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Abstract: In this paper we use the comparison method for investigation of first order polynomial 
differential equations. We prove two comparison criteria for these equations. The proved criteria we 
use to obtain some global solvability criteria for first order polynomial differential equations. On the 
basis od these criteria we prove some criteria for existence of a closed solution (of closed solutions) 
for first order polynomial differential equations. The results obtained we compare with some known 
results. Based on obtained results some criteria of existence of periodic orbits or limit cycles for planar 
autonomous systems are proved.
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1. Introduction
Let ak(t), k = 1, n be real-valued continuous functions on [t0, τ0) (t0 < τ0 ≤ ∞). Consider the

first order polynomial differential equation

y′ +
n

∑
n=0

ak(t)yk = 0, t0 ≤ t ≤ τ0. (1.1)

According to the general theory of normal systems of differential equations for every t1 ≥ t0, γ ∈ R
and for any solution y(t) of Eq. (1.1) with y(t1) = γ there exists t2 > t2 such that y(t) is continuable
on [t1, t2). From the point of view of qualitative theory of differential equations an important interest
represents the case t2 = ∞. One of effective ways to study the conditions, under which the case t2 = ∞
holds, is the comparison method. This method has been used in [10,11] to obtain some comparison
criteria for Eq. (1.1) in the case n = 2 (the case of Riccati equations), which were used for qualitative
study of different types of equations (see e. g. [11–23]). In the general case Eq. (1.1) attracts the
attention of mathematicians in the connection with a relation of the problem of existence of closed
solutions of Eq. (1.1) with the problem of determination of the upper bound for the number of limit
cycles in two-dimensional polynomial vector fields of degree n. (see [1,2,7,24] the 16th problem of
Hilbert [recall that a solution y(t) of Eq. (1.1), existing on any interval [t0, T], is called closed on that
interval, if y(t0) = y(T)]) and many works are devoted to it (see [4,8,9] and cited works therein).
Significant results in this direction have been obtained in [25]. Among them we point out the following
result.

Theorem 1.1. ([25, p.3, Theorem 1]). Let us assume that a0(t) ≡ 0,
T∫

t0

a1(t)dt > 0. Let us assume that there exists some j = 2, . . . , n such that ak(t) ≤ 0 and
n
∑

k=j
ak(t) < 0 for all

k = j, . . . , n and t ∈ [t0, T]. Then there exists a positive isolated closed solution of Eq. (1.1) on [t0, T].
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■
This and other theorems of work [25] were obtained by the use of a perturbation method and the

contracting mapping principle. Note that an interpretation of Theorem 1.1 is the following

Theorem 1.1∗. Let us assume that a0(t) ≡ 0,
T∫

t0

a1(t)dt > 0. Let us assume that there exists some

j = 2, . . . , n such that (−1)kak(t) ≥ 0 and
n
∑

k=j
(−1)kak(t) > 0 for all k = j, . . . , n and t ∈ [t0, T]. Then there

exists a negative isolated closed solution of Eq. (1.1) on [t0, T].
■

Note also that the class of equations, described by conditions of Theorem 1.1 (Theorem 1.1∗) is
not so wide, whereas the classes of equations described by other theorems of work [25] are very wide,
but unlike of Theorem 1.1 the other theorems of work [25] are conditional (the conditions of these
theorems contain an undetermined parameter λ0, depending (may be) on the coefficients of Eq. (1.1)).

In this paper we use the comparison method for investigation of Eq. (1.1) for the case n ≥ 3. In
section 3 we prove two comparison criteria for Eq. (1.1). These criteria we use in section 4 to obtain
some global solvability criteria for Eq. (1.1). On the basis od these criteria in section 5 we prove some
criteria for existence of a closed solution (of closed solutions) of Eq. (1.1), essentially extending the
class of equations, described by conditions of Theorem 1.1 (of Theorem 1.1∗). The results obtained we
compare with results of work [25]. In section 6 we use some results of section 5 to prove criteria of
existence of periodic orbits or limit cycles for planar autonomous systems.

2. Auxiliary Propositions
Denote

D(t, u, v) ≡
n

∑
k=1

ak(t)Sk(u, v),

where Sk(u, v) ≡
k−1
∑

j=0
ujvk−j−1, u, v ∈ R, k = 1, n, t ≥ t0. Let bk(t), k = 0, n be real-valued continu-

ous functions on [t0, ∞). Consider the equation

y′ +
n

∑
k=0

bk(t)yk = 0, t ≥ t0. (2.1)

Let y0(t) and y1(t) be solutions of the equations (1.1) and (2.1) respectively on [t1, t2) ⊂ [t0, ∞). Then

[y0(t)− y1(t)]′ +
n

∑
k=0

ak(t)[yk
0(t)− yk

1(t)] +
n

∑
k=0

[ak(t)− bk(t)]yk
1(t) = 0, t ∈ [t1, t2).

It follows from here and from the obvious equalities yk
0(t)− yk

1(t) = [y0(t)− y1(t)]Sk(y0(t), y1(t)),
k = 1, n, that

[y0(t)− y1(t)]′ + D(t, y0(t), y1(t))[y0(t)− y1(t)] +
n

∑
k=0

[ak(t)− bk(t)]yk
1(t) = 0, t ∈ [t1, t2).

It is clear from here that y0(t)− y1(t) is a solution of the linear equation

x′ + D(t, y0(t), y1(t))x +
n

∑
k=0

[ak(t)− bk(t)]yk
1(t) = 0, t ∈ [t1, t2).

Then by the Cauchy formula we have

y0(t)− y1(t) = exp
{
−

t∫
t1

D(τ, y0(τ), y1(τ))dτ

}[
y0(t1)− y1(t1)−
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−
t∫

t1

exp
{ τ∫

t1

D(s, y0(s), y1(s))ds
}( n

∑
k=0

[ak(τ)− bk(τ)]

)
dτ

]
, t ∈ [t1, t2). (2.2)

Consider the differential inequality

η′ +
n

∑
k=0

ak(t)ηk ≥ 0, t0 ≤ t < τ0. (2.3)

Definition 2.1. A continuous on [t0, τ0) (τ0 ≤ ∞) function η∗(t) is called a sub solution of the inequality
(2.3) on [t0, τ0) if for every t1 ∈ [t0, τ0) there exists a solution ηt1(t) of the inequality (2.3) on [t0, t1] such that
ηt1(t0) ≥ η∗(t0), ηt1(t1) = η∗(t1).

Consider the differential inequality

ζ ′ +
n

∑
k=0

ak(t)ζk ≤ 0, t0 ≤ t < τ0. (2.4)

Definition 2.2. A continuous on [t0, τ0) (τ0 ≤ ∞) function ζ∗(t) is called a super solution of the
inequality (2.4) on [t0, τ0) if for every t1 ∈ [t0, τ0) there exists a solution ζt1(t) of the inequality (2.4) on [t0, t1]

such that ζt1(t0) ≤ ζ∗(t0), ζt1(t1) = ζ∗(t1).
Obviously any solution η(t) (ζ(t)) of the inequality (2.3) ((2.4)) on [t0, τ0) is also a sub (super)

solution of that inequality on [t0, τ0).
Lemma 2.1. Let y(t) be a solution of Eq. (1.1) on [t0, τ0) and η∗(t) be a sub solution of the inequality

(2.3) on [t0, τ0) such that y(t0) ≤ η∗(t0). Then y(t) ≤ η∗(t), t ∈ [t0, τ0), and if y(t0) < η∗(t0), then
y(t) < η∗(t), t ∈ [t0, t1).

Proof. It is enough to show that if η(t) is a solution of the inequality (2.3) on [t0, τ0) with
y(t0) ≤ η(t0), then

y(t) ≤ η(t), t ∈ [t9, τ0). (2.5)

and if y(t0) < η(t0), then
y(t) < η(t), t ∈ [t0, τ0). (2.6)

We set ã0(t) ≡ −η′(t)−
n
∑

k=1
ak(t)ηk(t), t ∈ [t0, τ0). By (2.3) we have

ã0(t) ≤ a0(t), t ∈ [t0, τ0). (2.7)

Obviously η(t) is a solution of the equation

y′ +
n

∑
k=1

ak(t)yk + ã0(t) = 0, t ∈ [t0, τ0)

on [t0, τ0). Then in virtue of (2.2) we have

y0(t)− η(t) = exp
{
−

t∫
t0

D(τ, y(τ), η(τ))dτ

}[
y(t0)− η(t0)+

+

t∫
t1

exp
{ τ∫

t1

D(s, y(s), η(s))ds
}(

ã0(τ)− a0(τ)

)
dτ

]
, t ∈ [t0, τ0).

This together with (2.7) implies that if y(t0) ≤ η(t0) (y(t0) < η(t0)), then (2.6) ((2.7)) is valid. The
lemma is proved.

By analogy with the proof of Lemma 2.1 one can prove the following lemma
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Lemma 2.2. Let y(t) be a solution of Eq. (1.1) on [t0, τ0) and ζ∗(t) be a super solution of the inequality
(2.4) on [t0, τ0) such that ζ∗(t0) ≤ y(t0). Then ζ∗(t) ≤ y(t), t ∈ [t0, τ0), and if ζ(t0) < y(t0), then
ζ(t) < y(t), t ∈ [t0, τ0).

■
Remark 2.1. It is clear that Lemma 2.1 (Lemma 2.2) remains valid if in the case τ0 < +∞ the interval

[t0, τ0) is replaced by [t0, τ0] in it.
Let us introduce some denotations

1) Ων ≡ {P(x)|P(x) ≥ 0, x ≥ ν}, ν ∈ R, where P(x) ≡
n
∑

k=0
pkxk, x ∈ R is any polynomial with real

coefficients pk ∈ R, k = 0, n.
2) By Ω−∞ we denote the set

⋂
ν∈R

Ων.

3) Ω∗
0 ≡ {P(x)| if x ≥ 0, then P(x) ≥ 0, if x < 0, then P(x) ≤ 0, where

P(x) ≡
n
∑

k=0
pkxk, x ∈ R is any polynomial with real coefficients pk ∈ R, k = 0, n}.

It is clear, that if ν1 < ν2, then Ων1 ⊂ Ων2 and if P1(x) ∈ Ω−∞, P2(x) is any polynomial,
then P1(P2(x)) ∈ Ω−∞. If P1(x) ∈ Ω0, P2(x) ∈ Ων, then P1(P2(x)) ∈ Ων, ν ∈ R

⋃{−∞}. If

Pj(x) ∈ Ων, λj > 0, j = 1, N, then
N
∑

j=1
λjPJ(x) ∈ Ων, ν ∈ R

⋃{−∞}. Obviously, if P1(x) ∈

Ω∗
0 , P2(x) ∈ Ω−∞, then P1(x)P2(x) ∈ Ω∗

0 . If Pj(x) ∈ Ω∗
0 , λj > 0, j = 1, N, then

N
∑

j=1
λjPJ(x) ∈ Ω∗

0 .

Obviously Ω∗
0 ⊂ Ω0. If Pj(x) ∈ Ω∗

0 , λj > 0, j = 1, N, then
N
∑

j=1
λjPJ(x) ∈ Ω∗

0 .

Assume ak(t) = pk(t) + rk(t), k = 0, n, where pk(t) and rk(t), k = 0, n are real-valued continu-
ous functions on [t0, ∞). For any T > t0 and j = 2, . . . , n we set

MT,j ≡ max
{

1, max
τ∈[t0,T]

{ j−1

∑
k=0

|rk(τ)|
/ n

∑
k=j

rk(τ)

}}
, M∗

T,j(t) ≡


MT,j, t ∈ [t0, T],

Mt,j, t > T.

Lemma 2.3. Let for some j = 2, . . . , n the inequalities rk(t) ≥ 0, k = j, n,
n
∑

k=j
rk(t) > 0, t ≥ t0 be satisfied and let

n
∑

k=0
pk(t)xk ∈ Ω0, t ≥ t0. Then M∗

T,j(t) is a sub solution of

the inequality (2.3) on [t0, ∞).
Proof. It is obvious that M∗

T,j(t) is a nondecreasing and continuous function on [t0, ∞). Let t1 > t0

be fixed. To prove the lemma it is enough to show that ηt1(t) ≡ Mt,j, t ∈ [t0, t1] is a solution of the

inequality (2.3) on [t0, t1]. Since rk(t) ≥ 0, k = j, n, t ≥ t0 we have
n
∑

k=j
rk(t)ηk ≥

[ n
∑

k=j
ak(t)

]
η j for all

η ≥ 1, and t ≥ t0. Then under the restriction Rj(t) ≡
n
∑

k=j
rk(t) > 0, t ≥ t0 we get

n

∑
k=0

rk(t)ηk ≥ Rj(t)η j
[

1 −
j−1

∑
k=0

|rk(t)|
/

Rj(t)η
]

for all η ≥ 1, t ≥ t0. It follows from here that ηt1(t) is a solution of the inequality

η′ +
n

∑
k=0

rk(t)ηk ≥ 0

on [t0, t1]. This together with the condition
n
∑

k=0
pk(t)xk ∈ Ω0 of the theorem implies that ηt1(t) is a

solution of the inequality (2.3) on [t0, t1]. The lemma is proved.
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For any γ ∈ R and t1 ≥ t0 we set

ηγ,t1(t) ≡ γ + exp
{
−

t∫
t0

a1(τ)dτ

}[
c(t1)−

t∫
t0

exp
{ τ∫

t0

a1(s)ds
}

a0(τ)dτ

]
, t ∈ [t0, t1],

where c1(t1) ≡ max
ξ∈[t0,t1]

ξ∫
t0

exp
{ τ∫

t0

a1(s)ds
}

a0(τ)dτ.

Lemma 2.4. Let the following conditions be satisfied.
(1) an(t) ≥ 0, t ≥ t0.
(2) ak(t) = an(t)ck(t) + pk(t), k = 2, n − 1, t ≥ t0, where ck(t), k = 2, n − 1 are bounded functions on
[t0, t1] for every t1 ≥ t0 and

(3)
n−1
∑

k=2
pk(t)xk ∈ ΩNT , t ≥ t0, where

Nt1 ≡ max
{

1, sup
t∈[t0,t1]

n

∑
k=2

|ck(t)|
}

, t1 ≥ T, for some T ≥ t0.

Then

η∗
T(t) ≡


ηNT ,T(t), t ∈ [t0, T],

ηNt ,t(t), t ≥ T

is a sub solution of the inequality (2.3) on [t0, ∞).
Proof. Obviously, η∗

T(t) ∈ C([t0, ∞)). Therefore, to prove the lemma it is enough to show that for
every t1 ≥ T the function ηNt1 ,t1(t) is a solution of the inequality (2.3) on [t0, t1] and ηNt1 ,t1(t0) ≥ η∗

T(t0).
The last inequality follows immediately from the definition of ηNt1 ,t1(t). Consider the function

F(t, u) ≡ 1 +
cn−1(t)

u
+ . . . +

c2(t)
un−2 , t ∈ [t0, t1], u ≥ 1 (t1 ≥ T).

Obviously F(t, u) ≥ 1 −

n−1
∑

k=2
|ck(t)|

u ≥ 0 for all t ∈ [t0, t1] and for all u ≥ Nt1 . Moreover, ηNt1 ,t1(t) ≥
Nt1 , t ∈ [t0, t1]. Hence,

F(t, ηNt1 ,t1(t)) ≥ 0, t ∈ [t0, t1]. (2.8)

It is clear that ηNt1 ,t1(t) ∈ C1([t0, t1]) and η′
Nt1 ,t1

(t) + a1(t)ηNt1 ,t1(t) + a0(t) = 0, t ∈ [t0, t1]. It follows
from here and the condition (2) that

η′
Nt1 ,t1

(t) +
n

∑
k=0

ak(t)ηk
Nt1 ,t1

(t) = an(t)ηn
Nt1 ,t1

(t)F(t, ηNt1 ,t1(t)) +
n−1

∑
k=2

pk(t)ηk
Nt1 ,t1

(t),

t ∈ [t0, t1]. This together with the conditions (1), (2) and the inequality (2.8) implies that ηNt1 ,t1(t) is a
solution of the inequality (2.3) on [t0, t1]. The lemma is proved.

We set

ηc(t) ≡ exp
{
−

t∫
t0

a1(τ)dτ

}[
c −

t∫
t0

exp
{ τ∫

t0

a1(s)ds
}

a0(τ)dτ

]
, t ≥ t), c ∈ R.

Lemma 2.5. Let the following conditions be satisfied.
(4) a2(t) > 0, t ∈ [t0, T],
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(5) for some c ≥ max
t∈[t0,T]

t∫
t0

exp
{ τ∫

t0

a1(s)ds
}

a0(τ)dτ the inequality

n
∑

k=3
|ak(t)|ηk−2

c (t) ≤ a2(t), t ∈ [t0, T] is valid.

Then the function ηc(t) is a nonnegative solution of the inequality (2.3) on [t0, T].
Proof. Obviously

ηc(t) ≥ 0, t ∈ [t0, T] (2.9)

and
η′

c(t) + a1(t)ηc(t) + a0(t) = 0, t ∈ [t0, T]. (2.10)

It follows from the conditions (4), (5) and the inequality (2.9) that

n

∑
k=2

ak(t)ηk
c (t) = a2(t)η2

c (t)

[
1 +

n
∑

k=3
ak(t)ηk−2

c (t)

a2(t)

]
≥ a2(t)η2

c (t)

[
1 −

n
∑

k=3
ak(t)ηk−2

c (t)

a2(t)

]
≥ 0,

t ∈ [t0, T]. This together with (2.9) and (2.10) implies that ηc(t) is a nonnegative solution of the
inequality (2.3) on [t0, T]. The lemma is proved.

We set

α(t) ≡
n

∑
k=2

|ak(t)| − a1(t), θc(t) ≡ exp
{ t∫

t0

α(τ)dτ

}[
c −

t∫
t0

exp
{
−

τ∫
t0

α(s)ds
}

a0(τ)dτ

]
,

t ≥ t0, c ∈ R.

Lemma 2.6. Let for some c ≥ max
t∈[t0,T]

t∫
t0

exp
{
−

τ∫
t0

α(s)ds
}

a0(τ)dτ the inequality θc(t) ≤ 1, t ∈ [t0, T]

be satisfied. Then θc(t) is a nonnegative solution of the inequality (2.3) on [t0, T].
Proof. It is obvious that

θc(t) ≥ 0, t ∈ [t0, T]. (2.11)

Show that θc(t) satisfies (2.3) on [t0, T]. We have

n

∑
k=0

ak(t)θk
c (t) =

( n

∑
k=2

|ak(t)|
)

θc(t) +
n

∑
k=2

ak(t)θk
c (t) + a0(t)− α(t)θc(t), t ∈ [t0, T]. (2.12)

Obviously,
θ′c(t) + a0(t)− α(t)θc(t) = 0, t ∈ [t0, T]. (2.13)

It follows from here and (2.12) that if
n
∑

k=2
|ak(t)| = 0 for some fixed t ∈ [t0, T], then θc(t) satisfies (2.3) in

t. Assume
n
∑

k=2
|ak(t)| ̸= 0 for a fixed t ∈ [t0, T]. Then it follows from the condition θc(t) ≤ 1, t ∈ [t0, T]

of the lemma and (2.11) that

( n

∑
k=2

|ak(t)|
)

θc(t) +
n

∑
k=2

ak(t)θk
c (t) ≥

( n

∑
k=2

|ak(t)|
)

θc(t)

[
1 −

n
∑

k=2
|ak(t)|θ2

c (t)

n
∑

k=2
|ak(t)|θc(t)

]
≥ 0

for that fixed t. This together with (2.12) and (2.13) implies that θc(t) satisfies (2.3) in that fixed t.
Hence, θc(t) satisfies (2.3) for all t ∈ [t0, T]. The lemma is proved.

Let F(t, Y) be a continuous in t and continuously differentiable in Y vector function on [t0, ∞)×
Rm. Consider the nonlinear system

Y′ = F(t, Y), t ≥ t0. (2.14)
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Every solution Y(t) = Y(t, t0, Y0) of this system exists either only a finite interval [t0, T) or is continu-
able on [t0, ∞)

Lemma 2.7([5, p. 204, Lemma]). If a solution Y(t) of the system (2.14) exists only on a finite interval
[t0, T), then

||Y(t)|| → ∞ as t → T − 0,

where ||Y(t)|| is any euclidian norm of Y(t) for every fixed t ∈ [t0, T).
■

Lemma 2.8. For k odd the inequality

Sk(u, v) ≥ 0, u, v ∈ R is valid.

Proof. If u = 0, then

Sk(u, v) = vk−1 = v2m ≥ 0, v ∈ R, (m ∈ Z+). (2.15)

For u ̸= 0 we have

Sk(u, v) = u2mPk(x), x ≡ v
u

, Pk(x) ≡
k−1

∑
j=0

xj, x ∈ R. (2.16)

Since k − 1 is even all roots of Pk(x) are complex (not real). Besides Pk(0) = 1 > 0. Hence, Pk(x) >
0, x ∈ R. This together with (2.15) and (2.16) implies that Sk(u, v) ≥ 0 for all u, v ∈ R.. The lemma is
proved.

Lemma 2.9 For k even the inequality

∂Sk(u, v)
∂u

≥ 0, u, v ∈ R is valid.

Proof. Since ∂Sk(u,v)
∂u = (k − 1)uk−2 + . . . + 2uvk−3 + vk−2, u, v ∈ R and k is even, we have

∂Sk(u, v)
∂u

∣∣∣
u=0

= (k − 1)u2m ≥ 0, u ∈ R, (m ∈ Z+). (2.17)

For u ̸= 0 the following equality is valid

∂Sk(u, v)
∂u

= u2mQk(x), x ≡ v
u

, Qk(x) ≡
k−1

∑
j=0

(j + 1)xj, x ∈ R. (2.18)

Consider the polynomials qj(x) = (j + 1)x2j(1 + x2), j = 0, 1, . . .. Obviously,

qj(x) ≥ 0, x ∈ R, j = 0, 1, 2, . . . . (2.19)

and
q0(x) + (k − 1)x2m ≥ 0, x ∈ R, m ∈ Z+. (2.20)

It is not difficult to verify that

Qk(x) = q0(x) + . . . + q2(m−1)(x) + (k − 1)x2m, x ∈ R, m ∈ Z+.

This together with (2.17)-(2.20) implies that ∂Sk(u,v)
∂u ≥ 0, u, v ∈ R. The lemma is proved.

Let f (t, u) be a real-valued continuous function on [t0, T]×R. Consider the first order differential
equation

y′ = f (t, y), t ∈ [t0, T] (2.21)
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and the differential inequalities
ζ ′ ≤ f (t, ζ), t ∈ [t0, T], (2.22)

η′ ≥ f (t, η), t ∈ [t0, T]. (2.23)

Theorem 2.1 ([3, Theorem 2.1]) Let ζ(t) and η(t) be solutions of the inequalities (2.22) and (2.23) respec-
tively on [t0, T] such that ζ(t) ≤ η(t), t ∈ [t0, T], ζ(t0) ≤ ζ(T),
η(t0) ≥ η(T). If any solution y(t) of the Cauchy problem y = f (t, u), y(t0) = y0 ∈ [ζ(t0), η(t0)] is unique,
then Eq. (2.1) has a solution y∗(t) on [t0, T] such that y∗(t0) = y∗(T),
ζ(t) ≤ y∗(t) ≤ η(t), t ∈ [t0, T]

Corollary 2.1. Let ζ(t) and η(t) be solutions of the inequalities (2.22) and (2.23) respectively on [t0, T]
such that η(t) ≤ ζ(t), t ∈ [t0, T], ζ(t0) ≤ ζ(T), η(t0) ≥ η(T). If any solution y(t) of the Cauchy problem
y = f (t, u), y(T) = y0 ∈ [η(T), ζ(T)] is unique, then Eq. (2.1) has a solution y∗(t) on [t0, T] such that
y∗(t0) = y∗(T),
η(t) ≤ y∗(t) ≤ ζ(t), t ∈ [t0, T]

Proof. In Eq. (2.21) and inequalities (2.22), (2.23) we substitute respectively t → −t, , ζ → η̃, η →
ζ̃. We obtain respectively

y′ = f1(t, y), t ∈ [−T,−t0], (2.24)

η̃′ ≥ f1(t, η̃), t ∈ [−T,−t0],

ζ̃ ′ ≤ f1(t, ζ̃), t ∈ [−T,−t0],

where f1(t, u) ≡ − f (t, u), t ∈ [−T,−t0], u ∈ R. Obviously it follows from the conditions of the
corollary that all the conditions of Theorem 2.1 for the last equation with f (t, u) ≡ f1(t, u), ζ(t) ≡
ζ̃(t), η(t) ≡ η̃(t) are satisfied. Hence, Eq. (2.24) has a closed solution y∗(t) on [−T,−t0] such that
y∗(t0) = y∗(T), ζ̃(t) ≤ y∗(t) ≤ η̃(t), t ∈ [t0, T]. It follows from here that y(t) ≡ y∗(−t) is the
required closed solution of Eq. (2.21) on [t0, T]. The corollary is proved.

Let t0 < t1 < . . . be a finite or infinite sequence such that tk ∈ [t0, τ0], k = 0, 1, ....
Definition 2.3. The sequence {tk} we will call an usable sequence for the interval [t0, τ0), if the maximum

of the numbers tk coincides with τ0 for finite {tk} , and lim
k→∞

tk = τ0 for infinite {tk}.

Let a(t), b(t) and c(t) be real valued continuous functions on [t0, τ0) (τ ≤ ∞). Consider the
Riccati equation

y′ + a(t)y2 + b(t)y + c(t) = 0, t ∈ [t0, τ0). (2.25)

Definition 2.4. A solution of Eq. (2.25) is called t1-regular, if it exists on [t1, ∞) (here t0 ≤ t1 < τ0 = ∞).
Definition 2.5 A t1-regular solution y0(t) is called t1-normal, if there exists δ > 0 such that every

solution y(t) od Eq. (2.25) with |y(t1)− y0(t1)| < δ is t1-regular, otherwise it is called t1-extremal.
Lemma 2.10 ([23, Theorem 2.3, I I0]). Let a(t) ≥ 0, c(t) ≤ 0, t ≥ t0, and let a(t) and c(t) have

unbounded supports. Then the unique t0-extremal solution of Eq. (2.25) is negative.
Denote by reg(t1) the set of initial values γ ∈ R for which the solution y(t) of Eq. (2.25) with

y(t1) = γ exists on [t1, ∞).
Lemma 2.11 ([22, Lemma 2.1]). Let Eq. (2.25) has a t1-regular solution. If a(t) ≥ 0, t ≥ t0 and has an

unbounded support, then reg(t1) = [y∗(t1), ∞), where y∗(t) is the unique t1-extremal solution of Eq. (2.25).
Theorem 2.2 ([11, Theorem 4.1]). Assume a(t) ≥ 0, t ∈ [t0, τ0) and

t∫
tk

exp


τ∫

tk

[
b(s)− a(s)

( s∫
tk

exp
{
−

s∫
ξ

b(ζ)dζ

}
c(ξ)dξ

)]
ds

c(τ)dτ ≤ 0, t ∈ [tk, tk+1),
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k = 1, 2, ... , where {tk} is an usable sequence for [t0, τ0). Then for every γ ≥ 0 Eq. (2.25) has a solution y0(t)
on [t0, τ0), satisfying the initial condition y0(t0) = γ, and y0(t) ≥ 0, t ∈ [t0, τ0).

Remark 2.1. Theorem 2.2 remains valid if for τ0 < ∞ we replace [t0, τ0) by [t0, τ0] in it.
Lemma 2.12. Let a(t) ≥ 0, t ≥ t0 has an unbounded support and let Eq. (2.25) has a negative t0-

regular solution. If a(t) > 0, t ∈ [t0, T], then Eq. (2.25) has a negative solution y−(t) on [t0, T] such that
y−(t0) ≥ y−(T).

Proof. By Lemma 2.11 it follows from the conditions of the lemma that Eq. (2.25) has the unique
t0-extremal solution y∗(t) < 0, t ≥ t0. Let γ− be the lower bound of the initial values γ such that the
solutions of Eq. (2.25) with y(t0) = γ exists on [t0, T]. Obviously, γ− < y∗(t0) < 0. Assume γ− > −∞.
Then since the solutions of Eq. (2.25) continuously depend on their initial values the solution yγ−(t)
with yγ−(t0) = γ− exists on [t0, T) and lim inf

t→T−0
yγ−(t) = −∞. We claim that there exists a solution

y−(t) of Eq. (2.25) with y(t0) ∈ (γ−, y∗(t0)] such that y−(t0) ≥ y−(T) (obviously by the uniqueness
theorem y−(t) < 0, t ∈ [t0, T]). Suppose this is not true. Then for every solution y(t) of Eq. (2.25)
with y(t0) ∈ (γ−, y∗(t0)] the inequality

y(T) > y(t0) (2.26)

is valid. Let tk < T, k = 1, 2, . . . be a infinite sequence such that lim
k→∞

tk = T,

lim
k→∞

yγ−(tk) = −∞. Since the solutions of Eq. (2.25) continuously depend on their initial values

for every k = 1, 2, . . . we chose γk, k = 1, 2, . . . such that for the solutions yk(t) of Eq. (2.25) with
yk(tk) = γk, k = 1, 2, . . . the inequalities |yk(tk)− yγ−(tk)| < 1. k = 1, 2, . . . are valid. Therefore,

lim
k→∞

yk(tk) = −∞. (2.27)

We set mk ≡ min
t∈[t0,T]

yk(t), k = 1, 2, . . . and assume yk(τk) = mk, k = 1, 2, . . .. Then it follows from

(2.26), (2.27) and the inequalities yk(t0) > γ−, k = 1, 2, . . . that y′k(τk) = 0 for all enough large k and
lim
k→∞

yk(τk) = −∞ then since a(t) > 0, t ∈ [t0, T] we get y′k(τk) + a(τk)y2
k(τk) + b(τk)yk(τk) + c(τk) > 0

for all enough large k. We obtain a contradiction. Hence, the claim for the case γ− > −∞. To
complete the proof of the lemma it is enough to show that the supposition γ− = −∞ leads to a
contradiction. Assume γ− = −∞. Let then yk(t), k = 1, 2, . . . are the solutions of Eq. (2.25) with
yk(t0) = −k, k = 1, 2, . . . . Then yk(t), k = 1, 2, . . . exist on [t0, T]. Let mk ≡ min

t∈[t0,T]
yk(t), k = 1, 2, . . .

and yk(τk) = mk, k = 1, 2, . . .. Obviously,if τk = t0, then y′k(τk) ≥ 0, otherwise y′k(τk) = 0 (since
according to assumption (2.26) yk(t0) < yk(T)). Hence, since a(t) > 0, t ∈ [t0, T], we have

y′k(τk) + a(τk)y2
k(τk) + b(τk)yk(τk) + c(τk) ≥ a(τk)k2 − |b(τk)|k − |c(τk)| > 0

for all enough large k. We obtain a contradiction, completing the proof of the lemma.
For any real-valued continuous functions rk(t), k = 0, 1, 2 on [t0, ∞) we set

Iγ(t) ≡ γ exp
{
−

t∫
t0

r1(τ)dτ

}
+

t∫
t0

exp
{
−

t∫
τ

r1(s)ds
}
|r0(τ)|dτ, t ≥ t0.

Theorem 2.3. Assume ak(t) = pk(t) + rk(t), k = 0, 2, t ≥ t0, where pk(t), rk(t),

k = 0, 2 are real-valued continuous functions on [t0, τ0), r2(t) ≥ 0,
2
∑

k=0
pk(t)xk +

+
n
∑

k=3
ak(t)xk ∈ Ω0, t ∈ [t0, τ0) and

t∫
tk

exp


τ∫

tk

[
r1(s)− r2(s)

( s∫
tk

exp
{
−

s∫
ξ

r1(ζ)dζ

}
r0(ξ)dξ

)]
ds

r0(τ)dτ ≤ 0, (2.28)
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t ∈ [tk, tk+1), k = 1, 2, ... where {tk} is an usable sequence for [t0, τ0). Then for every γ ≥ 0 the inequality
(2.3) has a solution η0

γ(t) on [t0, τ0), satisfying the initial condition η0
γ(t0) = γ, and 0 ≤ η0

γ(t) ≤ Iγ(t), t ∈
[t0, τ0).

Proof. By Theorem 2.2 it follows from the conditions r2(t) ≥ 0, t ∈ [t0, τ0) and (2.28) that for
every γ ≥ 0 any solution yγ(t) of the Riccati equation

y′ + r2(t)y2 + r1(t)y + r0(t) = 0, t ∈ [t0, τ0)

with yγ(t0) = γ exists on [t0, τ0) and is nonnegative. It follows from here and from the condition
w
∑

k=0
pk(t)xk +

n
∑

k=3
ak(t)xk ∈ Ω0, t ∈ [t0, τ0) of the theorem that η0

γ(t) ≡ yγ(t) is a nonnegative solution

of the inequality (2.3) on [t0, τ0) for every γ ≥ 0. Note that we can interpret yγ(t) as a solution of the
linear equation

x′ + [r2(t)yγ(t) + r1(t)]x + r0(t) = 0, t ≥ t0.

Then by the Cauchy formula we have

yγ(t) = γ exp
{
−

t∫
t0

[r2(τ)yγ(τ) + r1(τ)]dτ

}
−

t∫
t0

exp
{
−

t∫
τ

[r2(s)yγ(s) + r1(s)]ds
}

r0(τ)dτ,

t ≥ t0. Hence, 0 ≤ η0
γ(t) = yγ(t) ≤ Iγ(t), t ≥ t0. The theorem is proved.

Consider the differential inequalities

ζ ′ < f (t, ζ), t ∈ [t0, T], (2.29)

η′ > f (t, η), t ∈ [t0, T]. (2.30)

Lemma 2.13([25. Lemma A2]) Let us assume that f is continuous in t and analytic in y. If there
exist solutions ζ(t) and η(t) of the inequalities (2.29) and (2.30) respectively on [t0, T] such that ζ(t0) ≤
ζ(T), η(t0) ≥ η(T), ζ(t) < η(t), t ∈ [t0, T] (or ζ(t0) ≥ ζ(T), η(t0) ≤ η(T), ζ(t) > η(t), t ∈
[t0, T]), then Eq. (2.21) has a isolated closed solution y(t) on [t0, T] such that ζ(t) < y(t) < η(t), t ∈ [t0, T]
(respectively η(t) < y(t) < ζ(t), t ∈ [t0, T]).

Lemma 2.14 Assume for a j = 0, 1, . . . , n − 1 the inequalities ak(t) ≤ 0,
j

∑
k=0

ak(t) < 0, t ∈ [t0, T] are

satisfied. Then there exists ρ ∈ (0, 1) such that ζ(t) ≡ ρ is a solution of the inequality (2,29) on [t0, T].
Proof. For any ρ ∈ (0, 1) we have a0(t) + a1(t)ρ + . . . + aj(t)ρj + aj+1(t)ρj+1 + . . . an(t)ρn ≤

[a0(t) + a1(t) + . . . aj(t)]ρj + [|aj+1(t)| + . . . + |an(t)|]ρj+1 ≤

≤ A0
j (t)ρ

j
[

1 −
(

max
t∈[t0,T]

n
∑

k=j+1
|ak(t)|

|A0
j (t)|

)
ρ

]
, where A0

j (t) ≡ a0(t) + . . . + aj(t), t ∈ [t0, T]. Hence, for

0 < ρ < min
{

1,
(

max
t∈[t0,T]

n
∑

k=j+1
|ak(t)|

|A0
j (t)|

)−1}
(it is assumed that the trivial case

n
∑

k=j+1
|ak(t)| ≡ 0, for

which the lemma is obvious, is excluded) ζ(t) ≡ 0, t ∈ [t0, T] is a solution of the inequality (2.29). The
lemma is proved.

Lemma 2.15. Assume ak(t) = pk(t) + rk(t), k = 0, n, t ∈ [t0, T], where pk(t), rk(t),
k = 0, n are real-valued continuous functions on [t0, T] such that for some j = 2, . . . , n,

rk(t) ≥ 0, k = j, n, Rj(t) ≡
n
∑

k=j
rk(t) > 0,

n
∑

k=0
pk(t)xk ∈ Ω0, t ∈ [t0, T]. Then there exists M > 1

such that η(t) ≡ M, t ∈ [t0, T] is a solution of the inequality (2.30) on [t0, T].
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Proof. It is clear from the proof of Lemma 2,3 that for M > max{1, MT,j} the inequality
n
∑

k=0
rk(t) >

0, t ∈ [t0, T] is satisfied. Then since
n
∑

k=0
pk(t)Mk ≥ 0, t ∈ [t0, T] (as for as

n
∑

k=0
pk(t)xk ∈ Ω0, t ∈ [t0, T])

we have
n
∑

k=0
ak(t)Mk > 0, t ∈ [t0, T]. Therefore η(t) ≡ M, t ∈ [t0, T] is a solution of the inequality

(2,30) on [t0, T]. The lemma is proved.

Lemma 2.16. Let the inequalities
n
∑

k=2
|ak(t)| > 0, θc(t) < 1, t ∈ [t0, T] for some c >

max
t∈[t0,T]

T∫
t0

exp
{
−

τ∫
t0

α(s)ds
}

a0(τ)dτ. Then θc(t) is a solution of the inequality (2.30).

Proof. Obviously
θc(t) > 0, t ∈ [t0, T]. (2.31)

It was shown in the proof of Lemma 2.6 that

( n

∑
k=2

|ak(t)|
)

θc(t) +
n

∑
k=2

ak(t)θk
c (t) ≥

( n

∑
k=2

|ak(t)|
)

θc(t)

[
1 −

n
∑

k=2
|ak(t)|θ2

c (t)

n
∑

k=2
|ak(t)|θc(t)

]
, t ∈ [t0, T].

This together with (2.13), (2.31) and the conditions
n
∑

k=2
|ak(t)| > 0, θc(t) < 1, t ∈ [t0, T] of the lemma

implies that θc(t) is a solution of the inequality (2.30) on [t0, T]. The lemma is proved.

3. Comparison Criteria
In this section we prove two comparison criteria for Eq. (1.1). These criteria with the aid of section

2 we use in section 4 to obtain some global solvability criteria for Eq. (1.1).
Theorem 3.1. Let y1(t) be a solution of Eq. (2.1) on [t0, ∞) and η∗(t) be a sub solution of the inequality

(2.3) on [t0, ∞) such that y1(t0) < η∗(t0). Moreover, let the following conditions be satisfied
(I) D(t, u, y1(t)) ≤ D1(t, u, y1(t)), u ≥ y1(t), t ≥ t0, where D1(t, u, y1(t)) is a nondecreasing in u ≥
y1(t) function for every t ≥ t0.

(I I) γ − y1(t) +
t∫

t0

exp
{ τ∫

t0

D1(s, η∗(s), y1(s))ds
}(

n
∑

k=0
[bk(τ)− ak(τ)]yk

1(τ)

)
dτ ≥ 0, t ≥ t0 for some

γ ∈ [y1(t0), η∗(t0)].
Then every solution y(t) of Eq. (1.1) with y(t0) ∈ [γ, η∗(t0)] exists on [t0, ∞) and

y1(t) ≤ y(t) ≤ η∗(t), t ≥ t0.

Furthermore, if y1(t0) < y(t0) (y(t0) < η∗(t0)), then

y1(t) < y(t) (y(t) < η∗(t)), t ≥ t0.

Proof. Let y(t) be a solution of Eq. (1.1) with y(t0) ∈ [γ, η∗(t0)] and [t0, t1) be its maximum
existence interval. Then by Lemma 2.1 we have

y(t) ≤ η∗(t), t ∈ [t0, t1), (3.1)

and if y(t0) < η∗(t0), then
y(t) < η∗(t), t ∈ [t), t1). (3.2)
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In virtue of (2.2) we have

y(t)− y1(t) = exp
{
−

t∫
t0

D(τ, y(τ), y1(τ))dτ

}[
y(t0)− y1(t0)−

−
t∫

t0

exp
{ τ∫

t0

D(s, y(s), y1(s))ds
}( n

∑
k=0

[ak(τ)− bk(τ)]yk
1(τ)

)
dτ

]
, t ∈ [t0, t1). (3.3)

Let us show that
y1(t) ≤ y(t), t ∈ [t0, t1). (3.4)

At first we consider the case y(t0) > y1(t0). Show that in this case

y1(t) < y(t), t ∈ [t0, t1). (3.5)

Suppose it is not true. Then there exists t2 ∈ (t0, t1) such that

y1(t) < y(t), t ∈ [t0, t2).

y1(t2) = y(t2). (3.6)

It follows from here, (3.1) and the condition (I) that

D(t, y(t), y1(t)) ≤ D1(t, η∗(t), y1(t)), t ∈ [t0, t2).

Hence, the function

H(τ) ≡ exp
{ τ∫

t0

[
D(s, y(s), y1(s))− D1(s, η∗(s), y1(s))

]
ds
}

, τ ∈ [t0, t2)

is positive and non increasing on [t0, t2). By mean value theorem for integrals (see [6, p. 869]) it follows
from here that

t∫
t0

exp
{ τ∫

t0

D(s, y(s), y1(s))ds
}( n

∑
k=0

[ak(τ)− bk(τ)]yk
1(τ)

)
dτ =

=

κ(t)∫
t0

exp
{ τ∫

t0

D1(s, η∗(s), y1(s))ds
}( n

∑
k=0

[ak(τ)− bk(τ)]yk
1(τ)

)
dτ

for some κ(t) ∈ [t0, t), t ∈ [t0, t2). This together with (3.3) and the condition (I I) implies that
y1(t2) < y(t2), which contradicts (3.6). The obtained contradiction proves (3.5), hence proves (3.4). Let
us show that (3.4) is also valid for the case y(t0) = y1(t0). Suppose, for some t3 ∈ (t0, t1)

y(t3) < y1(t3). (3.7)

Let ỹδ(t) be a solution of Eq. (1.1) with ỹδ(t0) > y1(t0). Then by already proven (3.5) we have
ỹδ(t3) > y1(t3). As for as the solutions of Eq. (1.1) continuously depend on their initial values we
chose δ > 0 enough small such that ỹδ(t3)− y1(t3) <

y1(t3)−y(t3)
2 . Since, ỹδ(t3) > y1(t3) it follows from

the last inequality that

y1(t0)− y(t3) < ỹδ(t3)− y1(t3) <
y1(t3)− y(t3)

2
,
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which contradicts (3.7). The obtained contradiction proves that (3.4) is also valid for y(t0) = y1(t0).
Note that the proof of (3.3) and (3.4) in the general case y(t0) ≥ y1(t0) repeats the proof of them for the
case y(t0) > y1(t0). Therefore, due to (3.1), (3.2), (3.4) and (3.5) to complete the proof of the theorem it
remains to show that

t1 = ∞. (3.8)

Suppose t1 < ∞. Then it follows from (3.1) and (3.4) that y(t) is bounded on [t0, t1). By Lemma 2.7 it
follows from here that [t0, t1) is not the maximum existence interval for y(t), which contradicts our
supposition. The obtained contradiction proves (3.8). The proof of the theorem is completed.

Note that every function y1(t) ≡ ζ(t) ∈ C1([t0, ∞)) is a solution of Eq. (2.1) with b0(t) =

−ζ ′(t), b1(t) = . . . = bn(t) ≡ 0, t ≥ t0. Then

n

∑
k=0

[bk(t)− ak(t)]yk
1(t) = −

[
ζ ′(t) +

n

∑
k=0

ak(t)ζk(t)
]

t ≥ t0.

From here and Theorem 3.1 we obtain immediately
Corollary 3.1. Let η∗(t) be a sub solution of the inequality (2.3) on [t0, ∞) and for some y1(t) ≡ ζ(t) ∈

C1([t0, ∞)) with ζ(t0) < η∗(t0) the condition (I) of Theorem 3.1 and the following condition be satisfied

(I I0) ζ(t0)− γ +

t∫
t0

exp
{ τ∫

t0

D1(s, η∗(s), ζ(s))ds
}(

ζ ′(τ) +
n

∑
k=0

ak(τ)ζ
k(τ)

)
dτ ≤ 0, t ≥ t0,

for some γ ∈ [ζ(t0), η∗(t0)].
Then every solution y(t) of Eq. (1.1) with y(t0) ∈ [γ, η∗(t0)] exists on [t0, ∞) and

ζ(t) ≤ y(t) ≤ η∗(t), t ≥ tt0.

Furthermore, if ζ(t0) < y(t0) (y(t0) < η∗(t0)), then

ζ(t) < y(t) (y(t) < η∗(t)), t ≥ t0.

■
Remark 3.1. It is clear form the proofs of Theorem 3.1 and Corollary 3.1 that we can replace η∗(t)

in the conditions (I I) and (I I0) respectively of Theorem 3.1 and Corollary 3.1 by a continuous function
η̃∗(t) ≥ η∗(t), t ∈ [t0, ∞).

Let ek(t), k = 0, n be real-valued continuous functions on [t0, ∞). Consider the equation

y′ +
n

∑
k=0

ek(t)yk = 0, t ≥ t0. (3.9)

Theorem 3.2 Let y1(t) and y2(t) be solutions of the equations (2.1) and (3.9) respectively on [t0, ∞) such
that y1(t0) ≤ y2(t0) and the following conditions be satisfied.

(I I I)
n
∑

k=0
(bk(t)− ak(t))yk

1(t) ≥ 0, t ≥ t0,

(IV)
n
∑

k=0
(ek(t)− ak(t))yk

2(t) ≤ 0, t ≥ t0.

Then every solution y(t) of Eq. (1.1) with y(t0) ∈ [y1(t0), y2(t0)] exists on [t0, ∞) and

y1(t) ≤ y(t) ≤ y2(t), t ≥ t0.

Furthermore, if y1(t0) < y(t0) (y(t0) < y2(t0)), then

y1(t) < y(t) (y(t) < y2(t)), t ≥ t0.
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Proof. Let y(t) be a solution of Eq. (1.1) with y(t0) ∈ [y1(t0), y2(t0)] and [t0, t1) be its maximum
existence interval. Then by (2.2) the following equations are valid

y(t)− y1(t) = exp
{
−

t∫
t0

D(τ, y(τ), y1(τ))dτ

}[
y(t0)− y1(t0)−

−
t∫

t0

exp
{ τ∫

t0

D(s, y(s), y1(s))ds
}( n

∑
k=0

[ak(τ)− bk(τ)]yk
1(τ)

)
dτ, t ∈ [t0, t1),

y(t)− y2(t) = exp
{
−

t∫
t0

D(τ, y(τ), y2(τ))dτ

}[
y(t0)− y2(t0)−

−
t∫

t0

exp
{ τ∫

t0

D(s, y(s), y2(s))ds
}( n

∑
k=0

[ak(τ)− ek(τ)]yk
1(τ)

)
dτ, t ∈ [t0, t1).

It follows from here and the conditions (I I I) and (IV) of the theorem that

y1(t) ≤ y(t) ≤ y2(t), t ∈ [t0, t1). (3.10)

and if y1(t0) < y(t0) (y(t0) < y2(t0)), then

y1(t) < y(t) (y(t) < y2(t)), t ∈ [t0, t1).

Therefore, to complete the proof of the theorem it remains to show that

t1 = ∞. (3.11)

Suppose t1 < ∞. Then by Lemma 2.7 it follows from (3.10) that [t0, t1) is not the maximum existence
interval for y(t), which contradicts our supposition. The obtained contradiction proves (3.11). The
proof of the theorem is completed.

Corollary 3.2. Let η∗(t) and ζ∗(t) be sub and super solutions of the inequalities (2.3) and (2.4) respectively
on [t0, ∞) such that ζ∗(t) ≤ η∗(t). Then every solution y(t) of Eq. (1.1) with y(t0) ∈ [ζ∗(t0), η∗(t0)] exists
on [t0, ∞) and

ζ∗(t) ≤ y(t) ≤ η∗(t), t ≥ t0.

Furthermore, if ζ∗(t0) < y(t0) (y(t0) < η∗(t0)), then

ζ∗(t) < y(t) (y(t) < η∗(t)), t ≥ t0.

Proof. To prove the corollary it is enough to show that for every τ0 > t0 and solutions ζ(t) and
η(t) of the inequalities (2.4) and (2.3) respectively on [t0, τ9] with ζ(t0) ≤ η(t0) any solution y(t) of Eq.
(1.1) with y(t0) ∈ [ζ(t0), η(t0)] exists on [t0, τ0] and

ζ(t) ≤ y(t) ≤ η(t), t ∈ [t0, τ0], (3.12)

and if ζ(t0) < y(t0) (y(t0) < η(t0)), that

ζ(t) < y(t) (y(t) < η(t)), [t0, τ0]. (3.13)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 January 2025 doi:10.20944/preprints202412.2567.v1

https://doi.org/10.20944/preprints202412.2567.v1


15 of 35

The function y1(t) ≡ ζ(t) is a solution of Eq. (2.1) on [t0, τ0] for b0(t) ≡ −ζ ′(t), b1(t) =, . . . = bn(t) ≡
0, and y2(t) ≡ η(t) is a solution of the equation (3.9) on [t0, τ0] for e0(t) ≡ −η′(t), e1(t) = . . . =
en(t) ≡ 0. Then the condition (I I I) gives us

ζ ′(t) +
n

∑
k=0

ak(t)ζk(t) ≤ 0, t ≥ t0

and the condition (IV) gives us

η′(t) +
n

∑
k=0

ak(t)ηk(t) ≥ 0, t ≥ t0.

Therefore by Theorem 3.2 (note that Theorem 3.2 remains valid if we replace [t0,+∞) by [t0, τ0] in it)
the inequalities (3.12) and (3.13) are valid. The corollary is proved.

4. Global Solvability Criteria
For any continuous on [t0, ∞) function f (t) denote f+(t) ≡ max{0, f (t)}, t ≥ t0.
Theorem 4.1. Let the condition of Lemma 2.3 and the following condition be satisfied

(A) for a nonnegative ζ(t) ∈ C1([t0, ∞)) with ζ(t0) < M∗
γ,T(t0) and for some

ν ∈ [ζ(t0), M∗
γ,T(t0)]

ζ(t0)− ν+

t∫
t0

exp
{ τ∫

t0

[ n

∑
k=2

a+k (s)Sk(M∗
γ,T(s), ζ(s))+ a1(s)

]
ds
}
×

×
(

ζ ′(τ) +
n

∑
k=0

ak(τ)ζ
k(τ)

)
dτ ≤ 0, t ≥ t0.

Then every solution y(t) of Eq. (1.1) with y(t0) ∈ [ν, M∗
γ,T(t0)] exists on [t0, ∞) and

ζ(t) ≤ y(t) ≤ M∗
γ,T(t), t ≥ t0. (4.1)

Furthermore, if ζ(t0) < y(t0) (y(t0) < M∗
γ,T(t0)), then

ζ(t) < y(t) (y(t) < M∗
γ,T(t)), t ≥ t0. (4.2)

Proof. By Lemma 2.3 M∗
γ,T(t) is a sub solution of the inequality (2.3) on [t0, ∞). Note that

y1(t) ≡ ζ(t) is a solution of Eq. (2.1) on [t0, ∞) for b0(t) ≡ −ζ ′(t), b1(t) = . . . = bn(t) ≡ 0. Then since
ζ(t) is nonnegative we have

D(t, u, v) ≤
n

∑
k=2

a+k (t)Sk(u, ζ(t)) + a1(t), for all u ≥ ζ(t), t ≥ t0.

Moreover,
n
∑

k=2
a+k (t)Sk(u, ζ(t)) is nondecreasing in u ≥ ζ(t) ≥ 0, for all t ≥ t0. It follows from here

and (A) that the conditions of Corollary 3.1 are satisfied. Hence, every solution y(t) of Eq. (1.1) with
y(t0) ∈ [ν, M∗

γ,T(t0)] exists on [t0, ∞) and the inequalities (4.1) and (4.2) are valid. The theorem is
proved.

By analogy with the proof of Theorem 4.1 it can be proved the following theorem
Theorem 4.2. Let the conditions of Lemma 2.4 and the condition
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(B) for a nonnegative ζ(t) ∈ C1([t0, ∞)) with ζ(t0) < η∗
T(t0) and for some ν ∈ [ζ(t0), η∗

T(t0)]

ζ(t0)− ν +

t∫
t0

exp
{ τ∫

t0

[ n

∑
k=2

a+k (s)Sk(η
∗
T(s), ζ(s)) + a1(s)

]
ds
}
×

×
(

ζ ′(τ) +
n

∑
k=0

ak(τ)ζ
k(τ)

)
dτ ≤ 0, t ≥ t0.

be satisfied.
Then every solution y(t) of Eq. (1.1) with y(t0) ∈ [ν, η∗

T(t0)] exists on [t0, ∞) and

ζ(t) ≤ y(t) ≤ η∗
T(t), t ≥ t0.

Furthermore, if ζ(t0) < y(t0) (y(t0) < η∗
T(t0)), then

ζ(t) < y(t) (y(t) < η∗
T(t)), t ≥ t0.

■
Corollary 4.1. Let the conditions of Lemma 2.3 or Lemma 2.4 be satisfied. If a0(t) ≤ 0, t ≥ t0, then

every solution y(t) of Eq. (1.1) with y(t0) ≥ 0 exists on [t0, ∞) and is nonnegative
Proof. Let y(t) be a solution of Eq. (1.1) with y(t0) ≥ 0. Under the conditions of Lemma 2.3 (of

Lemma 2.4) we can take M∗
T(t) (η∗

T(t)) so that y(t0) ≤ M∗
T(t) (y(t0) ≤ η∗

T(t)). Then the condition
r0(t) ≤ 0, t ≥ t0 provides the satisfiability of the condition (A) of Theorem 4.1 (of the condition (B)
of Theorem 4.2) for ν = 0, ζ(t) ≡ 0. Hence, the assertion of the corollary is valid. The corollary is
proved.

Theorem 4.3. Let ak(t) = pk(t) + rk(t), k = 0, 2, t ≥ t0, where pk(t), rk(t), k = 0, 2 are real-

valued continuous functions on [t0, ∞),
2
∑

k=0
pk(t)xk +

n
∑

k=3
ak(t)xk ∈ Ω0, t ≥ t0 and the following conditions

be satisfied.
(C) r2(t) ≥ 0, t ≥ t0.

(D)
t∫

tl

exp

{
τ∫

tl

[
r1(s)− r2(s)

( s∫
tl

exp
{
−

s∫
ξ

r1(ζ)dζ

}
r0(ξ)dξ

)]
ds

}
r0(τ)dτ ≤ 0,

t ∈ [tl , tl+1), l = 1, 2, . . ., where {tl} is an usable sequence for [t0, ∞)..

(E)
t∫

t0

exp
{ τ∫

t0

[ n
∑

k=2
a+k (s)Ik−1

γ (s) + a1(s)
]
ds
}

a0(τ)dτ ≤ 0, t ≥ t0.

Then every solution y(t) of Eq. (1.1) with y(t0) = γ ≥ 0 exists on [t0, ∞) and

0 ≤ y(t) ≤ Iγ(t), t ≥ t0.

Proof. By Theorem 2.3 it follows from the conditions (C) and (D) of the theorem that for
every γ > 0 the inequality (2.3) has a nonnegative solution η0

γ(t) with η0
γ(t0) = γ. It is clear that

D(t, u, 0) ≤ D1(t, u, 0) ≡
n
∑

k=1
a+k (t)u

k−1, u ≥ 0 and D1(t, u, 0) is a nondecreasing function for u ≥ 0.

Then (taking into account Remark 2.1) it follows from (E) that the conditions of Corollary 3.1 (for
ζ(t) ≡ 0) are satisfied. Therefore, every solution y(t) of Eq. (1.1) with y(t0) = γ ≥ 0 exists on [t0, ∞)

and 0 ≤ y(t) ≤ Iγ(t), t ≥ t0. The theorem is proved.

We set σ±
k ≡ 1±(−1)k

2 , k = 0, 1, 2, . . . . Obviously,

σ+
k =


1, for k even,

0, for k odd,
σ−

k =


0, for k even,

1, for k odd,
k = 0, 1, . . . .

Theorem 4.4. Let the conditions of Lemma 2.4 and the following conditions be satisfied.
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(F) (−1)kak(t) ≥ 0, k = 2, n, t ≥ t0,
(G) for some ζ(t) ∈ C1([t0, ∞)) with ζ(t0) < η∗

T(t0) and for some ν ∈ [ζ(t0), η∗
T(t0)]

ζ(t0)− ν+

t∫
t0

exp
{ τ∫

t0

[ n

∑
k=2

σ+
k a+k (s)Sk(η

∗
T(s), ζ(s))+ a1(s)

]
ds
}
×

×
(

ζ ′(τ) +
n

∑
k=0

ak(τ)ζ
k(τ)

)
dτ ≤ 0, t ≥ t0.

Then every solution y(t) of Eq. (1.1) with y(t0) ∈ [ν, η∗
T(t0)] exists on [t0, ∞) and

ζ(t) ≤ y(t) ≤ η∗
T(t), t ≥ t0. (4.3)

Furthermore, if ζ(t0) < y(t0) (y(t0) < η∗
T(t0)), then

ζ(t) < y(t) (y(t) < η∗
T(t)), t ≥ t0. (4.4)

Proof. By virtue of Lemma 2.4 η∗
T(t) is a sub solution of the inequality (2.3) on [t0, ∞). Since

D(t, u, v) =
n

∑
k=2

σ+
k ak(t)Sk(u, v) +

n

∑
k=2

σ−
k ak(t)Sk(u, v) + a1(t), u, v ∈ R, t ≥ t0

By Lemmas 2.8 and 2.9 it follows from (F) that
n
∑

k=2
σ+

k ak(t)Sk(u, v) + a1(t) is nondecreasing in u ≥ ζ(t)

for all t and
n
∑

k=2
σ−

k ak(t)Sk(u, v) ≤ 0, t ≥ t0. Hence, D(t, u, ζ(t)) ≤
n
∑

k=2
σ+

k ak(t)Sk(u, ζ(t))+ a1(t), u ≥

ζ(t), t ≥ t0. It follows from here and (G) that the condition (I I) of Theorem 3.1 is satisfied for the case
b0(t) = −ζ ′(t), b1(t) = . . . = bn(t) ≡ 0. Thus, all conditions of Theorem 3.1 are satisfied. Therefore,
every solution y(t) of Eq. (1.1) with y(t0) ∈ [ν, η∗

T(t0)] exists on [t0, ∞) and the inequalities (4.3) and
(4.4) are satisfied. The theorem is proved.

Theorem 4.5. Let the conditions of Lemma 2.5 and the following condition be satisfied.
(H) for a nonnegative ζ(t) ∈ C1([t0, T]) with ζ(t0) < ηc(t0) and for some ν ∈ [ζ(t0), ηc(t)]

ζ(t0)− ν +

t∫
t0

exp
{ τ∫

t0

[ n

∑
k=2

a+k (s)Sk(ηc(s), ζ(s)) + a1(s)
]
ds
}
×

×
(

ζ ′(τ) +
n

∑
k=0

ak(τ)ζ
k(τ)

)
dτ ≤ 0, t ∈ [t0, T].

Then every solution y(t) of Eq. (1.1) with y(t0) ∈ [ν, ηc(t0)] exists on [t0, T] and

ζ(t) ≤ y(t) ≤ ηc(t), t ∈ [t0, T]. (4.5)

Furthermore, if ζ(t0) < y(t0) (y(t0) < ηc(t0)), then

ζ(t) < y(t) (y(t) < ηc(t)), t ∈ [t0, T]. (4.6)
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Proof. By virtue of Lemma 2.5 ηc(t) is a solution of the inequality (2.3) on [t0, T]. Since ζ(t) is
nonnegative we have

D(t, u, ζ(t)) ≤
n

∑
k=2

a+k (t)Sk(u, ζ(t)) + a1(t), t ∈ [t0, T].

It follows from here and from the condition (H) that the condition (I I) of Theorem 3.1 for [t0, T] and
for the case b0(t) ≡ −ζ ′(t), b1(t) = . . . = bn(t) ≡ 0, t ∈ [t0, T] is satisfied. Thus all conditions of
Theorem 3.1 for [t0, T] are satisfied. Therefore, every solution y(t) of Eq. (1.1) with y(t0) ∈ [ν, ηc(t0)]

exists on [t0, T] and the inequalities (4.5) and (4.6) are satisfied. The theorem is proved.
By analogy with the proof of Theorem 4.5 it can be proved the following theorem
Theorem 4.6. Let the condition of Lemma 2.6 and the following condition be satisfied

for a nonnegative ζ(t) ∈ C1([t0, T]) with ζ(t0) < θc(t0) and for some ν ∈ [ζ(t0), θc(t0)]

ζ(t0)− ν +

t∫
t0

exp
{ τ∫

t0

[ n

∑
k=2

a+k (s)Sk(θc(s), ζ(s)) + a1(s)
]
ds
}
×

×
(

ζ ′(τ) +
n

∑
k=0

ak(τ)ζ
k(τ)

)
dτ ≤ 0, t ∈ [t0, T].

Then every solution y(t) of Eq. (1.1) with y(t0) ∈ [ν, θc(t0)] exists on [t0, T] and

ζ(t) ≤ y(t) ≤ θc(t), t ∈ [t0, T].

Furthermore, if ζ(t0) < y(t0), (y(t0) < θc(t0)), then

ζ(t) < y(t), (y(t) < θc(t)), t ∈ [t0, T].

■
Corollary 4.2. Let the conditions of Lemma 2.5 and the following conditions be satisfied

(I) a1(t) < 0, t ∈ [t0, T],

(J) for some ζ0 ∈ (0, ηc(t0)) with
n
∑

k=2
|ak(t)|ζk−1

0 ≤ |a1(t)|, t ∈ [t0, T] and for some ν ∈ [ζ0, ηc(t0)]

ζ0 − ν +

t∫
t0

exp
{ τ∫

t0

[ n

∑
k=2

a+k (s)Sk(ηc(s), ζ0) + a1(s)
]
ds
}

a0(τ)dτ ≤ 0, t ∈ [t0, T].

Then every solution y(t) of Eq. (1.1) with y(t0) ∈ [ν, ηc(t0)] exists on [t0, T] and

ζ0 ≤ y(t) ≤ ηc(t), t ∈ [t0, T]. (4.7)

Furthermore, if ζ0 < y(t0), (y(t0) < ηc(t0)), then

ζ0 < y(t), (y(t) < ηc(t)), t ∈ [t0, T]. (4.8)

Proof. It follows from the condition (I) that for some (enough small) ζ0 ∈ (0, ηc(t0)) with
n
∑

k=2
|ak(t)|ζk−1

0 ≤ |a1(t)|, t ∈ [t0, T] the inequality
n
∑

k=2
ak(t)ζk

0 ≤ 0, t ∈ [t0, T] is satisfied. This together

with the condition (J) implies the condition (H) of Theorem 4.5. Thus all conditions of Theorem 4.5
are satisfied. Therefore, every solution y(t) of Eq. (1.1) with y(t0) ∈ [ν, ηc(t0)] exists on [t0, T] and the
inequalities (4.7) and (4.8) are satisfied. The corollary is proved.

By analogy with the proof of Corollary 4.2 one can prove the following assertion.
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Corollary 4.3. Let the conditions of Lemma 2.5 and the following conditions be satisfied
a1(t) > 0, t ∈ [t0, T],

for some ζ0 < 0 with
n
∑

k=2
|ak(t)||ζ0|k−1 ≤ a1(t), t ∈ [t0, T] and for some ν ∈ [ζ0, ηc(t0)]

ζ0 − ν +

t∫
t0

exp
{ τ∫

t0

[ n

∑
k=2

a+k (s)Sk(ηc(s), ζ0) + a1(s)
]
ds
}

a0(τ)dτ ≤ 0, t ∈ [t0, T].

Then every solution y(t) of Eq. (1.1) with y(t0) ∈ [ν, ηc(t0)] exists on [t0, T] and

ζ0 ≤ y(t) ≤ ηc(t), t ∈ [t0, T].

Furthermore, if ζ0 < y(t0), (y(t0) < ηc(t0)), then

ζ0 < y(t), (y(t) < ηc(t)), t ∈ [t0, T].

■
For any γ ∈ R, t1 ≥ t0 we set

ζγ,t1(t) ≡ −γ − exp
{
−

t∫
t0

a1(τ)dτ

}[
c(t1) +

t∫
t0

exp
{ τ∫

t0

a1(s)ds
}

a0(τ)dτ

]
, t ∈ [t0, t1),

where c(t1) ≡ max
ξ∈[t0,t1]

(
−

ξ∫
t0

exp
{ τ∫

t0

a1(s)ds
}

a0(τ)dτ

)
.

Theorem 4.7. Let the conditions of Lemma 2.4 and the following conditions be satisfied.

(K)
n−1
∑

k=2
(−1)k+1 pk(t)xk ∈ ΩNT , t ≥ t0.

(L) n is odd.
Then every solution y(t) of Eq. (1.1) with y(t0) ∈ [ζ∗T(t0), η∗

T(t0)] exists on [t0, ∞) and

ζ∗T(t) ≤ y(t) ≤ η∗
T(t), t ≥ t0, (4.9)

where η∗
T(t) is defined in Lemma 2.4 and ζ∗T(t) ≡


ζNT ,T(t), t ∈ [t0, T],

ζNt ,t(t), t ≥ T,
such that ζ∗T(t0) ≤ η∗

T(t0).

furthermore, if ζ∗T(t0) < y(t0) (y(t0) < η∗
T(t0)), then

ζ∗T(t) < y(t) (y(t) < η∗
T(t)), t ≥ t0. (4.10)

Proof. By Lemma 2.4 η∗
T(t) is a sub solution of the inequality (2.3) on [t0,+∞). Show that ζ∗T(t) is

a super solution of the inequality (2.4) on [t0,+∞). Consider the differential inequality

η′ +
n

∑
k=0

ãk(t)ηk ≥ 0, t ≥ t0, (4.11)

where ãk(t) = (−1)k+1ak(t), k = 0, n, t ≥ t0 It follows from (K) and the condition (1) of Lemma 2.4
that
(̃1) ãn(t) ≥ 0, t ≥ t0.
it follows from the condition (2) of Lemma 2.4 that
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(̃2) ãk(t) = ãn(t)c̃k(t) + d̃k(t), k = 2, n − 1, t ≥ t0, where c̃k(t) = (−1)k+1ck(t), k = 2, n − 1, t ≥ t0

are bounded function on [t0, t1] for every t1 ≥ t0, d̃k(t) = (−1)k+1dk(t),
k = 2, n − 1, t ≥ t0.
It follows from the condition (K), that

(̃3)
n−1
∑

k=2
d̃k(t)uk ≥ 0 for all u ≥ NT , t ≥ t0.

We see that all conditions of Lemma 2.4 for the inequality (4.11) are satisfied. Hence, by Lemma 2.4
η̃∗

T(t) ≡ −ζ∗T(t) is a sub solution of the inequality (4.11) on [t0, ∞). Then ζ∗T(t) is a super solution of
the inequality (2.4) on [t0, ∞). By Corollary 3.2 it follows from here that every solution y(t) of Eq. (1.1)
with y(t0) ∈ [ζ∗T(t0), η∗

T(t0)] (note that always ζ∗T(t0) ≤ η∗
T(t0)]) exists on [t0, ∞) and the inequalities

(4.9) and (4.10) are satisfied. The theorem is proved.
We set

θ−c (t) ≡ − exp
{ t∫

t0

α(τ)dτ

}[
c +

t∫
t0

exp
{
−

τ∫
t0

α(s)ds
}

a0(τ)dτ

]
, t ≥ t0, t ∈ R.

Theorem 4.8. Assume for some c+ ≥ max
t∈[t0,T]

t∫
t0

exp
{
−

τ∫
t0

α(s)ds
}

a0(τ)dτ,

c− ≥ − min
t∈[t0,T]

t∫
t0

exp
{
−

τ∫
t0

α(s)ds
}

a0(τ)dτ the inequalities

θc+(t) ≤ 1, |θ−c−(t)| ≤ 1, t ∈ [t0, T]

are valid. Then every solution y(t) of Eq. (1.1) with y(t0) ∈ [θ−c−(t), θc+(t)] exists on [t0, T] and

θ−c−(t) ≤ y(t) ≤ θc+(t), t ∈ [t0, T]. (4.12)

Furthermore, if θ−c−(t0) < y(t0) (y(t0) < θc+(t0)), then

θ−c−(t) < y(t) (y(t) < θc+(t)), t ∈ [t0, T]. (4.13)

Proof. We have

θ−c−(t0) ≤ min
t∈[t0,T]

t∫
t0

exp
{
−

τ∫
t0

α(s)ds
}

a0(τ)dτ ≤ max
t∈[t0,T]

t∫
t0

exp
{
−

τ∫
t0

α(s)ds
}

a0(τ)dτ ≤ θc+(t0).

Therefore, the relation y(t0) ∈ [θ−c−(t), θc+(t)] is correct. By Lemma 2.6 θc+(t) is a solution of the
inequality (2.3) on [t0, T], and −θ−c−(t) is a solution of the inequality (4.11) on [t0, T]. Then, since
θ−c−(t) ≤ θc+(t)], by Corollary 3.3 every solution y(t) of Eq. (1.1) with y(t0) ∈ [θ−c−(t), θc+(t)] exists on
[t0, T] and the inequalities (4.12) and (4.13) are valid. The theorem is proved.

Theorem 4.9. Assume ak(t) = pk(t)+ rk(t), k = 3, n, where pk(t) and rk(t) are real-valued continuous
function on [t0, ∞). If

M) rk(t) ≥ 0, k = 3, n,
n
∑

k=3
rk(t) > 0, t ≥ t0,

N)
n
∑

k=3
pk(t)xk ∈ Ω∗

0 ,

O) a0(t) ≤ 0, a2(t) ≥ 0, t ≥ t0 and a0(t), a2(t) have unbounded supports.
Then every solution y(t) of Eq. (1.1) with y(t0) ≥ y∗(t0) exists on [t0, ∞) and y(t) ≥ y∗(t), t ≥ t0, where
y∗(t) is the unique t0-extremal solution of Eq. (2.26) (here τ0 = ∞).

Proof. Since Ω∗
0 ⊂ Ω0 by Lemma 2.3 it follows from the conditions M), N) that for every γ > 0

the inequality (2.3) has a sub solution η∗(t) on [t0, ∞) with η∗(t0) = γ. By Lemma 2.10 it follows
from the conditions O) that Eq. (2.26) has the unique t0-extremal solution y∗(y) < 0, t ≥ t0. Then
it follows from the condition N) that y∗(t) is a solution of the inequality (2.4) on [t0, ∞). Hence, by
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virtue of Corollary 3.2 every solution y(t) of Eq. (1.1) with y(t0) ∈ [y∗(t0), γ] exists on [t0, ∞) and
y(t) ≥ y∗(t), t ≥ t0. Since γ > 0 can be arbitrarily large the proof of the theorem is completed.

5. Closed Solutions
Theorem 5.1. Assume ak(t) = pk(t)+ rk(t), k = 0, n, t ∈ [t0, T], where pk(t) and rk(t), k = 0, n are

real-valued continuous functions on [t0, T] such that
n
∑

k=0
pk(t)xk ∈ Ω0,

t ∈ [t0, T], and let the following conditions be satisfied.

10) for some j = 2, . . . , n the inequalities rk(t) ≥ 0, k = j, n,
n
∑

k=j
rk(t) > 0, t ∈ [t0, T] are valid,

20)
t∫

t0

exp
{ τ∫

t0

[ n
∑

k=2
a+k (s)Mk−1

T+γ + a1(s)
]
ds
}

a0(τ)dτ ≤ 0, t ∈ [t0, T] for some γ ≥ 0.

Then the following statements are valid.
α) Eq. (1.1) has a nonnegative closed solution y∗(t) on [t0, T],
β) In particular, if a0(t) ̸≡ 0 and a0(t) ≤ 0, t ∈ [t0, T], then y∗(t) is positive,

γ) In particular, if j = 2 and
T∫

t0

a1(τ)dτ > 0, then y∗(t) is isolated.

Proof. Let us prove α). It follows from the conditions of the theorem that for ζ(t) ≡ 0 the
conditions of Theorem 4.1 are satisfied. Then by Theorem 4.1 the solutions y1(t) and y2(t) of Eq. (1.1)
with y1(t0) = 0 and y2(t0) = MT+γ exist on [t0, T] and y1(T) ≥ 0, y2(T) ≤ M∗

γ,T(T) = M∗
γ,T(t0). By

Theorem 2.1 it follows from here that Eq. (1.1) has a nonnegative closed solution y∗(t) on [t0, T]. The
statement α) is proved. Let us prove β). If a0(t) ̸≡ 0 and a0(t) ≥ 0, t ∈ [t0, T], then y1(t) ̸≡ 0. Hence,

y1(t1) > 0 for sone t1 ∈ [t0, T] (5.1)

(since y1(t) ≥ 0, t ∈ [t0, T]). Consider the equation

y′ +
n

∑
k=1

ak(t)yk = 0, t ∈ [t0, T].

Since y0(t) ≡ 0 is a solution of this equation by (2.2) we have

y1(T) = exp
{
−

T∫
t1

D(τ, 0, y1(τ))dτ

}[
y1(t1)−

T∫
t1

exp
{ τ∫

t1

D(s, 0, y1(s))ds
}

a0(τ)dτ

]
.

It follows form here, (5.1) and the conditions of β) that y1(T) > 0 = y1(t0). Therefore, y1(t) is not a
closed solution of Eq. (1.1) on [t0, T]. By the uniqueness theorem it follows from here and the statement
α) that y∗(t) is positive. The statement β) is proved. It remains to prove γ). Let us show that y∗(t) is
isolated. Suppose y∗(t) is not isolated. Then there exists a sequence {ym(t)}∞

m+1 of closed solutions of
Eq. (1.1) on [t0, T] such that ym(t0) → y∗(t0) for m → ∞. By (2.2) we have

y∗(T)− ym(T) = exp
{
−

T∫
t0

( n

∑
k=2

ak(τ)Sk(y∗(τ), ym(τ)) + a1(τ)
)

dτ

}
[y∗(t0)− ym(t0)], (5.2)

m = 1, 2, . . . . Since j = 2 it follows from the conditions 10) that
T∫

t0

( n
∑

k=2
ak(τ)Sk(y∗(τ), y∗(τ))

)
dτ ≥ 0. Then since the solutions of Eq. (1.1) continuously de-

pend on their initial values and
T∫

t0

a1(τ)dτ > 0 we can chose m = m0 enough large such that

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 January 2025 doi:10.20944/preprints202412.2567.v1

https://doi.org/10.20944/preprints202412.2567.v1


22 of 35

T∫
t0

( n
∑

k=2
ak(τ)Sk(y∗(τ), ym(τ)) + a1(τ)

)
dτ > 0. It follows from here and (5.2) that ym0(t) is not closed.

We obtain a contradiction, proving γ). The proof of the theorem is completed.
Corollary 5.1. Assume ak(t) = pk(t) + rk(t), t ∈ [t0, T], where pk(t) and rk(t) are real-valued continu-

ous functions on [t0, T], k = 0, n, such that
n
∑

k=0
(−1)k pk(t)xk ∈ Ω0,

t ∈ [t0, T], and let the following conditions be satisfied.

for some j = 2, . . . , n the inequalities (−1)krk(t) ≥ 0, k = j, n,
n
∑

k=j
(−1)krk(t) > 0,

r0(t) ≤ 0, t ∈ [t0, T] hold.
Then the following statements are valid
α0) Eq. (1.1) has a non positive closed solution y∗(t) on [t0, T].
β0) In particular, if r0(t) ̸≡ 0 and r0(t) ≤ 0, t ∈ [t0, T], then y∗(t) is negative,

γ0) In particular, if j = 2 and
T∫

t0

r1(τ)dτ > 0, then y∗(t) is isolated.

Proof. In Eq. (1.1) we substitute

y = −z, t → −t. (5.3)

We obtain

z′ +
n

∑
k=0

(−1)kak(−t)zk = 0, t ≤ −t0.

Then by Theorem 5.1 it follows from the conditions of the corollary that the transformed (last) equation
has a nonnegative closed solution z∗(t) on [−T,−t0], for which the statements α)− γ) of Theorem 5.1
are valid. It follows from here and (5.3) that y∗(t) ≡ −z∗(−t) is a nonnegative closed solution of Eq.
(1.1) on [t0, T], for which the statements α0)− γ0) are valid. The corollary is proved.

Note that in the statement α) of Corollary 5.1 the condition a0(t) ≡ 0 of Theorem 1.1 is weakened

up to a0(t) ≤ 0, t ∈ [t0, T] and the condition
T∫

t0

a1(τ)dτ > 0 is omitted. Therefore, Corollary 5.1 is a

complement of Theorem 1.1.

The inequality
n
∑

k=j
ak(t) > 0, t ∈ [t0, T] in conditions of Theorem 5.1 looks like a strict limitation.

The next theorem attempts to partially weaken it.
Theorem 5.2. Let the conditions of Theorem 4.3 be satisfied. If ak(t) ≥ 0, k = 2.n,

n
∑

k=2
ak(t) ̸≡ 0 or

T∫
t0

a1(τ)dτ > 0, then Eq. (1.1) has a nonnegative closed solution on [t0, T]. In the case

T∫
t0

a1(τ)dτ > 0 it is isolated.

Proof. By Theorem 4.3 for every γ ≥ 0 Eq. (1.1) has a nonnegative solution yγ(t) on [t0, T] with
yγ(t0) = γ. Let us show that there exists γ > 0 such that

yγ(t0) ≥ yγ(T). (5.4)

First we show that if
n
∑

k=2
ak(t) ̸≡ 0, t ∈ [t0, T], then

lim
γ→+∞

T∫
t0

[ n

∑
k=2

ak(t)yk−1
γ (t)

]
dt = ∞. (5.5)
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By (1.1) we can interpret yγ(t) as a solution of the linear equation

x′ +
[ n

∑
k=1

ak(t)yk−1
γ (t)

]
x + a0(t) = 0, t ∈ [t0, T].

Then by the Cauchy formula we have

yγ(t) = γ exp
{
−

t∫
t0

[ n

∑
k=1

ak(τ)yk−1
γ (τ)

]
dτ

}
−

−
t∫

t0

exp
{
−

t∫
τ

[ n

∑
k=1

ak(s)yk−1
γ (s)

]
ds
}

a0(τ)dτ, t ∈ [t0, T]. (5.6)

Multiplying both sides of this equality by
[ n

∑
k=2

ak(t)yk−2
γ (t)

]
exp

{
−

t∫
t0

[ n
∑

k=2
ak(τ)yk−1

γ (τ)
]
dτ

}
and

integrating over [t0, T] we obtain

exp
{ T∫

t0

[ n

∑
k=2

ak(τ)yk−1
γ (τ)

]
dτ

}
= 1 + γ

T∫
t0

[ n

∑
k=2

ak(t)yk−2
γ (t)

]
exp

{
−

t∫
t0

a1(τ)dτ

}
−

−
T∫

t0

[ n

∑
k=2

ak(t)yk−2
γ (t)

]
dt

t∫
t0

exp
{ τ∫

t0

[ n

∑
k=2

ak(s)yk−1
γ (s)

]
ds −

t∫
τ

a1(s)ds
}

a0(τ)dτ

From here we obtain

exp
{ T∫

t0

[ n

∑
k=2

ak(τ)yk−1
γ (τ)

]
dτ

}
≥ 1 +

T∫
t0

[ n

∑
k=2

ak(t)yk−2
γ (t)

]
exp

{
−

t∫
t0

a1(τ)dτ

}
dt ×

×
[

γ −
T∫

t0

exp
{ τ∫

t0

[ n

∑
k=2

ak(s)yk−1
γ (s)

]
ds +

τ∫
t0

a1(s)ds
}
|a0(τ)|dτ

]
. (5.7)

Suppose
T∫

t0

[ n

∑
k=2

ak(t)yk−2
γ (t)

]
dt ≤ M, γ > 0. (5.8)

Then (5.7) implies

exp
{ T∫

t0

[ n

∑
k=2

ak(τ)yk−1
γ (τ)

]
dτ

}
≥ 1 +

T∫
t0

[ n

∑
k=2

ak(t)yk−2
γ (t)

]
exp

{
−

t∫
t0

a1(τ)dτ

}
dt ×

×
[

γ − exp
{

M
} T∫

t0

exp
{ τ∫

t0

a1(s)ds
}
|a0(τ)|dτ

]
. (5.9)

By the uniqueness theorem yγ(t) > 0, t ∈ [t0, T] for all γ > 0. Therefore (since ak(t) ≥ 0,

k = 2, n, t ∈ [t0, T] and
n
∑

k=2
ak(t) ̸≡ 0)

T∫
t0

[ n

∑
k=2

ak(t)yk−2
γ (t)

]
exp

{
−

t∫
t0

a1(τ)dτ

}
dt ≥

T∫
t0

[ n

∑
k=2

ak(t)yk−2
γ0

(t)
]

exp
{
−

t∫
t0

a1(τ)dτ

}
dt > 0
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for all γ ≥ γ0 > 0. It follows from here that the right part of the inequality (5.9) tends to ∞ as γ → ∞,
whereas, according to (5.8) its left part is bounded. We obtain a contradiction, proving (5.5). It follows
from (5.6) that

yγ(T) = γ exp
{
−

T∫
t0

[ n

∑
k=1

ak(τ)yk−1
γ (τ)

]
dτ

}
−

−
T∫

t0

exp
{
−

t∫
τ

[ n

∑
k=1

ak(s)yk−1
γ (s)

]
ds
}

a0(τ)dτ, t ∈ [t0, T], γ ≥ 0.

Therefore yγ(T) ≤ yγ(t0) = γ, provided

γ

(
1 − exp

{ T∫
t0

( n

∑
k=1

ak(τ)yk−1
γ (τ)

)
dτ

})
≥ −

T∫
t0

exp
{
−

t∫
τ

[ n

∑
k=1

ak(s)yk−1
γ (s)

]
ds
}

a0(τ)dτ,

which will be fulfilled if by virtue of (5.5) we chose γ ≥ 2
T∫

t0

exp
{ τ∫

t0

a1(s)ds
}
|a0(τ)|dτ enough

large such that
T∫

t0

n
∑

k=1
ak(τ)yγ(τ)dτ ≥ ln 2. Therefore (5.4) is proved for the case

n
∑

k=2
ak(t) ̸≡ 0. If

n
∑

k=2
ak(t) ≡ 0 and

T∫
t0

a1(τ)dτ > 0, then from the obvious equality yγ(T) = γ exp
{
−

T∫
t0

a(τ)dτ

}
−

T∫
t0

exp
{ τ∫

t0

a1(s)ds
}

a0(τ)dτ we derive that for

γ ≥
T∫

t0

exp
{ τ∫

t0

a1(s)ds
}
|a0(τ)|dτ

/(
1 − exp

{
−

T∫
t0

a1(τ)dτ

})

the inequality (5.4) is fulfilled. Thus, under the restriction
n
∑

k=2
ak(t) ̸≡ 0 or

T∫
t0

a1(τ)dτ > 0 of the

theorem the inequality (5.4) is valid. Then since y0(t0) = 0 ≤ y0(T), by Theorem 2.1 Eq. (1.1) has a
nonnegative closed solution y∗(t) on [t0, T]. To complete the proof of the theorem it remains to show

that if
T∫

t0

a1(τ)dτ > 0, then y∗(t) is isolated. The proof of this fact is similar to the proof of the assertion

γ) of Theorem 5.1. Therefore we omit it. The proof of the theorem is completed.
Theorem 5.3. Let the following conditions be satisfied.

30) an(t) ≥ 0, t ∈ [t0, T],
40) ak(t) = an(t)ck(t) + pk(t), k = 2, n − 1, where ck(t), k = 2, n − 1 are bounded functions on [t0, T],

50)
n−1
∑

k=2
pk(t)xk ∈ ΩNT , t ∈ [t0, T],

60) max
t∈[t0,T]

t∫
t0

exp
{ τ∫

t0

a1(s)ds
}

a0(τ)dτ

[
1 − exp

{ T∫
t0

a1(τ)dτ

}]
≤

T∫
t0

exp
{ τ∫

t0

a1(s)ds
}

a0(τ)dτ.

70)
t∫

t0

exp
{ τ∫

t0

[ n
∑

k=2
a+k (s)η

k−1
γ,T (s) + a1(s)

]
ds
}

a0(τ)dτ ≤ 0, t ∈ [t0, T]. for some γ ≥ 0,

Then Eq. (1.1) has a nonnegative closed solution on [t0, T].
Proof. By virtue of Lemma 2.4 it follows from the conditions 30)− 50) that ηγ,T(t) is a solution of

the inequality (2.3) on [t0, T]. Then it follows from the condition 70) that the conditions of Theorem 4.2
with ζ(t) ≡ 0 are satisfied. Hence, according to Theorem 4.2 the solutions y1(t) and y2(t) of Eq. (1.1)
with y1(t0) = 0, y2(t0) = ηγ,T(t0) = c(T) exist on [t0, T] and y1(T) ≥ 0, y2(T) ≤ ηγ,T(T). It follows
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from the condition 60) that ηγ,T(T) ≤ ηγ,T(t0). Therefore y2(T) ≤ y2(t0). By Theorem 2.1 it follows
from here that Eq. (1.1) has a nonnegative closed solution on [t0, T]. The theorem is proved.

Example 5.1. Consider the equation

y′ +
6

∑
k=0

ak(t)yk = 0, t ≥ t0, (5.10)

where, a0(t) ≡ − sin 10t, a1(t) is any continuous function, a2(t) = cos4 t, a3(t) = −2|sint cos3 t|, a4(t) =
sin2 t cos2 t, a5(t) = − sin2 t|cosπt|, a6(t) = sin2 t, [t0, T]. Obviously, the conditions of Corollary
5.1 for Eq. (5.10) are satisfied. It is not difficult to verify that the conditions of Theorem 5.3 with
c2(t) = c3(t) = c4(t) ≡ 0, c5(t) = −| cos πt|, p2(t) = cos4 t, p3(t) = −2| sin t cos3 t|, p4(t) =

sin2 t cos2 t, p5(t) ≡ 0, t ∈ [t0, T] for Eq. (5.10) are satisfied. Therefore Eq. (5.10) has at least a nonnegative
closed solution y+(t) on [t0, T] and at least a non positive closed solution y−(t) on [t0, T] (for every T > t0).
Since a0(t) ̸≡ 0 we have y+(t) ̸= y−(t), t ∈ [t0, T].

Theorem 5.4. Let the following conditions be satisfied.
80) a2(t) > 0, t ∈ [t0, T],

90) for some c ≥ max
t∈[t0,T]

t∫
t0

exp
{ τ∫

t0

a1(s)ds
}

a0(τ)dτ, the inequality
n
∑

k=3
|ak(t)|ηk−2

c (t) ≤ a2(t), t ∈ [t0, T]

is valid and

100)
t∫

t0

exp
{ τ∫

t0

[ n
∑

k=2
a+k (s)η

k−1
c (s) + a1(s)

]
ds
}

a0(τ)dτ ≤ 0, t ∈ [t0, T],

110) c
(

1 − exp
{ T∫

t0

a1(τ)dτ

})
≤

T∫
t0

exp
{ τ∫

t0

a1(s)ds
}

a0(τ)dτ.

Then Eq. (1.1) has a nonnegative closed solution on [t0, T].
Proof. By Lemma 2.5 it follows from the conditions 80) and 90) that ηc(t) is a solution of the

inequality (2.3) on [t0, T]. It follows from the condition 100) that the condition (E) with ζ(t) ≡ 0 of
Theorem 4.5 is satisfied. It follows from the condition 110) that ηc(t0) ≥ ηc(T). Then by Theorems 2.1
and 4.5 Eq. (1.1) has a nonnegative closed solution on [t0, T]. The theorem is proved.

Let us write a2(t) = λp(t), p(t) > 0, t ∈ [t0, T]. Then for all λ ≥ λ0 ≡
≡ max

t∈[to ,T]
{(

n
∑

k=3
|ak(t)|ηk−2

c (t))/p(t)} the condition 90) of Theorem 5.4 will be satisfied. If we write

a2(t) = λ + p(t), p(t) ∈ C([t0, T]), then for all λ ≥ λ0 ≡ max
t∈[to ,T]

{(
n
∑

k=3
|ak(t)|ηk−2

c (t)) − p(t)} the

condition 90) of the Theorem 5.4 will be satisfied as well. Unlike of this in Theorems 2 and 3 of work
[25] the parameter λ0 is undetermined. Moreover, for a0(t) ≡ 0, c = 0 the conditions 100) and 110) of
Theorem 5.4 are satisfied. Therefore, Theorem 5.4 is a complement of both mentioned above Theorems
2 and 3.

Theorem 5.5. Let the following conditions be satisfied.
120) an(t) ≥ 0, t ∈ [t0, T],
130) ak(t) = an(t)ck(t) + pk(t), k = 2, n − 1, t ∈ [t0, T], where ck(t), k = 2, n − 1 are bounded functions
on [t0, T] and

140)
n−1
∑

k=2
pk(t)xk ∈ ΩNT , t ∈ [t0, T],

150)
n−1
∑

k=2
(−1)k+1 pk(t)xk ∈ ΩNT , t ∈ [t0, T],

160) n is odd,

170) max
ξ∈[t0,T]

( ξ∫
t0

exp
{ τ∫

t0

a1(s)ds
}

a0(τ)dτ

)[
1 − exp

{ T∫
t0

a1(τ)dτ

}]
≤

≤
T∫

t0

exp
{ τ∫

t0

a1(s)ds
}

a0(τ)dτ,

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 January 2025 doi:10.20944/preprints202412.2567.v1

https://doi.org/10.20944/preprints202412.2567.v1


26 of 35

180) min
ξ∈[t0,T]

( ξ∫
t0

exp
{ τ∫

t0

a1(s)ds
}

a0(τ)dτ

)[
1 − exp

{ T∫
t0

a1(τ)dτ

}]
≥

≥
T∫

t0

exp
{ τ∫

t0

a1(s)ds
}

a0(τ)dτ.

Then Eq. (1.1) has a closed solution on [t0, T].
Proof. By Lemma 2.4 it follows from 120)− 140) that ηNT ,T(t), t ∈ [t0, T] is a solution of the

inequality (2.3) on [t0, T] and it follows from the conditions, 120), 130), 150), 160) that ζNT ,T(t), t ∈
[t0, T] is a solution of the inequality (2.4) on [t0, T]. It follows from the condition 170) that ηNT ,T(t0) ≥
ηNT ,T(T), and it follows form the condition 180) that ζNT ,T(t0) ≤ ζNT ,T(T). Therefore, by virtue of
Theorem 2.1 Eq. (1.1) has a closed solution on [t0, T]. The theorem is proved.

Remark 5.1. The conditions 140), 150) of Theorem 5.5 for n odd are satisfied if, in particu-
lar, p2(t) = pn−1(t) ≡ 0, p3(t) > 0, pn−2(t) > 0, pk(t) = αk(t) + βk(t), αk(t) > 0,
βk(t) > 0, k = 5, 7, . . . , n − 4,

p2
4(t)− 4α5(t)p3(t) ≤ 0,

p2
6(t)− 4α7(t)β5(t) ≤ 0,

p2
8(t)− 4α9(t)β7(t) ≤ 0,

. . . . . . . . . . . . . . . . . . . . . . . .

p2
n−5(t)− 4αn−4(t)βn−6(t) ≤ 0,

p2
n−3(t)− 4dn−2(t)βn−4(t) ≤ 0, t ∈ [t0, T] (n ≥ 7)

(since under the above restrictions the "square trinomials" α5(t)x2 ± p4(t)x + p3(t), . . . ,
pn−2(t)x2 ± pn−3(t)x+ βn−4(t) are nonnegative for all t ∈ [t0, T], u ∈ R). Note that the conditions 170) and

180) are satisfied if, in particular,
T∫

t0

exp
{ τ∫

t0

a1(s)ds
}

a0(τ)dτ = 0,

T∫
t0

a1(t)dt ≥ 0. Indeed, under these restrictions the left part of 170) is non positive and the left part of

180) is nonnegative.
Example 5.2 For n = 7, a7(t) = sin2 t, a6(t) = sin2 t cos t, a5(t) = 7 sin2 t cos 3t + 2,

a4(t) = 4 sin2 t arctan t + sin(cos t), a3(t) = 10 sin4 t cos et + 2, a2(t) = sin8 t cos9 t, t ≥ t0,
T∫

t0

a1(t)dt ≥ 0,
T∫

t0

exp
{ τ∫

t0

a1(s)ds
}

a0(τ)dτ = 0 the conditions of Theorem 5.5 are satisfied. Here we

take c2(t) = sin6 t cos9 t, c3(t) = 10 sin2 t cos et, c4(t) = 4 arctan t, c5(t) = 7 cos 3t, c6(t) =

cos t, p2(t) ≡ 0, p3(t) = 2, p4(t) = sin(cos t), p5(t) = 2, p6(t) ≡ 0, t ∈ [t0, T].
Theorem 5.6. Let the following conditions be satisfied

190) for some

c+ ≥ max
t∈[t0,T]

t∫
t0

exp
{
−

τ∫
t0

α(s)ds
}

a0(τ)dτ, c− ≥ − min
t∈[t0,T]

t∫
t0

exp
{
−

τ∫
t0

α(s)ds
}

a0(τ)dτ

the inequalities
θc+(t) ≤ 1, |θ−c−(t)| ≤ 1, t ∈ [t0, T]

are valid,

200) c+
(

1 − exp
{
−

T∫
t0

α(τ)dτ

})
≤

T∫
t0

exp
{
−

τ∫
t0

α(s)ds
}

a0(τ)dτ,

c−
(

1 − exp
{
−

T∫
t0

α(τ)dτ

})
≥

T∫
t0

exp
{
−

τ∫
t0

α(s)ds
}

a0(τ)dτ,

Then Eq. (1.1) has a closed solution y∗(t) on [t0, T] such that

θ−c−(t) ≤ y∗(t) ≤ θc+(t), t ∈ [t0, T],
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and if θ−c−(t0) < y∗(t0) (y∗(t0) < θc+(t0)), then

θ−c−(t) < y∗(t) (y∗(t) < θc+(t)), t ∈ [t0, T].

Proof. By Lemma 2.6 it follows from the condition 190) that θc+(t) and θ−c−(t) are solutions of the
inequalities (2.3) and (2.4) respectively on [t0, T]. It is not difficult to verify that the conditions 200)

imply that
θc+(t0) ≥ θc+(T), θ−c−(t0) ≤ θ−c−(T)

By Lemmas 2.1 and 2.2 it follows from here that the solutions y1(t) and y2(t) of Eq. (1.1) with
y1(t0) = θ−c−(t0), y2(t0) = θc+(t0) exist on [t0, T] and

y1(t0) ≤ y1(T), y2(t0) ≥ y2(T).

By Theorem 2.1 it follows from here that Eq. (1.1) has a closed solution y∗(t) on [t0, T] such that

θ−c−(t) ≤ y∗(t) ≤ θc+(t), t ∈ [t0, T],

and if θ−c−(t0) < y∗(t0) (y∗(t0) < θc+(t0)), then

θ−c−(t) < y∗(t) (y∗(t) < θc+(t)), t ∈ [t0, T].

The theorem is proved.

Remark 5.2. The conditions 200) of Theorem 5.6 are satisfied, if in particular,
T∫

t0

exp
{
−

τ∫
t0

α(s)ds
}

a0(τ)dτ =

0,
T∫

t0

α(τ)dτ ≤ 0. Indeed, note that c+ ≥ 0, c− ≤ 0. Therefore, if
T∫

t0

α(τ)dτ ≤ 0, then the left part of the first

inequality of 200) is non positive and the left part of the second inequality of 200) is nonnegative.

Example 5.3. Assume a0(t) = −λα(t), λ = const > 0, c− = λ

[
1 −

− exp
{
− max

ξ∈[t0,T]

ξ∫
t0

α(s)ds
}]

, c+ = λ

[
exp

{
− min

ξ∈[t0,T]

ξ∫
t0

α(s)ds
}
− 1

]
. Then it is not difficult to verify

that

θc+(t) = λ

[
exp

{ t∫
t0

α(s)ds − min
ξ∈[t0,T]

ξ∫
t0

α(s)ds
}
− 1
]
≥ 0, t ∈ [t0, T],

θ−c−(t) = λ

[
exp

{ t∫
t0

α(s)ds − max
ξ∈[t0,T]

ξ∫
t0

α(s)ds
}
− 1
]
≤ 0, t ∈ [t0, T].

Therefore if α(t) ̸≡ 0, λ ≤ min
{

max
t∈[t0,T]

[
exp

{ t∫
t0

α(s)ds − min
ξ∈[t0,T]

ξ∫
t0

α(s)ds
}

− 1
]−1

,

max
t∈[t0,T]

[
1 − exp

{ t∫
t0

α(s)ds − max
ξ∈[t0,T]

ξ∫
t0

α(s)ds
}]−1}

, then θc+(t) ≤ 1, |θ−c−(t)| ≤ 1, t ∈ [t0, T]. Due

to Remark 5.1 it follows from here that if
T∫

t0

α(τ)dτ = 0. Then all the conditions of Theorem 5.6 are satisfied.

Hence, under the above conditions Eq. (1.1) has a closed solution on [t0, T].
Using Lemmas 2.13 and 2.16 instead of Lemma 2.1, 2.2, 2.6 and Theorem 2.1 by analogy with the

proof of Theorem 5.6 one can prove the following theorem
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Theorem 5.7. Let for some

c+ > max
t∈[t0,T]

t∫
t0

exp
{
−

τ∫
t0

α(s)ds
}

a0(τ)dτ, c− > − min
t∈[t0,T]

t∫
t0

exp
{
−

τ∫
t0

α(s)ds
}

a0(τ)dτ

the inequalities
θc+(t) < 1, |θ−c−(t)| < 1, t ∈ [t0, T]

and the conditions 209) of Theorem 5.6 be satisfied.
Then Eq. (1.1) has an isolated closed solution.

Theorem 5.8. Let ak(t) = pk(t) + rk(t), k = 1, 2, where pk(t) and rk(t), k = 1, 2 are real-valued
continuous functions on [t0, T] and the following conditions be satisfied
210) r2(t) ≥ 0, a0(t) ≤ 0, t ∈ [t0, T],

220) −
n
∑

k=3
ak(t)xk −

2
∑

k=1
pk(t)xk ∈ Ω∗

0 , t ∈ [t0, T].

Then Eq. (1.1) has a closed solution on [t0, T].
Proof. Consider the Riccati equation

y′ + r2(t)y2 + r1(t)y + a0(t) = 0, t ∈ [t0, T]. (5.11)

without loss of generality taking into account the conditions 210) we can take that rk(t) ≥ 0, a0(t) ≤
0, t ≥ t0 and have unbounded supports. Then by virtue of Theorem 2.2 the solution y+(t) of Eq. (5.11)
with y+(t0) = 0 exists on [t0, T] and y+(T) ≥ 0. Hence,

y+(t0) ≤ y+(T). (5.12)

By Lemma 2.10 it follows from the conditions 210) that Eq. (5.11) has a negative t0-regular solution.
Then by Lemma 2.12 Eq. (5.11) has a negative solution y−(t) on [t0, T] such that

y−(t0) ≥ y−(T). (5.13)

It follows from 220) that ζ(t) ≡ y+(t) is a solution of the inequality (2.4) on [t0, T] and η(t) ≡ y−(t) is
a solution of the inequality (2.3) on [t0, T] (since η(t) < 0, ζ(t) ≥ 0, t ∈ [t0, T]). Moreover, according
to (5.12) and (5.13)

ζ(t0) ≤ ζ(t), η(t0) ≥ η(T), (5.14)

Obviously, η(t) ≤ ζ(t), t ∈ [t0, T]. Then by Corollary 2.1 it follows from (5.14) that Eq. (1.1) has a
closed solution on [t0, T]. The theorem is proved.

Theorem 5.9. Assume ak(t) = pk(t) + rk(t), k = 2, n, where pk(t) and rk(t), k = 2, n real-valued
continuous functions on [t0, T] such that

a) for some j = 2, 3, . . . n, rk(t) ≥ 0, k = j, n,
n
∑

k=j
rk(t) > 0, t ∈ [t0, T],

n
∑

k=2
pk(t)xk ∈ Ω0, t ∈ [t0, T]

b) for some j0 = 0, 1, . . . , j − 1 ak(t) ≤ 0, k = 0, j0,
j0
∑

k=0
ak(t) < 0, t ∈ [t0, T]

Then Eq. (1.1) has a positive isolated closed solution on [t0, T].
Proof. By Lemma 2.15 it follows from the conditions a) that for enough large M > 1 the function

η(t) ≡ M, t ∈ [t0, T] is a solution of the inequality (2.30) on [t0, T]. By lemma 2.14 it follows from the
conditions b) that for enough small ρ > 0 (ρ < 1) the function ζ(t) ≡ ρ, t ∈ [t0, T] is a solution of the
inequality (2.19) on [t0, T]. Then by Lemma 2.13 Eq. (1.1) has a positive isolated closed solution on
[t0, T]. The theorem is proved.
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6. Some Applications to Planar Autonomous Systems
Let P(x, y) be a polynomial. Consider the function

IP (θ) ≡ sin θ
[
P ′

x(cos θ, sin θ)P(sin θ, cos θ)−P ′
y(sin θ, cosθ)P(cos θ, sin θ)

]
+

+ cos θ
[
P ′

x(sin θ, cos θ)P(cos θ, sin θ)−P ′
y(cos θ, sin θ)P(sin θ, cos θ)

]
, t ∈ R.

Definition 6.1. A polynomial P(x, y) is called a separator polynomial ar,simply, a separator if IP (θ) ̸=
0, t ∈ R.

Hereafter for any polynomial P(x, y) the function IP (θ) we will call the indicator of separation of
P(x, y) or simply the indicator of P(x, y). Indicate some polynomials with their indicators.

1) P(x, y) = x, IP (θ) ≡ 1,
2) P(x, y) = x + λx3, λ ∈ R, IP (θ) = 1 + λ

[
sin4 θ + cos4 θ

]
+
[
6λ + 3λ2] sin2 θ cos2 θ,

3) P(x, y) = x3, IP (θ) = 3 sin2 θ cos2 θ,
4) P(x, y) = x + x5, IP (θ) = 1 + sin6 θ + cos6 θ + 5 sin4 θ cos4 θ + 5 sin2 θ cos2 θ,
5) P(x, y) = x + λy, λ ∈ R, IP (θ) ≡ 1 − λ2.
Problem. Describe all separator polynomials.
Definition 6.2. The transformation

ϕ = rP(cos θ, sin θ), ψ = rP(sin θ, cos θ), r, t ∈ R (6.1)

with any separator P(x, y) is called a generalized Prufer transformation.
Next we will see that a generalized Prufer transformation allows to extend the classes of systems

of planar autonomous systems, studied in [25], to which Eq. (1.1) is applicable.
Consider the autonomous system 

ϕ′ =
n
∑

k=1
Pk(ϕ, ψ),

ψ′ =
n
∑

k=1
Qk(ϕ, ψ).

(6.2)

where Pk, Qk, k = 1, n are homogeneous polynomials of degree k. In this section we use some results
of previous sections to establish some sufficient conditions for existence of a periodic solution or a
limit cycle of the last system.

The substitution (6.1) reduces (6.2) to the system
r′P(cos θ, sin θ) + rθ′AP (θ) =

n
∑

k=1
Pk(P(cos θ, sinθ),P(sin θ, cos θ))rk,

r′P(sin θ, cos θ) + rθ′BP (θ) =
n
∑

k=1
Qk(P(cos θ, sin θ),P(sin θ, cos θ))rk,

(6.3)

where AP (θ) ≡ −P ′
x(cos θ, sin θ) sin θ + P ′

y(cos θ, sin θ) cos θ, BP (θ) ≡ P ′
x(sin θ, cos θ) cos θ −

P ′
y(sin θ, cos θ) sin θ, θ ∈ R. Multiplying both sides of the firs equation of the obtained system by

BP (θ) and the second equation of that system by AP (θ) and subtracting from the first obtained
equation the second one we get

IP (θ)r′ =
n

∑
k=1

[
BP (θ)Pk(P(cos θ, sin θ),P(sin θ, cos θ))−

− AP (θ)Qk(P(cos θ, sin θ),P(sin θ, cos θ))
]
rk.
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Similarly, multiplying both sides of the first equation of the system (6.2) by P(sin θ, cos θ) and both
sides of the second equation of that system by P(cos θ, sin θ) and subtraction from the second obtained
equation the first obtained one we get

IP (θ)rθ′ =
n

∑
k=1

[
P(cos θ, sin θ)Qk(P(cos θ, sin θ),P(sin θ, cos θ))−

−P(sin θ, cos θ)Pk(P(cos θ, sin θ),P(sin θ, cos θ), )
]
rk

Therefore (6.2) is reduced to the system
r′ =

n
∑

k=1
fk(θ)rk,

θ′ =
n
∑

k=1
gk(θ)rk−1,

(6.4)

where
fk(θ) =

[
BP (θ)Pk(P(cos θ, sin θ),P(sin θ, cos θ))−

− AP (θ)Qk(P(cos θ, sin θ),P(sin θ, cos θ))
]/

IP (θ), (6.5)

gk(θ) =
[
P(cos θ, sin θ)Qk(P(cos θ, sin θ),P(sin θ, cos θ))−

−P(sin θ, cos θ)Pk(P(cos θ, sin θ),P(sin θ, cos θ))
]/

IP(θ). (6.6)

In some cases the system (6.2) is reducible to a single equation like Eq. (1.1). Then a closed solution
of the obtained single equation will be represent a periodic orbit for the system (6.2), moreover if
the closed solution is isolated, then it corresponds to a limit cycle for that system (see [25]). First we
consider the system

ϕ′ = aϕ + bψ +
n−1
∑

k=1

[
ϕFk(ϕ, ψ) + (ϕ2 + αkϕψ + β0ψ2)Gk(ϕ, ψ)

]
,

ψ′ = cϕ + dψ +
n−1
∑

k=1

[
ψF(ϕ, ψ) + (γ0ϕ2 + λ0ϕψ + µkψ2)Gk(ϕ, ψ)

]
,

(6.7)

where Fk and Gk are homogeneous polynomials of degrees k and k− 1 respectively k = 1, n − 1, a, b, c, d, αk, βk, γk, λk, µk k =

1, n − 1 are some real constants.
Let us assume that for some β ̸= ±1 the following equalities hold

A)


γ0 + λ0β + (µk − αk)β2 − β0β3 = β,
3γ0β + λ0(1 + 2β2) + (µk − αk)(2β + β3)− 3β0β2 = 1 + 2β2,
3γ0β2 + λ0(2β + β3) + (µk − αk)(1 + 2β2)− 3β0β = 2β + β3,
γ0β + λ0β2 + (µk − αk)β − β0 = β2, k = 1, n − 1.

Then the substitution
ϕ = r(cos θ + β sin θ), ψ = r(sin θ + β cos θ) (6.8)

reduces (6.7) to the system 
r′ =

n
∑

k=1
fk(θ)rk,

θ′ = g1(θ)r,

(6.9)
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where according to formulae (6.5) and (6.6)

f1(θ) =
1

1 − β2

{
[a + (b + c)β + aβ2] cos2 θ − [d + (b + c)β + aβ2] sin2 θ +

+ [b − c + d − dβ + (c − b)β2] sin θ cos θ
}

,

fk+1(θ) = Fk(cos θ + β sin θ, sin θ + β cos θ) +

+
[

ak cos3 θ + bk cos2 θ sin θ + ck cos θ sin2 θ + dk sin3 θ
]

Gk(cos θ + β sin θ, sin θ + β cos θ),

ak =
1

1−β2

[
1 + αkβ + β0β2 − γ0β − λ0β2 − µkβ3],

bk =
1

1−β2

[
β + αk + β0(2β − β3)− γ0(2β2 − 1)− λ0β3 − µkβ2],

ck =
1

1−β2

[
−β2 − αkβ3 + β0(1 − 2β2)− γ0(β3 − 2β) + λ0 + µkβ

]
,

dk =
1

1−β2

[
−β3 − αkβ2 − β0β + γ0β2 + λ0β + µk

]
, k = 1, n − 1,

g1(θ) =
1

1 − β2

{
[c+(d− a)β− bβ2] cos2 θ +[d− b− aβ+ cβ2] sin2 θ +

+ [d − a + 2(c − b)β + (d − a)β2] sin θ cos θ
}

.

Assume g1(θ) ̸= 0, θ ∈ R. Then by considering r as a function of θ from (6.9) we derive the equation

dr
dθ

=
n

∑
k=1

fk(θ)

g1(θ)
rk, θ ∈ R. (6.10)

Theorem 6.1. Let us assume that for some β ̸= ±1 the conditions A) and the following conditions be
satisfied.
g1(θ) ̸= 0, θ ∈ [0, 2π], fk(θ)

g1(θ)
= pk(θ) + rk(θ), k = 1, n, where pk(θ), rk(θ), k = 1, n are real-valued

continuous functions on [0, 2π], such that −
n
∑

k=1
pk(θ)xk ∈ Ω0, for some j = 2, . . . , n, rk(θ) ≤ 0, k =

j, n, θ ∈ [0, 2π] and for some j0 = 0, . . . , j − 1, rk(θ) ≥ 0, k = 0, j0, θ ∈ [0, 2π]. Moreover,
n
∑

k=j
rk(θ) <

0,
j0
∑

k=0
rk(θ) > 0. Then the system (6.7) has a limit cycle.

Proof. One can verify that the conditions A), the condition g1(θ) ̸= 0, θ ∈ [0, 2π] and the
transformation (6.8) imply the reduction of the system (6.7) to the single equation (6.10). Then it
follows from the remaining conditions of the theorem, that all conditions of Theorem 5.9 foe Eq. (6.10)
are satisfied. Then the assertion of the theorem is a direct consequence of Theorem 5.9. The theorem is
proved.

Consider the system
ϕ′ = aϕ + bψ + Pm+1(ϕ, ψ) +

n−1
∑

k=1

[
ϕFmk(ϕ, ψ) + (ϕ2 + αkϕψ + β0ψ2)Gmk(ϕ, ψ)

]
,

ψ′ = cϕ + dψ + Qm+1(ϕ, ψ) +
n−1
∑

k=1

[
ψFmk(ϕ, ψ) + (γ0ϕ2 + λ0ϕψ + µkψ2)Gmk(ϕ, ψ)

]
,

(6.11)
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where Pm+1(x, y) and Qm+1(x, y) are homogeneous polynomials of degree m + 1, Fmk and Gmk are ho-
mogeneous polynomials of degrees mk and mk − 1 respectively, m ∈ N,
k = 2.n − 1. Assume the conditions A) hold. Then the substitution (6.8) reduces (6.11) to the system

r′ = f1(θ) + f0m+1(θ)r
m+1 +

n
∑

k=2
f0mk(θ)r

mk+1,

θ′ = g0
m+1(θ)r

m,

(6.12)

where

f0m(k+1)(θ) ≡ Fmk(cos θ + β sin θ, sin θ + β cos θ) +

+
[

ak cos3 θ + bk cos2 θ sin θ + ck cos θ sin2 θ + dk sin3 θ
]

Gmk(cos θ + β sin θ, sin θ + β cos θ),

k = 1, n − 1,

g0
m+1(θ) ≡

1
1 − β2

[
(cos θ + β sin θ)Qm+1(cos θ + β sin θ, sin θ + β cos θ)−

− (sin θ + β cos θ)Pm+1(cos θ + β sin θ, sin θ + β cos θ)
]
.

Assume g0
m+1(θ) ̸= 0, t ∈ R. Then by considering r as a function of θ, from (6.12) we derive the single

equation
dr
dθ

=
1

g0
m+1(θ)

[
f1(θ)r + f0m+1(θ)r

m+1 +
n

∑
k=2

f0mk(θ)r
mk+1

]
.

After the change of variables R = rm from the last equation we get the following equation of type (1.1)

dR
dθ

=
m

g0
m+1(θ)

[
f1(θ) + f0m+1(θ)R +

n

∑
k=2

f0mk(θ)Rk
]
. (6.13)

Theorem 6.2 Assume the conditions A) and the following conditions be satisfied

g0
m+1(θ) ̸= 0,

mf0
m+1(θ)

g0
m+1(θ)

= p1(θ) + r1(θ),
mf0

2m(θ)

g0
m+1(θ)

= p2(θ) + r2(θ), θ ∈ [0, 2π], where pk(t), rk(t), k =

1, 2 are real-valued continuous functions on [0, 2π] such that r2(θ) ≤ 0, f1(θ)

g0
m+1(θ)

≥ 0,
2
∑

k=0
pk(t)xk +

n
∑

k=3

mf0
mk(θ)

g0
m+1(θ)

xk ∈ Ω∗
0 , θ ∈ [0, 2π].

Then the system (6.12) has a periodic orbit.
Proof. Under the restrictions A) and g0

m+1(θ) ̸= 0, θ ∈ [0, 2π] the system (6.12) is reducible to Eq.
(6.13). It is clear that the conditions of Theorem 5.8 for Eq. (6.13) are satisfied. Then the assertion of the
theorem is a direct consequence of Theorem 5.8. The theorem is proved.

Theorem 6.3. Assume the conditions A) and the following conditions be satisfied

g0
m+1(θ) ̸= 0, mf1(θ)

g0
m+1(θ)

= p0(θ) + r0(θ),
mf0

m+1(θ)

g0
m+1(θ)

= p1(θ) + r1(θ),
mf0

mk(θ)

g0
m+1(θ)

= pk(θ), k = 2, n θ ∈

[0, 2π],where pk(t), rk(t), k = 0, v are real-valued continuous functions on [0, 2π] such that −
n
∑

k=0
pk(θ)xk ∈

Ω0, θ ∈ [0, 2π], for some j = 2, . . . , , n the inequalities (−1)krk(θ) ≤ 0, k = j, n,
n
∑

k=j
rk(θ) < 0, r0(θ) ≥

0, r0(θ) ̸≡ 0, θ ∈ [0, 2π] hold. Then the system (6.12) has a periodic orbit (ϕ∗(t), ψ∗(t)). In particular if

j = 2 and
2π∫
0

r1(θ)dθ < 0, then (ϕ∗(t), ψ∗(t)) is a limit cycle.
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Proof. As in the case of previous theorem under the restrictions A) and g0
m+1(θ) ̸= 0, θ ∈ [0, 2π]

the system (6.12) is reducible to Eq. (6.13). It is not difficult to verify that the conditions of Corollary
5.1 for Eq. (6.13) are satisfied. Then the assertion of the theorem immediately follows from Corollary
5.1. The theorem is proved.

Denote

F(θ) ≡ m
g0

m+1(θ)

n

∑
k=2

|f0mk(θ)|+
mf0m+1(θ)

g0
m+1(θ)

,

�C(θ) ≡ exp
{ θ∫

0

F(τ)dτ

}[
C +

θ∫
0

exp
{
−

τ∫
0

F(s)ds
}

mf1(τ)

g0
m+1(τ)

dτ

]
,

�−C (θ) ≡ exp
{ θ∫

0

F(τ)dτ

}[ θ∫
0

exp
{
−

τ∫
0

F(s)ds
}

mf1(τ)

g0
m+1(τ)

dτ − C
]

, θ, c ∈ R.

Theorem 6.4. Let the conditions A) and the following conditions be satisfied
g0

m+1(θ) ̸= 0
for some

C+ ≥ − min
θ∈[0,2π]

θ∫
0

exp
{
−

τ∫
0

F(s)ds
}

mf1(τ)

g0
m+1(τ)

dτ, (6.14)

C− ≥ max
θ∈[0,2π]

θ∫
0

exp
{
−

τ∫
0

F(s)ds
}

mf1(τ)

g0
m+1(τ)

dτ, (6.15)

the inequalities
�C+(θ) ≤ 1, |�−C−(θ)| ≤ 1, θ ∈ [0, 2π], (6.16)

C+

(
exp

{
−

2π∫
0

F(τ)dτ

}
− 1
)
≥

2π∫
0

exp
{
−

τ∫
0

F(s)ds
}

mf1(τ)

g0
m+1(τ)

dτ,

C−
(

exp
{
−

2π∫
0

F(τ)dτ

}
− 1
)
≤

2π∫
0

exp
{
−

τ∫
0

F(s)ds
}

mf1(τ)

g0
m+1(τ)

dτ

are valid.
Then the system (6.12) has a periodic orbit. If the inequalities (6.14) - (6.16) are strict, then the system (6.12) has
a limit cycle.

Proof. The conditions A) imply that the system (6.12) is reducible to Eq. (6.13). It follows from the
conditions of the theorem that the conditions of Theorem 5.6 for Eq. (6.13) are satisfied. Moreover, If
the inequalities (6.14) - (6.16) are strict then the conditions of Theorem 5.7 for Eq. (6.13) are satisfied.
Then the assertion of the theorem is a direct consequence of Theorems 5.6 and 5.7. The theorem is
proved.
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