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Article 
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Abstract: This study aims to develop and implement a methodology for retrieving bio-optical parameters in a 
lagoon located in the Biobío region, in south-central Chile by analyzing time series of Landsat-8 satellite images, 
specifically using the multispectral OLI sensor. The bio-optical parameters, i.e., chlorophyll-a (mg·m-3) and 
turbidity (NTU) were also measured in-situ synchronized with the satellite passes to minimize the impact of 
atmospheric distortions. To calibrate the satellite images, various atmospheric correction methods (including 
ACOLITE, C2RCC, iCOR, and LaSRC) were evaluated during the image preprocessing phase. Spectral 
signatures obtained from the scenes for each atmospheric correction method were then compared with spectral 
signatures acquired in-situ on the water surface. In short, the ACOLITE model emerged as the best fit for the 
calibration process. Subsequently, we harnessed the reflectance data derived from the ACOLITE model to 
establish correlations between various spectral indices and the in-situ data. The empirical retrieval models 
(based on band combinations) that showed superior performance, as indicated by higher R2 values, were 
subjected to rigorous statistical validation and optimization by applying a bootstrapping approach. Our 
analysis covered a spectrum of dates, seasons, and years, which allowed us to search deeper into the evolution 
of the trophic state associated with the lake. We identified a striking eight-year period (2014-2022) characterized 
by a decline in chlorophyll-a concentration in the lake possibly attributable to governmental measures in the 
region for the protection and conservation of the lake. The results of this initial study serve as the basis for the 
creation of a modern monitoring system that enhances traditional point-based methods, offering a holistic view 
of the ongoing processes within the lake. 
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1. Introduction 

Lakes in urban areas contribute to the quality of life by providing ecological and social ecosystem 
services, defined as benefits that people receive from the environment. These lakes represent intricate 
systems that ensure the continued provision of a range of ecosystem services, especially in urban lake 
environments, demands consistent integrated actions within the surrounding watershed or directly 
within the lake itself [1,2]. Ensuring the quality of surface and groundwater is an essential duty 
carried out by organizations responsible for water supply and management [3]. It is crucial to 
implement appropriate conservation and management measures to protect and improve lake water 
quality, thus safeguarding their long-term ecological and socioeconomic value [4] by analyzing the 
trophic state of a lake. The trophic state of a lake indicates its level of biological productivity and 
water quality, which is determined by the availability of nutrients. Lakes can be classified into 
different trophic states, such as oligotrophic (low productivity), mesotrophic (moderate productivity) 
or eutrophic (high productivity) [5]. This state significantly influences the diversity and abundance 
of aquatic species, as well as the presence of algae and other organisms. 

Usually, to monitor water quality a traditional point-based providing high quality data is used. 
However, these data usually represent isolated sampling points and do not fully reflect the 
comprehensive spatial and temporal variations within the aquatic ecosystem [6]. To address 
challenges related to spatial and temporal coverage, remote sensing has been recognized as an 
optimal solution, leveraging advancements in sensors and methodologies. This has led to extensive 
utilization of satellite technology in monitoring changes in freshwater bodies [7]. The usage of 
satellite remote sensing systems enables the observation and study of water quality on a regional and 
global level [8]. Thus, remote sensing offers a comprehensive and immediate perspective of aquatic, 
atmospheric, and terrestrial systems, and significant advantages over traditional monitoring 
methods, including large-scale coverage, real-time monitoring capabilities, and cost-effectiveness. It 
serves as an optimal tool for continuous monitoring of the water quality in surface bodies [9–11]. 
When combined with in-situ measurements, it can deliver unparalleled, cost-efficient, and 
quantitative assessments of change. It provides spatial resolutions reaching the scale of meters and 
temporal frequency surpassing daily intervals [12]. One of the most important sources of remote 
sensing data is the Landsat archive. Landsat-8 (L-8) Operational Land Imager (OLI) for this study is 
based on its accessibility, suitable temporal frequency, spatial resolution, and the methods for 
utilizing the instrument to determine water quality data [13,14]. Additionally, this sensor has a high 
radiometric resolution, crucial for recovering constituents, since water bodies act as dark objects and 
absorb a larger fraction of the downward irradiance, resulting in a low signal-to-noise ratio (SNR) 
[15]. Satellite images acquired by Landsat satellites facilitate monthly monitoring of specific regions 
within inland water bodies.  

When examining lake water quality through satellite imagery, chlorophyll-a (Chl-a - in mg·m-3) 
and turbidity (Nephelometric Turbidity Units - NTU) stand out as two essential Apparent Optical 
Parameters (AOPs) to address this challenge [16,17]. Chl-a is commonly used to assess the trophic 
status of coastal and inland waters due to its sensitivity and rapid response to various environmental 
factors. Chl-a is the green pigment found in aquatic plants, such as algae and cyanobacteria [18]. An 
increase in Chl-a concentration can indicate the proliferation of these organisms, often associated 
with eutrophication, a phenomenon where excess nutrients in the water (such as nitrogen and 
phosphorus) promote the excessive growth of algae [19], which can have negative effects on water 
quality and the health of the aquatic ecosystem. Additionally, elevated turbidity levels (NTU) can 
result in an opaque, hazy, or cloudy appearance of the water, which is closely related to suspended 
sediment concentrations [10,20]. 

The Laguna Grande is in the commune of San Pedro de la Paz in the Central-Southern Chile. Its 
watershed has undergone significant modifications due to the introduction of forestry plantations 
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(Pinus radiata and Eucalyptus globulus) and urban expansion [21]. Over time, a multitude of external 
factors and natural causes have contributed to the deterioration of the lagoon's water quality. 
Primarily, this decline can be attributed to the occurrence of eutrophication processes. Eutrophication 
is a natural phenomenon that typically unfolds over thousands of years. However, human activities 
can expedite this process, leading to the emergence of what is commonly referred to as artificial or 
cultural eutrophication [22]. To comprehensively examine and analyze the water quality, a few 
decades ago, the "Dirección General de Aguas – DGA" (Water Agency of Chile) established three 
sampling stations within the lagoon (Sector Desagüe, Sector Centro, and Sector Sur). These stations 
facilitated the collection of traditional measurements, e.g., Chlorophyll-a, turbidity, pH, CDOM, to 
assess the lagoon's water quality and its trophic condition. These three sampling stations operated 
from 1988 to 2013, but unfortunately these stations are no longer operational. Since 2014, sampling is 
performed only at the Sector Centro 2 station, but the available information only includes three 
sampling missions by year between 2014 and 2016. Assuming four measurements per year, the 
percentage of missing data at stations Centro, Desagüe, Sur and Centro 2 between 1988 and 2016 is 
28% [23]. These factors serve as a focal point to address the main problem that this study aims to 
solve.  

Most of the studies carried out in the "Laguna Grande San Pedro de La Paz" by remote sensing 
are usually done on a fixed time scale. For example, Lilo-Saavedra et al. [24] have shown the accuracy 
of estimating representative water quality features in the lagoon by utilizing fused satellite images. 
Quintana-Sotomayor et al. [25] published a study implementing an object-oriented classification 
methodology, for multispectral images, to quantify turbidity levels and generate a turbidity map of 
the lagoon. Rojas [26] focused its study on assessing the effects of land use changes in the watershed 
of Laguna Grande on sedimentation rates. This was achieved through a multitemporal analysis using 
satellite imagery. Recently, Pedreros-Guarda et al. [23], implemented six automated methods for 
retrieving the surface water temperature of the lagoon using satellite thermal imagery.  

Thus, our main objective is to develop spectral inversion models based on in-situ data versus 
reflectance signal to estimate two of the most important Water Quality Parameters (WQPs) for 
eutrophication dynamics monitoring, i.e., Chl-a concentration and turbidity. Furthermore, these 
models will play a key role in filling the spatial and temporal gaps in the historical data records stored 
in the DGA database. The empirical retrieval models would facilitate the reconstruction of variable 
behavior during specific time periods when field data were not collected, thus increasing the 
robustness of the dataset. Our study will encompass the following key aspects: i) Implementation of 

atmospheric correction methods: different atmospheric correction methods will be employed to correct 
atmospheric distortions and the sun-glint effect in satellite data acquired from Landsat-8 OLI sensor; 
ii) Development of an empirical retrieval model: we will construct a spectral inversion model tailored to 
accurately quantify water quality parameters, specifically Chl-a and turbidity, including an 
assessment of statistical effectiveness; and iii) Assessment of the spatial-temporal variability: this analysis 
will allow to understand the eutrophication processes during different seasonal conditions and 
multiple years.   

2. Materials and Methods 

2.1. Study Area 

The Laguna Grande de San Pedro de la Paz (Figure 1) is a shallow urban lake placed in the 
northwestern part of the Nahuelbuta mountain range (36° 51' S, 73° 06' W) at 220 m. a.s.l., south of 
the Biobio River, approximately 5 km from the city of Concepción. It has a perimeter of 9800 m, a 
maximum length of 2675 m, and a maximum width of 1375 m. It covers an area of over 155 ha and 
reaches a maximum depth of 13.5 meters, with an average depth of 8.1 meters [21]. On its eastern 
side, Laguna Grande is bordered by a low-altitude mountain range that does not exceed 360 m.a.s.l. 
This area is characterized by forest plantations, primarily consisting of pine and eucalyptus trees 
(Pinus radiata and Eucalyptus globulus, respectively). Moreover, in the hills to the north, there has been 
a major urban and real estate development project in recent years. Laguna Grande drains through 
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the Los Batros estuary, receiving water from natural runoff as well as drainage from the surrounding 
residential areas [26]. The current trophic condition (using the Trophic State Index – TSI) of Laguna 
Grande de San Pedro was categorized as mesotrophic (30 < TSI < 60), based on the Carlson [5] TSI 
classification and the data obtained by Urrutia et al. [27]. 

 

Figure 1. Location of the "Laguna Grande San Pedro de la Paz", showing the distribution of the 40 
surface sampling stations. 

2.2. Field Data of Water Parameters 

For this project, three field surveys were conducted to collect surface water samples: i) the first 
one in the spring season (October 24th, 2022); ii) the second one in the summer season (January 6th, 
2023); and iii) the last one near to the fall season (March 1st, 2023). The selected dates were previously 
chosen on the current schedule of L-8 satellite overflights over the lagoon. This selection aimed to 
align our field trips with the satellite's image acquisition dates, minimizing the time gap between 
image capture and sample collection. 

To determine the sampling station locations, a grid was employed. Forty (40) sampling points 
were distributed on the lake (Figure 1). Due to logistical constraints, we collected 40 samples in the 
summer field trip, 25 in the spring trip, and 20 in the fall trip, resulting in a total of 85 samples. These 
samples were collected using 1-liter glass bottles, typically positioned approximately 20-30 cm below 
the water's surface. The samples were analyzed in the EULA-Chile Center laboratory and the results 
are summarized in the Table 1. For Chl-a analysis, the samples were subjected to a filtration, 
extraction, and centrifugation, following the protocol of EPA method 445.0 [28]. Subsequently, 
fluorometry was used to measure Chl-a content, and unit transformations and calculations were 
performed using the corresponding calibration curve for the Turner Designs model 10-AU-005-CE 
equipment. With this process, Chl-a concentrations were obtained in milligrams per cubic meter 
(mg·m-3). For the turbidity determination, a specialized turbidimeter (2100Q Portable Turbidimeter 
Hach) was used to obtain the results in nephelometric turbidity units (NTU). 

In the last fieldtrip other important water quality parameters were measured, such as: 
Temperature (°C), dissolved oxygen (mg·l-1), oxygen saturation (%), conductivity (mhos·cm-1) and 
pH, which allowed us to know the trophic state of the lake of the measurements at-satellite overpass 
(Table 2). 
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Table 1. Chl-a and turbidity concentrations obtained from the Laguna Grande water samples. 

 
Oct. 24th, 2022 

(40 samples) 

Jan. 6th, 2023 

(25 samples) 

Mar. 1st, 2023 

(20 samples) 

Statistics 
Chl-a 

mg·m-3 

turbidity 

NTU 

Chl-a 

mg·m-3 

turbidity 

NTU 

Chl-a 

mg·m-3 

turbidity 

NTU 

Mean 4.7 2.4 3.4 1.9 6.4 7.3 
Standard 

Deviation 
0.6 0.5 0.6 0.8 1.3 4.1 

Max. 6.7 3.8 4.4 3.8 8.7 20.2 
Min. 3.5 1.5 2.2 0.6 3.8 2.4 

Table 2. Values for temperature, dissolved oxygen, oxygen saturation, conductivity and pH obtained 
from the Laguna Grande. 

 Temperature (C°) 

Dissolved 

oxygen 

(mg·l-1) 

Oxygen 

saturation 

(%) 

Conductivity 

(mhos·cm-1) 
pH 

Mean 21.3 7.1 78.7 118.1 7.2 
Min. 20.9 6.7 76.1 115.0 6.4 
Max. 21.8 8.4 87.6 119.9 7.4 

Standard 

deviation 
0.3 0.5 2.9 1.1 0.3 

2.3. Field Measurement of Water Spectral Signatures (Rrs) 

We performed reflectance (Rrs) measurements at 15 sampling stations using an ASD FieldSpec-
4 spectroradiometer (ASD Inc., Malvern Panalytical). This instrument is specifically designed to 
operate within a wavelength ranging from 350 nm to 2500 nm. 

The above-water remote sensing reflectance was calculated by the equation (1): 

Rrs=    
𝐿𝐿𝑤𝑤 (𝜆𝜆)𝐸𝐸𝑑𝑑 (𝜆𝜆)

  (𝑠𝑠𝑠𝑠−1)        (1) 

Where, Rsr = above-water remote sensing reflectance (dimensionless); Lw(λ) = spectral radiance of the 
target (W/cm2·sr·µm); Ed(λ)= spectral radiance of the reference plate (W/cm2·sr·µm). A Spectralon 
reference plate was used in the study to simulate a Lambertian surface. Measurements were made 
between 10:00 and 13:00, a time of optimal conditions with low solar tilt, high radiant energy, and 
favorable weather. Radiometric measurements followed the methods established by Milton [29] and 
Mobley [30], performed under conditions of low wind (0 - 4 m·s-1), clear skies and solar angles 
between 0 and 30°. To minimize the sun-glint effect, the spectroradiometer was positioned at an 
inclination of 40° with respect to the vertical and 135° from the sun. The sensor was placed 1 meter 
above the water surface. Ten repeated measurements were established for each station, verifying the 
results directly in the field. Some anomalous spectra caused by random solar flares may be present 
in the measured result. However, these were suppressed, and the remaining spectra were averaged 
(Figure 2). 
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Figure 2. In situ measured Rrs spectra with their corresponding Chl-a value. 

ENVI-IDL software was used to construct a spectral library of surface water samples at different 
Chl-a concentration conditions. This spectral library of seven spectral profiles were used to evaluate 
the performance of the different atmospheric correction methods in the OLI L-8 sensor scenes. 

2.4. Satellite Image Data and Atmospheric Correction Methods 

2.4.1. Landsat-8 OLI Satellite Imagery 

The Laguna Grande occupies a geographic position at the intersection of two orbits, namely 
Path/Row combinations 001/085 and 001/086, resulting in a region of overlap covering approximately 
31 km. It should be noted that the satellite images used in this study were obtained from the official 
website of the United States Geological Survey (USGS), specifically from the Collection 2, Levels 1 
and 2. These images can be accessed at the following link: https://earthexplorer.usgs.gov (accessed 
on June 15, 2023). 

Three satellite images from the L-8 OLI sensor (Table 3) were used to develop the empirical 
models for retrieving bio-optical parameters, i.e., Chl-a and turbidity. The empirical models were 
developed by a combination of the signal reflectance and in-situ data. The time difference between 
in-situ data collection and satellite image acquisition does not exceed more than 3 days. No rainfall 
events occurred during the whole data collection. Seven additional L-8 OLI images were used to 
study the spatiotemporal variability of bio-optical parameters (Chl-a and turbidity) in the lake during 
different seasonal conditions between hydrological cycle for 2014 and 2022. 

Table 3. Three L-8 OLI satellite images used to develop the Chl-a and turbidity spectral retrieval 
models. 

Image ID In-situ Date Image Date 
Days 

Differences 
Path/Row  

LC08_L1TP_001085_20221021_20221101_02_T1  24/10/2022  21/10/2022 ±3 001/085  
LC08_L1TP_001086_20230109_20230124_02_T1 06/01/2023 09/01/2023 ±3 001/086  
LC08_L1TP_001086_20230226_20230301_02_T1 01/03/2023 26/02/2023 ±3 001/086  
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2.4.2. Atmospheric Correction Methods 

In this research, we conducted a comparison of four different Atmospheric Correction (AC) 
methods designed to obtain surface water reflectance from L-8 OLI radiance images. Several lake 
stations were used to compare the performance of these four atmospheric correction models: 
(1) The first tested model was ACOLITE, which is a processor developed by RBINS (Royal Belgian 

Institute of Natural Sciences) used to apply the AC and satellite image preprocessing approach 
in applications related to inland and coastal waters. ACOLITE uses the approach known as dark 
spectrum adjustment to perform the atmospheric correction [31–35]. The main objective is to 
remove atmospheric influences, such as scattering and absorption, to improve the accuracy of 
remote sensing data for different applications. Sun-glint is the specular reflection of sunlight off 
the surface of water. It can introduce significant errors in remote sensing data, especially in 
coastal and oceanic regions. ACOLITE includes algorithms to detect and quantify sun-glint in 
satellite imagery. Once sun-glint is detected, ACOLITE applies correction algorithms to adjust 
pixel values to compensate the overestimation of reflectance caused by the effect of the solar 
reflection. In this study the v20210114.0 version of the processor was used, and its default 
configuration file was modified to apply the reflection correction to the image, and also to obtain 
the results in GeoTIFF format. 

(2) The second model was iCOR, which is a tool developed by De Keukelaere et al. [36] that can 
process satellite data acquired over coastal, inland, or transitional waters and land. iCOR 
employs the Moderate-Resolution Atmospheric Radiance and Transmittance Model-5, known 
as MODTRAN5 [37], to perform radiative transfer calculations. In addition, it uses Look-Up 
Tables (LUTs) to speed up retrieval processes. An important aspect of iCOR is its ability to 
identify whether a pixel belongs to a water or land area, allowing it to apply a specific 
atmospheric correction accordingly [38]. The version iCOR used was v3.0 into the SNAP 
software. 

(3) The third model was Land Surface Reflectance Code (LaSRC) whose algorithm was developed 
by E. Vermote [39], National Aeronautics and Space Administration (NASA) Goddard Space 
Flight Center (GSFC) and was modified by the USGS Earth Resources Observation and Science 
(EROS) center. LaSRC generates top-of-atmosphere reflectance (TOA) and top-of-atmosphere 
brightness temperature (BT) using the calibration parameters provided in the metadata. Then, 
atmospheric correction routines are applied to the L-8 TOA reflectance data using additional 
information such as water vapor, ozone, and aerosol optical thickness (AOT) obtained from the 
Moderate Resolution Imaging Spectroradiometer (MODIS). In addition, the digital elevation 
model derived from the Earth Topography Five Minute Grid (ETOPO5) is used to generate 
surface reflectance [39]. This product can be downloaded from the following the USGS website 
(https://www.usgs.gov/landsat-missions/landsat-surface-reflectance (last accessed on June 15, 
2023). A scaling equation (2) was applied to this final product to normalize the reflectance values 
between 0 and 1, allowing comparison with the other methods.  

Rrs(λ) = 0.0000275 x Pixel Value - 0.2 (2) 

(1) The last method was C2RCC (Case 2 Regional CoastColour) atmospheric correction processor, 
which has a deep learning approach using set of neural networks trained and linked to simulated 
reflectance data in water bodies, and radiances in the upper atmosphere. Its main outputs are 
associated with the inherent optical properties (IOPs) of water, i.e., those that depend exclusively 
on the absorption and scattering of its constituents [40]. This method considers three sets of 
neural networks for the calculation of reflectance depending on the research objective: C2RCC-
Nets (Standard neural network suggested for use in eutrophic or mesotrophic water bodies), 
C2X-NETS (Specialized neural networks the water bodies with high concentrations of 
suspended matter and chlorophyll concentration) and C2X-COMPLEX-Nets (suggested mainly 
for use in inland waters) [41]. C2RCC can be used as a complement in the SNAP software and 
allows the calculation of reflectance in Sentinel 3 OLCI, Sentinel 2 MSI, Landsat-8/9, MODIS and 
MERIS satellite images (e.g., [42,43]). 
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2.5. Methodology for Water Quality Modeling  

To determine the water quality parameters (Chl-a and turbidity) from in-situ and satellite data 
(OLI L-8 images), we implemented a complete workflow (Figure 3). This methodology includes the 
following main steps: i) in-situ acquisition of spectral signatures and water sample collections, 
accompanied by the selection of corresponding OLI L-8 scenes; ii) determination of Chl-a (mg·m-3) 
and turbidity (NTU) concentrations, and evaluation of the atmospheric correction models; iii) 
identification of the pixels with atmospheric distortion (high aerosol levels) to avoid to introduce 
external error to the spectral retrieval model; iv) determination of the spectral bands (with indices 
and reflectance band ratios) showing the best fit regressions with the in-situ values, in which 
ACOLITE and C2RCC were selected as the best atmospheric correction models to estimate Chl-a and 
turbidity values, respectively; v) statistical assessment by employing the bootstrapping methodology 
to enhance the spectral retrieval model pertaining to each water quality parameter. Furthermore, we 
utilized a set of five distinct statistical metrics to determine the precision and accuracy of the 
modeling process; and vi) generation of the spatiotemporal images for the water quality parameters 
at different dates and seasonal conditions. 

 

Figure 3. Workflow for the analysis of in-situ and satellite imagery data. 

2.6. Selection of Spectral Indices 

Spectral indices are used to measure the distinguishing characteristics of vegetation, water 
bodies and various land cover types [44]. Low to medium resolution satellites have been a widely 
used to apply eutrophic inland water classification algorithms and to retrieve Chl-a concentration 
[45]. In terms of optics, Chl-a exhibits two points of highest reflectance, located in the green and near-
infrared wavelength ranges at 550 nm and 700 nm, respectively [3]. A total of three spectral indices 
(Table 5) have been previously used to detect the presence of Chl-a in water by remote sensing.  
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The Normalized Difference Vegetation Index (NDVI) is calculated by the formula NDVI = (B5 - 
B4) / (B5 + B4), where “B5 - NIR” represents the near-infrared spectral reflectance, predominantly 
influenced by plant canopy reflection, and “B4 - Red” means the reflectance within the red part of the 
electromagnetic spectrum, where chlorophyll absorption reaches its maximum [46]. The Green 
Normalized Difference Vegetation Index (GNDVI) [47] is based on the concept that an index designed 
to estimate chlorophyll content should remain constant regardless of pigments other than chlorophyll 
and should not be influenced by external factors, such as background or atmospheric conditions [48]. 
It is calculated by the formula GNDVI = (B5 - B3) / (B5 + B3), according to the band configuration of 
the OLI L-8 sensor. The Green Chlorophyll Index (GCI) [49,50] is used to assess the chlorophyll 
content of leaves. By including the near-infrared (NIR) and green wavelengths, this provides an 
improved assessment of Chl-a content [44]. It is calculated by the formula GCI = (B5 / B3) -1. 

We based our evaluation of the turbidity parameter on the results of previous work [11,44,51,52]. 
These studies have demonstrated that reflectance values in the red and NIR bands maintain a strong 
correlation with suspended sediment concentration and turbidity levels. As a result, these spectral 
bands have become crucial indicators for assessing turbidity in water bodies [52]. With this in mind, 
we use empirical regression analysis techniques to establish a relationship between field 
measurements and satellite data. For turbidity (NTU) estimation we use different classical 
combinations for this parameter (Table 4), including: NIR/Red; NIR; Blue/Green; Red+NIR; together 
with the calculation of the Normalized Difference Turbidity Index (NDTI) [51]. 

Table 4. Main band and indices combinations used to estimate Chl-a and turbidity in the Laguna 
Grande. 

Parame

ter 
Indices/Band combinations Formula 

Refer

ence 

Chl-a 

Normalized Difference Vegetation 
Index (NDVI) 

(B5 - 
B4)/(B5 + B4) 

[46] 

Green Normalized Difference 
Vegetation Index (GNDVI) 

(B5 - 
B3)/(B5 + B3) 

[48] 

Green Chlorophyll Index (GCI) (B5/B3) - 1 [50] 

turbidit
y 

Near infrared/red B5/B4 [53] 
Near infrared B5 [11] 

Blue/green B2/B3 [44] 
Red+Near infrared B4+B5 [44] 

Normalized Difference Turbidity Index 
(NDTI) 

(B4 - 
B3)/(B4 + B3) 

[51] 

Red B4 [52] 

2.7. Statistical Assessment 

To assess the effectiveness of the selected bio-optical models, we implemented five statistical 
and error metrics: mean absolute error (MAE; Eq. 3), mean square error (MSE; Eq. 4), root mean 
square error (RMSE; Eq. 5), mean absolute percent error (MAPE; Eq. 6), and the commonly employed 
coefficient of determination (R2; Eq. 7). Additionally, to estimate the uncertainty in our correlation 
analysis, we employed bootstrapping methodology in the assessment of Chl-a and turbidity obtained 
by spectral indices and in-situ data. Bootstrapping involves creating multiple data sets by sampling 
with replacement from our original dataset, and then calculating the correlation in each of these sets. 
We performed 1000 iterations of the Bootstrap analysis on our data, using 80% of the dataset in each 
iteration to compute correlation and the remaining 20% for validation. 𝑀𝑀𝑀𝑀𝑀𝑀 =  

∑ �𝑋𝑋𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑋𝑋𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒�𝑁𝑁𝑖𝑖=1 𝑁𝑁  (3) 
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𝑀𝑀𝑀𝑀𝑀𝑀 =  
1𝑛𝑛 × ��𝑋𝑋𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑋𝑋𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒�2𝑛𝑛

𝑖𝑖=1  (4) 

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 =  �1𝑛𝑛 × ��𝑋𝑋𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑋𝑋𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒�2𝑛𝑛
𝑖𝑖=1  (5) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
100𝑛𝑛 × ��𝑋𝑋𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑋𝑋𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝑋𝑋𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �𝑛𝑛

𝑖𝑖=1  (6) 

𝑅𝑅2  =  1 −  
∑ �𝑋𝑋𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒 − 𝑋𝑋𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�2𝑛𝑛𝑖𝑖=1∑ �𝑋𝑋𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒 − 𝑋𝑋�𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝑛𝑛𝑖𝑖=1 2 (7) 

3. Results 

3.1. Field Measurements of Water Parameters 

In total, 85 water samples were collected under different seasonal conditions. For the first phase 
of the study, 40 measurements of Chl-a and turbidity were carried out, allowing the creation of 
concentration maps by interpolating these parameters. The purpose was to identify the areas of the 
lake with low, intermediate, and high concentration levels, thus highlighting those areas with greater 
variability in those values. This information allowed us to optimize subsequent field surveys, 
reducing the number of samples required to a range of 20-25 stations. As nearby stations exhibited 
similar values, stations with the highest variations of Chl-a and turbidity were utilized to build the 
spectral retrieval model. Thus, in the last two field trips, we focused on the stations and areas of the 
lake with the highest variability in Chl-a and turbidity, to improve the efficiency of our measurements 
in the lake. During these three field surveys in 2022-2023, a maximum Chl-a value of 8.7 mg·m-3 was 
recorded in the near-fall season, while the lowest Chl-a values, 2.2 mg·m-3, were observed during the 
summer season, during 2023. The mean Chl-a values recorded are as follows:  4.7 mg·m-3 in the 
spring season; 3.4 mg·m-3 in the summer season; and a value of 6.4 mg·m-3 during the season close to 
fall. According to Carlson's [5] classification, the Laguna Grande maintains a mesotrophic state, i.e., 
moderate productivity in all the seasons that was evaluated. The maximum value of turbidity was 
recorded also in the near-fall season with a value of 20.2 NTU, while the lowest value was observed 
during the summer season with 0.6 NTU. Mean values were 2.4 NTU (spring season), 6.4 NTU 
(summer season) and 7.3 NTU (near to fall season). The average values do not exceed 5 NTU in the 
spring and summer seasons, so it can be considered a low turbidity value, typically associated to 
well-preserved clean waters. However, there is an increase in turbidity values near the fall season 
with values above 5 NTU, representing a moderate turbidity, which could be related to an increase 
of suspended sediment concentrations or biological activity.  

3.2. Atmospheric Correction  

3.2.1. Evaluation of Aerosol Levels in the Sampling Station Points 

In-situ spectral signatures of water surface were used to compare the four atmospheric 
correction methods. To this purpose, we selected the L-8 OLI image in a date (acquired on 9th January 
2023) closest to the collection of water spectral library (6th January 2023), with just three days apart. 
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Then, the product LaSRC SR_QA_AEROSOL was implemented to determine which sampling 
stations are suitable to compare in-situ data with reflectance band combinations (Figure 4).  

 

Figure 4. Chl-a and turbidity sampling stations are systematically located covering a buffer of 60-, 40- 
and 20-m over the LaSRC model quality image, which represents the aerosol levels in the scene 
(applying only a buffer of 40 and 20 m to those stations close to the lake shore). Note that those stations 
located in pixels with high aerosol values are excluded from the correlation process. 

Data processing started with the location of the station points on the map. To extract the 
reflectance values from the scene, buffer zones were calculated around each station. These zones have 
different sizes, including 60-meters, 40-meters, and 20-meters in diameter, instead of a punctual 
signal, which improves the representativity of the reflectance. In the case of stations located near the 
shore, we apply a coherent buffer size of 40- and 20-meters to avoid contact with the lake shore. This 
adjustment was intended to mitigate spectral mixing between reflectance signals from water and soil 
materials, to avoid wrong interpretations in our model. The LaSRC SR_QA_AEROSOL product was 
used to select those pixels that are not affected by high aerosol values, ensuring better correlations 
between the in-situ data and the results of the band combinations (Table 5). 

Table 5. Adaptation of Landsat 8-9 SR_QA_AEROSOL Values table. 

Attribute Pixel Value (DN) 

Low-level aerosol 66, 68, 96, 100 
Medium-level aerosol 130, 132, 160, 164 

High-level aerosol 192, 194, 196, 224, 228 
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3.2.2. Evaluation of Atmospheric Correction Methods  

Figure 5 shows the evaluation of different atmospheric correction methods, using station 15 as 
a “clean” reference with no aerosol contamination. We compared four atmospheric correction 
methods: ACOLITE, iCOR, LaSRC, and C2RCC. In our analysis, we excluded SWIR bands from the 
OLI sensor and focused on the bands coastal, blue, green, red, and NIR, which are the most sensitive 
wavelengths for Chl-a and turbidity estimation. The black line depicts the measured water surface 
reflectance at station 15, which was collected by using the ASD Field-Spec 4 spectroradiometer.  

Although seven stations of data collection were used for this comparison, for illustrative 
purposes only, station 15 is shown in the results. The red segmented line, which corresponds to the 
LaSRC model's spectral signature, appears closer to the real reflectance (black line). However, in this 
model an overestimation is highlighted in the B3 (green) and B5 (NIR) data, unlike to other 
atmospheric correction models. This indicates that the LaSRC model does not take into account the 
sun-glint effect on the water surface.  

Comparison of satellite and field results showed that ACOLITE (cyan segmented line) yielded 
results more aligned with glint-free field measurements. Although the values in all bands are slightly 
lower than the real reflectance signature, these maintain a similar shape to the black line, as well as 
the LaSRC method, but without saturation in B3 (Green) and B5 (NIR). It is important to note that 
these Green and Near-Infrared bands are essential for creating Chl-a retrieval models. It is due to the 
Chl-a absorbs light in the blue and red regions of the electromagnetic spectrum, while reflects light 
in the green and near-infrared regions [54]. This property allows us to estimate the concentration of 
Chl-a in water by examining the reflectance ratio between the green and near-infrared bands. iCOR 
(orange segmented line) and C2RCC (purple segmented line) showed lower values compared to the 
real reflectance, and even to the LaSRC and ACOLITE models in all bands. C2RCC showed a low 
value at B1 coastal with respect to iCOR, which could indicate an overcorrection at this wavelength 
using this model. In general, both models (iCOR and C2RCC) present an underestimation in 
reflectance values. Therefore, we have chosen ACOLITE as the optimal choice to advance our analysis 
in Chl-a and Turbidity recovery modeling. 

 
Figure 5. Comparison of atmospheric correction results and field radiometer data for the Laguna 
Grande Lake. The black line represents the actual reflectance at the water surface used in the 
comparative analysis as the reference. 
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3.3. Empirical Retrieval Models to Chl-a and TURBIDITY  

3.3.1. Chl-a Estimation Analysis 

Prior to analyzing the OLI satellite image's reflectance signal, we compared the in-situ Chl-a data 
with the 15 measurements of the water surface signal, acquired by using the ASD FieldSpec-4 
spectroradiometer. Correlation coefficients R2 were calculated to examine the spectral relationship 
between Chl-a concentration and the reflectance at the lagoon (Figure 6). The coefficient of 
determination (R2) varied over the wavelength range from 350 to 1000 nm. The obtained R2 values 
were greater than 0.6 in the red region from 650 nm, which means the relationship between Chl-a 
concentration and the reflectance of these wavelengths are the best. The R2 values shown a 
remarkable decrease around 925-950 nm (a region with wavelengths longer than the OLI NIR band), 
but those values quickly increase up to 0.66, even at wavelengths near 1000 nm. 

The Chl-a has a unique absorption band that varies with its concentration, enabling the detection 
of specific spectral signatures through remote sensing. The data reveals that the absolute values at 
wavelengths of 655-880 nm and 990 nm exhibit the highest values of R2. This suggests a stronger 
correlation between Chl-a concentration and the reflectance at these specific wavelengths. In Figure 
7, the R2 values obtained for the relationship between in-situ Chl-a concentration and the reflectance 
values at 655 nm and 880 nm are 0.6 and 0.656, respectively. These coefficients indicate an important 
correlation in these spectral bands, aligning closely with the red and near-infrared (NIR) regions of 
the electromagnetic spectrum. 

 

Figure 6. The correlation between water surface reflectance (spectral profiles) and Chl-a concentration 
obtained during the field survey on January 6th, 2023. 

 

Figure 7. The relationship between Chl-a concentration and reflectance at the wavelength of 655 nm 
and 880 nm. 

The Pearson's coefficient values were used to assess the relationship between three vegetation 
indices and chlorophyll, i.e., NDVI, GNDVI, and GCI, and the Chl-a concentration values, using data 
from the green, red, and NIR regions. Figure 8 shows a heat map with the Pearson's coefficient values 
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of these three spectral indices. Notably, these indices (NDVI, GNDVI, and GCI) shown a statistically 
significant correlation (p ≤ 0.001), with Pearson's coefficient values of -0.87 for NDVI and GNDVI, 
and -0.88 for GCI. Hence, GCI was selected as the best option to build the retrieval model. The 
sensitivity of Chl-a concentration to multiband reflectance combinations is clearly demonstrated in 
Figure 8, highlighting its higher responsivity compared to single-band reflectance. 

 

Figure 8. Heat map used to evaluate different spectral indices (GCI, NDVI and GNDVI) with in-situ 
Chl-a data (mg·m-³), using reflectance values from ACOLITE. 

3.3.2. Turbidity Estimation Analysis 

Turbidity estimation using satellite imagery was based on spectral indices and combinations of 
bands related to suspended material in the water. Several spectral indices and band combinations 
were evaluated: NIR, Red, NIR/Red, Red+NIR, Blue/Green, and NDTI to determinate the best fit r 
with the turbidity values (Figure 9). The obtained values from the lower to the higher were: NIR 
(Pearson's coefficient = 0.098); NIR/Red (Pearson's coefficient = -0.34); NDTI (Pearson’s coefficient = 
0.62); Blue/Green (Pearson's coefficient = -0.87); Red (Pearson's coefficient = 0.87); and Red+NIR 
(Pearson's coefficient = 0.88). The spectral indices with the best performance were Blue/Green, Red, 
and notably, Red+NIR, which showed statistically significant correlation (p ≤ 0.001), with a Pearson's 
coefficient value of 0.88. 
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Figure 9. Heat map used to evaluate different band combinations (Red, NDTI, Red+NIR, Blue/Green, 
NIR, NIR/Red and NDTI) with in-situ Turbidity data (NTU) using ACOLITE reflectance. 

3.4. Statistical Evaluation and Model Robustness 

3.4.1. Statistical Evaluation and Robustness of the Chl-a Estimation Model 

To assess the reliability of our correlation analysis between Chl-a concentration and the GCI 
index (best fit R2), we applied a bootstrapping technique. Through the 1000 iterations, the distribution 
of the parameters of the function was obtained to optimize the selection of them between the mean 
and the median (Figure 10). Consequently, equation 8 represents the final Chl-a recovery model. 𝐶𝐶ℎ𝑙𝑙-𝑎𝑎 = 1.97 × 𝑒𝑒(-1.46×𝐺𝐺𝐺𝐺𝐺𝐺) (8) 
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Figure 10. Calibration curve between the in-situ Chl-a data and the GCI index with the application of 
the bootstrapping technique, using the mean fit in the parameters with 1000 iterations, taking 80% of 
the dataset in each iteration to compute correlation and the remaining 20% for validation. 

Statistical and correlation metrics yielded robust results with a R2 = 0.88 and MAE = 0.35%; MSE 
= 0.20; RMSE = 0.45% and MAPE = 7.56%, ensuring the stability of the observed relationship (Figure 
11.). This bootstrapping approach helped to provide a robust and reliable estimate of the relationship 
between the variables.  

 

Figure 11. Comparison of Chl-a measured versus Chl-a estimated from Landsat-8 OLI images using 
the GCI algorithm (equation 8) with ACOLITE data (corrected reflectance). 

To evaluate trends in estimation errors, we examined the model residuals using scatter plots 
against the in-situ collection data. No discernible pattern emerged, indicating the absence of 
systematic trends in residual variations associated with changes in Chl-a concentration; in other 
words, the errors appear to be randomly distributed (Figure 12). Residuals are uniformly scattered 
around zero, with all residual errors plotting approximately within the range from -1 to 1. 

 

Figure 12. Chl-a residual values versus Chl-a predicted values (mg·m-3), showing low dispersion in 
the values over the whole Chl-a range, from 3 to 8 mg·m-3. 
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3.4.2. Statistical Evaluation and Robustness of the Turbidity Estimation Model 

Similar to Chl-a estimation model, bootstrapping method was performed using 1000 iterations, to 
optimize the selection of function parameters between mean and median (Figure 13). As a result, 
Equation 9 now serves as the final turbidity retrieval model. 𝑇𝑇𝑇𝑇𝑠𝑠𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0.51 × 𝑒𝑒(130.75×(𝑅𝑅𝑒𝑒𝑒𝑒+𝑁𝑁𝐺𝐺𝑅𝑅)) (9) 

 

Figure 13. Calibration curve between the in-situ turbidity (NTU) data and the Red+NIR index with 
the application of the bootstrapping technique using the mean fit in the parameters with 1000 
iterations, using 80% of the dataset in each iteration to compute correlation and the remaining 20% 
for validation. 

Statistical and correlation metrics also yielded intermediate results with R2 = 0.79, MAE = 1.15%; 
MSE = 2.11; RMSE = 1.45% and MAPE = 54.89% (Figure 14). The latest MAPE results are unsatisfactory 
as the error exceeds 10-20%. This suggests that the correlation between the Red+NIR index and in-
situ turbidity data is not robust enough to be considered as a reliable estimation model.  

 

Figure 14. Comparison of turbidity measured versus turbidity estimated from Landsat-8 OLI images 
using the Red+NIR algorithm (equation 9) with ACOLITE data (corrected reflectance). 

Figure 15 shows a data clustering, with one cluster with very low values (< 4 NTU) and another 
more dispersed cluster with slightly higher values (> 7 NTU) from 7 to 10 NTU, suggesting a seasonal 
behavior in the data. 
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Figure 15. The residuals of in-situ turbidity observations compared to predicted turbidity values 
(NTU). Note that the data are not uniformly dispersed around zero, with all residual errors plotting 
approximately within the range from -3.5 to 3.5 NTU. 

It is important to note that the turbidity levels in this lake are particularly lower than those in 
highly eutrophic lakes [55]. This low turbidity values may result in a relatively weak spectral 
relationship with reflectance bands.  

3.5. Spatial and Temporal Variability  

Statistical results indicate a strong relationship (R2 = 0.88) for the Chl-a retrieval model using the 
CGI index, but the turbidity retrieval model did not accurately reproduce in-situ data. As a result, 
our focus was on Chl-a distribution to analyze data variability across the entire lake retrospectively. 
Figure 16 displays Chl-a concentration distribution maps obtained from our trained model (equation 
8) for different seasons in two periods: 2022 (Figure 16 a-d) and 2014 (Figure 16 e-h). 
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Figure 16. Chl-a distribution maps for Lake Laguna Grande showing the concentration changes across 
Winter, Spring, Summer, and Fall seasons in 2022 (a-d) and 2014 (e-h), enabling us to assess seasonal 
fluctuations. 

The data for the Laguna Grande system consistently falls within the mesotrophic classification, 
with Chl-a concentration levels ranging from 3 to 10 mg·m-3 (Figure 17). These values imply a 
moderate level of biological productivity, which has remained stable across various seasons and 
periods. 

A detailed analysis of the 2014 and 2022 data reveals fluctuating Chl-a mean values. They start 
at 6.2 mg·m-3 in winter, drop to 5.1 mg·m-3 in spring, increase to 5.4 mg·m-3 in summer, and peak at 
7.1 mg·m-3 in fall (Figure 17). This pattern is consistent in both the northern (Figure 17a) and southern 
zones (Figure 17b) of the lake. However, in the southern part, mean values are consistently lower for 
each season: 5.5 mg·m-3, 4.6 mg·m-3, 5.2 mg·m-3, and 6.2 mg·m-3, respectively (Figure 17b). 

 

Figure 17. Spider diagram illustrating Chl-a variability across seasons in the northern (a) and southern 
(b) zones. Mean values for 2022 (blue line) and 2014 (red line) are depicted, highlighting the region of 
interest within each lake section. 

An examination for the variation in Chl-a levels for the year 2014 revealed distinct patterns. In 
the northern zone, Chl-a values ranged from 7.4 mg·m-3 in winter, decreased to 6.0 mg·m-3 in spring, 
reached a peak of 6.7 mg·m-3 in summer, and then decreased to 6.2 mg·m-3 in the fall season (Figure 
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17a). Meanwhile, the southern zone exhibited a similar trend, albeit with consistently lower mean 
values. Starting at 6.8 mg·m-3, Chl-a concentrations decreased to 5.0 mg·m-3, increased to 6.2 mg·m-3, 
and then decreased again to 5.6 mg·m-3 (Figure 17). This comparative analysis provides valuable 
insights into the seasonal Chl-a dynamics in both the northern and southern regions, shedding light 
on how these patterns evolved over time. 

Chl-a values consistently exhibit higher levels in the northern zone compared to the southern 
zone, regardless of the year being considered (2022 versus 2014; Figure 17). This disparity can be 
attributed to a more pronounced anthropic impact in the northern zone, characterized by rapid urban 
sprawl over recent years, while the southern zone bordered by dense vegetation has remained 
relatively unchanged. Recent regulations implemented by local authorities to curtail activities 
contributing to lake pollution have further reinforced this trend. Notably, the Chl-a values for 2022 
are lower than those observed in 2014, aligning with government restrictions on lake access, such as 
the use of fuel-powered boats and new construction around the lake shore. 

Upon closer examination, when comparing the summer and fall 2014 data, an anticipated trend 
is evident: a decrease in Chl-a values from 6.2 mg·m-3 to 5.6 mg·m-3 (Figure 17). This aligns with the 
expected decline in temperature between the two seasons. However, a contrasting pattern emerges 
when analyzing the 2022 data (Figure 17), with Chl-a values in fall surpassing those in summer. This 
unexpected behavior can be attributed to the fact that recent autumnal temperatures resemble 
historical summer temperatures, possibly driven by regional climate variability. These findings 
highlight the OLI sensor potential in forecasting algal bloom distribution and trophic state in the lake. 

4. Discussion and Conclusions 

Our main findings in the development of spectral retrieval models for water quality parameters 
in Laguna Grande can be categorized into three key issues: 

I. Implementation of atmospheric correction methods  

We performed the first water quality study in Laguna Grande by applying an innovative 
methodology, which involves the collection of in-situ data (water quality parameters) combined with 
spectral signatures at the water surface using ground-based radiometers. These measurements were 
then integrated to calibrate and validate the reflectance signal of the multispectral satellite images 
(OLI sensor) using different atmospheric correction methods. ACOLITE provided results that closely 
matched glint-free field measurements. Although the values in all bands were slightly lower than the 
actual reflectance signatures (surface water spectral profile), they retained a similar shape. When 
comparing the in-situ Chl-a and turbidity data with the reflectance signals corrected by the different 
atmospheric methods evaluated, ACOLITE showed the highest coefficients of determination, 
reaching R2 values of 0.88 and 0.79 for Chl-a and turbidity, respectively. These results are in line with 
a recent study by Rodríguez-López et al. [9], which used ACOLITE as an atmospheric distortion 
mitigation method on L-8 OLI scenes to estimate Chl-a concentrations in the Llanquihue Lake 
(southern Chile). Other water quality research has found that ACOLITE effectively corrects for 
atmospheric distortions in water bodies, especially in the development of Chl-a estimation models 
from L-8 satellite OLI scenes (e.g., [56–58]). Additionally, our study confirms the essential role of a 
rigorous atmospheric correction to mitigate errors from aerosols and the sun-glint effect during the 
construction of spectral inversion models from satellite imagery. As discussed in Yépez et al. [11], the 
utilization of the USGS LaSRC SR_QA_AEROSOL product aids in filtering out pixels affected by 
atmospheric distortions, improving the relationship between in-situ data and image reflectance, even 
in cases of temporal disparities between data collection and scene acquisition. 

II. Development of an empirical retrieval model 

The Green Chlorophyll Index (GCI) was selected as the optimal choice for constructing the Chl-
a retrieval model in the Laguna Grande, despite being a spectral index used in terrestrial applications 
[49]. Our results show a remarkable sensitivity of Chl-a concentration to various multiband 
reflectance combinations, underlining high responsiveness of this index. Similar results have been 
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observed in other water quality studies, where spectral indices such as NDVI and GNDVI have been 
distinguished, as reported in previous works (e.g., [59–61]). The CGI showed the highest relationship 
with R2 value of 0.88, making it the best choice for the Chl-a recovery model in our study lake. The 
robustness of the model was assessed by bootstrapping method, confirming its statistical significance. 
When comparing our results with previous work, a notable study that shows a relationship between 
the green and near-infrared bands and in-situ Chl-a values is the research conducted by Yang et al. 
[53]. In their research, they revealed a substantial correlation, with the B5 (near-infrared) / B3 (green) 
spectral ratio index derived from the OLI sensor showing the strongest association with in-situ 
chlorophyll-a levels (R2 = 0.73).  

The analysis of turbidity parameters showed that the Red + NIR spectral index achieved the 
highest R2 value, reaching 0.79. However, a high MAPE of 54.89 % revealed model weaknesses, 
indicating a lack of robustness. The data also showed seasonal variations, which highlights the 
importance of collecting winter data (water samples) to overcome the limitation of this retrieval 
model. Thus, to account for the seasonality factor comprehensively, it is advisable to incorporate data 
from several seasons for model training. 

III. Assessment of the spatial-temporal variability 

Our results clearly show a spatial pattern varying from higher Chl-a values in the northern zone 
compared to the southern zone. These results are in agreement with the research of Pedrero-Guarda 
et al., [23], which identified spatial variations in temperature in Laguna Grande, possibly attributed 
to a heat island effect. This effect causes temperature differences, with higher temperatures near 
urban areas (northern part) and lower temperatures in vegetated regions. Since Chl-a levels are 
affected by factors such as nutrients, phosphorus, pH, water flow and temperature, it is plausible that 
this temperature gradient contributes to higher chlorophyll-a levels in the northern part of the lake. 
A positive aspect of our analysis arises when evaluating Chl-a values estimated from OLI images 
between 2014 and 2022. In general, a decrease in Chl-a concentrations is observed throughout the 
lake, which can be attributed to recent local regulations aimed at reducing activities that cause lake 
pollution. However, it will be necessary to evaluate a time series on a monthly scale to determine 
whether this decline has been constant and is being maintained.  

This study marks the first step towards the development of a web platform that will provide 
access to water quality data derived from satellite signals, such as Landsat-8 OLI, for the main lakes 
of Chile. In our ongoing analysis at the Laguna Grande, we expect to improve our spectral estimation 
models by incorporating advanced airborne hyperspectral technology using NEO's HySpex VNIR-
1800 cameras and collecting in-situ data with other water quality parameters. The results of this study 
will encourage the utilization of earth observation data for monitoring inland water quality, 
facilitating the sustainable management of water resources. 
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