t €
[to, T]), then Eq. (2.21) has a isolated closed solution y(t) on [to, T] such that {(t) < y(t) < n(t), t € [to, T
(respectively () < y(t) < {(t), t € [to, T)).

j
Lemma 2.14 Assume fora j =0,1,...,n — 1 the inequalities ay(t) <0, Y ax(t) <0, t € [to, T] are
k=0
satisfied. Then there exists p € (0,1) such that {(t) = p is a solution of the inequality (2,29) on [to, T|.

Proof. For any p € (0,1) we have ag(t) +ay(t)o + ... + a;(t)p) 4+ aj1 ()™ + . ay(t)p" <
[ + @) + B+ [l + o+ e[l <
‘ L ()]
< A%H)p/ |1 — | max = )p|, where A%(t) = ag(t) +...+a;(t), t € [to, T]. Hence, for
] telto, T) |A]»(t)‘ ] ]

v la(t)]

- -1 n
0<p< min{l, < max k_”lo> } (it is assumed that the trivial case Y. |ax(t)| = 0, for
tefty,T] 147 ()] k=j+1

which the lemma is obvious, is excluded) {(t) =0, t € [ty, T is a solution of the inequality (2.29). The
lemma is proved.
Lemma 2.15. Assume ai(t) = pp(t) +n(t), k = 0,n, t € [to, T], where p(t),rc(t),
k = 0,n are real-valued continuous functions on [to,T| such that for some j = 2,...,n,
- n n
n(t) 20, k=jn Ri(t) = _n(t) >0, T pe(t)xk € Qq, t € [to, T]. Then there exists M > 1
k=j k=0

such that (t) = M, t € [to, T] is a solution of the inequality (2.30) on [t, T|.
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n
Proof. It is clear from the proof of Lemma 2,3 that for M > max{1, Mt} the inequality Y- ri(t) >
k=0
n n
0, t € [to, T]is satisfied. Thensince Y. p(t)MK >0, t € [to, T] (asforas ¥ pr(t)x* € Qo, t € [to, T))
k=0 k=0

n
we have Y ai(£)M* > 0, t € [to, T]. Therefore 5(t) = M, t € [ty, T] is a solution of the inequality
k=0
(2,30) on [tg, T]. The lemma is proved.

n
Lemma 2.16. Let the inequalities Y. |ax(t)] > 0, 6.(t) < 1, t € [to, T| for some ¢ >
k=2
T T
n[’lax] fexp{— fa(s)ds}ao(r)dr. Then 6.(t) is a solution of the inequality (2.30).
tety, T to to

Proof. Obviously
0:(t) >0, t e [ty T]. (2.31)

It was shown in the proof of Lemma 2.6 that

) ) . E lax(1) 62()
(X lae(t)] )oc(t) + X m(00E() > (X lae(o)])oc(t [1 - "—2] e [to, T).
=2

=) = ¥ Jax(t)|6c(t)
k=2

n
This together with (2.13), (2.31) and the conditions Y |ax(t)| >0, 6.(t) <1, t € [ty, T] of the lemma
k=2
implies that 6. (f) is a solution of the inequality (2.30) on [to, T]. The lemma is proved.

3. Comparison Criteria

In this section we prove two comparison criteria for Eq. (1.1). These criteria with the aid of section
2 we use in section 4 to obtain some global solvability criteria for Eq. (1.1).

Theorem 3.1. Let y1(t) be a solution of Eq. (2.1) on [ty, 00) and y*(t) be a sub solution of the inequality
(2.3) on [to, 00) such that y1(ty) < n*(ty). Moreover, let the following conditions be satisfied
(I) D(t,u,y1(t)) < Dy(t,u,y1(t)), u > y1(t), t > to, where D1(t,u,y1(t)) is a nondecreasing in u >
y1(t) function for every t > t.

t T n

(IT) v —y1(t) + fexp{f D; (slﬂ*(s),yl(s))ds} (kzo[bk(r) - ak(r)]y’l‘(r)>dr >0, t> tgforsome

to to
7 € [y1(to), ™ (to)].
Then every solution y(t) of Eq. (1.1) with y(to) € [y, 1" (to)] exists on [tg, o0) and

yi(t) <y(t) <y*(t), t>t.
Furthermore, if y1(to) < y(to) (y(to) < n*(to)), then
() <y(t) (y(t) <7* (1), t=to.

Proof. Let y(t) be a solution of Eq. (1.1) with y(ty) € [v,17"*(to)] and [t, t1) be its maximum
existence interval. Then by Lemma 2.1 we have

y(t) <n*(t), t€ltot), (3.1)

and if y(tp) < 7*(tp), then
y(t) <n*(t), telty,t). (3.2)
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In virtue of (2.2) we have

t
() =1(8) = exp{ ~ [ Dy, ()} ato) ~yrl10) -

t

- / exp{ / D(s,y(s) 11 (5))ds | (k_zo (r) ~b(OAE) Jae |, refon). (33)

Let us show that
y1(t) <y(t), t € [to, t1). (3.4)

At first we consider the case y(to) > y1(f). Show that in this case

yi(t) <y(t), te€lto,t). (35)

Suppose it is not true. Then there exists t, € (g, ;) such that
yi(t) <y(t), teltob).

vi(t2) = y(t2). (3.6)
It follows from here, (3.1) and the condition (I) that

D(ty(8),y1(t)) < Di(t,77(8),31(8),  t € [to, ba).

Hence, the function

H) =esp{ [ [Py 11(6) - Dits, )] dsf, Te it

fo

is positive and non increasing on [t(, t). By mean value theorem for integrals (see [6, p. 869]) it follows
from here that

t

/eXp{/D s,y(s),y1(s) d5}<i‘, T) — (T ]y’{(T))dT=

7 k=0

K(t) T n

= [ ew{ [ Drts. @ mois | ( Line) - (o) )ae

fo fo k=0

for some «x(t) € [to,t), t € [to,t2). This together with (3.3) and the condition (II) implies that
y1(t2) < y(t2), which contradicts (3.6). The obtained contradiction proves (3.5), hence proves (3.4). Let

us show that (3.4) is also valid for the case y(ty) = y1(to). Suppose, for some t3 € (o, t1)

y(t3) <yi(ts). (3.7)

Let y5(t) be a solution of Eq. (1.1) with ys(tg) > y1(to). Then by already proven (3.5) we have
Vs(t3) > yi1(t3). As for as the solutions of Eq. (1.1) continuously depend on their initial values we
chose 6 > 0 enough small such that y5(t3) — y1(t3) < M Since, y5(t3) > y1(t3) it follows from
the last inequality that

ya(to) —y(ts) <¥s(ts) —w(ts) < M
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which contradicts (3.7). The obtained contradiction proves that (3.4) is also valid for y(ty) = y (to).
Note that the proof of (3.3) and (3.4) in the general case y(ty) > y1(to) repeats the proof of them for the
case y(tg) > y1(ty). Therefore, due to (3.1), (3.2), (3.4) and (3.5) to complete the proof of the theorem it
remains to show that

t = . (3.8)

Suppose t; < oo. Then it follows from (3.1) and (3.4) that y(t) is bounded on [y, ;). By Lemma 2.7 it
follows from here that [t, 1) is not the maximum existence interval for y(t), which contradicts our
supposition. The obtained contradiction proves (3.8). The proof of the theorem is completed.

Note that every function y1(t) = {(t) € C!([tp,)) is a solution of Eq. (2.1) with by(t) =

—{'(t), by(t) =...=by(t) =0, t > ty. Then
L) - ali0) = - [0+ L i) ez
=0 =0

From here and Theorem 3.1 we obtain immediately
Corollary 3.1. Let 7*(t) be a sub solution of the inequality (2.3) on [tg, o0) and for some y1(t) = {(t) €
CY([to, 00)) with {(to) < 17*(to) the condition (I) of Theorem 3.1 and the following condition be satisfied

n

(11 ¢tt0) =7+ [[exp{ [ D), c0asf (¢/0)+ L aw(nih(n Jae <0, £ 210
fo fo

k=0

for some 1y € [¢(to), 1" (fo)].
Then every solution y(t) of Eq. (1.1) with y(to) € [y, 1" (to)] exists on [tg, o0) and

() <y(t) <n*(t), >t
Furthermore, if {(to) < y(to) (y(to) < n*(ty)), then
¢t) <y() (y(t) <n*(1), t=to

|
Remark 3.1. It is clear form the proofs of Theorem 3.1 and Corollary 3.1 that we can replace 1*(t)
in the conditions (I1) and (I11°) respectively of Theorem 3.1 and Corollary 3.1 by a continuous function
() 2 (1), t € [to,00).
Let ey (f), k = 0,n be real-valued continuous functions on [to, o). Consider the equation

n
v+ Y ety =0, t>t. (3.9)
k=0

Theorem 3.2 Let y1(t) and y,(t) be solutions of the equations (2.1) and (3.9) respectively on [ty, o0) such
that y1(to) < ya(to) and the following conditions be satisfied.

(1) ¥ (be(0) ~ax()5 (1) 2 0, £k,

(IV) ¥ (e(t) —ax()h(1) <0, t > to.

Then ev;ry solution y(t) of Eq. (1.1) with y(to) € [y1(to), y2(to)] exists on [ty, o0) and
yi(t) Sy(t) <walt),  t=to
Furthermore, if y1(to) < y(to) (y(to) < ya(to)), then

n() <yt) () <wat)), =t
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Proof. Let y(t) be a solution of Eq. (1.1) with y (o) € [y1(to), y2(to)] and [y, t1) be its maximum
existence interval. Then by (2.2) the following equations are valid

- exp [ D(s,y(s),m () | ( L lox(r) = (A Jar, 1 lto,),

f n

— /exp{/TD(s,y(s),yz(s))ds} <Z[uk(r) —ek(T)]y]{(T)>dT, t € [to, t1).
to

5 k=0

It follows from here and the conditions (I1I) and (IV) of the theorem that
yi(t) <y(t) <walt), e[ty ty) (3.10)
and if y1(fo) < y(to) (y(to) < y2(to)), then
() <y(t) () <w2(t)), t€ltotr)
Therefore, to complete the proof of the theorem it remains to show that
t = oo, (3.11)

Suppose t; < co. Then by Lemma 2.7 it follows from (3.10) that [to, 1) is not the maximum existence
interval for y(t), which contradicts our supposition. The obtained contradiction proves (3.11). The
proof of the theorem is completed.

Corollary 3.2. Let 17* (t) and {* (t) be sub and super solutions of the inequalities (2.3) and (2.4) respectively
on [tg, 00) such that {*(t) < n*(t). Then every solution y(t) of Eq. (1.1) with y(to) € [¢*(to), n* (to)] exists
on [tg, 00) and

g <ylt) <n' (), t=to
Furthermore, if {*(tg) < y(to) (y(to) < n*(to)), then
) <y(t) () <n(t)), t=t.
Proof. To prove the corollary it is enough to show that for every 7y > f( and solutions {(t) and
1(t) of the inequalities (2.4) and (2.3) respectively on [ty, T9] with { (o) < #(tp) any solution y(t) of Eq.
(1.1) with y(to) € [C(t0), n(to)] exists on [t, To] and
¢t) <y(t) <n(t), teltowl, (3.12)
and if (o) < y(to) (y(to) < (t0)), that

¢ty <y(t)  (w(t) <n(t), [t . (3.13)
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The function v (t) = {(t) is a solution of Eq. (2.1) on [tg, 1] for bo(t) = —'(t), by(t) =,... =bu(t) =
0, and y»(t) = #5(t) is a solution of the equation (3.9) on [to, 1] for eo(t) = —7'(t), e1(t) = ... =
en(t) = 0. Then the condition (III) gives us

n
¢+ a1 <0, t>t
k=0
and the condition (IV) gives us
n
76+ Y at)y () >0, t>t
k=0

Therefore by Theorem 3.2 (note that Theorem 3.2 remains valid if we replace [to, +o0) by [to, o] in it)
the inequalities (3.12) and (3.13) are valid. The corollary is proved.

4. Global Solvability Criteria

For any continuous on [t, o) function f(¢) denote f*(t) = max{0, f(t)}, t > to.

Theorem 4.1. Let the condition of Lemma 2.3 and the following condition be satisfied
(A)  for a nonnegative (t) € Cl([tg,)) with C(ty) < M, 1(to) and for some
v € [{(to), M3 1(to)]

20— v+ [op{ [ [ af (5u(01(6)8)) + a9 s
to o k=

X (g’(r) + i ak(r)gk(r))d‘t <0, t>t.

k=0

Then every solution y(t) of Eq. (1.1) with y(to) € [v, M}, 1(to)] exists on [to, o) and

¢(t) <y(t) <M (), t>to (4.1)

Furthermore, if {(to) < y(to) (y(to) < M 1(to)), then

¢t) <y(®) (y(t) <My r(t), t=to (4.2)

Proof. By Lemma 2.3 M 1(t) is a sub solution of the inequality (2.3) on [fy, ). Note that
y1(t) = {(t) is a solution of Eq. (2.1) on [tg, o) for by(t) = —'(t), by(t) = ... = by(t) = 0. Then since
{(t) is nonnegative we have

n

D(t,u,0) < Y a (H)Sk(u, () + a1 (t), forall u > {(t), t > to.
k=2

n
Moreover, ¥ a (t)Sk(u,{(t)) is nondecreasing in u > {(t) > 0, for all t > t,. It follows from here
k=2

and (A) that the conditions of Corollary 3.1 are satisfied. Hence, every solution y(t) of Eq. (1.1) with
y(to) € [v, M 1(to)] exists on [y, o0) and the inequalities (4.1) and (4.2) are valid. The theorem is
proved.

By analogy with the proof of Theorem 4.1 it can be proved the following theorem

Theorem 4.2. Let the conditions of Lemma 2.4 and the condition
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(B) for a nonnegative {(t) € C([tg, 00)) with {(to) < n4(to) and for some v € [{(to), 7% (to)]

cl) v+ exp{ / (3, ot (05:073(6),2(6) + aa(9)]ds
to

be satisfied.
Then every solution y(t) of Eq. (1.1) with y(to) € [v, 11} (to)] exists on [tg, c0) and

¢t <y(t) <nr(t), t=>to
Furthermore, if {(tg) < y(to) (y(to) < ny(to)), then

¢(t) <y(t) (w(t) <nr(t), t=t.

]

Corollary 4.1. Let the conditions of Lemma 2.3 or Lemma 2.4 be satisfied. If ag(t) < 0, t > to, then
every solution y(t) of Eq. (1.1) with y(ty) > 0 exists on [ty, o0) and is nonnegative

Proof. Let y(t) be a solution of Eq. (1.1) with y(t9) > 0. Under the conditions of Lemma 2.3 (of
Lemma 2.4) we can take M7.(t) (175.(t)) so that y(ty) < M5(t) (y(to) < #7(f)). Then the condition
ro(t) < 0, t >ty provides the satisfiability of the condition (A) of Theorem 4.1 (of the condition (B)
of Theorem 4.2) for v = 0, {(t) = 0. Hence, the assertion of the corollary is valid. The corollary is
proved.

Theorem 4.3. Let ar(t) = pi(t) +rr(t), k =

2

,2, t > to, where p(t), re(t), k = 0,2 are real-

ar(t)x* € Qq, t > toand the following conditions

valued continuous functions on [tg,00), Y. pr(t)x* +
k=0

be satisfied.
(C) Tz(t) >0, t >t
S

) t X [ r —r X T dac sr d ds pr dt <0,
{e p{i,f[ 1(s) —r2(s (fe P{ &f 1(0) C} 0(¢) Cﬂ } 0(7)
tet, tip1), 1=1,2,..., where {t;} is an usable sequence for [t, c0)..

t
) fexp{f{[j af (s)I8~ 1( )+a1(s)]ds}a0(7)dr <0, t>t.
to tg k=
Then every solution y(t) of Eq. (1.1) with y(ty) = 7 > 0 exists on [ty, o0) and

0<y(t) < L(t), t=to

Proof. By Theorem 2.3 it follows from the conditions (C) and (D) of the theorem that for
every v > 0 the inequality (2.3) has a nonnegative solution 79 (t) with 9 (tg) = 7. It is clear that

D(t,u,0) < Dy(t,u,0) = Z a (t)u k=1, 4 > 0and D;(t,u,0) is a nondecreasing function for u > 0.

Then (taking into account Remark 2.1) it follows from (E) that the conditions of Corollary 3.1 (for
{(t) = 0) are satisfied. Therefore, every solution y(t) of Eq. (1.1) with y(ty) = v > 0 exists on [t(, o)

and 0 < y(t) < I,(t), t > to. The theorem is proved.
_ 1:t( 1)k

We set 0" = , k=0,1,2,.... Obviously,
1, for k even, 0, for k even,
o = 0 = k=0,1,....
0, for k odd, 1, for k odd,

Theorem 4.4. Let the conditions of Lemma 2.4 and the following conditions be satisfied.
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(F) (~Dfax(t) 20, k=2,n, t>ty,
(G) for some {(t) € CY([to, o)) with {(ty) < n3(to) and for some v € [{(to), n3(to)]
() —v+ | exp{ / (3 o i ()50 (9).59) +r(9)] ds |
to
X (g’(r) + i ak(r)ék(r))dr <0, t>to.
k=0
Then every solution y(t) of Eq. (1.1) with y(to) € [v, 17 (to)] exists on [tg, co) and
o) <y(t) <nr(t), t=to. (4.3)
Furthermore, if {(to) < y(to) (y(to) < n3(to)), then
¢ty <y(®) (y(t) <yr(t)), t=to. (4.4)

Proof. By virtue of Lemma 2.4 #7%.(t) is a sub solution of the inequality (2.3) on [tp, o). Since

D(t,u,v) Z‘Tk”k )Sk(u,0) +20kak )Sk(u,0) +ar(t), wveER, t>1t

n
By Lemmas 2.8 and 2.9 it follows from (F) that Y o;" ax(t)Sk(1,v) + a1 (t) is nondecreasing in u > 7 (t)
k=2

n n
foralltand Y- oy ay(t)Si(u,v) <0, t> to. Hence, D(t,u,{(t)) < ¥ o ar(t)Si(u, 3(t)) +ar(t), u >
k=2 k=2

g(t), t > tg. It follows from here and (G) that the condition (IT) of Theorem 3.1 is satisfied for the case
bo(t) = —=C'(t), bi(t) =...=by(t) = 0. Thus, all conditions of Theorem 3.1 are satisfied. Therefore,
every solution y(t) of Eq. (1.1) with y(ty) € [v, #7(to)] exists on [tg, c0) and the inequalities (4.3) and
(4.4) are satisfied. The theorem is proved.

Theorem 4.5. Let the conditions of Lemma 2.5 and the following condition be satisfied.

(H) for a nonnegative {(t) € C*([ty, T]) with {(ty) < nc(to) and for some v € [T(to), 11c(t)]

ctto) — v+ [ exp{ [[X: o (0500051, 06)) + mn ()]s
fo k=2

fo

X (g'(r) + i ak(T)gk(T))dT <0, telty,T).

k=0

Then every solution y(t) of Eq. (1.1) with y(to) € [v,5c(to)] exists on [to, T] and
g(t) <y(t) <me(t), telto,T] (4.5)
Furthermore, if {(to) < y(to) (y(to) < nc(to)), then

¢(t) <y () <ne(t)), telt, Tl (4.6)
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Proof. By virtue of Lemma 2.5 #(t) is a solution of the inequality (2.3) on [to, T]. Since {(t) is
nonnegative we have

D(t,u,l(t)) < Y} af ()Se(w,{(t) +ar(t),  t€ [to, T.
k=2

It follows from here and from the condition (H) that the condition (IT) of Theorem 3.1 for [t, T] and
for the case by(t) = —Z'(t), b1(t) = ... = by(t) =0, t € [to, T] is satisfied. Thus all conditions of
Theorem 3.1 for [ty, T] are satisfied. Therefore, every solution y(t) of Eq. (1.1) with y(ty) € [v, 5c(to)]
exists on [ty, T| and the inequalities (4.5) and (4.6) are satisfied. The theorem is proved.

By analogy with the proof of Theorem 4.5 it can be proved the following theorem

Theorem 4.6. Let the condition of Lemma 2.6 and the following condition be satisfied
for a nonnegative {(t) € C'([to, T]) with {(tg) < 6c(to) and for some v € [{(to), 0c(to)]

{(to) —v—i—/exp{/ Eak (5)Sk(6c(s), (s))—i—al(s)]ds} X
fo

( —|—Zak >dr<0 t € [to, T).
Then every solution y(t) of Eq. (1.1) with y(ty) € [v,6c(to)] exists on [to, T] and
¢(t) <y(t) <0c(t), telbT].
Furthermore, if {(to) < y(to), (y(to) < 6c(to)), then
(1) <y(®), (y(t) <6c(t)), telto,T].

|
Corollary 4.2. Let the conditions of Lemma 2.5 and the following conditions be satisfied
(I) a1(t) <0, t € [to, T,

(J) for some o € (0,11c(to)) with é2|ﬂk(t)|C’6_l < la(t)], t € [to, T| and for some v € [Co,71c(to)]

go—v+/exp{/ Eak )Sk(17¢(s), Co) +a1(s)}ds}ao(r)d'r <0, te€]tT]

Then every solution y(t) of Eq. (1.1) with y(to) € [v,yc(to)] exists on [to, T] and
To <y(t) <ne(t), telto, Tl (4.7)
Furthermore, if (o < y(to), (y(to) < nc(to)), then

Co <y(®), (y(t) <ne(t)), telt,T]. (48)

Proof. It follows from the condition (I) that for some (enough small) ¢y € (0,7c(to)) with
i |ak(t)|§§*l < |ay(t)], t € [to, T] the inequality Z ar(t)Zk < 0, t € [to, T] is satisfied. This together
k=2

with the condition (]) implies the condition (H) of Theorem 4.5. Thus all conditions of Theorem 4.5
are satisfied. Therefore, every solution y(t) of Eq. (1.1) with y(t9) € [v,c(t)] exists on [tp, T] and the
inequalities (4.7) and (4.8) are satisfied. The corollary is proved.

By analogy with the proof of Corollary 4.2 one can prove the following assertion.
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Corollary 4.3. Let the conditions of Lemma 2.5 and the following conditions be satisfied
al(t) >0, te [to, T]/

for some (o < 0 with i lag(H)]1Z0/*" < ay(t), t € [to, T and for some v € [Zo, 5c(to)]
k=2

§O—V+/exp{/[z a; (s)Sk(11c(s), Co) +a1(s)}ds}a0(r)d'r <0, te€]tT]
to

Then every solution y(t) of Eq. (1.1) with y(to) € [v,5c(to)] exists on [to, T] and
Zo <y(t) <mne(t), telt,Tl.

Furthermore, if (o < y(to), (y(to) < nc(to)), then

Co<uy(t), (y(t) <me(t)), telt,T).

Forany vy € R, t; > tp weset

T

o) = 1 exp{ ~ [} e + / exp [ m(s)is ban(r)te |, 1 € fo,m),
to

to

where ¢(t;) = max (fexp{fﬂl(s)ds}ao(r)dr).

geltot] to to
Theorem 4.7. Let the conditions of Lemma 2.4 and the following conditions be satisfied.

(K) 'S (“D)Fp () € Oy, 13 ho

(L) n is odd.
Then every solution y(t) of Eq. (1.1) with y(to) € [(7(to), 77 (to)] exists on [t, 00) and

gr(t) <y(t) <yr(t),  t=>to, (4.9)

gNT,T(t)/ te [tO/ T]/
where n7(t) is defined in Lemma 2.4 and {5(t) = such that {3 (to) < n7(to)-

ONnt(t), t>T,
furthermore, if {7.(to) < y(to) (y(to) < n7(to)), then
or(t) <y(t) (y(t) <nr(t), t=to. (4.10)

Proof. By Lemma 2.4 777(t) is a sub solution of the inequality (2.3) on [t, +-00). Show that {7(¢) is
a super solution of the inequality (2.4) on [to, +o0). Consider the differential inequality

n
"+ Y amtn >0, t>t, (4.11)
k=0

where @ (t) = (—1)*1a(t), k =0,n, t > to It follows from (K) and the condition (1) of Lemma 2.4
that

(1) @u(t) >0, t>to.

it follows from the condition (2) of Lemma 2.4 that
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(2) @(t) = an (DT (t) + de(t), k=2,nm—1, t > to, where Gx(t) = (=¥ lep(t), k=2,n—1, t >t
are bounded function on [ty t;] for every # >ty di() = (=D (),
k=2n-1, t >t

It follows from the condition (K), that

—~ n—1 _
(3) ¥ di(t)uk > 0forallu > N, t> tq.
k=2

We see that all conditions of Lemma 2.4 for the inequality (4.11) are satisfied. Hence, by Lemma 2.4
i77(t) = —{5(t) is a sub solution of the inequality (4.11) on [fg, c0). Then % (t) is a super solution of
the inequality (2.4) on [to, o). By Corollary 3.2 it follows from here that every solution y(t) of Eq. (1.1)
with y(to) € [C5(to), 77 (t0)] (note that always (7.(tg) < #7(to)]) exists on [ty, o) and the inequalities
(4.9) and (4.10) are satisfied. The theorem is proved.

We set
t t T
6, (t) = —exp{/tx(’f)d’r} {c—l—/exp{— /a(s)ds}ao(r)df}, t>ty, telR
to to to
t T
Theorem 4.8. Assume  for some cT > max fexp{— fa(s)ds}ao(r)dr,
te[to,T] to to

t T
¢~ > — min fexp{— fzx(s)ds}ao(r)dr the inequalities
te[tO/T} to to

0.+(t) <1, [0_(t)] <1, te]t,T]
are valid. Then every solution y(t) of Eq. (1.1) with y(to) € [0__(t), 0+ (t)] exists on [to, T| and
0 (t) <y(t) <O.(t), teltT]. (4.12)

c =

Furthermore, if 0 (to) < y(to) (y(to) < 0.+ (t0)), then

0= (1) <y(t) (y(t) <6 (), te [to,TI. (4.13)

Proof. We hatve t
T T
0 (to) < min fexp{— fa(s)ds}ao(r)dT < max fexp{— fa(s)ds}ao(T)dT < 6.+ (o).
te[tO/T] to to te[tO/T] to to
Therefore, the relation y(ty) € [0__(t),0.+(t)] is correct. By Lemma 2.6 6+ (t) is a solution of the
inequality (2.3) on [to, T], and —6__(t) is a solution of the inequality (4.11) on [to, T]. Then, since
0__(t) < 6.+ (t)], by Corollary 3.3 every solution y(t) of Eq. (1.1) with y(tp) € [0__(t), 6.+ (t)] exists on
[to, T| and the inequalities (4.12) and (4.13) are valid. The theorem is proved.
Theorem 4.9. Assume a(t) = pi(t) +r¢(t), k = 3,n, where py(t) and ry.(t) are real-valued continuous

function on [ty,00). If
n
M) r(t) >0, k=31, Y n(t) >0, t >t
k=3

O) ap(t) <0, ax(t) >0, t > tygand ag(t), ay(t) have unbounded supports.
Then every solution y(t) of Eq. (1.1) with y(ty) > y«(to) exists on [ty, 00) and y(t) > y.(t), t > to, where
v« (t) is the unique to-extremal solution of Eq. (2.26) (here Ty = c0).

Proof. Since Q) C (g by Lemma 2.3 it follows from the conditions M), N) that for every 7y > 0
the inequality (2.3) has a sub solution #*(t) on [tp, o) with #*(ty) = 7. By Lemma 2.10 it follows
from the conditions O) that Eq. (2.26) has the unique fy-extremal solution y.(y) < 0, t > to. Then
it follows from the condition N) that y.(t) is a solution of the inequality (2.4) on [ty, o). Hence, by

n
N) ¥ m(H)xk e g,
k=3
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virtue of Corollary 3.2 every solution y(t) of Eq. (1.1) with y(tp) € [y« (o), ¥] exists on [tp, o) and
y(t) > y«(t), t> to. Since ¥ > 0 can be arbitrarily large the proof of the theorem is completed.

5. Closed Solutions
Theorem 5.1. Assume ai(t) = pr(t) +rc(t), k=0,n, t € [ty, T], where py(t) and ri(t), k =0,nare

n
real-valued  continuous  functions on  [to,T] such that Y pi(t)x* € Qo,
k=0
t € [to, T), and let the following conditions be satisfied.
_ n
19) for some j = 2,...,n the inequalities ri.(t) > 0, k=j,n, Y. ri(t) >0, t € [to, T] are valid,
k=j

20) ftexp{f[z a; (s )M’}fv —I—al(s)]ds}ao(r)dr <0, t€ [ty T] forsomey > 0.

to to k=
Then the following statements are valid.

«) Eq. (1.1) has a nonnegative closed solution y.(t) on [ty, T],
B) In particular, if ap(t) # 0 and ag(t) <0, t € [ty, T), then y.(t) is positive,

) In particular, if j = 2 and fal T)dT > 0, then y.(t) is isolated.
to
Proof. Let us prove a). It follows from the conditions of the theorem that for {(t) = 0 the

conditions of Theorem 4.1 are satisfied. Then by Theorem 4.1 the solutions y; (f) and y»(t) of Eq. (1.1)
with y1(to) = 0and y»(to) = Mr, existon [to, T] and y1(T) 2 0, y2(T) < M} +(T) = M}, 1(to). By
Theorem 2.1 it follows from here that Eq. (1.1) has a nonnegative closed solution y.(t) on [ty, T]. The
statement «) is proved. Let us prove B). If ag(t) #Z 0 and ag(t) > 0, t € [to, T], then y;(f) #Z 0. Hence,

y1(t1) > 0 for sone t € [to, T] (5.1)

(since y1(f) > 0, t € [tg, T]). Consider the equation
y +Zak )y =0, t€[t,T].

Since y(t) = 01is a solution of this equation by (2.2) we have

(1) = exp - | D(x, 0,31 (e | (o) - | exp{ [ D50 bty |
t t f

It follows form here, (5.1) and the conditions of B) that y;(T) > 0 = y; (o). Therefore, y;(t) is not a
closed solution of Eq. (1.1) on [ty, T|. By the uniqueness theorem it follows from here and the statement
«) that y.(t) is positive. The statement p) is proved. It remains to prove ). Let us show that y. () is
isolated. Suppose y.(t) is not isolated. Then there exists a sequence {y(t) }3,; of closed solutions of
Eq. (1.1) on [to, T] such that v, (to) — y«(to) for m — oo. By (2.2) we have

y*<T>—ym<T>=exp{ /(fak Sy (1), Y (v ))+ﬂ1(f))dT}[V*(fo)—ym(to)]/ (5.2)

k=2

m = 1,2,.... Since j = 2 it follows from the conditions 1°) that

f( E ar(t )Sk(y*(‘f),y*(r))>d‘r > 0. Then since the solutions of Eq. (1.1) continuously de-
tg k=
T
pend on their initial values and f a1 (T)dt > 0 we can chose m = mj enough large such that
to
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f( Z ax (T)Sk (Y« (T), ym(T)) + al(T))dT > 0. It follows from here and (5.2) that y,,, (t) is not closed.
ty k=
We obtam a contradiction, proving ). The proof of the theorem is completed.

Corollary 5.1. Assume a(t) = pr(t) +re(t), t € [to, T, where py(t) and ri(t) are real-valued continu-

_— n
ous  functions on [ty,T], k = 0,n, such that Y (—1)%p(t)x* € 0o,
t € [to, T), and let the following conditions be satisfied. -
_ n
for some j = 2,...,n the inequalities (—1)kri(t) > 0, k = jn, L(-Dfr(t) > 0,
k=j

T’Q(t) <0, te [to, T] hold.

Then the following statements are valid

) Eq. (1.1) has a non positive closed solution y. (t) on [to, T].

B°) In particular, if ro(t) #Z 0 and ro(t) <0, t € [ty, T|, then y.(t) is negative,

YO) In particular, if j = 2 and f r1(t)dT > 0, then y.(t) is isolated.

Proof. In Eq. (1.1) we substltute

We obtain
Z + Z z =0, t < —ty.

Then by Theorem 5.1 it follows from the conditions of the corollary that the transformed (last) equation
has a nonnegative closed solution z.(t) on [—T, —ty], for which the statements &) — -y) of Theorem 5.1
are valid. It follows from here and (5.3) that y.(t) = —z.(—t) is a nonnegative closed solution of Eq.
(1.1) on [to, T], for which the statements a”) — 7°) are valid. The corollary is proved.

Note that in the statement «) of Corollary 5 1 the condition ag(t) = 0 of Theorem 1.1 is weakened

up toap(t) <0, t € [tp, T| and the condition f a1(T)dT > 0is omitted. Therefore, Corollary 5.1 is a

to
complement of Theorem 1.1.

n
The inequality Y ai(t) > 0, t € [ty, T| in conditions of Theorem 5.1 looks like a strict limitation.
=

The next theorem attempts to partially weaken it.
Theorem 52 Let the conditions of Theorem 4.3 be satisfied. If ar(t) > 0, k = 2,

n
Z ag(t) # O or fal ydT > 0, then Eq. (1.1) has a nonnegative closed solution on [ty, T|. In the case

fal Ydt > 0 it is isolated.

Proof. By Theorem 4.3 for every v > 0 Eq. (1.1) has a nonnegative solution v, (f) on [ty, T] with
Yo (tg) = 7. Let us show that there exists y > 0 such that

Yy (to) =y (T). (54)

n
First we show thatif Y a(t) Z0, t € [to, T], then
k=2

7&&100 ng ak(t)y’ffl(t)}dt = 0. (5.5)
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By (1.1) we can interpret y,, () as a solution of the linear equation
n
[Z }x+a0() 0, telt,T)
Then by the Cauchy formula we have
() =respf - /[zak NG
to
t to,
- / exp{ - / (L ey 9)] ds}ao(r)dr, t € [to, T). (5.6)
k=1
to T

t
Multiplying both sides of this equality by [i ak(t)y’fY_Z(t)} exp{— J [kiz ak(T)y’fy_l(T)]dT} and
to K=

integrating over [to, T] we obtain

n

exp /T [;zzam)y@ (@]arf =147 / ¥ ey 0] exp - / m(r)dr | -
T t T ¢
—/[kgak(t)y}fyz(t)}dt/exp{/[kgak(s)yg1(5)}ds—/a1(s)ds}ao(r)d1

From here we obtain

T " T " t
oxp{ [ [ m(es 1@)]ac} = 14 [[3 miond 20 exp{ - [ ooy fa

fp k=2 o

X ['y—Zexp{mj{éak(s)y’;—l(s)}ds+t0/T111(s)ds}ao(T)|dT}. (5.7)

Suppose

/ [kg ak(t)y’;—z(t)]dt <M, 7>0. (5.8)

Then (5.7) implies

exp{tO/T{kiZZak(T)y';_ (t )}dr} > 1+/ i )yﬂy 2(t )} exp{to/tal(r)d’r}dt X

X ['y—exp{M} /Texp{/ral(s)ds}|ao(r)|d'r}. (5.9)

to to
By the uniqueness theorem y.(t) > 0, t € [to, T| for all ¥ > 0. Therefore (since ar(t) > 0,
n
k=2,n, t €[ty T]and Y ai(t) #Z 0)
k=2

~
~-~

/T[Z a (t }exp{ /al(r }dt > /{2 a()ys2( ]exp{—/al(r)dr}dt >0

fo
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for all ¥ > 7o > 0. It follows from here that the right part of the inequality (5.9) tends to cc as y — oo,
whereas, according to (5.8) its left part is bounded. We obtain a contradiction, proving (5.5). It follows
from (5.6) that

y2(T) =ve><p{ /[iak }df}

=

T

_/exp{ /[éak ]ds} o(T)dt, tE [t T], 7> 0.

fo

Therefore y,(T) < y(tp) = 7y, provided

7(1—exp{t()/T(kaluk(r)y’;1(T)>dr}) > —tO/Texp{ T/L:Zlak ]ds} o(T)dr,

which will be fulfilled if by virtue of (5.5) we chose v > 2 [ exp{ Jax(s ds}|ao( T)|dT enough

to to

T
large such that f i ag(T)y,(t)dT > In2. Therefore (5.4) is proved for the case i ar(t) £ 0. If
k k=2

n T
Y ag(t) = 0 and fa1 T)dt > 0, then from the obvious equality v, (T) = 'yexp{— fa("r)d'r} —
k=2 to

to

T T
/ exp{f ay (s)ds}ao(r)dr we derive that for
to to

v > /Texp{]al(s)ds}|a0(1')|dr/ <1—exp{—/Ta1(T)dT}>

n
the inequality (5.4) is fulfilled. Thus, under the restriction Y. a;(t) # 0 or f a1(t)dt > 0 of the
k=2

theorem the inequality (5.4) is valid. Then since y(tp) = 0 < yo(T), by Theorem 21Eq. (1.1) hasa
nonnegative closed solution y.(t) on [ty, T|. To complete the proof of the theorem it remains to show

that if f a1(t)dt > 0, then . (t) is isolated. The proof of this fact is similar to the proof of the assertion
to
7) of Theorem 5.1. Therefore we omit it. The proof of the theorem is completed.

Theorem 5.3. Let the following conditions be satisfied.
3%) an(t) >0, t € [to, T),
49) ar(t) = an(t)cx(t) + pi(t), k=2,n—1, where ci(t), k =2,n — 1 are bounded functions on [to, T),

n—1
50) Z pk(t)xk S QNT/ t e [i’(), T],

6°) max fexp{fal ds}ao(r)d'r {1 —exp{fal dTH < fexp{fal(s)ds}ao('r)dr.

te [tO T] to to to

0) fexp{f [ Z a (5)11 1(s) +a1(s)}ds}a0('c)dr <0, t€ [ty, T]. for some y >0,
to to k=
Then Egq. (1.1) has a nonnegative closed solution on [to, T|.

Proof. By virtue of Lemma 2.4 it follows from the conditions 3%) — 5°) that 1, r(t) is a solution of
the inequality (2.3) on [tp, T]. Then it follows from the condition 7°) that the conditions of Theorem 4.2
with {(t) = 0 are satisfied. Hence, according to Theorem 4.2 the solutions y1(t) and y, () of Eq. (1.1)
with y1(tg) =0, ya(to) = 174,7(to) = c(T) exist on [ty, T] and y1(T) > 0, y2(T) < 1,,7(T). It follows
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from the condition 6°) that 77, 7(T) < 7, 7(to). Therefore y>(T) < y2(to). By Theorem 2.1 it follows
from here that Eq. (1.1) has a nonnegative closed solution on [ty, T]. The theorem is proved.
Example 5.1. Consider the equation

6
v+ Y oty =0, t>t, (5.10)
k=0
where, ag(t) = —sin10t, ay(t) is any continuous function, ar(t) = cos*t, as(t) = —2|sintcos’t|, ay(t) =
sin®tcos’t, as(t) = —sin’t|cosmt|, ag(t) = sin’t, [to, T]. Obviously, the conditions of Corollary
5.1 for Eq. (5.10) are satisfied. It is not difficult to verify that the conditions of Theorem 5.3 with
co(t) = c3(t) = c4(t) =0, c5(t) = —|cosmt|, pa(t) = cos*t, ps(t) = —2|sintcos®t|, py(t) =

sin®tcos’t, ps(t) =0, t € [to, T] for Eq. (5.10) are satisfied. Therefore Eq. (5.10) has at least a nonnegative
closed solution y (t) on [tg, T| and at least a non positive closed solution y_(t) on [ty, T| (for every T > t).
Since ay(t) # 0 we have y(t) # y—(t), t € [to, T].

Theorem 5.4. Let the following conditions be satisfied.
89) ay(t) >0, t € [ty, T),

t T
90)  for some ¢ > max fexp{fal(s)ds}ao(T)dT, the inequality f} lag (£)|7E=2(t) < ax(t), t € [to, T)
te(to, T) to to k=3

is valid and
T

10°) tftexp{f{é“;(s)ﬂg_l(s) +ﬂ1(5)}d5}ﬂo(T)dT <0, telt,T],

fo

119) c<1 —exp{t{Tal(T }) < fexp{{al }ao(”[)dl’.

Then Eq. (1.1) has a nonnegative closed solution on [to, T).

Proof. By Lemma 2.5 it follows from the conditions 8°) and 9°) that .(t) is a solution of the
inequality (2.3) on [to, T]. It follows from the condition 10°) that the condition (E) with {(t) = 0 of
Theorem 4.5 is satisfied. It follows from the condition 11°) that 11.(tg) > #.(T). Then by Theorems 2.1
and 4.5 Eq. (1.1) has a nonnegative closed solution on [ty, T|. The theorem is proved.

Let us write ax(t) = Ap(t), p(t) > 0, t € [to,T]. Then for all A > Ay =
= n[qax {(: 3 Y |ax(8)7572(£)) /p(t)} the condition 9°) of Theorem 5.4 will be satisfied. If we write
telto, T] k=3

ay(t) = A+p(t), p(t) € C([to, T]), then for all A > Ay = (max {(Z |ax(B)]7E2(8)) — p(£)} the

condition 9%) of the Theorem 5.4 will be satisfied as well. Unlike of thls in Theorems 2 and 3 of work
[25] the parameter A is undetermined. Moreover, for ag(t) =0, ¢ = 0 the conditions 10°) and 11°) of
Theorem 5.4 are satisfied. Therefore, Theorem 5.4 is a complement of both mentioned above Theorems
2 and 3.

Theorem 5.5. Let the following conditions be satisfied.

129) a,(t) >0, t € [t, T),
13%) ay(t) = an( Yer(£) +pr(t), k=2,n—1, t € [ty, T|, where ci(t), k =2,n — 1are bounded functions
on [to, T]
140) T e >x'< €Oy, tE [t T),
k=2
150) ”i (—1)*pe(B)xk € Oy, EE [to, T],

16°) nis odd

17%)  max (f exp{f a1 (s } )dT) {1 —exp{fTal(T)dTH <

g€t T]
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18%) gén[ttnT] <f exp{f a1 (s } )dT) {1 —exp{fal dTH >
> fexp{fal ds}ao(r)

fo

Then Eq. (1.1) has a closed solution on [to, T].

Proof. By Lemma 2.4 it follows from 12°) — 14%) that iy, (t), t € [to, T] is a solution of the
inequality (2.3) on [t, T] and it follows from the conditions, 12°), 13%), 15°%), 16°) that {n, (), t €
[to, T] is a solution of the inequality (2.4) on [to, T]. It follows from the condition 17°) that 1, 7(to) >
1Ny, 7(T), and it follows form the condition 18°) that {, (to) < {n,,7(T). Therefore, by virtue of
Theorem 2.1 Eq. (1.1) has a closed solution on [y, T]. The theorem is proved.

Remark 5.1. The conditions 14°), 15°) of Theorem 5.5 for n odd are satisfied if, in particu-
lar, p2(t) = ppa(t) = 0, ps(t) > 0, pua(t) > 0, pe(t) = a(t) + Bi(t), (t) > 0O,
Be(t) >0, k=5, 7,...,n—4,

pa_5(t) — 4ay_s(t)Bu—s(t) <0,
p2_5(t) —4dyo(t)Ba-a(t) <O, tE [ty T] (n>7)

(since under the above restrictions the “square trinomials” ws(t)x?> + pg(t)x + p3(t),...,
Pr—2(t)x? & pu_3(t)x + Bu_4(t) are nonnegative forall t € [to, T], u € R). Note that the conditions 17°) and

18%)  are  satisfied  if, in  particular, f exp{ Jaq(s } T)dt = 0,

f ar(t)dt > 0. Indeed, under these restrictions the left part of 17°) is non positive and the left part of

180) is nonnegative.

Example 5.2 For n = 7, a;(t) = sin’t, ag(t) = sin’tcost, as(t) = 7sin’tcos3t+ 2,
a4(t) = 4sin?tarctant + sin(cost), az(t) = 10sin*tcose! +2, ay(t) = sindtcos’t, t > o,
fal t)ydt > 0, fexp{fal (s) ds}ao( )dT = 0 the conditions of Theorem 5.5 are satisfied. Here we

to to
take co(t) = sin®tcos’t, c3(t) = 10sin®tcose!, cy(t) = 4darctant, cs(t) = 7cos3t, cs(t) =

cost, pa(t) =0, p3(t) =2, pa(t) =sin(cost), ps(t) =2, pe(t) =0, t € [ty, T
Theorem 5.6. Let the following conditions be satisfied

199) for some
t T t T
¢t > max fexp{—fa(s)ds}ao(f)dr, ¢~ > — min fexp{—ftx(s)ds}ao(r)dr
telto,T] f, to telto,T] £, fo

the inequalities
0+ (t) <1, [0_(t)] <1, te]t,T]

are valid,

209) ¢t (1—exp{—t{T¢x(T)dT}) <t{Texp{ ja s)ds}ao T)dT,
c” <1—exp{ f a(tT )d’f}) > fexp{ fzx(s)ds}ao(r)d”r,

to to

Then Eq. (1.1) has a closed solution y.(t) on [to, T| such that

0. (t) <y«(t) <6 (), €t T],
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and if 0 (to) < y«(to) (ys(to) < Oc+(to)), then
0 (1) <y«(t) (y«(t) <O+(t), te€ ]t Tl

Proof. By Lemma 2.6 it follows from the condition 19°) that 6, () and 0__(t) are solutions of the
inequalities (2.3) and (2.4) respectively on [ty, T]. It is not difficult to verify that the conditions 20°)
imply that

9C+ (tO) > 9c+(T)/ 95_— (tO) < 95_— (T)

By Lemmas 2.1 and 2.2 it follows from here that the solutions y;(t) and y,(f) of Eq. (1.1) with
ya(to) = 0_(to), ya(to) = 0.+ (to) exist on [fo, T| and

vilto) <yi(T),  ya(to) = y2(T).
By Theorem 2.1 it follows from here that Eq. (1.1) has a closed solution y.(t) on [ty, T| such that
0= () <y <0 (0, telnT),
and if 6 _ (tg) < y«(to) (y«(to) < 6c+(t)), then
0. (t) <y«(t) (y«(t) <O (t)), t€ [ty Tl

The theorem is proved.
T

T
Remark 5.2. The conditions 20°) of Theorem 5.6 are satisfied, if in particular, [ exp{ — [a(s)ds } ap(T)dT =
to

to
T
0, [a(t)dt <O0. Indeed, note that c* >0, ¢ < 0. Therefore, if f T)dT < 0, then the left part of the first
to to
inequality of 200) is non positive and the left part of the second inequality of 20°) is nonnegative.
Example 5.3. Assume ag(t) = —Aa(t), A = const > 0, ¢ = A [1 -
g
—exp{— max f dsH = /\{exp{— min fzx(s)ds} - 1}. Then it is not difficult to verify
Zelto,T) 4, Zelto Tl ¢,
that

to
£

/a(s)ds— max ds} } <0, te€ [t T
Zel tOT

O.+(t) =A [exp{/ttx(s)ds - é‘énttnT ds} } >0, t€[t,T],
o (1) {

=A [exp

fo

Therefore if a(t) # 0, A < mm{ max {exp{fta )ds — min f } - 1} 71,

telto,T) to ¢elto, T]

t -1
1-— s)ds — d ,then 0.4(t) <1, |0_(t)| <1, t € [ty, T]. D
ool g ] om0 1 015 o

T

to Remark 5.1 it follows from here that if [ a(T)dt = 0. Then all the conditions of Theorem 5.6 are satisfied.
to

Hence, under the above conditions Eq. (1.1) has a closed solution on [t, T].

Using Lemmas 2.13 and 2.16 instead of Lemma 2.1, 2.2, 2.6 and Theorem 2.1 by analogy with the
proof of Theorem 5.6 one can prove the following theorem
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Theorem 5.7. Let for some

t T t T
ct > max /exp{/w(s)ds}ao(r)dr, ¢ > — min /exp{/zx(s)ds}ao(r)d'r
te(to,T) ; ; te(to,T) ; ;
0 0 0 0

the inequalities
0+(t) <1, [0_(1)] <1, telty,T]

and the conditions 20°) of Theorem 5.6 be satisfied.
Then Eq. (1.1) has an isolated closed solution.

Theorem 5.8. Let ai(t) = pp(t) +r¢(f), k = 1,2, where py(t) and r(t), k = 1,2 are real-valued
continuous functions on [ty, T| and the following conditions be satisfied
21%) rp(t) >0, ag(t) <0, t € [to,T],

n 2
220) — ¥ ap(H)xF — ¥ pr(t)xk € QF, t € [to, T).
k=3 k=1

Then Eq. (1.1) has a closed solution on [t, T].

Proof. Consider the Riccati equation

Y 4ty +r(Hy+ap(t) =0, t€ [t T). (5.11)

without loss of generality taking into account the conditions 21°) we can take that r;.(t) > 0, ag(t) <
0, t > tp and have unbounded supports. Then by virtue of Theorem 2.2 the solution y (t) of Eq. (5.11)
with v (t9) = 0 exists on [tp, T] and y4 (T) > 0. Hence,

y+(to) < y+(T). (5.12)

By Lemma 2.10 it follows from the conditions 21°) that Eq. (5.11) has a negative ty-regular solution.
Then by Lemma 2.12 Eq. (5.11) has a negative solution y_(t) on [tg, T] such that

y—(to) = y—(T). (5.13)

It follows from 22°) that {(t) = y(t) is a solution of the inequality (2.4) on [ty, T] and #(t) = y_(t) is
a solution of the inequality (2.3) on [to, T] (since () < 0, {(t) >0, t € [to, T]). Moreover, according
to (5.12) and (5.13)

¢(to) < ¢(t), n(to) = n(T), (5.14)

Obviously, n(t) < ¢(t), t € [to, T]. Then by Corollary 2.1 it follows from (5.14) that Eq. (1.1) has a
closed solution on [ty, T]. The theorem is proved.

Theorem 5.9. Assume ai(t) = pr(t) +re(t), k = 2,n, where pi(t) and ri(t), k = 2,n real-valued
continuous functions on [to, T] such that

R n
a) forsomej=2,3,...n, rp(t) >0, k=j,n, Y r(t) >0, te€ltyT],
k=j

n
Y pr(B)xk € Qo, t € [to, T]
k=2

_ Jo
b) forsomejo=0,1,...,j—1 ax(t) <0, k=0,jo, ¥ ax(t) <0, t€ [ty T]
k=0

Then Eq. (1.1) has a positive isolated closed solution on [to, T).

Proof. By Lemma 2.15 it follows from the conditions a) that for enough large M > 1 the function
n(t) =M, t € [ty, T]is a solution of the inequality (2.30) on [to, T|. By lemma 2.14 it follows from the
conditions b) that for enough small p > 0 (p < 1) the function {(t) = p, t € [ty, T] is a solution of the
inequality (2.19) on [ty, T]. Then by Lemma 2.13 Eq. (1.1) has a positive isolated closed solution on
[to, T]. The theorem is proved.
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6. Some Applications to Planar Autonomous Systems

Let P(x,y) be a polynomial. Consider the function
Ip(8) = sin6 [Py (cos 6, sin 6) P (sin §, cos §) — Py (sin 6, cosf)P(cos 6, sin 8)] +

+ cos 0[Py (sin, cos §) P(cos 6, sin ) — P,

(cos®,sinf)P(sinb,cos )|, t € R.

Definition 6.1. A polynomial P (x,y) is called a separator polynomial ar,simply, a separator if Ip(0) #
0, teR

Hereafter for any polynomial P(x,y) the function Ip () we will call the indicator of separation of
P(x,y) or simply the indicator of P(x,y). Indicate some polynomials with their indicators.

1) P(xy)=x, Ip(d) =1,

2) P(x,y) =x+Ax3, A€R, Ip(0) =1+ A[sin*0 + cos* 8] + [6A + 3A2] sin? 6 cos? ),

3) P(x,y) =« Ip(8) = 3sin?fcos? 6,

4) P(x,y) = x+x° Ip(B) =1+sin®0 + cos® 6 + 5sin* B cos* 8 + 5sin? O cos? 6,

5) P(x,y) =x+Ay, AER, Ip(8) =1— A2

Problem. Describe all separator polynomials.

Definition 6.2. The transformation

¢ =rP(cosb,sinb), ¢ =rP(sinf,cosh), rteR (6.1)

with any separator P (x,y) is called a generalized Prufer transformation.

Next we will see that a generalized Prufer transformation allows to extend the classes of systems
of planar autonomous systems, studied in [25], to which Eq. (1.1) is applicable.

Consider the autonomous system

o =% Plg,v),
k=1

(6.2)
n
¥ =¥ Qg 9).
k=1
where P, Qk, k =1, n are homogeneous polynomials of degree k. In this section we use some results
of previous sections to establish some sufficient conditions for existence of a periodic solution or a

limit cycle of the last system.
The substitution (6.1) reduces (6.2) to the system

r'"P(cosb,sinf) + o’ Ap(0) = i Py(P(cos 8, sind), P(sin 6, cos 8) )rk
k=1

(6.3)
n
'"P(sinh,cos @) +r8'Bp(0) = Y. Q(P(cos,sinb), P(sinh,cosO))rk
k=1
where Ap(0) = —Py(cosb,sind)sin6 + Py (cos,sin6d)cosd, Bp(8) = Pi(sinf,cosd)cost —

Py (sinf,cos#)sin6, 6 € R. Multiplying both sides of the firs equation of the obtained system by
Bp(0) and the second equation of that system by Ap () and subtracting from the first obtained
equation the second one we get

= ki [Bp(0) P (P(cosb,sinf), P(sin6,cos b)) —
=1

— Ap(8)Qx(P(cos8,sin8), P(sin b, cos 0))]r*.
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Similarly, multiplying both sides of the first equation of the system (6.2) by P(sin#, cos#) and both
sides of the second equation of that system by P (cos 6, sin #) and subtraction from the second obtained
equation the first obtained one we get

Ip(0)rd = i [P(cos 6, sin 8) Qx(P(cos B, sin ), P(sin b, cos b)) —
k=1

— P (sin 6, cos ) P (P (cos 6,sin ), P(sin§, cos 0), ) | *

Therefore (6.2) is reduced to the system

P =¥ fr(0)r%,
k=1

(64)
o' = ¥ gil0)r ",
k=1
where
fx(6) = [Bp(8)P(P(cosb,sinf), P(sinb,cosh)) —
— Ap(0)Qk(P(cosb,sinb), P(sinb,cos0))] /Ip(6), (6.5)
gx(0) = [P(cosb,sin0) Qi (P (cosb,sinb), P(sinh,cos f)) —

— P(sin 6, cos 0) P (P (cosb,sin ), P(sin6,cos6))] /Ip(6). (6.6)

In some cases the system (6.2) is reducible to a single equation like Eq. (1.1). Then a closed solution
of the obtained single equation will be represent a periodic orbit for the system (6.2), moreover if
the closed solution is isolated, then it corresponds to a limit cycle for that system (see [25]). First we
consider the system

n—1
¢ =ap+by-+ T [OR(0,9) + (07 + sy + Boy)Gelg. ).
(6.7)
n—1
Y =cptdy+ T [YF@ )+ (097 + dopy + )G9, )],

where F and Gy are homogeneous polynomials of degrees k and k — 1 respectivelyk = 1,n —1, a, b, ¢, d, ay, Br, Yk
1,n — 1 are some real constants.
Let us assume that for some B # £1 the following equalities hold

Yo + AoB + (Hx — ax) B> — BoB° = B,

) 3708+ Ao(1+28%) + (e — i) (2p + B°) — 3Bop® = 1+ 2%,
370B% + A0 (2B + B°) + (ux — ) (1 +28%) — 3Bop = 2B + B2,
YoB+Aof? + (pk —x)p—Po=p* k=1,n—1

Then the substitution
¢ =r(cosf+ Bsinf), ¢ =r(sinf+ Bcosh) (6.8)

reduces (6.7) to the system
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where according to formulae (6.5) and (6.6)

f1(0) = {[a + (b4c)B+ap* cos? 0 — [d+ (b +c)B + ap?] sin® 0 +

1
1-p2
+[b—c+d—dp+(c—b)p? sin9cos€},

frr1(0) = F(cosb + Bsinf,sinf + Bcosf) +

+ [ak cos® 0 + by cos? 0 sin 6 + ¢ cos 0 sin® 6 + d. sin® 9} Gi(cos6 + Bsin6,sin 6 + Bcosb),
A = 1= [1 + ai B+ Bop® — 0B — AoB* — mB],
by = 1 —g2 [P+ + Bo(28 - B*) —10(2B* — 1) — Ao — B,
Ck = [ B? — e+ Bo(1—2B%) — v0(B> —2B) + Ao + kB,
di = [—ﬁ3—ak52 — Bop+10B* + Ao+, k=Tn—1,

g1(0) = 1_1 2{[C+(d—a)ﬁ—b,82] cos? 0+ [d — b —ap + cp?] sin® 0 +

+[d—a+2(c—b)B+(d—a)p sinGcosG}.

Assume g1(6) # 0, 6 € R. Then by considering r as a function of 6 from (6.9) we derive the equation

Z 7(0) 6 €R. (6.10)
—1 gl 6

Theorem 6.1. Let us assume that for some B # +1 the conditions A) and the following conditions be
satisfied.

g1(0) #0, 6 € [0,27], ;’;((%)) = pr(0) +11(0), k = 1,n, where pr(0), r(0), k = 1,n are real-valued

n
continuous functions on [0,27t], such that — Y pi(0)x* € Q, for some j = 2,...,n, () <0, k =
k=1

_ n
j,n, 8 €[0,2m] and for some jo =0,...,j—1, r(0) >0, k=0,jp, 6 € [0,27]. Moreover, Y r;(6) <
k=j

Jo
0, Y r(8) > 0. Then the system (6.7) has a limit cycle.
k=0
Proof. One can verify that the conditions A), the condition g1(8) # 0, 6 € [0,277] and the

transformation (6.8) imply the reduction of the system (6.7) to the single equation (6.10). Then it
follows from the remaining conditions of the theorem, that all conditions of Theorem 5.9 foe Eq. (6.10)
are satisfied. Then the assertion of the theorem is a direct consequence of Theorem 5.9. The theorem is
proved.

Consider the system

n—1
¢’ =ap+by+Pui(99) + X (PFuk(@9) + (92 + i + Boy?) Gk (0, 9) |,
(6.11)

n—1
Y= dy+ Quia(9,9) + T [WFuk(,9) + (1097 + 2009 + 1) Gk 9. 9)|.
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where P,11(x,y) and Q,+1(x,y) are homogeneous polynomials of degree m + 1, F,;x and G, are ho-
mogeneous polynomials of degrees mk and mk — 1 respectively, m € N,
k = 2.n — 1. Assume the conditions A) hold. Then the substitution (6.8) reduces (6.11) to the system

= 1(0) + 10 (0)r T 4+ X 0 (0)rH,
k=2 (6.12)

0 =g .1 (0)r™,
where
f(r)n(k+1) (0) = Fux(cos 6 + Bsinb,sinf + pcos ) +

+ [ak 08> 0 + by cos? 0'sin 6 + ¢, cos 0 sin® O + dj sin® 9} Gk (cos@ + Bsin6,sin6 + Bcosb),

k=1n-1,

99,1“(9) = 1_1‘[32 {(COSG + Bsin€)Qy,41(cos @ + Bsinb,sinb + pcosh) —

— (sin® + B cos0) Py, 11 (cos b + Bsin6,sinf + B cos 9)} :

Assume 921 “ (0) #0, t € R. Then by considering r as a function of 6, from (6.12) we derive the single

equation
dr

%_g +1()[

After the change of variables R = ' from the last equation we get the following equation of type (1.1)

f1(8)r +f(r)n+1(6)7”m+l + Zf(r)nk(a)rmk+1}'
k=2

dR
E_gmm 55 10 + 15 @ R+2f 0)R"|. (6.13)

Theorem 6.2 Assume the conditions A) and the following conditions be satisfied

69,1(8) £0, ZBAE) — p1(6) +1(0), BT = p2(6) + 12(6), 0 € [0,21] where pi(t), t), k=

1,2 are real-valued continuous functions on [0,27t] such that () < 0, he_ >, v pe(t)xk +

n 0
£ S cop v
Then the system (6.12) has a periodic orbit.

Proof. Under the restrictions A) and g9, ,,(6) # 0, 6 € [0,271] the system (6.12) is reducible to Eq.
(6.13). It is clear that the conditions of Theorem 5.8 for Eq. (6.13) are satisfied. Then the assertion of the
theorem is a direct consequence of Theorem 5.8. The theorem is proved.

Theorem 6.3. Assume the conditions A) and the following conditions be satisfied
0 mf _ min0) _ mig(®) _ _
G1(0) # 0, m po(0) +1ro(0), m = p1(0) +11(0), 99’1:(9) = p(0), k=2n0 €
_ n
[0, 27t] where pi(t), ri(t), k =0, v are real-valued continuous functions on [0,27t] such that — Y pi(8)x* €
k=0
R n
o, 0 €[0,2r], forsomej=2,...,,n the inequalities (—1)*r.(0) <0,k =j,n, ¥ () <0, ro(6) >
k=j

0, ro(0) % 0, 6 € [0,27] hold. Then the system (6.12) has a periodic orbit (¢« (t), P« (t)). In particular if
j=2and f r1(0)d0 < O, then (¢ (t), P« (t)) is a limit cycle.
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Proof. As in the case of previous theorem under the restrictions A) and g9, ,(6) # 0, 6 € [0,27]
the system (6.12) is reducible to Eq. (6.13). It is not difficult to verify that the conditions of Corollary
5.1 for Eq. (6.13) are satisfied. Then the assertion of the theorem immediately follows from Corollary
5.1. The theorem is proved.

Denot
3(0) = g%z(@)kzz 1,:(0)] + m
0 =os ftoie}e+ oo~ [} 0oe]
02 ) = x| Ojgmdf} | Ojexp{ Ojg(s)ds}mw], ock

Theorem 6.4. Let the conditions A) and the following conditions be satisfied
99n+1(9) #0

for some
/ ; i (1)
C* >~ min 0/ exp{— 0/ S(s)ds}gMdT, (6.14)
/ ; mfi (1)
C 2 max. 0/ exp{— 0/ S(s)ds}g?ﬂ:mdn (6.15)
the inequalities
o0cr(0) <1, o (8) <1, 6¢€][0,2m], (6.16)
2 2 . i)
ct (exp{o/g(r)dr} 1> > O/exp{ofg(s)ds}g%jl(r)d”r,
: T T i (1)
C <exp{—0/g(T)dr} —1) < O/exp{—O/S(s)ds}g?nJrl(T)dT

are valid.
Then the system (6.12) has a periodic orbit. If the inequalities (6.14) - (6.16) are strict, then the system (6.12) has
a limit cycle.

Proof. The conditions A) imply that the system (6.12) is reducible to Eq. (6.13). It follows from the
conditions of the theorem that the conditions of Theorem 5.6 for Eq. (6.13) are satisfied. Moreover, If
the inequalities (6.14) - (6.16) are strict then the conditions of Theorem 5.7 for Eq. (6.13) are satisfied.
Then the assertion of the theorem is a direct consequence of Theorems 5.6 and 5.7. The theorem is
proved.
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