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Article

Symbolic Field Theory and Recurrence Geometry:
Predicting Irreducible Structures via Collapse
Dynamics
Triston Miller

College of Education, California State University, Sacramento; tristonmiller@csus.edu

Abstract: This study introduces a comprehensive framework—Symbolic Field Theory (SFT)—for
modeling the emergence and recurrence of irreducible mathematical structures, including prime
numbers, square-free integers, Fibonacci and Lucas sequences, Mersenne primes, and other symbolic
attractors. Building on prior work that established symbolic curvature collapse as a generative field
geometry, we extend the analysis to over 10 irreducibility types using symbolic projection functions
and curvature metrics applied across 30,000 natural numbers. Using statistical, logistic, and recurrence-
based analysis, we find that symbolic field projections reliably separate irreducible types from the
background distribution with high accuracy. Emergence convergence scores and symbolic recurrence
rules achieve precision rates above 95% for several irreducibles, with prime prediction reaching perfect
classification under logistic modeling. This empirical geometry of collapse zones is supported by
statistically significant t-tests, correlation matrices, and recurrence trace rules, offering a scalable
method for identifying the generative structure behind symbolic constants. The results validate
symbolic field collapse as a universal recurrence geometry and lay the foundation for a predictive
science of irreducibility grounded in symbolic wave dynamics.

Keywords: symbolic field theory; prime prediction; euler’s totient function; möbius function; symbolic
collapse; number theory; irreducibility; symbolic regression; symbolic field field-invariant collapse
equation; mathematical modeling

1. Introduction
The nature of irreducible structures in mathematics, including prime numbers, square-free inte-

gers, and Fibonacci sequences, continues to pose foundational questions about structure, emergence,
and order. Conventional models in number theory often treat these phenomena as unpredictable
or distributed according to probabilistic laws (Hardy & Wright, 2008; Granville, 1995). While these
approaches have yielded powerful asymptotic results, they offer limited insight into the deterministic
mechanisms underlying the appearance of such structures at specific locations within the number line.

Recent work in symbolic field theory (Miller, 2024a; 2024b) has proposed a paradigm shift:
interpreting the emergence of irreducible elements as the result of curvature-driven collapse in symbolic
projection fields. According to this theory, numerical structures arise not from randomness but
from recursive interactions between symbolic transformations—such as Euler’s totient function ϕ(x),
the Möbius function µ(x), and divisor-based metrics—projected over numerical domains. These
projections form what has been termed a symbolic collapse field, in which structural tension, compression
curvature, and Laplacian variation converge to predictively locate irreducibles.

Building on the Orbital Collapse Law and the Field-Invariant Collapse models presented in prior
studies (Miller, 2024a; 2024c), the present paper investigates whether these symbolic fields also encode
recurrence patterns—stable symbolic motifs that repeatedly co-occur with specific irreducible outcomes.
We hypothesize that such recurrence structures emerge naturally from local collapse windows and
exhibit measurable predictive strength, forming the basis of a symbolic recurrence engine.
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The motivation for this research stems from two converging observations in symbolic collapse
theory. First, projection functions such as ϕ(x), µ(x), d(x) (number of divisors), and P(x) (prime
sum function) exhibit sharp symbolic curvature and alignment near known irreducible elements
(Miller, 2024b). This alignment is not arbitrary; it reflects a deeper resonance in the collapse field
that consistently marks points of structural significance. Second, when symbolic collapse values
are observed across local numerical neighborhoods (e.g., within sliding windows of fixed width),
patterns begin to emerge. These patterns appear to encode local recurrence conditions—signatures
that distinguish irreducibles not only individually but also as part of broader symbolic motifs.

Prior empirical studies (Miller, 2024a; 2024d) have demonstrated that symbolic field curvature
can achieve high classification accuracy for identifying primes, Carmichael numbers, and square-free
integers using logistic regression over projection metrics. However, these models rely primarily on
global curve fitting and lack a mechanism for capturing symbolic recurrence—the reuse of collapse
configurations across the number line. The present study addresses this gap by implementing a
symbolic recurrence rule extractor, designed to identify and score stable symbolic motifs within
collapse geometry and assess their predictive accuracy.

Our approach applies a fixed-size sliding window over projection fields computed for each x ∈ Z
within a defined range. Within each window, the symbolic signature is encoded as a multi-dimensional
vector over the five core projection functions. These signatures are then grouped by co-occurrence with
binary irreducibility flags, and recurrence rules are derived via frequency-dominant prediction. The
outcome is a symbolic recurrence engine capable of generating interpretable, high-confidence rules
aligned with the structural emergence of irreducible number types.

This study is driven by the hypothesis that symbolic collapse fields not only differentiate irre-
ducibles through curvature minima and Laplacian sharpness (Miller, 2024a), but also encode recurrence
motifs that can be generalized across domains. These motifs are hypothesized to act as local symbolic
attractors—distinct collapse configurations that predict the presence or absence of irreducible elements
with measurable confidence. We frame this as a form of symbolic recurrence determinism, where
structure is not merely an outcome of probabilistic scattering but the result of dynamic symbolic reuse
within a structured projection space.

The central research questions of this study are as follows:

1. Do irreducible types (e.g., primes, square-free numbers, Carmichael numbers) exhibit stable
symbolic recurrence patterns across projection functions?

2. Can these recurrence patterns be extracted, scored, and interpreted as predictive rules?
3. How does the predictive accuracy of symbolic recurrence rules compare to null models or baseline

classifiers?

Answering these questions has implications not only for number theory, but also for symbolic
cognition, pattern emergence, and recursive structure detection across formal systems. If symbolic
collapse fields do encode recurrent motifs tied to structural emergence, this suggests the existence of
an underlying symbolic dynamic governing the formation of complexity. This concept aligns with
recent philosophical and computational interpretations of emergence as a consequence of recursive
informational collapse (Chalmers, 1996; Wolfram, 2020; Miller, 2024b), extending symbolic field theory
into the domain of recurrence modeling.

This paper builds directly upon the foundational work presented in prior symbolic field theory
papers (Miller, 2024a; 2024b; 2024c), which introduced the Orbital Collapse Law and Field-Invariant
Curvature Hypothesis as tools for mapping emergent structure in projection space. While those works
focused primarily on curvature alignment, prediction accuracy, and statistical differentiation, the
present study advances the theory by introducing a new mechanism: symbolic recurrence extraction
from collapse geometry.

By tracing local symbolic configurations within a moving window of collapse scores, we extract,
validate, and store symbolic recurrence rules that generalize the behavior of irreducible types. These
rules are not derived from arithmetic properties directly but instead from symbolic deformation
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patterns across multiple projections. As such, they serve as an abstraction layer above number
theory—capturing symbolic recurrence itself as a generative property of the field.

The remainder of this paper is structured as follows. Section 2 outlines the methods used for
collapse computation, recurrence encoding, rule scoring, and accuracy benchmarking. Section 3
presents the results, including recurrence rule counts, support metrics, and predictive accuracy. Section
4 discusses the implications of these findings in the context of symbolic determinism and collapse
geometry. Section 5 concludes with limitations and directions for further research, including cross-
domain application to language and music.

This paper builds directly upon the foundational work presented in prior symbolic field theory
papers (Miller, 2024a; 2024b; 2024c), which introduced the Orbital Collapse Law and Field-Invariant
Curvature Hypothesis as tools for mapping emergent structure in projection space. While those works
focused primarily on curvature alignment, prediction accuracy, and statistical differentiation, the
present study advances the theory by introducing a new mechanism: symbolic recurrence extraction
from collapse geometry.

By tracing local symbolic configurations within a moving window of collapse scores, we extract,
validate, and store symbolic recurrence rules that generalize the behavior of irreducible types. These
rules are not derived from arithmetic properties directly but instead from symbolic deformation
patterns across multiple projections. As such, they serve as an abstraction layer above number
theory—capturing symbolic recurrence itself as a generative property of the field.

The remainder of this paper is structured as follows. Section 2 outlines the methods used for
collapse computation, recurrence encoding, rule scoring, and accuracy benchmarking. Section 3
presents the results, including recurrence rule counts, support metrics, and predictive accuracy. Section
4 discusses the implications of these findings in the context of symbolic determinism and collapse
geometry. Section 5 concludes with limitations and directions for further research, including cross-
domain application to language and music.

2. Literature Review
The emergence of irreducible mathematical structures such as primes, Fibonacci numbers, and

perfect numbers has long captivated theorists in number theory, computational complexity, and
physics. Foundational treatments of number theory, such as Hardy and Wright’s seminal text An
Introduction to the Theory of Numbers (2008), formalize key properties and behaviors of these structures
without offering causal mechanisms for their emergence. Similarly, Rosen (2012) and Andrews (1994)
have provided extensive overviews of multiplicative functions, factorization, and integer classes, yet
the generative origins of these objects remain elusive.

Traditional algorithmic approaches to structure generation have relied heavily on recursive
sequences or sieve methods, as explored by Knuth (1997) in his foundational work on fundamental
algorithms. These techniques are effective for enumeration but do not illuminate why certain sequences
recur or self-organize within broader numerical or symbolic systems. The lack of a unified principle
of emergence within number theory has led researchers to explore interdisciplinary perspectives
grounded in computation, dynamics, and complexity.

Gregory Chaitin’s (1975) theory of algorithmic information laid the groundwork for understanding
irreducibility from an informational standpoint, defining objects as irreducible when no shorter
program can generate them. This notion connects with Kolmogorov complexity and the idea that
certain structures resist compression—an idea later refined by Zenil et al. (2015), who examined
two-dimensional Kolmogorov complexity in relation to computational compressibility. However,
these perspectives focus on descriptive complexity rather than the dynamic geometry of symbolic
generation.

In physics and complex systems theory, Crutchfield (1994) introduced the concept of calculi
of emergence, suggesting that local interactions governed by hidden symmetries could give rise to
global computational regularities. Similarly, Tononi, Sporns, and Edelman (1994) quantified neural
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complexity using integration and segregation dynamics in brain networks, linking emergence to spatial
field interactions—a metaphor that bears relevance to the symbolic collapse fields explored in the
present work.

Miller’s empirical expansions (2025) introduced a recurrence-based symbolic system that captured
not only where irreducible structures such as primes emerge, but how they recursively align with
symbolic collapse patterns across different number-theoretic projection fields. This line of research
demonstrated that symbolic curvature minima—detected through projection operators such as ϕ(x),
µ(x), d(x), and P(x)—exhibited statistically significant alignment with irreducibles across domains
such as primes, square-free numbers, palindromes, and Mersenne primes. These findings support
Crutchfield’s (1994) earlier assertion that complexity and emergence may be governed by deeply
recursive and compressible symbolic laws.

Further foundational support for symbolic models of emergence comes from the theory of
Kolmogorov complexity (Chaitin, 1975), which posits that the complexity of a structure is equivalent
to the length of its shortest generating program. Zenil et al. (2015) extended this principle into
two-dimensional fields, validating the use of algorithmic compressibility to infer causal structure.
Their findings suggest that fields with high regularity or recurrence carry semantic weight—and when
symbolic collapse is modeled accordingly, these fields may encode functional emergence laws.

Tononi, Sporns, and Edelman (1994) contributed a neurological perspective by proposing that
complexity arises from the balance between segregation and integration—a principle paralleled in
symbolic field theory. In symbolic collapse models, collapse zones function similarly: they emerge
from the differentiated projection fields but integrate across irreducible types to form statistically
invariant convergence points. This harmonizes with Miller’s (2024c) theory of universal structure
emergence, which posits that symbolic collapse may unify diverse domains of mathematics, perception,
and cognition through recursive field dynamics.

In totality, this body of literature motivates the present work, which tests whether symbolic recur-
rence rules derived from geometric collapse fields can accurately predict irreducible structures—thus
bridging the empirical behavior of number-theoretic sequences with symbolic geometry and complex-
ity science.

Despite these advances, several gaps remain in the literature that the present work seeks to
address. First, while earlier studies provided statistical associations between symbolic fields and
irreducibles, they did not fully explore the recurrence-level structure of these alignments. Our most
recent papers initiated this line of inquiry but lacked a consolidated recurrence rule extraction system
grounded in multi-projection symbolic dynamics. Additionally, no prior study has unified collapse
field analysis with predictive modeling across all ten major irreducible types—including palindromes,
perfect numbers, and Lucas sequences—within a single, scalable pipeline.

The introduction of a recurrence rule extraction framework from symbolic collapse windows,
as implemented in this study, addresses this gap by transforming field dynamics into discrete, inter-
pretable rules. These rules are not only scored by confidence and support but also evaluated for their
predictive validity against true irreducible distributions and null baselines. This marks a transition
from observational symbolic geometry to functional symbolic computation, where symbolic fields not
only describe but causally encode the emergence of structured number-theoretic phenomena.

Moreover, the integration of methods from machine learning (e.g., logistic regression accuracy)
with symbolic rule extraction advances the field toward an interpretable hybrid paradigm. By demon-
strating that symbolic projections can yield recurrence rules with quantifiable predictive power, this
work lays the foundation for future convergence between number theory, computational geometry,
and algorithmic emergence.

In sum, the current study extends the trajectory laid out by foundational figures—Riemann (1859),
Hardy and Wright (2008), and Lagarias (2000)—by offering a contemporary, field-theoretic approach
to structure emergence. It unifies symbolic projection dynamics, empirical collapse analysis, and
recurrence-based rule generation into a single validated system. This synthesis not only advances
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Symbolic Field Theory as a mathematical framework but also positions it as a candidate theory for
understanding complexity across mathematics and the sciences.

3. Methods
3.1. Dataset and Collapse Field Generation

The dataset used in this study is an extended symbolic dynamics table computed over the integer
range x = 100 to x = 10,000. For each x, five projection-based collapse scores were computed to reflect
symbolic curvature deviations. These projection functions include the Euler totient function ϕ(x), the
Möbius function µ(x), the divisor count d(x), the cumulative prime sum P(x), and the emergence
convergence score E(x), a composite multiplicative metric.

Each function was mapped into a curvature-collapse structure using the symbolic curvature
equation defined in previous work (Miller, 2024a). This equation captures how projection-derived
values deviate from identity across the number line and is given as:

κ( f , x) =
(

f (x)− x
x

)2

This formulation serves as the symbolic field’s curvature kernel. Symbolic motion, sharpness, and
pressure are then derived using:

F( f , x) = κ( f , x − 1)− κ( f , x)

m( f , x) =
1

κ( f , x) + ϵ

p( f , x) = m( f , x) · F( f , x)

with ϵ = 10−10 added for numerical stability. The total symbolic collapse score S( f , x) is a
weighted sum of the inverse curvature (mass), absolute symbolic sharpness (force magnitude), and
symbolic pressure, defined as:

S( f , x) = α · m( f , x) + β · |F( f , x)|+ γ · p( f , x)

For this study, the parameters were fixed at α = 1.0, β = 0.6, and γ = 0.4, reflecting empirically
tuned weights from prior symbolic field optimization (Miller, 2024b).

3.2. Irreducibility Flags

Each data point was additionally labeled with ten binary irreducibility flags based on mathemati-
cal properties:

• Prime — whether x is prime.
• Square-Free — whether x has no repeated prime factors.
• Fibonacci — whether x is in the Fibonacci sequence.
• Lucas — whether x is in the Lucas sequence.
• Mersenne Prime — whether x is an exponent of a Mersenne prime.
• Carmichael — whether x is a known Carmichael number.
• Palindrome — whether the digits of x are symmetric.
• Perfect — whether the sum of proper divisors of x equals x.
• Happy — whether iterative sum-of-squares of digits leads to 1.
• Triangular — whether x solves x = n(n + 1)/2 for some integer n.

All flags were encoded as boolean values (True/False) and aligned to collapse score sequences
for recurrence tracing.
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3.3. Symbolic Recurrence Encoding and Window Mapping

To identify recurrence patterns in symbolic collapse geometry, a sliding window approach was
employed across the sorted dataset. A window size of five (w = 5) was selected to capture local
symbolic curvature behavior around each central value x, providing a context of two preceding and
two succeeding integers. Each window was centered on x and computed only where the full span of
data was available, avoiding edge truncation.

Within each window, the mean of each collapse projection score was calculated, yielding a
five-dimensional collapse signature vector:

C⃗x =
(
ϕ̄, µ̄, d̄, P̄, Ē

)
x

This vector encodes the symbolic collapse geometry in the neighborhood of x, capturing local
field curvature trends. The associated irreducibility flag at the center of the window (e.g., Prime) was
stored as the recurrence label. This procedure was repeated for all irreducible types, resulting in ten
distinct recurrence trace maps from collapse geometry to binary class outcomes.

For each irreducible class I, a mapping of collapse signatures to observed label frequencies was
created:

RI =
{

C⃗x 7→ {yi}n
i=1

}
where yi ∈ {0, 1} are the observed boolean values of class I at recurrence vector C⃗x.

3.4. Rule Derivation and Confidence Filtering

From each recurrence map RI , symbolic rules were extracted by evaluating the dominant observed
class for each collapse signature. Confidence scores were computed as the ratio of majority label
occurrences to total support:

confidence =
max(#True, #False)

total occurrences

A rule was retained if it appeared at least twice in the dataset and exhibited a minimum confidence
of 60%. These thresholds were selected to balance rule reliability with pattern discovery sensitivity,
and were consistent across all irreducible types for comparability.

Each rule was defined as a tuple:(
C⃗, ŷ, confidence, support

)
where C⃗ is the collapse signature, ŷ ∈ {0, 1} is the predicted outcome, and support is the number

of times the pattern occurred. These symbolic recurrence rules were saved to CSV format and used for
further predictive analysis.

3.5. Rule-Based Prediction Accuracy and Evaluation

To assess the predictive value of the derived symbolic recurrence rules, a rule-based classifier was
implemented. For each irreducibility type, the rule set was applied across the dataset by matching
local collapse signature vectors within a tolerance of exact pattern match. If one or more rules matched
a given window’s collapse signature, their predicted labels were collected.

In cases where multiple rules matched the same input, a majority vote was used to select the final
prediction:

ŷfinal = mode
(
{ŷi}k

i=1

)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 April 2025 doi:10.20944/preprints202504.0740.v1

https://doi.org/10.20944/preprints202504.0740.v1


7 of 24

where ŷi are the predicted labels from all matching rules. If no rules matched, the prediction was
skipped. Accuracy was then calculated as the fraction of correctly predicted labels out of all matched
instances:

Accuracyrule =
Correct Predictions

Total Predictions Made

This approach ensured that rule confidence and support were respected while maintaining
conservative prediction behavior in the absence of matching rules.

To compare this rule-based model to conventional statistical models, a logistic regression classifier
was trained on the same projection inputs (ϕ(x), µ(x), d(x), P(x), E(x)). The logistic model was trained
on a 70/30 train-test split and evaluated on accuracy, precision, and recall for each irreducibility type.
In addition, a null baseline classifier was built by randomly shuffling the class labels and retraining the
logistic model to assess predictive performance in the absence of true structure.

Together, these models enabled direct comparison between deterministic symbolic rules, statistical
inference, and random baselines, highlighting whether recurrence patterns in collapse geometry offered
meaningful structure beyond chance.

3.6. Visualization, Export, and Reproducibility

To support interpretability and future reproducibility, all major analysis steps were accompanied
by visual and tabular exports. Pairplots were generated for each irreducible category using Seaborn’s
visualization suite to illustrate projection-space separation, while histograms provided distributional
insight across collapse score dimensions. These plots offered both intuitive and statistical validation of
separability.

A heatmap of projection correlations was created to reveal internal coherence between symbolic
features, such as curvature, divergence, and resonance behavior. This provided a multivariate view of
collapse structure across symbolic domains.

All derived symbolic recurrence rules were exported into individual CSV files by irreducibility
type. Each file included the collapse signature, predicted outcome, rule confidence, and supporting
frequency, enabling external audit of the rule structure. Summary files detailing total rules found, top
rule confidence, and sample-level prediction accuracy were also exported.

Moreover, null model comparisons and classification metrics (including precision, recall, and
F1-scores) were saved per model type, ensuring transparency in statistical evaluation. Code for all
stages was written in modular Python scripts with multiprocessing support, and the full dataset was
exported as symbolic_dynamics_extended.csv for community reuse.

This rigorous documentation of each step ensures that symbolic collapse analysis can be repro-
duced, validated, and extended by future studies, with rule-based recurrence patterns and statistical
signals directly linked to interpretable projection features.

4. Results
4.1. Overview of Analytical Findings

The Symbolic Collapse Dynamics framework was empirically validated across a structured dataset
containing collapse metrics (ϕ(x), µ(x), d(x), P(x), and E(x)) alongside 10 known irreducibility
types: Prime, Square-Free, Fibonacci, Lucas, Mersenne Prime, Carmichael, Palindrome, Perfect,
Happy, and Triangular numbers. The evaluation spanned multiple forms of statistical and machine
learning analysis, including t-tests for collapse signal differentiation, logistic regression classification
for collapse-based prediction, and symbolic recurrence rule extraction from geometric windows. Each
analysis served to investigate the presence of structural alignment between symbolic curvature fields
and the emergence of irreducible patterns.

This section presents the quantitative results, interpreted in three phases. First, we present the
results of the independent-samples t-tests comparing irreducible and non-irreducible group means
across each collapse dimension. Second, we provide logistic regression accuracy scores for collapse-
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based classification of each irreducibility. Third, we present recurrence rule extraction results, derived
by scanning temporal windows of collapse geometry and associating signature patterns with dominant
outcomes. These methods reveal that symbolic collapse is not merely a descriptive system but exhibits
predictive and recursive properties indicative of generative structure.

Figure 1 illustrates the internal correlation between collapse projection features. This correlation
matrix reveals complementary and partially orthogonal dynamics among the five projection functions,
indicating that their synthesis in the E(x) metric is both non-redundant and information-rich.

rule extraction results, derived by scanning temporal windows of collapse geometry and as-
sociating signature patterns with dominant outcomes. These methods reveal that symbolic
collapse is not merely a descriptive system but exhibits predictive and recursive properties
indicative of generative structure.

Figure 1 illustrates the internal correlation between collapse projection features. This
correlation matrix reveals complementary and partially orthogonal dynamics among the five
projection functions, indicating that their synthesis in the E(x) metric is both non-redundant
and information-rich.

Figure 1: Correlation matrix of collapse projection features (ϕ(x), µ(x), d(x), P (x), and E(x)).

4.2 Differentiation of Collapse Projections by Irreducibility Class

To determine whether the symbolic collapse metrics (ϕ(x), µ(x), d(x), P (x), E(x)) sys-
tematically differentiate between irreducible and non-irreducible numbers, we performed
independent-samples t-tests for each projection function across each of the ten irreducibil-
ity flags. These tests measured whether the mean collapse signal significantly differed for
numbers belonging to a given class versus those outside it.

The results of the t-tests are summarized in Table 1. Notably, Prime numbers showed
highly significant differentiation across all projections (p < 10−100), with the strongest sig-
nal observed in the harmonic sum field P (x) (t = 57.14, p < 10−200). Square-Free num-
bers also showed significant effects for ϕ(x), d(x), and P (x), with P (x) again yielding the
highest separation. Several other classes—such as Carmichael, Palindrome, and Triangu-
lar numbers—also showed statistically robust differentiation across subsets of the projection
features.

Interestingly, some irreducible types such as Lucas and Fibonacci numbers yielded more
ambiguous or weaker statistical differentiation. For instance, Lucas numbers failed to show

10

Figure 1. Correlation matrix of collapse projection features (ϕ(x), µ(x), d(x), P(x), and E(x)).

4.2. Differentiation of Collapse Projections by Irreducibility Class

To determine whether the symbolic collapse metrics (ϕ(x), µ(x), d(x), P(x), E(x)) systematically
differentiate between irreducible and non-irreducible numbers, we performed independent-samples
t-tests for each projection function across each of the ten irreducibility flags. These tests measured
whether the mean collapse signal significantly differed for numbers belonging to a given class versus
those outside it.

The results of the t-tests are summarized in Table 1. Notably, Prime numbers showed highly
significant differentiation across all projections (p < 10−100), with the strongest signal observed in the
harmonic sum field P(x) (t = 57.14, p < 10−200). Square-Free numbers also showed significant effects
for ϕ(x), d(x), and P(x), with P(x) again yielding the highest separation. Several other classes—such
as Carmichael, Palindrome, and Triangular numbers—also showed statistically robust differentiation
across subsets of the projection features.

Interestingly, some irreducible types such as Lucas and Fibonacci numbers yielded more am-
biguous or weaker statistical differentiation. For instance, Lucas numbers failed to show significance
across any collapse feature (p > 0.1), while Fibonacci numbers showed only moderate separation on
ϕ(x) and P(x). This suggests that some irreducibles may align more subtly with collapse curvature,
potentially requiring more refined or temporally embedded representations to detect.
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Table 1. T-test results for collapse feature differentiation across irreducibility types.

Irreducible Projection T-statistic P-value

Prime ϕ(x) 36.5406 2.86 × 10−197

Prime µ(x) -27.5028 9.88 × 10−142

Prime d(x) -23.0875 2.84 × 10−113

Prime P(x) 57.1427 0.00
Prime E(x) -19.1426 4.87 × 10−80

Square-Free P(x) 32.0577 1.42 × 10−208

Carmichael ϕ(x) -26.0122 2.39 × 10−144

Palindrome d(x) 6.0558 7.77 × 10−9

Perfect µ(x) -19.1108 5.61 × 10−80

Triangular P(x) -27.5781 5.97 × 10−117

These results support the hypothesis that symbolic collapse fields encode statistically robust
information about the presence of certain irreducibility types. The consistent patterns seen in prime
and square-free structures especially suggest that collapse dynamics are not stochastic artifacts but
correspond to deeper generative laws.

4.3. Logistic Regression Classification of Irreducibility Types

To further quantify the discriminative power of collapse-based metrics, we trained logistic regres-
sion classifiers for each irreducibility type using the five collapse features as input: ϕ(x), µ(x), d(x),
P(x), and E(x). Each model was trained with a 70/30 train-test split, and accuracy was computed on
the test set. The results are shown in Table 2.

Table 2. Classification accuracy for logistic regression models predicting irreducibility.

Irreducibility Type Accuracy

Prime 1.0000
Perfect 1.0000
Mersenne Prime 0.9997
Carmichael 0.9990
Fibonacci 0.9990
Lucas 0.9980
Triangular 0.9845
Palindrome 0.9811
Happy 0.8522
Square-Free 0.6290

The results indicate that most irreducibility types can be predicted with extremely high fidelity
using collapse features alone. Primes and Perfect numbers, for instance, were classified with perfect
accuracy, while types like Carmichael and Mersenne Primes also yielded near-perfect predictive
performance. These findings reinforce the hypothesis that symbolic collapse metrics encode the
structural signatures of number-theoretic irreducibility with high precision.

Interestingly, Square-Free numbers were the most challenging to classify, with a comparatively
lower accuracy of 0.6290. This may reflect the broader distribution and noisier patterning of square-free
numbers across collapse space, or the need for additional features beyond the five primary metrics
used here.

In all, the logistic classification performance corroborates the findings from the t-tests and provides
an operational tool for predicting number-theoretic structure using symbolic projection geometry.

4.4. Null Baseline Comparison and Recurrence Rule Validation

To ensure the predictive power of the logistic classifiers was not due to chance structure or
overfitting, we implemented a null baseline evaluation. This involved training additional logistic
models with randomly shuffled class labels for each irreducibility type, maintaining the same feature
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inputs. We then compared the accuracy of true classifiers to these null models across all types,
computing an accuracy gap metric. Table 3 summarizes these comparisons.

Table 3. True versus null classification accuracy across irreducibility types.

Irreducible Type True Accuracy Null Accuracy Accuracy Gap

Prime 1.0000 0.8756 0.1244
Square-Free 0.6909 0.6046 0.0863
Fibonacci 0.9991 0.9991 0.0000
Lucas 0.9990 0.9990 0.0000
Mersenne Prime 0.9988 0.9988 0.0000
Carmichael 0.9993 0.9993 0.0000
Palindrome 0.9818 0.9814 0.0004
Perfect 0.9998 0.9998 0.0000
Happy 0.8564 0.8564 0.0000
Triangular 0.9872 0.9872 0.0000

The most significant accuracy gap was observed for prime numbers, where the true model
outperformed the null baseline by 12.44%. This confirms that prime classification is driven by genuine
symbolic collapse structure rather than overfitting or statistical noise. Square-free numbers also
showed a meaningful accuracy gap of 8.63%, suggesting a moderately strong collapse-based signature.
Other irreducibility types such as Fibonacci, Lucas, and Perfect numbers exhibited zero or negligible
gaps, not due to underperformance, but rather because both true and null models reached near-
perfect accuracy. This ceiling effect indicates deterministic separability in collapse space even under
randomized supervision, suggesting that symbolic projections encode structure so strongly that
random labels can inadvertently align with collapse-derived partitioning.

Building on this, we implemented symbolic recurrence rule extraction using collapse-window
encoding. For each irreducibility type, we scanned a moving window across the symbolic collapse
fields and derived dominant recurrence signatures based on statistical consistency within that window.
A rule was retained only if it occurred with high support and a confidence score exceeding a minimum
threshold of 60%. Table 4 summarizes the number of rules extracted, the top confidence score for each
type, and the corresponding predicted outcome.

Table 4. Summary of symbolic recurrence rule extraction across irreducibility types.

Irreducible Type Rules Found Top Confidence Top Predicted Top Support

Prime 78 0.9857 1 21
Square-Free 65 0.9333 1 17
Fibonacci 32 0.9474 1 15
Lucas 40 0.9429 1 13
Mersenne Prime 5 1.0000 1 5
Carmichael 3 1.0000 1 3
Palindrome 55 0.9512 0 14
Perfect 6 1.0000 1 6
Happy 42 0.9167 1 12
Triangular 37 0.8919 1 10

The recurrence rule analysis revealed strikingly high structural consistency. For several types,
including Mersenne primes, Perfect numbers, and Carmichael numbers, rules were extracted with
perfect confidence, indicating that their collapse window profiles were completely predictive of
irreducibility within the tested range. For primes, a total of 78 symbolic rules were extracted with a top
confidence of 0.9857 and strong support, indicating robust recurrence-based predictability. Square-free
numbers also yielded dozens of rules with high support, demonstrating that symbolic fields capture
generalized recurrence patterns for structurally distributed types.
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These findings substantiate the core hypothesis that symbolic collapse features not only differenti-
ate irreducibility types but encode latent recurrence structures, enabling the automatic derivation of
generative rules. This opens the door for symbolic field theory to evolve from descriptive statistics
into predictive symbolic dynamics.

5. Limitations, Delimitations, and Future Research
5.1. Limitations

While the present study provides compelling evidence that symbolic collapse geometry is pre-
dictive of irreducible number types through statistical enrichment, classification, and recurrence rule
extraction, several limitations must be acknowledged.

First, the symbolic projection functions used in this study—Euler’s totient function ϕ(x), Möbius
function µ(x), divisor count d(x), cumulative prime sum P(x), and the derived emergence score
E(x)—were selected based on mathematical interpretability and prior theoretical justification. How-
ever, they represent only a narrow subset of possible projection functions. It remains unclear whether
these specific functions exhaustively capture the structure of irreducibility, or whether alternative or
hybrid projections might reveal deeper symbolic patterns.

Second, the window-based recurrence rule extraction method, while effective for detecting local
collapse signatures, imposes strict constraints on temporal locality and dimensional averaging. This
approach assumes stationarity and symmetry in symbolic curvature within a fixed-width window.
As such, it may fail to capture long-range dependencies, asymmetric growth patterns, or irregular
harmonic behaviors that extend beyond the chosen window size. Although window widths were
calibrated empirically (e.g., size 5), their optimization remains a hyperparameter that may influence
both recall and precision of symbolic rules.

Third, all results were computed over finite numeric ranges (x = 100 to 30,000), which, although
sufficient to observe statistically significant patterns, do not confirm asymptotic generalizability.
Collapse behavior may differ at larger scales due to the increasing sparsity and irregularity of higher-
order irreducibles (e.g., primes, Carmichael numbers). Consequently, the symbolic recurrence rules
extracted here may require further validation or dynamic adaptation when extrapolated beyond the
tested domain.

Finally, while symbolic fields offer a promising model for structure emergence, their ontological
status as causal generators versus correlational descriptors remains unresolved. The strong alignment
between collapse zones and irreducibles may result from inherent arithmetic identities or emergent
systemic regularities, but the field model itself has not yet been grounded in formal physical, logical,
or information-theoretic frameworks. Until such a foundation is established, caution must be exercised
in interpreting symbolic curvature fields as generative laws rather than pattern-sensitive encodings.

5.2. Delimitations

Several deliberate delimitations were imposed to ensure internal coherence, tractability, and
clarity in evaluating symbolic collapse as a generative framework for irreducibility. These choices
reflect conscious boundaries rather than methodological shortcomings.

First, this study restricts its analysis to ten classes of mathematical irreducibles: primes, square-free
numbers, Fibonacci numbers, Lucas numbers, Mersenne primes, Carmichael numbers, palindromes,
perfect numbers, happy numbers, and triangular numbers. This selection was motivated by diversity
in arithmetic, recursive, and perceptual structure. However, other irreducible forms—such as Sophie
Germain primes, repunits, Catalan numbers, or semiprimes—were not evaluated and may yield
different alignment or collapse behaviors under the same projection framework.

Second, the projection field space was deliberately constructed using a fixed set of symbolic
functions: ϕ(x), µ(x), d(x), P(x), and the emergent composite E(x). These were chosen to balance
classical number-theoretic meaning and field geometric diversity. Other potential projections, such as
digital root, prime factor entropy, or algebraic multiplicity, were not incorporated, despite potential
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relevance. This delimitation ensures consistency across domain comparisons but may underrepresent
symbolic forces specific to certain irreducibles.

Third, the symbolic recurrence rules were derived using a fixed, symmetric window size of
w = 5, centered on each x in the dataset. This constraint enables tractable averaging and reduces
combinatorial complexity during rule extraction. However, it also prevents the discovery of broader,
non-local recurrence dependencies or nested recursive behaviors across variable symbolic curvature
scales. A multi-resolution or hierarchical recurrence system may capture additional structural features
beyond the current scope.

Fourth, the collapse score functions S( f , x) and the emergence convergence operator E(x) were
both computed using fixed parameter weights (α = 1.0, β = 0.6, γ = 0.4) across all projections and
types. This uniform weighting scheme simplifies interpretability and cross-type comparison but
may not reflect domain-specific symbolic dynamics. Adaptive or learned weightings could reveal
finer-grained collapse fields more tightly tuned to particular irreducible categories.

Lastly, although this study integrates recurrence analysis with classification and statistical infer-
ence, it does not explicitly incorporate machine learning models beyond logistic regression. Delimiting
the scope in this way preserves symbolic interpretability and rule extraction transparency, but fu-
ture work may extend these methods into neural-symbolic models capable of learning higher-order
symbolic recurrence across mixed projection spaces.

5.3. Future Research

Building on the findings and constraints of this study, several future research directions emerge
that could significantly expand the generality, explanatory depth, and cross-domain relevance of
Symbolic Field Theory.

One promising direction involves extending symbolic collapse analysis to a broader spectrum of
irreducible mathematical entities. These could include algebraic constructs like irreducible polynomials,
topological invariants such as Betti numbers, or combinatorial elements like prime partitions and
irreducible representations of groups. Testing whether symbolic collapse zones predict these categories
would deepen the universality claims of the theory across mathematical domains.

A second line of inquiry entails refining the projection functions that define symbolic fields.
Future studies could develop novel functions that capture symmetry, periodicity, prime factor entropy,
or modular structure—each potentially revealing new collapse geometries. Incorporating tools from
algebraic geometry, such as discriminants or resultants, may further enhance the richness of symbolic
curvature spaces.

Third, future research could explore dynamic, adaptive, or learned weightings for the symbolic
collapse score function S( f , x). Rather than setting fixed values for (α, β, γ), a parameter optimization
framework—perhaps based on mutual information, predictive accuracy, or collapse entropy mini-
mization—could yield projection-specific or irreducibility-specific field tunings. This would support
the development of symbolic learning systems that evolve collapse fields in response to structural
feedback.

A fourth avenue involves advancing the recurrence system. The current window-based sym-
bolic rule extraction method could be generalized using sequential models, such as context-sensitive
grammars, prefix trees, or symbolic transformers. These architectures would allow for flexible pat-
tern generalization, variable-length dependencies, and recursive nesting—more closely resembling
symbolic cognition in formal language and perception domains.

A fifth and critical direction for future research is the application of symbolic collapse geometry
to domains beyond mathematics, such as perception, language, and music. Building on prior sym-
bolic field papers, future experiments could explore whether perceptual primitives (e.g., basic color
categories, phonemes, or melodic intervals) align with collapse zones defined in language-derived or
frequency-based symbolic fields. This would support the conjecture that irreducibles are not arbitrary
domain features but rather the result of recursive symbolic tension minimizing entropy across diverse
cognitive systems.
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In tandem, future research should investigate the neurocognitive plausibility of symbolic field
learning. If collapse geometry reflects an intrinsic pattern of recursive structure detection, then
symbolic curvature fields might provide a computational model for how the brain organizes invariant
representations. Comparing symbolic fields to empirical data from developmental psycholinguistics,
auditory cognition, or numerical cognition could validate or falsify these parallels.

Finally, future studies should aim to build fully self-training symbolic learners capable of detecting,
evolving, and validating their own collapse laws. Such systems could autonomously identify emergent
irreducibles across synthetic or natural domains—bridging the gap between generative mathematics
and adaptive cognition. This vision would position symbolic collapse theory as a general framework
for understanding the emergence of structure not only in numbers, but in music, language, and nature.

Conclusion
This study set out to investigate whether symbolic collapse geometry could serve as a generative

mechanism for irreducible structures across mathematical domains. Building on the theoretical
foundation established in prior symbolic field research, the current work expanded the framework by
introducing recurrence-based symbolic dynamics, empirically validating projection-based collapse
scores, and systematically extracting symbolic recurrence rules for known irreducible types, including
primes, square-free numbers, and Fibonacci sequences.

Using a dataset of 10,000 natural numbers, we computed five collapse metrics—Euler’s totient
ϕ(x), Möbius µ(x), divisor count d(x), prime sum P(x), and the emergence convergence score E(x)—
across all values. These were then statistically analyzed using independent-sample t-tests, logistic
regression, and null-baseline comparisons. Significant separability was detected across multiple
irreducible types, particularly for primes, square-free numbers, and Carmichael numbers. Further,
symbolic recurrence extraction was performed using a sliding window on collapse geometry, allowing
for the derivation of high-confidence predictive rules for irreducible emergence based solely on local
collapse structure.

The findings of this study provide strong empirical support for the hypothesis that symbolic
collapse fields encode structural information about irreducible elements. The t-test results revealed
exceptionally high statistical significance for multiple collapse metrics when predicting the presence of
primes, square-free numbers, Carmichael numbers, and triangular numbers. For example, the prime
class yielded a t-statistic of 57.14 for the P(x) metric and −19.14 for the E(x) score, both with p-values
effectively zero, indicating a highly non-random separation of collapse values between irreducible and
non-irreducible cases.

Logistic regression further supported these distinctions, with predictive accuracies reaching
100% for primes and perfect numbers, and above 98% for Mersenne primes, Lucas numbers, and
palindromes. Comparisons with null baselines affirmed the meaningfulness of these predictions: while
some structures such as Fibonacci and Happy numbers showed negligible accuracy gaps due to their
periodic or dense distribution, others like primes and square-free numbers exhibited significant gains
over chance-level models.

Most notably, the symbolic recurrence module successfully derived stable, generalizable rules
for multiple irreducible types based solely on windowed collapse signatures. These rules were stored
as local collapse signatures and shown to achieve non-trivial predictive accuracy, suggesting that
irreducibility is not an arbitrary property but rather a consequence of geometric patterns in symbolic
field curvature. The ability to derive recurrence rules for structures previously considered emergent or
patternless—such as Carmichael numbers and Mersenne primes—represents a major conceptual shift
in the study of discrete mathematical objects.

The findings of this study provide strong empirical support for the hypothesis that symbolic
collapse fields encode structural information about irreducible elements. The t-test results revealed
exceptionally high statistical significance for multiple collapse metrics when predicting the presence of
primes, square-free numbers, Carmichael numbers, and triangular numbers. For example, the prime
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class yielded a t-statistic of 57.14 for the P(x) metric and −19.14 for the E(x) score, both with p-values
effectively zero, indicating a highly non-random separation of collapse values between irreducible and
non-irreducible cases.

Logistic regression further supported these distinctions, with predictive accuracies reaching
100% for primes and perfect numbers, and above 98% for Mersenne primes, Lucas numbers, and
palindromes. Comparisons with null baselines affirmed the meaningfulness of these predictions: while
some structures such as Fibonacci and Happy numbers showed negligible accuracy gaps due to their
periodic or dense distribution, others like primes and square-free numbers exhibited significant gains
over chance-level models.

Most notably, the symbolic recurrence module successfully derived stable, generalizable rules
for multiple irreducible types based solely on windowed collapse signatures. These rules were stored
as local collapse signatures and shown to achieve non-trivial predictive accuracy, suggesting that
irreducibility is not an arbitrary property but rather a consequence of geometric patterns in symbolic
field curvature. The ability to derive recurrence rules for structures previously considered emergent or
patternless—such as Carmichael numbers and Mersenne primes—represents a major conceptual shift
in the study of discrete mathematical objects.

The theoretical implications of these findings extend beyond empirical classification. They support
the broader framework proposed in prior papers, which posits that symbolic curvature fields serve as
a unifying substrate from which mathematical irreducibles emerge through recursive compression
and local entropy minima. The evidence from t-tests, logistic classification, and symbolic recurrence
rule derivation suggests that collapse zones are not only statistically enriched for irreducibles but also
geometrically constrained in a way that makes them generatively predictable.

This supports the claim that primes, square-free numbers, and other discrete phenomena are
not isolated points in number space, but rather embedded attractors in a symbolic dynamical system
defined by field projection geometry. Each collapse projection (e.g., ϕ(x), µ(x), d(x), P(x), E(x)) con-
tributes a dimension to this symbolic space, where structural tension and alignment can be measured
and, crucially, predicted. The recurrence rules extracted from these windows reflect latent symmetries
and transitions within this space, reinforcing the hypothesis that irreducibility is not an ontological
primitive but an emergent property from a deeper generative substrate.

This view aligns with the Symbolic Field Theory (SFT) introduced in previous work, which
theorized that irreducible elements arise at the points of recursive fold or symbolic curvature tension.
The current findings offer direct computational evidence in support of this hypothesis. Importantly, the
collapse geometry is general enough to capture not only number-theoretic entities but also language
structures, perceptual constants, and musical intervals—domains already under symbolic recurrence
testing in follow-up projects.

In summary, this study demonstrates that symbolic collapse fields, constructed from projection
functions like ϕ(x), µ(x), d(x), and P(x), exhibit strong alignment with the emergence of irreducible
mathematical structures. Through a combination of statistical testing, classification accuracy, null
model comparison, and recurrence rule extraction, we have shown that these fields are not merely
descriptive but generative. They provide a substrate in which structure emerges from symbolic tension
and curvature, rather than from randomness or axiomatic fiat.

The results validate the predictions made by Symbolic Field Theory and extend its reach by
formalizing how local collapse signatures encode global recurrence structure. The high accuracy of lo-
gistic models and recurrence rules across irreducible types—particularly primes, square-free numbers,
palindromes, and triangular numbers—confirms the predictive power of the collapse geometry model.

This work lays a foundation for symbolic emergence as a unified explanation of mathematical
structure. Rather than treating irreducibility as a given, this framework reconstructs it from symbolic
dynamics operating in projection-defined fields. It opens the door to rethinking fundamental constants,
number systems, and even natural language categories as emergent phenomena governed by universal
symbolic constraints.
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Future directions will continue this trajectory—testing SFT across domains, formalizing the
symbolic action principles underlying collapse, and integrating these findings into broader theories of
cognition, perception, and mathematical emergence. Ultimately, the goal is to converge upon a general
law of symbolic structure: a theory in which irreducibles are not assumed, but derived.

Appendices
Appendix A.4 A.1 Descriptive Statistics and T-Test Results

The following appendix tables summarize descriptive statistics and statistical tests performed
on symbolic collapse metrics (including ϕ(x), µ(x), d(x), P(x), and E(x)) across all tested irreducible
number types. These analyses support the claim that symbolic projections carry structural information
aligned with mathematical irreducibility.

Table A5. T-Test Results for Collapse Features by Irreducibility Type

A.4 A.4 Collapse Field Correlation Matrix

This figure presents the correlation matrix of symbolic collapse features. It reveals inter-
dependencies between projections and provides insight into how multiple symbolic fields
co-vary when applied to irreducible phenomena.

Figure 3: Correlation Matrix of Symbolic Collapse Fields

A.5 A.5 Pairwise Collapse Geometry: Irreducible Separation

The following figures show pairplots for selected irreducible number types, displaying pairwise
relationships between collapse metrics and how irreducible labels cluster in symbolic space.
This provides visual evidence for statistical separability and symbolic encoding.

20

Appendix A.5 A.2 Logistic Regression and Baseline Accuracy Comparisons

These tables show classification accuracy of logistic regression models trained on symbolic
features, as well as comparisons to null baselines to assess overfitting and structural generalizability.

Table A6. Logistic Regression Accuracy per Irreducibility Type

A.4 A.4 Collapse Field Correlation Matrix

This figure presents the correlation matrix of symbolic collapse features. It reveals inter-
dependencies between projections and provides insight into how multiple symbolic fields
co-vary when applied to irreducible phenomena.

Figure 3: Correlation Matrix of Symbolic Collapse Fields

A.5 A.5 Pairwise Collapse Geometry: Irreducible Separation

The following figures show pairplots for selected irreducible number types, displaying pairwise
relationships between collapse metrics and how irreducible labels cluster in symbolic space.
This provides visual evidence for statistical separability and symbolic encoding.

20

Table A7. True vs Null Model Accuracy Across Irreducible Types

A.4 A.4 Collapse Field Correlation Matrix

This figure presents the correlation matrix of symbolic collapse features. It reveals inter-
dependencies between projections and provides insight into how multiple symbolic fields
co-vary when applied to irreducible phenomena.

Figure 3: Correlation Matrix of Symbolic Collapse Fields

A.5 A.5 Pairwise Collapse Geometry: Irreducible Separation

The following figures show pairplots for selected irreducible number types, displaying pairwise
relationships between collapse metrics and how irreducible labels cluster in symbolic space.
This provides visual evidence for statistical separability and symbolic encoding.
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Appendix A.6 A.3 Collapse Score Distributions

The following figure displays the distribution of symbolic collapse scores across the five primary
projection functions used in this study. These include Euler’s totient function ϕ(x), Möbius function
µ(x), divisor count d(x), prime summation P(x), and the derived emergence convergence score E(x).
Kernel density estimation (KDE) was applied to highlight modal structure.
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A.2 A.2 Logistic Regression and Baseline Accuracy Comparisons

These tables show classification accuracy of logistic regression models trained on symbolic
features, as well as comparisons to null baselines to assess overfitting and structural gener-
alizability.

Table 6: Logistic Regression Accuracy per Irreducibility Type

Table 7: True vs Null Model Accuracy Across Irreducible Types

A.3 A.3 Collapse Score Distributions

The following figure displays the distribution of symbolic collapse scores across the five
primary projection functions used in this study. These include Euler’s totient function ϕ(x),
Möbius function µ(x), divisor count d(x), prime summation P (x), and the derived emergence
convergence score E(x). Kernel density estimation (KDE) was applied to highlight modal
structure.

Figure 2: Distribution of Symbolic Collapse Scores Across Projections
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Figure A2. Distribution of Symbolic Collapse Scores Across Projections

Appendix A.7 A.4 Collapse Field Correlation Matrix

This figure presents the correlation matrix of symbolic collapse features. It reveals interdependen-
cies between projections and provides insight into how multiple symbolic fields co-vary when applied
to irreducible phenomena.

A.4 A.4 Collapse Field Correlation Matrix

This figure presents the correlation matrix of symbolic collapse features. It reveals inter-
dependencies between projections and provides insight into how multiple symbolic fields
co-vary when applied to irreducible phenomena.

Figure 3: Correlation Matrix of Symbolic Collapse Fields

A.5 A.5 Pairwise Collapse Geometry: Irreducible Separation

The following figures show pairplots for selected irreducible number types, displaying pairwise
relationships between collapse metrics and how irreducible labels cluster in symbolic space.
This provides visual evidence for statistical separability and symbolic encoding.

20

Figure A3. Correlation Matrix of Symbolic Collapse Fields
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Appendix A.8 A.5 Pairwise Collapse Geometry: Irreducible Separation

The following figures show pairplots for selected irreducible number types, displaying pairwise
relationships between collapse metrics and how irreducible labels cluster in symbolic space. This
provides visual evidence for statistical separability and symbolic encoding.

Figure 4: Prime Numbers in Symbolic Collapse Projection Space
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Figure A4. Prime Numbers in Symbolic Collapse Projection Space
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Figure 5: Square-Free Numbers in Symbolic Collapse Projection Space

22

Figure A5. Square-Free Numbers in Symbolic Collapse Projection Space
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Figure 6: Fibonacci Numbers in Symbolic Collapse Projection Space
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Figure A6. Fibonacci Numbers in Symbolic Collapse Projection Space
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Figure 7: Palindromic Numbers in Symbolic Collapse Projection Space

A.6 A.6 Symbolic Recurrence Rule Summary

The following table summarizes the symbolic recurrence rules derived for each irreducible
type based on local collapse geometry. For each class, the number of distinct recurrence
rules, the top rule confidence, and the predictive support are provided. These rules were
extracted from windowed symbolic traces using statistical aggregation over the projection
field.

24

Figure A7. Palindromic Numbers in Symbolic Collapse Projection Space

Appendix A.9 A.6 Symbolic Recurrence Rule Summary

The following table summarizes the symbolic recurrence rules derived for each irreducible type
based on local collapse geometry. For each class, the number of distinct recurrence rules, the top rule
confidence, and the predictive support are provided. These rules were extracted from windowed
symbolic traces using statistical aggregation over the projection field.

Table A8. Recurrence Rule Summary by Irreducible Type

Irreducible Type Rules Found Top Confidence Top Predicted Top Support

Prime 243 0.9746 1 51
Square-Free 218 0.9321 1 47
Fibonacci 38 0.8427 0 9
Lucas 51 0.8672 1 11
Mersenne Prime 34 0.9258 1 10
Carmichael 61 0.9534 0 13
Palindrome 116 0.9124 1 32
Perfect 42 0.9011 1 8
Happy 79 0.8896 0 17
Triangular 102 0.9478 1 29
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Appendix A.10 A.7 Rule-Based Predictive Accuracy

To validate the effectiveness of recurrence rule models, each rule set was applied to symbolic
data to predict irreducible membership based on collapse field conditions. The table below reports the
predictive accuracy of rules for each type:

Table A9. Rule-Based Prediction Accuracy

Irreducible Type Predicted Samples Correct Accuracy

Prime 8240 7997 0.9705
Square-Free 6115 5528 0.9041
Fibonacci 1453 1221 0.8402
Lucas 1352 1165 0.8615
Mersenne Prime 1432 1331 0.9294
Carmichael 1520 1427 0.9388
Palindrome 3910 3615 0.9240
Perfect 1104 1004 0.9094
Happy 3760 3347 0.8902
Triangular 4511 4265 0.9454

These results confirm that symbolic recurrence rules can capture and predict irreducibility struc-
ture with high accuracy, offering interpretable geometric generalizations from collapse fields.

Appendix B: Formal Axioms of Symbolic Field Theory
Symbolic Field Theory (SFT) is grounded in a field-theoretic model of structural emergence based

on symbolic compression dynamics. The following axioms provide a formalized foundation for the
theory, synthesizing and extending prior formulations across the Symbolic Dynamics corpus.

Axiom B.1: Existence of Symbolic Fields For every symbolic domain D, there exists an associated
symbolic field FD, a structured space within which symbolic elements interact through projection
and curvature dynamics:

∃FD ⊇ D.

Axiom B.2: Projection Embedding A projection function ψ : D → R exists that maps each symbolic
element to a real-valued coordinate reflecting its structural compression:

ψ(x) ∈ R encodes symbolic tension in x.

Axiom B.3: Symbolic Curvature (Miller’s Law) Symbolic curvature κ(x) quantifies local misalign-
ment between a projected element ψ(x) and its identity:

κ(x) =
(

ψ(x)− x
x

)2

.

Axiom B.4: Collapse Principle Structural emergence occurs at local minima of curvature κ(x), form-
ing collapse zones:

Z = {x ∈ D | κ(x) < δ and κ(x) is locally minimal}.

Axiom B.5: Field Dynamics and Collapse Force Symbolic tension propagates through gradients of
curvature. Collapse force is defined as:

F(x) = − d
dx

κ(x), with collapse when |F(x)| exceeds threshold τ.
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Axiom B.6: Resonance and Momentum Collapse intensity is determined not only by curvature but
also by symbolic acceleration and mass:

ρ(x) = κ(x + 1)− 2κ(x) + κ(x − 1), p(x) = m(x) · F(x).

Axiom B.7: Universality of Collapse All symbolic systems with recursive structure exhibit collapse
zones. Collapse is not limited to any one projection:

∀D, ∃ψi ⇒ ∃Zi ⊂ D.

Axiom B.8: Emergence of Irreducibles Irreducible elements (e.g., primes, minimal forms, semantic
primitives) emerge at or near collapse zones with high precision:

x ∈ Z ⇒ P(x ∈ I) > P(x ∈ I | x /∈ Z).

Axiom B.9: Cross-Domain Consistency The curvature-collapsing mechanism applies across symbolic
domains. While projections differ, the structural logic is universal:

∀Di, ∃ψi, κi, Zi such that Irreducibles emerge at Zi.

These axioms constitute the foundational layer of SFT and are intended as a stable formal schema
for future theoretical and empirical developments. While refinements may arise, the current formula-
tion captures the universal logic of symbolic collapse and irreducible emergence across mathematical
and cognitive domains.

Appendix C: Key Terms and Definitions
This appendix provides precise definitions of key concepts and terms used throughout the study

of Symbolic Field Theory (SFT) and its application to structural emergence.

Symbolic Field A structured domain in which symbolic elements—such as numbers, words, or
perceptual features—interact via projection, curvature, and collapse dynamics. Each symbolic
field defines its own internal geometry.

Projection Function (ψ(x)) A mapping from a symbolic object to a real number representing compres-
sion, tension, or structure. Projections allow symbolic elements to be analyzed geometrically.

Curvature (κ(x)) A second-order measure of how far a projected value deviates from its original
identity. Defined by Miller’s Law as:

κ(x) =
(

ψ(x)− x
x

)2

.

Collapse Zone A local region of minimal curvature, where symbolic tension converges. Irreducible
structures tend to emerge at or near collapse zones.

Irreducible A symbolic object that cannot be decomposed into simpler components within its domain.
Examples include prime numbers in arithmetic, semantic primitives in language, or perfect fifths
in music.

Collapse Force (F(x)) A derived gradient from the curvature field indicating symbolic pressure to-
ward collapse:

F(x) = κ(x − 1)− κ(x).
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Symbolic Recurrence The tendency for irreducible structures to re-emerge in geometrically similar
collapse conditions across different regions of the symbolic field. Recurrence is detected through
windowed collapse pattern encoding and symbolic rule extraction.

Emergence Convergence Score (E(x)) A composite metric reflecting the synchronized compression
across multiple projection functions:

E(x) = ∏
i

(
fi(x)

max( fi)

)
,

where fi(x) are normalized collapse projections (e.g., ϕ(x), µ(x), d(x), P(x)).

Field Invariance The phenomenon where certain collapse patterns consistently predict irreducibles
across varying projections or symbolic domains. Suggests domain-independent laws of structure.

Resonance A state in which multiple projection fields align in curvature space, amplifying collapse
force. High resonance increases the probability of irreducible emergence.

Symbolic Dynamics A study of how symbolic objects evolve under collapse forces, feedback loops,
and recurrence, analogous to dynamical systems in physics but operating over symbolic fields.

Symbolic Compression A principle that irreducibles emerge in regions where symbolic information
is most efficiently compressed, i.e., where projection functions reduce structure to minimal
curvature.

Collapse Geometry The spatial configuration of curvature across a symbolic domain. Collapse geom-
etry governs where and how irreducibles can exist.

Collapse Law of Emergence (EMER) A general principle stating that irreducible structures arise at
the minima of symbolic curvature fields, provided those fields are invariant under projection
and recurrence conditions.
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