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Abstract: Statistical modeling of lifetime data plays an essential role in a wide range of practical 

fields, such as health and engineering. There have been a lot of studies done to develop statistical 

models that can better describe health data than traditional models. For the first time, we pioneer a 

novel family of continuous probability distributions called the generalized odd beta prime general-

ized (GOBP-G) family of distributions. The cumulative distribution and probability density func-

tions of the new family are presented. A new generalization of the Weibull distribution called "gen-

eralized odd beta prime-Weibull" (GOBPW) is proposed using the pioneered GOBP-G family. The 

mixture representations of the new distribution are defined and derived. Some formal statistical 

properties of the GOBPW distribution, such as the moments, moment generating function, incom-

plete moments, information generating function, entropies, stress-strength function, quantile func-

tion, and order statistics, are derived. The estimation of the parameters of the proposed distribution 

is evaluated using the maximum likelihood estimation approach. Different cancer disease data sets, 

such as the bladder, head and neck, acute bone, and blood cancers, are used to illustrate the applica-

bility and usefulness of the new model and were compared using several statistical accuracy 

measures with that of well-established extended Weibull distributions, which are the beta modified 

Weibull distribution, Kumaraswamy modified Weibull distribution, gamma generalized modified 

Weibull distribution, gamma log-logistic Weibull distribution, and beta log-logistic Weibull distri-

bution. The results show that the proposed model gives better results than the competitive models. 

This study could guide the relevant stakeholders in choosing a suitable statistical model for the 

health data instead of relying on traditional models to enhance decision-making. 

Keywords: beta prime distribution; Weibull distribution; mixture representations; information gen-

erating function; entropies; order statistics; Monte Carlo simulation; blood cancer disease 
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1. Introduction 

Cancer is the second leading cause of death worldwide [1, 2], contributing to over 

20% of all cause-specific deaths [3]. It is the leading cause of mortality in developed na-

tions and the second leading cause of mortality in developing countries. The global bur-

den of cancer continues to rise as the world population ages and grows, as do cancer-

causing habits, particularly smoking, in developing countries. In 2008, there were 12.7 
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million cancer cases and 7.6 million cancer deaths; 56% of cases and 64% of deaths oc-

curred in developing countries [4]. Breast cancer accounts for 23% of all cancer cases and 

14% of cancer deaths among women, while male lung cancer accounts for 17% of new 

cases and 23% of the total cancer deaths [5]. Cancers originate from accumulating epige-

netic and genetic aberrations [6, 7]. Earlier studies developed a power law model based 

on multi-stage somatic mutation theory to describe age-dependent incidences for different 

cancer types [8, 9]. According to [10], most cancers have the same incidence pattern in 

classical epidemiological research, despite the complexity of carcinogenesis. The study 

conducted by [11] found a significant association between lifetime cancer risk and stem 

cell divisions. Some existing statistical models for evaluating a lifetime data set include 

time series [12], regression [13, 14], and more.  More efficient method can provide a better 

estimate of the lifetime of an event. 

Many researchers have extensively analyze lifetime data in a broad variety of practi-

cal domains, such as medical science, via statistical distributions.  Medical experts typi-

cally use a statistical model to examine the distribution of their patients' lifetime data, 

including cancer patients. However, the chaotic nature of medical data makes it challeng-

ing to determine its underlying behavior. Consequently, it is necessary to study the nature 

of these data due to the fact that they directly affect people's lives and their health condi-

tions. To determine reliable results in estimating medical data, it is often required to 

choose the appropriate statistical distribution of the data. To model biomedical data, it is 

possible to consider continuous probability distributions such as Weibull, gamma, log-

normal, Rayleigh, logistic, exponential, and log-logistic distributions. The main rationale 

for this technique is the favorable properties of the distributions, including the existence 

of closed forms of probability density functions, which make it easy to estimate parame-

ters for the data. However, these distributions are only represented by a few different 

distributional shapes and, consequently, are unable to describe the true behavior of the 

data. Moreover, it is evident that the biomedical data deviate from these traditional dis-

tributions because of the skewness and heavy tails or fat tails that are present in the data. 

This means that the aforementioned classical distributions are less suitable for modeling 

biomedical data, whose distribution is shown to be skewed. Therefore, there is a need to 

emphasize the importance of enhancing the classical distributions for modeling biomedi-

cal data.  

There are popular distributions that are extensively utilized in modeling lifetime phe-

nomena, including Weibull, exponential, gamma, and Rayleigh distributions [15]. In par-

ticular, the Weibull distribution is the most common and efficient model used for analyz-

ing lifetime data. Another flexibility of the Weibull distribution is that it continues to be 

the most frequently used parameter distribution. However, this distribution is not adapt-

able enough to capture data types with considerable degrees of complexity. Almost all 

medical disorders, including neck, bladder, breast, and other cancers, have unimodal or 

modified unimodal hazard rates. After surgery, neck, bladder, and breast cancer risks are 

unimodal. For better information, we refer to [16] for bladder cancer, [17] for neck cancer, 

and [18] for breast cancer. Modeling such outcomes may not be suitable with exponential, 

Rayleigh, or Weibull distributions. As a result, researchers in the medical field are on the 

lookout for alternative distributions that can adequately model such lifetime data with a 

unimodal hazard function. The Weibull distribution is one of the common distributions 

for modeling mortality and failure [19]. However, the standard two-parameter Weibull 

distribution can only model monotonically increasing and decreasing hazard functions, 

making it less applicable for fitting when data indicate non-monotonic failure rates. There-

fore, there is often a pressing need to improve the standard Weibull distribution for mod-

eling biomedical data.  

The drawbacks of the two-parameter Weibull distribution have motivated research-

ers to develop several generalizations and extended forms of it to obtain more flexible 

distributions in terms of modeling. Some of the recent development in modifications of 

the Weibull distribution mentioned in the literature include the exponentiated Weibull 

distribution by [20], Marshall–Olkin extended Weibull distribution by [21], the flexible 
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Weibull extension by [22], the generalized modified Weibull distribution by [23], the Ku-

maraswamy Weibull distribution by [24], the beta modified Weibull distribution by [25], 

the beta generalized Weibull distribution [26], the beta inverse Weibull distribution by 

[27], the Kumaraswamy modified Weibull distribution by [28], the transmuted exponen-

tiated generalized Weibull by [29], the Kumaraswamy transmuted exponentiated additive 

Weibull by [30], the Topp-Leone generated Weibull by [31]. Other studies that can be 

cited, including, among others, the Lindley Weibull distribution by [32], half-logistic gen-

eralized Weibull distribution by[33],  the power generalized Weibull distribution by [34], 

the modified beta generalized Weibull distribution by [35], the generalized weighted 

Weibull distribution by [36], the beta exponentiated modified Weibull distribution by [37], 

the log-normal modified Weibull distribution by [38], the new Kumaraswamy Weibull 

distribution by [39], the generalized extended exponential Weibull distribution by [40], 

the Maxwell–Weibull distribution by [41], exponentiated additive Weibull distribution by 

[42], the flexible additive Weibull distribution by [43], the extended generalized inverted 

Kumaraswamy Weibull distribution by [44], the exponentiated generalized inverse flexi-

ble Weibull distribution by [45], the bivariate extended generalized inverted Kumaras-

wamy Weibull by [46], and the Khalil new generalized Weibull distribution by [47]. For a 

detailed review of extensions to the Weibull model, we refer to the works of [48] and [49]. 

Numerous studies have investigated the characteristics of different cancer data sets 

based on extended versions of Weibull distributions. For instance, head-and-neck cancer 

censored data was examined using the generalized power Weibull distribution proposed 

by [50]. In other studies, the beta-Weibull distribution introduced by [51] and the gener-

alized modified Weibull distribution described by [52] were applied to fit a breast cancer 

data set. Similarly, a Weibull-based parametric model known as the log-beta Weibull dis-

tribution introduced by [53] was utilized to forecast the recurrence of prostate cancer for 

patients with clinically localized prostate cancer treated by open radical prostatectomy. 

The q-Weibull distribution by [54] was applied to data on cancer remission times, for 

which this distribution performed better than the standard Weibull distribution. The gen-

eralized Weibull distribution developed by [55] performed efficiently in modeling colo-

rectal cancer. The performance of the beta-weighted Weibull distribution described by 

[56] was validated using bladder cancer data. The empirical proofs of the importance and 

flexibility of the transmuted exponentiated generalized Weibull distribution by [57], the 

Marshall-Olkin generalized-Weibull distribution by [58], the Marshall–Olkin power gen-

eralized Weibull distribution by [59], and the Gull alpha power Weibull distribution by 

[60] were assessed in modeling bladder cancer data sets. The modified Weibull extension 

distribution introduced by [61] was applied to model bile duct cancer data. The exponen-

tiated log-inverse Weibull distribution established by [62] was analyzed using tongue can-

cer with an aneuploid DNA profile and bladder cancer. In a more recent study, the alpha 

power Kumaraswamy Weibull distribution proposed by [63] was presented to model dif-

ferent cancer data sets, including the blood and bone cancer data sets. The Weibull distri-

bution has the following cumulative distribution function (cdf):        

 ; , 1 , 0; , 0.xM x e x
                                       (1)                                        

The corresponding probability density function (pdf) is defined as 

  1; , , 0; , 0,xm x x e x
                                      (2)                                                

where   and   are scale and shape parameters, respectively.   

The beta prime distribution, also known as the beta of the second kind, is a univariate 

continuous probability distribution used for modeling skewed data. This distribution can 

be used in a broad variety of scientific domains, including finance, hydrology, engineer-

ing, medical science, insurance, and machine learning. Despite its significance, it is not 

widely used by statisticians and has been little explored in the literature. For more details 

on beta distribution, see [64] and the references therein. In the current research, we at-

tempt to offer a new family of continuous probability distributions yielded from the gen-

eralized beta prime distribution. As defined in [64], the beta prime has the following cdf: 
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The corresponding pdf is defined as 
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( ;a,b) , ,

, 1

a

a b

x
q x x

B a b x




 


                                    (4)            

where a  and b  shape parameters, respectively.   

Over the past few years, several researchers have attempted to develop new families 

of continuous probability distributions that are more flexible than the conventional ones. 

It is a fact that statistical modeling can be more flexible with these new families, especially 

in practical fields such as health, engineering, the environment, and finance. Several meth-

ods are used in the statistical literature to generate a family of distributions from a well-

known distribution by adding one or more parameters. When the parameters are added 

to the baseline distribution, the resulting distribution is the generalized distribution. The 

resulting distribution can be efficiently utilized in fitting lifetime data sets as it has the 

ability to accommodate monotonic and non-monotonic characteristics of the data [63, 65, 

66]. Some families of continuous probability distributions are available in the literature, 

including the beta generalized-G family by [67], the beta-G by [65], a novel technique for 

generating families of continuous probability distributions by [68], the Lindley family of 

distributions by [69], the Zografos–Balakrishnan-G family of distributions by [70], the 

Topp–Leone family of distributions by [71], the Kumaraswamy transmuted-G family of 

distributions by [72], and the exponentiated Gompertz generated family of distributions 

by [73]. Other distribution families that can be cited are the generalized odd half-Cauchy 

family of distributions by [74], the odd-Burr generalized family of distributions by [75], 

the extended odd Fréchet-G family of distributions by [76], the generalized odd Weibull 

generated family of distributions by [77], the generalized odd gamma-G family of distri-

butions by [78], the modified odd Weibull family of distributions by [79], the odd Dagum 

family of distributions by [80], the Zubair-G family of distributions by [81], the truncated 

Burr X-G family of distributions by [82], the alpha power Marshall-Olkin-G distributions 

by [83], the odd log-logistic Burr-X family of distributions by [84], the Teissier-G family of 

distributions [85], and the generalized alpha exponent power family of distributions by 

[86] among others. 

Various authors argued that the new technique (T-X) of generating families of prob-

ability distributions developed by [68] allows the construction of more flexible families of 

probability distributions when modeling lifetime data and has proven itself in different 

settings. The odd Burr-III family of distributions  was studied by [87], the odd Lomax 

generator of distributions proposed by [88], the odd log-logistic Poisson-G family of dis-

tributions introduced by [89], the odd log-logistic Topp–Leone-G family of distributions 

pioneered by [90], the odd Lomax generator of distributions established by [91], the odd 

Chen-G family of distributions constructed by [92], and the odd generalized N-H gener-

ated family of distributions introduced by [91], the odd extended exponential-G family of 

distributions defined by [93], the odd exponential-logarithmic family of distributions pro-

posed by [94], the odd inverted Topp Leone–H family of distributions provided by [95], 

the odd log-logistic Weibull-G family of distributions developed [96], and the literature 

has provided some new groups, see [97].  

Due to the importance of generating new families of probability distributions by add-

ing new shape parameters, as recognized in the statistical literature. In this paper, we in-

troduce the generalised odd beta prime generalised (GOBP-G for short) family, a novel 

family of continuous probability distributions based on the beta prime or beta second-

kind distribution, using the T-X technique pioneered by[68]. In fact, based on the devel-

oped GOBP-G family, we proposed a new extended Weibull distribution, the so-called 
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GOBPW distribution, that is more flexible than other existing versions. The primary justi-

fications for introducing the GOBP-Weibull distribution are as follows: 

i. To produce a more flexible extension of the Weibull distribution. 

ii. To provide some statistical properties of the proposed model, such as the mo-

ments, moment generating function, incomplete moments, information generat-

ing function, entropies, stress-strength, quantile function, and order statistics. 

iii. The density function of the new model can have decreasing, increasing, left-

skewed, right-skewed, symmetric, or reversed-J shapes. 

iv. It can be used as a useful model for modelling asymmetric data that cannot be well 

fitted by any of the popular statistical models, and it can be used to solve a wide 

range of problems in many applied sciences, including medicine, finance, and en-

gineering. 

v. To provide consistently better fits than some other well-reputed statistical models 

with good outcomes for some popular distributions. 

The current paper is outlined as follow: In section 2, the new GOBP-G family of dis-

tributions is defined with the derivation of its validity test. Section 3 introduces the new 

special GOBPW distribution. Various mathematical and statistical properties of the new 

GOBP-Weibull distribution are obtained in Section 4. The maximum likelihood estimation 

for the model parameters is discussed in Section 5. Section 6 consists of simulation studies 

to assess the performance and consistency of the maximum likelihood estimators. Section 

7 presents applications of the proposed GOBP-Weibull distribution, illustrated by means 

of four different cancer data sets. Finally, we offer some concluding remarks in Section 8. 

2. Construction of the Generalized ODD Beta Prime Generalized Family 

This section presents statistical descriptions of how the new GOBP-G family of dis-

tributions was developed via the T X  method defined by [68].  

Let us suppose that we have a random variable represented as T  with respective 

cdf  and pdf as   ;Q M x   and ( )r t , such that  ,T w s  for .w s      Then 

the cdf of the distribution must satisfy the following conditions: 

(i)     ; , .Q M x w s   

(ii)   ;Q M x   must be differentiable and monotonically decreasing function. 

(iii)   ;Q M x w   as ,x    and 

(iv)   ;Q M x s   as .x    

We can obtain the cdf of the new T X  family of distribution defined by [68] as 

 
  ;

( ) , ,

Q M x

w

P x r t dt x



  �                                    (5)                                                             

where   ;Q M x   is the link function of distribution function  ;M x   for any ran-

dom variable X , ( )r t  is the density function of random variable T ,   is the param-

eter of the distribution function  ;M x  . The link function   ;Q M x   must satisfy 

the above conditions. 

The corresponding pdf to (5) is given by 

        ; ; , .p x Q M x r Q M x x
x

 
 

  
 

�  
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Several authors use the T-X family method owing to its effectiveness; see [97] for 

more on this technique. The present study offered an additional family as follows. 

Suppose a random variable X has a beta prime distribution with parameters , 0a b      

,  0,X   , and X is any random variable with cdf  ;M x  ,  � . The cdf of the 

GOBP-G family of distribution is defined by taking the pdf in (5) to be the pdf of (3) and 

the upper limit to be      ; ; 1 ;Q M x M x M x           . Hence, the GOBP-G family 

has a cdf given by:  

  
   

   ; 1 ;
1

0

1
; , , , .

, 1

c cM x M x
a

GOBP G a b

x
P x a b dx x

B a b x

 



   

 
 


 �               (6) 

  After some simplifications, the cdf of GOBP-G family is: 

                 
     

 
; 1 ;

1
; , , . , , , 0, , ,

,
c cGOBP G M x M x

P x a b B a b a b x
B a b  

    

  �           (7)                     

with pdf 

            

 
 

   

   

   

 

   

       

1
1

2

1

1

; 1 ; ; ;1
; , , .

, 1 ;1 ; 1 ;

; ;
,

, 1 ; 1 ; 1 ;

ac c c

GOBP G a b cc c

ca

a bac c c

M x M x cm x M x
p x a b

B a b M xM x M x

cm x M x

B a b M x M x M x

   


 

 

  




 





  
         


          

       (8) 

where,  ;M x  is cdf of any baseline distribution with parameter  ,  ;m x   is the 

corresponding pdf of any baseline distribution, and c additional shape parameter. 

To evaluate the validity of GOBP-G family of distribution, we apply the integral 

                                     1.f x dx




                                                     (9)             

If satisfies the condition given in (9), we can say that the GOBP-G is a valid family of 

statistical distributions. 

The proof is as follows: 

Substituting (8) in (9), we get 

  
 

   

     

1

1
0

; ;
.

, 1 ; 1 ; 1 ;

ca

a bac c c

m x M xc
dx

B a b M x M x M x

 

  




          

              (10)                     

  Let          
21; 1 ; , ; ; 1 ; ,c c c cy M x M x dy cm x M x dx M x            

                             so that      
2 11 ; ; ; .c cdx M x dy cm x M x                              (11)      

Putting (11) in (10), we have 

  
 

   

   

1

1

0

;1
1.

, 1 ; 1

c a

a a bc

M y
dy

B a b M y y







 


   
                                 (12)                                                  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 December 2022                   doi:10.20944/preprints202212.0072.v1

https://doi.org/10.20944/preprints202212.0072.v1


 

 

Hence, GOBP-G family of distributions is indeed a family of statistical distributions. 

3. Construction of the Generalized Odd Beta Prime-Weibull Distribution 

In this section, a new lifetime Weibull model is introduced from the proposed family 

defined in (8), which is considered a new sub-model of the GOBP-G family, the so-called 

generalized odd beta prime-Weibull (GOBPW) distribution.  

Consider the cdf and pdf of the Weibull with , 0    as given in (1) and (2) a

 ; , 1 xM x e
     and   1; , xm x x e

      ; for 0x  , where the cdf of X has 

the GOBPW distribution, say  , , , ,X GOBPW a b c  �  is given by 

 
 

 
1 1 1

1
; , , , , . , ; , , , , 0, 0,

,
c c

x x
GOBPW

e e

P x a b c B a b a b c x
B a b   
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with corresponding pdf 
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The survival function for GOBPW distribution is 

     

   

 
 

1 1 1

; , , , , 1 ; , , , ,

1
1 . , .

,

GOBPW

c c
x x

GOBPW

e e

x a b c P x a b c

B a b
B a b   

    

 
          

     

 

 
                    (15) 

The hazard function for GOBPW distribution is expressed as 
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            (16) 

Graphs of the pdf and hazard function of the GOBPW distribution at several different 

distribution parameters are given in Figures 1 and 2, respectively. 
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Figure 1. Plots of the GOBPW distribution density function. 
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Figure 2. Plots of the GOBPW distribution hazard rate function. 
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3.1. Mixture Representations of the GOBPW Distribution 

Here, we derive the mixture representations of the proposed GOBPW distribution. 

Using the following binomial expansion given by [98] as 
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Applying (17) in (14), lead to 
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For 1,   the power series holds  
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Then, based on (19), the denominator of (18) becomes 
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After simplifications, we get 
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Which is the pdf of GOBPW distribution in terms of mixture representations. 

4. Statistical Properties of GOBPW Distribution 

Some important statistical properties of GOBPW distribution are supplied in this sec-

tion, such as the moments, moment generating function, incomplete moments, infor-

mation generating function, entropies, stress-strength function, quantile function, and or-

der statistics. 

4.1. Moments 

The moments of any model plays an important role in any statistical analysis. They 

allow to determine essential features of the distribution, for example, tendency, disper-

sion, coefficients of variation, skewness, and kurtosis. Here, we derive the moments of the 
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GOBPW distribution. Based on (21), the thr  moment of the GOBPW distribution is given 

by 
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Inserting (23) in (22), then the 
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  1 1
, ,

, , 0

, ,
, , 0

1

(1 )

1
.

(1 ) (1 )

r r y
i j k

i j k

r

y
i j k

i j k

E X x e dy
k

y
e dy

k k

 







 


    

 




 




 
    

 

 

 

After some simplifications, the 
thr  moment of the GOBPW distribution is 
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4.2. Moment Generating Function 

The moment generating function plays an important role in probability theory and 

statistics. It allows to uniquely determines its probability distribution. That is, it is an al-

ternative specification of its distribution. Here, we obtained the moment generating func-

tion of the GOBPW distribution based on (21) as follows: 
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Utilizing the exponential series expansion as 
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The moment generating function of the GOBPW distribution is obtained by using 

(26) in (25) as: 
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Using (23), the moment generating function of the GOBPW distribution holds 

               

 

 

, ,
, , , 0

0

, ,
, , , 0

1

! (1 ) (1 )

. 1 .

! (1 )

l l
i j k

i j k l y
X

l
i j k

i j k l

l

t
y

M t e dy
l k k

t
l

l k







 



 




 







 
    

 
   

 





                        (28) 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 December 2022                   doi:10.20944/preprints202212.0072.v1

https://doi.org/10.20944/preprints202212.0072.v1


 

 

4.3. Incomplete Moments 

The incomplete moments have applications in modeling lifetime data. They can be 

used to calculate important quantities, including the mean residual function, mean wait-

ing time, mean deviations, Bonferroni and Lorenz curves. In this sub-section, we present 

the expression for the incomplete moments of the GOBPW distribution. Based on (21), the 
thr  incomplete moment of the GOBPW distribution is  
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Using (23), the incomplete moment of the GOBPW distribution yields 
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4.4. Information Generating Function 

In information theory and statistics, the information generating function has been 

utilized to generate some important information quantities, such as Kullback-Leibler di-

vergence and Shannon entropy. It has been widely applied in physics and chemistry to 

analyse the atomic structure of a given phenomenon or system. Here, we define the infor-

mation generating function of the GOBPW distribution as follow: 
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where ( )f x  is the pdf of the GOBPW distribution defined in (14). The integrand in (31) 

can be expressed as: 
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Using the binomial expansion (17), then the integrand in (32) gives 
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Applying the power series (19) to last term of (33), it leads to 

                  
   

 
  

 
1 0

0

1
1

1 . 1 .
! 1

a b l mclx xm

l

a l m
a b l

f x kx e e
m a ll

 


   








  
  



         
   

       


      (34) 

After some simplifications, we get 
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Inserting (35) in (31), the information generating function of the GOBPW distribution   

yields 
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Letting     1 .w p x we get dx dw p x                           (37) 

Substituting (37) in (36), we have 
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 
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
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



  
 

 





 

 









   

  
 

 






            (38)                                                     

4.5. Entropies 

4.5.1. Rényi Entropy 

The Rényi entropy of order   for the GOBPW distribution is obtained as: 

    
1

( ) log ( ) , 0, 1, .
1

R x f x dx x
  







 
    

  
 �                        (39) 

The integrand ( )f x dx



  is as defined in (38), so that 
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 
 

 , ,
, , 0

1 1

1 1
( ) .

l m p
l m p

f x dx

p



 



 


 






 



   

  
 


                         (40) 

Substituting (40) in (39), we obtain the Rényi entropy of the GOBPW distribution as 

 
 

 , ,
, , 0

1 1

1 11
( ) log .

1

l m p
l m p

R x

p
  



 

 
 





 

 
    

   
    
 


     (41) 

4.5.2. q  Entropy 

The q  entropy of the GOBPW distribution is obtained as follows: 

 
1

( ) log 1 ( ) , 0, 1, .
1

Q x f x dx x
  







 
     

  
 �         (42) 

The q  entropy of the GOBPW distribution is derived by substituting the integral in 

(42) with (38) yeilds 

        

 
 

 , ,
, , 0

1 1

1 11
( ) log 1 .

1

l m p
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Q x

p
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

 

 
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



 

 
    

    
    
 


              (43) 

4.6. Stress-Strength System Model 

The idea of stress-strength is one of the primary determinants of the failure of engi-

neering systems. In the stress-strength system modelling, the reliability (R) quantifies how 

resistant a system is to failure under conditions of random stress (X2) in comparison to the 

strength (X1). Failures occur when the applied stress exceeds the system’s strength. In this 

case, we can write  2 1R P X X  . In this subsection, we derived the stress-strength for 

the GOBPW distribution. 

Suppose X1 and X2 are two independent random variables both follow the GOBPW 

distribution with parameters  , then the stress-strength is expressed as: 

     

   

1

2 1 1 1 2 2 1 2

1 1 1 2 1

; , , , , ; , , , ,

; , , , , ; , , , , ,

x

R P X X p x a b c p x a b c dx dx

p x a b c P x a b c dx

   

   



 





  



 



               (44) 

where  1 1; , , , ,p x a b c    and  1 2; , , , ,P x a b c    are pdf and cdf of the GOBPW distri-

bution, respectively. 

Applying the series expansion for the cdf of beta model studied by [99] as 

 
 
 0

1
( , ) .

, !

a
mm

m m

b
I a b

B a b a m













                     (45) 

Applying (45) in (44), we have 
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       (46) 

Applying the binomial expansion (17) in (46), we can write 
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
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

   


   


   
   

 





 



        (47) 

Applying the power series (19) in (47), it becomes  

         1 11
1 1 1 2 , , , 1

, , , 0

; , , , , ; , , , , ,x q

m p s q
m p s q

p x a b c P x a b c x e
   


 



        (48) 

   where, 
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


           
     

   

     


    

 

Substituting (48) in (44), it gives 

      1 11
, , , 1 1

, , , 0 0

.x q

m p s q
m p s q

R x e dx



 



                                   (49) 

     Let   1 1x q    we get  1
1 1 1 .dx d x q                     (50) 

Inserting (50) in in (49), we obtained the stress-strength for the GOBPW distribution 

as 

  
 
, , ,

, , , 0

.
1

m p s q

m p s q

R
q









                                 (51) 

4.7. Quantile Function 

In probability and statistics, the quantile function is associated with the probability 

distribution of a random variable. Its purpose is to specify the value of the random varia-

ble such that the probability of the variable being less than or equal to that value equals 
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the given probability. In this subsection, we obtained the quantile function of the GOBPW 

distribution. 

Let the random variable X follow the GOBP-G family with cdf (7). Then the quantile 

function of the GOBPW distribution is obtained by inverting (7) as: 

     
 
 

 1;
; , , 0 1.

1 ;
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M x
I u a b u

M x
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
                            (52) 

So that 
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   







 

                                     (53) 

   where  1 ; ,I u a b  . 

Therefore, the quantile of a baseline cdf is derived as: 

        

1

; .
1

c

M x 
 

  
 

                                   (54) 

Replacing  ;M x   in (54) with the cdf of Weibull distribution in (1), we have 

       

1

1 .
1

c
xe
  

   
 

                                   (55) 

After some simplifications, the quantile function of the GOBPW distribution yields  

         

1

1
log 1 ,x





 
   

 
                             (56) 

   where 

1

.
1

c 
  
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  

4.8. Order Statistics 

Order statistics are a very useful concept in many areas of statistical theory and prac-

tice. They have a broad variety of applications including modeling insurance policies, auc-

tions, optimizing production processes, car races, estimating parameters of distributions, 

and others. Here, we provide the expression of order statistics for GOBPW distribution. 

Suppose 1,..., nX X  be a random sample from the GOBPW distribution 

1, 2, ,...n n n nX X X    is a set  of random variables of  n   ordered, then the distribu-

tion of 
th  order statistics is 
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   

   


                   (57) 

where  f x  and  F x  are pdf and cdf of GOBPW distribution. 
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Now, (57) can simplified as 
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Applying (45) in (58), we have 
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 After some simplifications, we have the order statistics of GOBPW distribution as 
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   where 
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5. Maximum Likelihood Estimation 

Maximum likelihood estimation (MLE) is a method used in statistics to estimate the 

parameters of an assumed probability distribution based on some experimental data. This 

is done by maximizing a likelihood function that makes the experimental data likely un-

der the assumed statistical model. Maximum likelihood estimate is the point in the pa-

rameter value that maximizes the likelihood. The purpose of maximum likelihood estima-

tion is to obtain the model parameter values that maximise the likelihood function over 

the parameter space. There are several methods for estimating parameters that have been 

proposed in the literature, but the maximum likelihood method is the most commonly 

used. In this section, we examine the maximum likelihood estimates (MLEs) of the param-

eters of the GOBPW distribution. 

Suppose 1 2, ,... nx x x  be an experimental sample of size n  drawn from the GOBPW 

distribution with parameter vector  , , , ,
T

a b c   . Then, the total likelihood ( )L  

and log-likelihood functions for  are, respectively, expressed as: 
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   and  
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where  
( ) ( )

,
( )

a b
B a b

a b

 


 
 (for reference see [100]). 

The MLE of say ̂ , is obtained by differentiating (53) partially with respect to  . 

Then, we have 
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where  .  is the digamma function, 
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The estimators for   can be obtained by equating (63), (64), (65), (66) and (67) to 

zero. Since ̂  has not a closed form, the R statistical software [101]  can be used to find 

the numerical solutions.  

6. Simulation Study 

In this section, some Monte Carlo simulation results are discussed for the various 

sample sizes to examine the accuracy of the MLE ̂ . The samples are simulated from the 

GOBPW model. The algorithm for numerical procedures can be performed as described 

below.  

Step 1: Generate 1000N   random samples of samples sizes n=100, 200, 300, 500, 700, 

850, and 1000 from the GOBPW distribution based on the quantile function obtained from 

(56) as 

 

1

1
log 1 , 1,2,..., .ix i n





 
    
 

  

Step 2: Chose different values of the model parameters, with order  , , , , :a b c     

    Set 1: (0.5, 0.5,1.75,0.5,1.5), Set 2: (0.5, 0.5,2.5,0.5,0.5), Set 3: (0.5, 0.5,0.72,0.5,1.5). 

Step 3: Measures such as the mean of the MLEs and mean squared errors (MSEs) for ̂  

are obtained for each n to evaluate the performance of estimates. 

Step 4: The numerical results are obtained using R-studio package version 4.2.1. The out-

comes of the results are given in Table 1.  

From Table 1, we can draw the following conclusions: 

 The mean estimates tend to be closer to the true values of parameters when the sam-

ple sizes increases. 

 For all chosen true values of parameter sets, we notice that the MSEs decrease as the 

sample sizes increases. 

 The results show that the MLE method performs quite well in estimating the param-

eters of the proposed GOBPW model. 
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Table 1. Monte Carlo simulation results (mean MLE and MSE) for GOBPW distribution for several 

values. 

 Set1: 0.5, 0.5,1.75,0.5,1.5 Set2: 0.5, 0.5,2.5,0.5,0.5 Set3: 0.5, 0.5,0.72,0.5,1.5 

Mean MSE Mean MSE Mean MSE 

 

 

n=100 

 

 

a  2.1918 0.1969 2.5799 0.0063 1.8305 1.2505 

b  0.4395 0.0037 0.4507 0.0024 0.6092 0.0158 

c  0.1286 2.1650 0.8126 0.2376 0.1891 2.1937 

  0.2507 0.0623 0.3465 0.0235 0.6778 0.0420 

  0.4076 0.0087 0.6440 0.0207 0.3845 0.0164 

 

 

n=200 

a  1.7258 0.1525 2.1726 0.0052 1.3989 1.2007 

b  0.4435 0.0032 0.4491 0.0022 0.5977 0.0142 

c  0.1326 2.1534 0.9406 0.2111 0.2039 2.1893 

  0.2734 0.0515 0.3571 0.0204 0.6448 0.0393 

  0.4157 0.0072 0.6305 0.0170 0.5996 0.0162 

 

 

 n=300 

a  1.4242 0.1244 1.8580 0.0048 1.2559 1.1067 

b  0.4486 0.0026 0.4569 0.0018 0.5816 0.0126 

c  0.5935 2.1463 1.0806 0.1769 0.4216 2.1857 

  0.2882 0.0454 0.3510 0.0221 0.6068 0.0275 

  0.4191 0.0066 0.6259 0.0131 0.7202 0.0122 

 

 

 n=500 

 

 

a  1.2612 0.1026 1.2894 0.0046 1.0072 0.9894 

b  0.4556 0.0020 0.4655 0.0011 0.5576 0.0060 

c  0.7354 2.1452 1.5048 0.1203 0.4230 2.1817 

  0.3027 0.0390 0.3855 0.0210 0.5724 0.0123 

  0.8220 0.0061 0.6017 0.0126 0.9439 0.0061 

 

 

 n=700 

a  1.0723 0.0735 1.0594 0.0044 0.8694 0.9558 

b  0.4612 0.0015 0.4637 0.0010 0.5498 0.0026 

c  1.3733 2.1398 1.8250 0.1055 0.5235 2.1814 

  0.3119 0.0354 0.3869 0.0199 0.5685 0.0078 

  0.9423 0.0058 0.5902 0.0123 1.0426 0.0043 

 

 

n=850 

a  0.9747 0.0600 0.9632 0.0041 0.6901 0.9460 

b  0.4627 0.0014 0.4668 0.0007 0.5463 0.0025 

c  1.3846 2.1365 1.8389 0.1047 0.6293 2.1811 

  0.3741 0.0346 0.3883 0.0113 0.5671 0.0058 

  1.0424 0.0058 0.5742 0.0117 1.1437 0.0034 

 

 

n=1000 

a  0.6277 0.0378 0.7597 0.0039 0.5922 0.9431 

b  0.4842 0.0013 0.4722 0.0006 0.5459 0.0023 

c  1.3788 2.1362 2.0057 0.1034 0.6732 2.1809 

  0.3962 0.0339 0.3899 0.0324 0.5710 0.0051 

  1.3242 0.0057 0.5737 0.0113 1.4419 0.0030 
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7. Applications to Cancer Disease Data sets 

This section demonstrates the applicability of the proposed GOBPW distribution us-

ing four practical data sets involving cancer-related diseases, including bladder, acute 

bone, neck and head, as well as blood cancers. The performance of the GOBPW distribu-

tion is evaluated and compared with the other competing models also based the Weibull 

distribution with five parameters, including the beta modified Weibull (BMW) distribu-

tion by [102], Kumaraswamy modified Weibull (KumMW) distribution by [103], gamma 

generalized modified Weibull (GGMW) distribution by [104], gamma log-logistic Weibull 

(GLLoGW) distribution by [105], and beta log-logistic Weibull (BLLoGW) distribution by 

[106]. 

Basically, we use MLE to estimate the parameters of each model and then compare 

them using the maximum value of log-likelihood analyzed at MLEs ˆ( )  together with 

their standard errors (SEs). Also, some conventional goodness-of-fit measures are consid-

ered, including the Akaike Information Criterion (AIC), Bayesian information criterion 

(BIC), Cramer–von Mises (CM), and Anderson– Darling (AD) statistics. The value of the 

Kolmogorov-Smirnov (KS) statistic as well as its p-value are also presented to compare 

the GOBPW model with other competing models. The golden rule is as follows: the model 

that has the smallest values of these statistics must be chosen as the better one for fitting 

data [98, 107]. Consequently, model performance is ranked using these measured statis-

tics. In the context of data analysis, it is well-established that the maximum likelihood 

approach and the aforementioned criteria have been demonstrated to be effective. All 

computations in this study were performed using R studio software (version 4.2.1). As 

mentioned, the GOBPW distribution is applied as model to investigate four different prac-

tical cancer data sets given below. 

7.1. Bladder Cancer Data Set (CD1)  

The first data set is recently reported by [108].  It concerns the remission times (in 

months) of a random sample of 132 bladder cancer patients. The data are as follows: 0.08, 

0.20, 0.40, 0.50, 0.51, 0.81, 0.87, 0.90, 1.05, 1.19, 1.26, 1.35, 1.40, 1.46, 1.76, 2.02, 2.02, 2.07, 

2.09, 2.23, 2.26, 2.46, 2.54, 2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.25, 3.31, 3.36, 3.36, 

3.36, 3.48, 3.52, 3.57, 3.64, 3.70, 3.82, 3.88, 4.18, 4.23, 4.26, 4.33, 4.33, 4.34, 4.40, 4.50, 4.51, 

4.65, 4.70, 4.87, 4.98, 5.06, 5.09, 5.17, 5.32, 5.32, 5.34, 5.41, 5.41, 5.49, 5.62, 5.71, 5.85, 6.25, 

6.54, 6.76, 6.93, 6.94, 6.97, 7.09, 7.26, 7.28, 7.32, 7.39, 7.59, 7.62, 7.28, 7.32, 7.39, 7.59, 7.62, 

7.63, 7.66, 7.87, 7.93, 8.26, 8.37, 8.53, 8.60, 8.65, 8.66, 9.02, 9.22, 9.47, 9.74, 10.06, 10.34, 10.66, 

10.75, 10.86, 11.25, 11.64, 11.79, 11.98, 12.02, 12.03, 12.07, 12.69, 13.11, 13.29, 13.80, 14.24, 

14.76, 14.77, 14.83, 15.96, 16.62, 17.12, 17.14, 17.36, 18.10, 19.13, 19.36, 20.28, 21.73, 22.69, 

23.60. 

7.2. Acute Bone Cancer Data Set (CD2) 

The second data set is obtained from [109].  The data represents the survival times 

(in days) of 73 patients who diagnosed with acute bone cancer, as follows: 0.09, 0.76, 1.81, 

1.10, 3.72, 0.72, 2.49, 1.00, 0.53, 0.66, 31.61, 0.60, 0.20, 1.61, 1.88, 0.70, 1.36, 0.43, 3.16, 1.57, 

4.93, 11.07, 1.63, 1.39, 4.54, 3.12, 86.01, 1.92, 0.92, 4.04, 1.16, 2.26, 0.20, 0.94, 1.82, 3.99, 1.46, 

2.75, 1.38, 2.76, 1.86, 2.68, 1.76, 0.67, 1.29, 1.56, 2.83, 0.71, 1.48, 2.41, 0.66, 0.65, 2.36, 1.29, 

13.75, 0.67, 3.70, 0.76, 3.63, 0.68, 2.65, 0.95, 2.30, 2.57, 0.61, 3.93, 1.56, 1.29, 9.94, 1.67, 1.42, 

4.18, 1.37.  

7.3. Head and Neck Cancer Data Set (CD3) 

The third data set is studied and analyzed by [110]. In involves the survival time for 

44 patients diagnosed by Head and Neck cancer disease. The data set are: 12.20, 23.56, 

23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 78.26, 74.47, 81.43, 84, 92, 94, 

110, 112, 119, 127, 130, 133, 140, 146, 155, 159, 173, 179, 194,195, 209, 249, 281, 319, 339, 432, 

469, 519, 633, 725, 817, 1776. 
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7.4. Blood Cancer Data Set (CD4) 

The fourth data set contains the life time (in years) of a 40 blood cancer (leukemia) 

patients from one of Ministry of health hospitals in Saudi Arabia reported by [111]. This 

actual data are as follows: 0.315, 0.496, 0.616, 1.145, 1.208, 1.263, 1.414, 2.025, 2.036, 2.162, 

2.211, 2.370, 2.532, 2.693, 2.805, 2.910, 2.912, 3.192, 3.263, 3.348, 3.348, 3.427, 3.499, 3.534, 

3.767, 3.751, 3.858, 3.986, 4.049, 4.244, 4.323, 4.381, 4.392, 4.397, 4.647, 4.753, 4.929, 4.973, 

5.074, 5.381. 

Table 2 shows the statistical descriptions of these four practical data sets. From Table 

2, the statistical descriptions indicate that the data sets have distinct skewness and kurtosis 

features. In particular, right skewed with high kurtosis coefficients for CD2 and CD3 are 

observed, while left skewed for CD4 is observed. Hence, these data sets are suitable for 

skewed statistical models.  

Figure 3 presents the boxplots of the four different cancer data sets. From Figure 3, it 

could be observed that the data sets, especially CD2 and CD3 indicate statistical behavior 

of extreme values. Therefore, these data sets are appropriate for extreme value distribu-

tions.  

Table 2. Descriptive statistics for CD1 – CD4. 

 

 

Figure 3. Boxplots for CD1 – CD4. 

Furthermore, we compare the fits of the proposed GOBPW model with the other 

aforementioned competing models. Tables 3 – 6 provide the results of the MLEs and their 

corresponding SEs for CD1 – CD4, respectively. The values of the considered goodness-

of-fit measures for the candidate models are listed in Tables 7 – 10 for CD1 – CD4, respec-

tively. From these results, it is obvious that the proposed GOBPW model not only pro-

vided better fits to the cancer data sets but also superior to the other fitted models because 

Data n Min Q1 Q3 Median Mean Max Variance Skewness Kurtosis 

CD1 132 0.080 3.348 9.537 5.665 7.149 23.600 27.673 1.059 0.613 

CD2 73 0.090 0.920 2.750 1.570 3.755 86.010 112.331 6.660 47.369 

CD3 44 12.20 67.21 219.00 128.50 223.48 1776.00 93286.41 3.269 12.816 

CD4 40 0.315 2.199 4.264 3.348 3.141 5.381 1.847 -0.401 -0.838 
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it possesses the smallest AIC, BIC, CM, KS, and AD values. Once more, the p-value of the 

K-S statistic for all of the fitted models is more than the nominal 0.05 level of significance, 

suggesting that all the considered models fitted the cancer data sets quite well and that 

the proposed GOBPW model provided the best fit. Figures 4 – 7 depict the fits of the esti-

mated pdfs over the histograms and estimated cdfs over the empirical cdfs for CD1 – CD4, 

respectively. It is very clear that the GOBPW model provides adequate fits than all other 

competing models. 

Table 3. MLEs with corresponding standard errors (in parentheses) of competitive models for CD1. 

Model â  b̂  ĉ  ̂  ̂  

GOBPW 1.3690 

(0.0933) 

7.8108 

(0.5226) 

5.9224 

(1.5777) 

3.0174 

(2.7770) 

1.8748 

(0.2537) 

BMW 6.5146 

(0.4348) 

2.8781 

(0.2107) 

4.3765 

(0.6342) 

3.7531 

(0.3421) 

0.9356 

(0.2132) 

KumMW 7.1487 

(0.4561) 

5.2405 

(0.3225) 

2.1047 

(0.3885) 

5.3845 

(1.2753) 

2.4115 

(1.1925) 

GGMW 1.9701 

(0.1439) 

5.5735 

(0.4247) 

2.1057 

(0.2363) 

3.1993 

(0.7051) 

1.4243 

(0.5422) 

GLLoGW 1.6337 

(0.1842) 

0.2285 

(0.0301) 

8.3884 

(3.6511) 

2.6473 

(0.4025) 

1.6003 

(2.2953) 

BLLoGW 5.4160 

(0.3999) 

2.7557 

(0.3086) 

5.3826 

(0.6803) 

1.2122 

(0.1093) 

1.3564 

(0.0432) 

Table 4. MLEs with corresponding standard errors (in parentheses) of competitive models for CD2. 

Model â  b̂  ĉ  ̂  ̂  

GOBPW 1.8690 

(0.1854) 

1.6163 

(0.1725) 

1.9833 

(0.2023) 

1.7413 

(0.4131) 

0.0731 

(0.0041) 

BMW 3.7552 

(1.2319) 

10.5257 

(0.8711) 

11.6736 

(3.5769) 

2.6749 

(1.5367) 

3.3548 

(0.3547) 

KumMW 1.1174 

(0.1644) 

1.1280 

(0.2077) 

2.7285 

(1.1981) 

1.0704 

(0.2156) 

2.7069 

(0.8717) 

GGMW 0.5196 

(0.1215) 

1.0382 

(0.0859) 

0.5653 

(0.3201) 

0.0973 

(0.0367) 

3.3457 

(1.9585) 

GLLoGW 1.4342 

(0.1269) 

0.7183 

(0.1149) 

0.3788 

(0.0583) 

0.3822 

(0.0253) 

3.2247 

(0.6007) 

BLLoGW 2.1117 

(0.3951) 

2.2208 

(0.2443) 

2.4679 

(0.5543) 

0.4567 

(0.8354) 

7.5321 

(1.4567) 
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Table 5. MLEs with corresponding standard errors (in parentheses) of competitive models for CD3. 

Model â  b̂  ĉ  ̂  ̂  

GOBPW 1.6909 

(0.2128) 

25.0378 

(9.3944) 

3.4434 

(0.4236) 

5.2567 

(2.6743) 

1.7018 

(1.1823) 

BMW 37.5243 

(9.3245) 

23.4770 

(6.9634) 

11.6349 

(3.6453) 

7.8732 

(2.6523) 

5.5325 

(2.5342) 

KumMW 1.0234 

(0.1827) 

0.4578 

(0.0991) 

2.9743 

(0.4583) 

1.3546 

(0.6454) 

4.1036 

(1.0343) 

GGMW 16.3572 

(4.7443) 

6.7247 

(2.8669) 

18.2546 

(7.4532) 

8.3452 

(3.2543) 

3.2436 

(1.0124) 

GLLoGW 4.8469 

(0.1569) 

1.0408 

(0.1109) 

5.2208 

(2.9744) 

0.2563 

(0.1324) 

3.4563 

(0.5341) 

BLLoGW 51.1783 

(17.4352) 

29.7071 

(8.8432) 

17.6324 

(6.5362) 

5.7352 

(2.1453) 

4.8322 

(1.8743) 

Table 6. MLEs with corresponding standard errors (in parentheses) of competitive models for CD4. 

Model â  b̂  ĉ  ̂  ̂  

GOBPW 3.2194 

(0.2199) 

0.7882 

(0.1024) 

5.6453 

(2.4753) 

2.8463 

(0.1734) 

1.4546 

(0.1135) 

BMW 3.0698 

(0.4192) 

3.0117 

(0.2648) 

4.8721 

(0.5391) 

2.6451 

(0.1734) 

0.8721 

(0.0645) 

KumMW 3.4646 

(0.7404) 

1.1032 

(0.2530) 

4.0832 

(1.3541) 

2.1835 

(0.6319) 

1.7429 

(0.1439) 

GGMW 2.5003 

(0.3378) 

3.5183 

(0.2316) 

5.6572 

(0.5493) 

3.2539 

(0.2845) 

1.3926 

(0.0745) 

GLLoGW 3.1407 

(0.2121) 

1.3413 

(0.1505) 

7.9453 

(3.7462) 

4.9564 

(1.7354) 

2.7034 

(0.2035) 

BLLoGW 0.9932 

(0.1021) 

0.6463 

(0.0726) 

2.6293 

(0.7453) 

1.9453 

(0.4352) 

0.8453 

(0.0936) 

Table 7. Goodness-of-fit results of GOBPW and other fitted models for CD1. 

Model ˆ  AIC BIC CM KS AD p-value (KS) 

GOBPW 382.53 769.06 774.83 0.0337 0.0443 0.2087 0.7146 

BMW 404.12 812.23 817.99 0.2640 0.0965 2.4586 0.2721 

KumMW 405.94 815.89 821.66 0.5655 0.1278 3.4594 0.1397 

GGMW 391.06 786.12 791.89 0.0764 0.0677 0.8933 0.3401 

GLLoGW 383.31 770.63 776.39 0.0368 0.0509 0.2455 0.6732 

BLLoGW 418.34 840.68 846.44 0.5981 0.1517 4.3278 0.1259 
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Table 8. Goodness-of-fit results of GOBPW and other fitted models for CD2. 

Model ˆ  AIC BIC CM KS AD p-value (KS) 

GOBPW 139.98 283.96 288.54 0.0524 0.0673 0.4687 0.5127 

BMW 275.41 554.82 559.40 3.7427 0.3881 8.3428 0.0176 

KumMW 147.90 299.80 304.38 0.2919 0.1411 1.8408 0.2386 

GGMW 144.26 292.52 297.10 0.1649 0.0943 1.1650 0.4821 

GLLoGW 153.29 310.59 315.17 0.5302 0.1589 3.5821 0.1359 

BLLoGW 221.36 446.73 451.32 1.6176 0.2869 3.7573 0.0731 

Table 9. Goodness-of-fit results of GOBPW and other fitted models for CD3. 

Model ˆ  AIC BIC CM KS AD p-value (KS) 

GOBPW 277.79 559.59 563.16 0.0137 0.0496 0.1164 0.8438 

BMW 313.68 631.36 634.93 0.9574 0.2691 5.0483 0.024 

KumMW 282.01 568.05 571.57 0.1844 0.1472 0.9861 0.6381 

GGMW 289.39 582.78 586.35 0.3938 0.1882 2.6942 0.3081 

GLLoGW 277.46 558.92 562.49 0.0218 0.0684 0.1403 0.7231 

BLLoGW 302.91 609.82 613.39 0.4464 0.2180 3.0811 0.1721 

Table 10. Goodness-of-fit results of GOBPW and other fitted models for CD4. 

Model ˆ  AIC BIC CM KS AD p-value (KS) 

GOBPW 68.51 141.03 144.41 0.0480 0.0830 0.4224 0.9158 

BMW 73.39 151.78 154.16 0.1766 0.1441 1.5449 0.5967 

KumMW 76.54 156.09 160.47 0.2518 0.1582 1.5570 0.3480 

GGMW 70.15 143.21 146.59 0.1166 0.1184 0.8564 0.7316 

GLLoGW 69.59 143.19 146.47 0.0637 0.0902 0.4472 0.8651 

BLLoGW 79.02 162.05 165.43 0.3983 0.1771 2.3360 0.1478 
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Figure 4. Plots of the (a) estimated pdfs over the histogram and (b) estimated cdf over the empirical 

cdf for CD1. 
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cdf for CD3. 
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Figure 7. Plots of the (a) estimated pdfs over the histogram and (b) estimated cdf over the empirical 

cdf for CD4. 

8. Conclusions 

In this work, we pioneer a new family of continuous probability distributions ob-

tained from the beta prime random variable called the generalized odd beta prime-G 

(GOBP-G) family. We then employ the pioneered family to introduce a new generalized 

Weibull univariate continuous probability distribution called the generalized odd beta 

prime-Weibull (GOBPW) distribution. The plots of the pdf and hazard rate functions of 

the GOBPW distribution showed that the distribution is capable of modeling skewed, 

heavy-tailed, and unimodal lifetime data sets. The probability density function of the pro-

posed GOBPW distribution is derived in terms of mixture representations. We defined 

and derived a number of statistical properties of the new distribution, such as the mo-

ments, moment generating function, incomplete moments, information generating func-

tion, entropies, stress-strength function, quantile function, and order statistics. The pa-

rameters of the proposed distribution were estimated using the maximum likelihood es-

timation method. Applications of statistical distributions are vital to the field of medical 

research and can provide a significant contribution to enhancing public health, particu-

larly in the case of cancer patients. Hence, the efficacy of the proposed GOBPW distribu-

tion is demonstrated by its applications to four different cancer data sets, including blad-

der, acute bone, neck and head, and blood cancers. The results indicate that the proposed 

GOBPW model not only provides better fits to the cancer data sets but also indicates su-

perior performance compared to other fitted models based on selection criteria such as 

the log-likelihood, AIC, BIC, CM, KS, and AD statistics. We hoped that the proposed 

GOBPW distribution would be an alternative to other traditional distributions for model-

ing positively skewed lifetime data, especially for cancer research. The statistical proper-

ties of the family and their applications to lifetime data can be studied in the future. 
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