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Article 
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Abstract: Polyphenols as second major components in the leaves of Ampelopsis grossedentata (AGPL) 
exhibit excellent antioxidant properties. This study aimed to optimize a novel deep eutectic solvents 
(DESs)-assisted extraction process for AGPL with response surface methodology (RSM) and genetic 
algorithm-artificial neural network (GA-ANN). Under the participation of ultrasonic waves, L-
carnitine-1,4-butanediol system was selected for the phenolics extraction process. The ideal 
conditions for AGPL extraction were as following: liquid to solid ratio of 35.5 mL/g, ultrasonic power 
of 697 W and extraction duration of 46 min. Under those conditions, the actual AGPL yield was 
15.32% ± 0.12%. The statistical analysis showed that both of models could predict AGPL yield well 
and GA-ANN had a relatively higher accuracy in the prediction of AGPL output, supported by 
coefficient of determination (R2=0.9809) in GA-based ANN compared to R2=0.9145 in RSM, as well as 
lower values for mean squared error (MSE=0.0279), root mean squared error (RMSE=0.1669) and 
absolute average deviation (AAD=0.1336) in GA-ANN model.     Moreover, the extracted 
polyphenols were determined by HPLC-MS to have 23 phenolic compounds correspondingly by 
some bioactive acids such as nonadecanoic acid and neochlorogenic acid. The in vitro ORAC assay 
revealed that Carn-Bu4 assisted AGPL extract exhibited a notable antioxidant capacity of 275.3 ± 0.64 
μmol TE/g. Our results provided a green extraction method to accumulate the polyphenols in the 
leaves of Ampelopsis grossedentata with more accurate ANN model. 

Keywords: Ampelopsis grossedentata leaves; deep eutectic solvent; extraction; response surface 
methodology; artificial neural network 
 

1. Introduction 

Vine tea (commonly referred to as "Mei tea," "Ratten tea," or "Teng cha") derived from the tender 
stems and leaves of Ampelopsis grossedentata Hand.-Mazz., VT, has been consumed as popular folk 
tea in China for more than 600 years [1]. As early documented in the Compendium of Materia Medica, 
vine tea has attracted many attentions due to its special mildly sweet flavor and cool properties 
compared to the prevailing traditional green tea, and is clinically used to treat many common 
diseased including anti-inflammatory and analgesic, anti-hypertension, anti-atherosclerosis as well 
as reducing blood lipid [2-4]. Moreover, a number of vine tea-related common foods and health foods 
have emerged increasingly after its legitimacy was identified by the Chinese regulatory authority 
two years ago. Concerning the famous pharmacological features, those are mainly attributed to its 
rich bioactive components inside, including highest flavonoids, polyphenols, polysaccharides, 
proteins, and volatile components [5,6]. Among them, flavonoids as the principal representative 
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(accounting for 35~45% of dry constitutes) have been in-depth developed in the chemical 
compositions and nutritional attributes, especially dihydromyricetin which have garnered increasing 
scientific and public interest [7]. 

As the second components in the vine tea, the polyphenols from Ampelopsis grossedentata Hand.-
Mazz. (AGPL) has been unfortunately far underestimated. Extensive studies have supported that 
polyphenols can take part into the normal regulation of surface membrane receptors and internal 
transcription factors to exert important pharmacological benefits including anti-oxidation, anti-
inflammation, intestine amelioration and immune-regulation, etc [8,9]. Nevertheless, few attentions 
have been focused on the extraction process of AGPL yields, which comprises nearly 20% biomass 
based on dry materials. Some traditional techniques such as hot water extraction and ultrasonic 
assistance have been employed to obtain the target with limited extraction rates and relatively 
inefficiency [10]. Moreover, some types of phenolic compounds include ethyl gallate, epicatechin and 
neochlorogenic acid may not be influenced by such methods due to weak combination with the 
normal solvents. Deep eutectic solvents (DESs) as a promising green system have been widely 
applied in many fields of extracting process. It consists of two or more components to get eutectic 
mixture, which can be categorized as hydrogen bond receptors (HBA) and hydrogen bond donors 
(HBD) [11,12]. With unique biocompatibility, special tailorable solubility, excellent clearness and high 
efficiency, various procedures about DESs have been reported for the extraction of some natural 
polyphenols [13]. Liu et al. [14] prepared choline-lactic acid as a good candidate to extract 
polyphenols from Cosmos sulphureus with superior extraction performance. Huang et al. [15] made 
hydroxypropyl-cyclodextrin and L-lactic acid to achieve maximum extraction efficiency of tea 
phenols. In order to the collection of bioactive AGPL as many as possible, it’s urgent to develop new 
effective DESs formulation in the optimization of extraction process.  

Response surface methodology (RSM) or artificial neural network have recently been conducted 
to the establishment modeling for the target yield prediction under various extraction conditions [16]. 
RSM is a statistical modelling tool to analyze the quantitative data by polynomial regression. Its 
advantages are to solve the optimal parameters by the analysis of multivariate equations after well-
designed experiment with less time consuming and precision when compared to one-factor-at-a-time 
method [17]. While all the manipulation are just within the range of second quadratic model 
prediction [18]. ANN as one kind of AI intelligence learning approach has attracted great attention 
for its more suitable modeling. It is a cutting-edged multilayer perceptron network to search globally 
the ideal conditions with the help of multiple none-linear functions [19]. Usually, an optimum 
network is established after some of the input data are well-trained with back propagation algorithm. 
Then with the combination of genetic algorithm (GA), the simulated network would produce the 
satisfactory outputs by nonlinear mappings. This GA coupled with ANN has been promoted in many 
extraction processes with best performance. Ramírez-Brewer et al. [20] reported that the maximum 
of total phenolics content (121.3 mg GAE/g of extract) from mango peel was obtained using RSM and 
ANN prediction. Under the optimized output conditions by ANN, the total polyphenol content from 
Ecklonia radiata could peak at 10.836 GAE mg/g. 

Herein, this study is to find a green and high-efficient solution to get the polyphenol-rich extract 
from Ampelopsis grossedentata Hand.-Mazz. Leaves. For that purpose, different DES constituents were 
initially employed to extract AGPL with ultrasonic assistance. A Box-Behnken experiment was then 
designed after the acquirement of single factor levels include water content, ultrasonic power, solid 
to liquid ratio and extraction temperature, etc. Based on the experimental data, a GA-ANN tool was 
conducted to optimize the simulated network by minimizing the squared errors. Moreover, the 
polyphenolic extract was subjected to the high-performance liquid chromatography combined with 
mass spectroscopy (HPLC-MS) for its component determination. Finally, the anti-oxidant activities 
of obtained AGPL under optimal conditions was evaluated by in-vitro ORAC free radical assay. 
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2. Results 

2.1. Screening of Suitable DESs System for AGPL Extraction 

2.1.1. The Optimal DESs System 

Polyphenols derived from raw leaves of A.grossedentata were intended to be extracted by various 
DESs, which were designed to form a strong hydrogen bond in solution by different combination of 
HBA and HBD [21]. As we all know, some special properties including polarity, viscosity and 
solubility occurring to certain types of DESs would have remarkable differences and affect the final 
extraction efficiency [22,23]. With regards to this point, 12 DES solutions were prepared in this study 
to solubilize AGPL. Among them, choline chloride and L-carnitine were selected as two kinds of 
HBA, while 1,3-butanediol, urea, 1,4-butanediol, 1,2-propylene glycol, ethylene glycol, malonic acid 
stood in line for the HBD constituents. As shown in Figure 1A, the final AGPL yields fluctuated 
between 5.69%-13.36% under those 12 DES conditions. It seemed that L-carnitine as HBA made better 
performance on the AGPL extraction process than choline chloride no matter which procedure was 
used as HBD. That phenomenon might be explained that the Chcl-based solvents had relative weak 
hydrogen bonds with the phenolic hydroxyl groups inside polyphenol derivative, which were not 
appropriate for the phenolic compounds in vine tea. Moreover, the value of AGPL in Carn-Bu4 
ranked the top with the highest production of 13.36% when compared with other formula. This may 
be attributed to the moderate viscosity and polarity in Carn-Bu4 for the extraction process and under 
such circumstance, the targets have reduced resistance out of the inner cell wall by hydrogen bonding 
forces. Consequently, the Carn-Bu4 system could promote the exposure of AGPL from the leaves 
with higher binding affinity and was determined as the ideal DES formula for the subsequent 
experiments. 

2.1.2. Screening of Optimal Molar Ratio and Water Content 

Some certain chemicals might be precipitated if the inappropriate molar ratio of HBA:HBD 
occurs [24]. So it’s important to get the proper molar composition for the used DES [25]. Figure 1B 
exhibited the highest AGPL yield (13.14%) was obtained when the molar ratio of L-carnitine to 1,4-
butanediol was 1:4. The smaller or larger molar ratio than that had worse extraction rates for AGPL. 
This phenomenon can support the truth that the molar ratio could strongly affect the hydrogen 
bonding, Van Der Waals force and surface tension between all the phenolic fractions and extract in 
DES solvent. And the more stability of Carn-Bu4 under such molar ratio may promote the solubility 
of AGPL from the cell wall in the raw material. 

Water content is another factor for DES to control the polarity and viscosity of solvent and then 
accelerate the velocity of mass transfer [26]. It was notable that the highest AGPL yield was achieved 
when the water content was 20% in Figure 1C. After that, the remarkable decrease of the production 
was found as the percentage of water content increased. Those could be explained that much water 
in DES would attenuate even break the hydrogen bond between HBD and HBA. From that point, 
getting an optimal water content of Carn-Bu4 system had relative lower viscosity to be beneficial for 
the liberation of target phenolic substances. Moreover, the similar polarity was formed to solubilize 
the phenolic derivatives [27]. Based on the above analysis, 20% of water content and 1:4 molar ratio 
was final determined as the suitable constituents of Carn-Bu4 during the AGPL extraction. 
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Figure 1. Comparative effect of different formula on the extraction yield of AGPL (A); Effect of molar ratio (B); 
Effect of DES water content (C). (Bars with different letters differ significantly at p<0.05). 

2.2. One-Factor-at-a time Evaluation 

2.2.1. Screening of Liquid to Solid Ratio 

A series of liquid to solid ratios from 10:1 mL/g to 50:1 mL/g on the extraction of AGPL were 
investigated in Figure 2A. The result indicated there was a maximum yield when the value of Carn-
Bu4 to raw powder was 30:1 mL/g. Initially, the mass transfer and diffusion rate were sped up by 
fully explosion of material particles to solvent, resulting in the increment of the extraction yield up 
to 13.15%. Once the addition of solvent into the mixture, that value was kept to be relatively stable 
due to the insufficient solute. Too much solvent would cause time-consuming on the next 
concentration step and add more economic cost for industry. In order to reduce the follow-up cost, 
the range of 20:1- 40:1 was selected for subsequent experiments. 

2.2.2. Screening of Duration Extraction 

A prolonged extraction time indeed can enhance the final yield to some extent. Figure 2B 
revealed that AGPL yield went up to a higher value from 8.21% to 12.96% with the increase of the 
time. And then it dropped down slightly with extended process, which reflected that at some stages 
the Carn-Bu4 solvent made a continuous performance on the AGPL extraction. However, that balance 
was broken with the over-operation of process under the ultrasonic conditions, inducing the 
decomposition of extracted phenol compounds and DES system [28,29]. Hence, the extraction times 
for the AGPL preparation were set to be 30-50 min. 

2.2.3. Screening of Ultrasonic Power 

Ultrasonic technique has become an efficient and green tool to speed up the extraction process, 
which is popular in many fields of food, pharmaceuticals and cosmetics [30]. It can provide many 
beneficial functions such as powerful penetration of solvent, motion frequency of solute and high 
pressure. The formed cavity in the liquid by ultrasonics may generate great pressure on the surface 
of the bubble, which greatly lead to the liberation of target from the inner particles [31-32]. Figure 2C 
uncovered the dramatic increase of AGPL yield from 300 W to 600 W ultrasonic treatment. 
Nevertheless, that assistance took opposite effect on the extraction process. The reason for that may 
be ascribed to the decomposition of some unstable polyphenol substances and covalent combination 
of Carn-Bu4. So, it was noteworthy to investigate the exact value of ultrasonic power in the next RSM 
optimization. 

2.2.4. Screening of Extraction Temperature 

As the energy agitator, temperature is generally recognized as the key factor to strength the 
driving force of DES solvent on the solubility of purposed molecules [33]. This study searched five 
extraction temperatures on AGPL content and the results were shown in Figure 2D. Contrarily to the 
expectation, the target production had a steady plateau during the whole process, which were not 
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increased significantly compared to the first value of 11.05%. Similar phenomenon has been found in 
other reports [34]. This finding further evidenced the function of ultrasonic waves in the process of 
extraction. Concerning the application of ultrasonics as the new promotor, it was inapparent to 
provide too much temperature. With respect to the double action of ultrasonics on the system, ie 
reducing the viscosity of DES and energy saving, the extraction temperature was kept at 60°C for the 
whole process. 

 

Figure 2. Single factors on the AGPL yield by DES-based extraction. (A) Effect of liquid to solid ratio; (B) Effect 
of during of extraction; (C) Effect pf ultrasonic power; (D) Effect of extraction temperature. 

2.3. Optimization by RSM 

2.3.1. BBD Analysis 

The BBD based on RSM was employed to analyze the influence of independent variables (Liquid 
to solid ratio, Duration of Extraction, Ultrasonic power) on the dependent target (AGPL yield). Table 
1 described 17 combinations of experimental inputs based on a multilevel-factorial design and each 
output value was tested triplicate in parallel. By DesignExpert 12 analysis, a reliable polynomial 
equation was simulated to predict the final yield and correlated those data accurately, which was 
presented as following: 

y= 14.88 + 0.6100X1 + 0.0600X2 + 0.1325X3 - 0.0625X1X2 - 0.0625X1X3 - 0.4925X2X3 - 0.3313X12 - 
0.5013X22 – 6262X32                                                         (1) 

Table 1. The experimental design and final results by RSM. 

No. 
X1, Liquid to solid 

ratio(mL/g) 
X2, Ultrasonic power(W) 

X3, Duration of 
Extraction (min) 

Y, AGPL yield(%) 

 1 20 600 50 13.36 
2 30 600 40 14.94 
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3 30 600 40 14.86 
4 30 600 40 14.75 
5 20 600 30 12.93 
6 30 750 30 14.42 
7 40 600 30 14.61 
8 20 450 40 13.71 
9 40 750 40 14.26 
10 30 450 50 14.07 
11 30 450 30 12.86 
12 40 450 40 14.72 
13 30 600 40 14.95 
14 40 600 50 14.79 
15 20 750 40 13.50 
16 30 750 50 13.66 
17 30 600 40 14.90 

The statistical significance of Eq. (1) was checked using Fisher’s statistical ANOVA test (F-test) 
and results are shown in Table 2. The results indicated that the second model was well suited for the 
prediction of experimental data, supported by a high model F value of 8.92 and a low p value of 
p=0.0043. The value of R2 (0.9145) shows a close agreement between the experimental results and the 
theoretical values predicted by the polynomial model. The adjusted coefficient of determination 
(R2adj) indicated that the sample variation of 81.67% for the AGPL yield was attributable to the 
independent variables. Moreover, a relatively low value of CV (2.18) illustrated further the 
experiments were practical with a better precision and reliability [35]. The coefficient estimates of Eq. 
(2), along with the corresponding p-values are presented in Table 1 as well. It can be seen that the P 
values of X1, X2, X1X2, X1X3, and X32 were all less than 0.05, showing extremely significant level except 
X3 and X2X3 (P > 0.05). The effects of three parameters on the AGPL yield was following the order as 
ultrasonic power > liquid to solid ratio > duration of extraction.  

Table 2. ANVOA result of quadratic polynomial regression. 

Source Sum of Squares Df Mean Square F-value P-value  
Model 7.66 9 0.8512 8.92 0.0043 ** 

X1-Liquid solid ratio 2.98 1 2.98 31.20 0.0018 ** 
X2-Ultrasonic power 0.4095 1 0.4095 23.66 0.0008 ** 
X3-Extraction time 0.1405 1 0.1405 1.47 0.2644  

X1X2 0.2256 1 0.2256 13.03 0.0086 ** 
X1X3 0.0156 1 0.0156 0.1638 0.0153 * 
X2X3 0.9702 1 0.9702 10.17 0.6978  
X1² 0.4620 1 0.4620 4.84 0.0637  
X2² 1.06 1 1.06 11.09 0.0126 * 
X3² 1.65 1 1.65 17.31 0.0042 ** 

Residual 0.6679 7 0.0954    
Lack of Fit 0.0950 3 0.0317 4.83 0.082  
Pure Error 0.0262 4 0.0065    
Cor Total 8.33 16     

2.3.2. Interactive Effects on AGPL Yield 

The fitted response surface plots and their corresponding contour plots for DES-based extraction 
of AGPL by the BBD model were shown in Figure 1, in which it provides an opportunity to visualize 
the relation and interaction between the response and experimental levels of each variable. Figure 3A 
indicated the interaction between X1 and X2 had a pronounced contribution to the AGPL yield at a 
significant level (p=0.0082). It was evident that when the liquid to solid ratio was from 20 to 40 mL/g, 
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and the ultrasonic power was from 450 to 630 W, the AGPL yield was over 13.67% and then decreased 
slowly beyond this range. The reason was ascribed to the enhancement of ultrasonic power at the 
initial stage could promote the process of extraction. While exposure to higher ultrasonic waves, the 
prepared DES system would be broken and cause lower efficiency on the process. Moreover, the 
increase of liquid to solid ratio to some extent could improve the concentration difference and 
promote the solubility of the target. Those facts were consistent with the results of Ilex latifolia 
polyphenols [36], in which the factors of ultrasonication and liquid to solid ratio could break down 
the plant cell wall and draw the flavonoids out of inner cell.  

The interaction of increasing liquid to solid ratio and duration of extraction had obvious 
influence (p=0.0153) on the AGPL yield in Figure 3B when X2 was set to zero level.  At the liquid to 
solid ratio of 30 mL/g, the duration of extraction was beneficial to the enhancement of AGPL yield. 
The highest yield was obtained to be 14.6% when the extraction time was less than 45 min. After that, 
the final outcome had a negative response as the increase of liquid to solid ratio and the extraction 
time. This result was consistent with the findings of Jiao et al. [37], who reported that a certain time 
for the process indeed would help Choline chloride-acetic acid to extract the flavonoids form Perilla 
frutescens leaves, a prolonged extraction time led to degradation of flavonoids by easily hydrolyzing 
the O-glycosidic bonds.  

Figure 3C showed that the yield of AGPL climbed up continuously when the value of X2 
increased from 450 W to 600 W and that of X3 extended from 30 min to 42 min. Then it went down 
dramatically outside that optimum point. The contour plot was diagonally elliptic, revealing mutual 
influence of ultrasonic power and duration of extraction had a relatively weak effect (p<0.6978). With 
the assistance of ultrasonic waves on the initial process of AGPL from leaves of A.grossedentata, it 
enhanced the diffusion process and provided a greater force of components into solvent during the 
extraction process. However， it had no effect on the yield of AGPL at relatively high power of 
ultrasonics and time, which might be explained by the solubility of impurities and decreasing the 
available surface area between Carn-Bu4 solvent and the cells. Those findings could also be found in 
the report made by Zhang et al. [21]. 
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Figure 3. The effects of the interactions among three experimental factors on AGPL yield: three-dimensional 
surface plots (A, C and E) and two-dimensional contour maps (B, D and F). 

2.4. ANN Model Establishment 

A three-layered neural network was constructed to simulate the extraction process of AGPL 
under various experimental conditions. To achieve that, the structure of the multilayer perceptron 
framework was the first step to establish, which was determined by the number of neurons in hidden 
layer. As depicted in Figure 4A, with the changes of the number hidden neurons, the MSE value 
tended to be concave during the training of various ANN topologies. The minimum value of MSE 
was 0.0256 when the number of neurons was 7. Hence the ANN topology of 3-7-1 was the ideal 
structure for that prediction. Prior to the manipulation of training, validation and testing datasets, 
the 3×7 of weight matrix of the input layer connected to the hidden layer and 7×1 of weight matrix of 
the hidden layer to output layer were assigned in the following w1 and w2, where the related bias 
matrixes of b1 and b2 were presented as well for the model calculation [38].  

Figure 4B showed the best evaluation performance was 0.020187 of MSE value at 2 epochs. Then 
the model training stopped with the significant drop of MSE occurred in the training step but stability 
in validation and test steps, which meant the over fitting of network. Figure 4C presented a 
reasonable range for data fitting error with the highest instance near zero. The values of gradient, Mu 
and val fail were 1.1052×10-9, 1.0×10-7 and 3 at 6 epochs, respectively, supporting the well-trained 
ANN model (Figure 4D). The good correlation between predicted and actual values can be found by 
4 linear relationships in Figure 4E, where the R values of training, validation, test and all were 0.99947, 
0.95222, 0.99998 and 0.988.  
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Figure 4. The relationship between MSE and the number of hidden neurons (A), the performance of ANN model 
for training, validation and test (B), the error histogram with 20 bins (C), the training state (D) and regression 
analysis (E). 

𝑤ଵ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0.4147       0.3074       − 0.6208      
−0.8232       − 0.1075       − 0.3909       
−0.0471        − 0.3013       − 0.2559       
   0.7727       − 0.2201       − 0.6165       
−0.7305       − 0.0812       − 0.2343       

0.6626       − 0.3964       0.6872      
0.8903       − 0.9921       0.2688       ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

𝑏ଵ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0.8296
−0.9867
−0.7454
0.4450
0.6096
0.6512

−0.3435⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑤ଶ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0.3502
−0.6925
−0.4290
−0.1809
0.8863
0.0736

−0.3429⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑏ଶ = [0.9118] 

2.5. GA-oriented Optimization 

Renowned for its global search capability and adaptive control, the GA is widely employed in 
solving complex optimization problems [39]. In this study, the hybrid ANN-GA approach was 
utilized to determine the optimal extraction parameters of AGPL. The individual chromosome 
contained three input variables and the fitness function was employed to test the fitness of every 
solution when the chromosome population was enlarged to 1000. The selected chromosomes with 
high performance were sent to replicate new generations through crossover (0.8) and mutations (0.2). 
Those evolutional process was iterated until the optimal output emerged. As depicted in Figure 5A, 
the GA performed 100 iterations to identify the most efficient extraction conditions, ultimately 
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yielding the highest AGPL content. During the first 20 generations, a substantial decrease in MSE 
was observed, demonstrating the algorithm’s ability to rapidly locate a superior candidate solution 
within the search space-a testament to its strong initial optimization performance. From the 20th to 
the 100th generation, the GA reached convergence, indicating that an optimal or near-optimal 
solution had been identified, with further iterations providing no significant enhancement. The 
ANN-GA model predicted the following optimal conditions: liquid to solid ratio of 35.4922 mL/g, 
ultrasonic power of 696.7965 W and extraction duration of 46.1238 min. For practical implementation, 
these parameters were adjusted to 35.5 mL/g, 697 W and 46 min, respectively. Experimental 
validation under these modified conditions yielded an AGPL content of 15.32% ± 0.12%, closely 
aligning with the model’s prediction (15.2822%). These findings confirmed that the ANN-GA model 
exhibited strong predictive accuracy and could reliably estimate AGPL yield based on specified 
extraction parameters. 

 

Figure 5. The optimization process by GA-oriented ANN(A); the relationship between the predicted and actual 
values provided by RSM and ANN(B); the matching plot between two methods and all datasets (C). 

2.6. Comparative Analysis of RSM and ANN 

The plot tendency of predicted values and experimental data offered by RSM and ANN 
mathematical models indicated that both of the models have good fitness degree (the red linear line 
and black linear line) in Figure 5B. However, the higher value (0.9809) of coefficient of determination 
(R2) in GA-based ANN believed us its prediction ability was more accurate than that of RSM 
(R2=0.9145), which meant the former had 98.09% of confidence to explain the changes in the 
corresponding AGPL yield. It can be seen that all the predicted ANN points were easier to approach 
the actual data (Figure 5C). Moreover, the MSE, RMSE and AAD values were 0.0279, 0.1669 and 
0.1336, respectively. All the values were lower than those in RSM model (0.0393, 0.1982 and 0.1641), 
demonstrating the GA-based ANN model could accurately simulate the relationship between AGPL 
yield and three selected variables. This prominent accuracy was ascribed to the excellent non-linear 
processing, fault tolerance, self-learning, self-training and global searching provided by the GA-ANN 
mathematical tool [40]. 

Table 3. Summary of all statistical parameters of AGPL yield predicted by RSM and GA-ANN. 

  

Model Process Parameter   AGPL Yield(%) Coefficient 

X1 X2 X3 Actual Predicted R2 MSE RMSE AAD(%) 

RSM 39.170 595.054 40.736 14.83 14.9049 0.9145 0.0393 0.1982 0.1641 

ANN 35.492 696.796 46.124 15.32 15.2822 0.9809 0.0279 0.1669 0.1336 
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2.7. The Qualitative Analysis of UPLC-ESI-QTOF-MS  

The phenolic compositions of AGPL were qualitatively analyzed by UPLC-ESI-QTOF-MS. The 
molecular formula and fragmentation patterns were provided by MS/MS double detection with a 
comparison of MS databases including Human Metabolome Database (http://www.hmdb.ca), 
massbank (http://www.massbank.jp/), LipidMaps (http://lipidmaps.org), mzcloud 
(http://www.mzcloud.org) and KEGG (http://www.genome.jp/hegg). There were 23 phenolic 
compounds found in the leaves of Ampelopsis grossedentata in Figure 6 and listed in Table 4. Among 
them, 8 major phenolic items were identified with the help of positive and negative ionization mode. 
Those were Leucocyanidin (m/z=306), Quercetin (m/z=303), (-)-Epigallocatechin (m/z=307), Quercetin 
3-O-rhamnoside 7-O-glucoside (m/z=609), Nonadecanoic acid (m/z=297), Quercetin 3-O-glucoside 
(m/z=463), Dihydromyricetin (m/z=319) and myricitrin (m/z=463). Dihydromyricetin was found to 
have a significant peak at RT=10.07 min, which agreed with the finding that it is most important 
symbol in vine tea. Besides, some bioactive acids were successfully liberated from the inner part of 
raw leaves due to the contribution of novel Carn-Bu4 system in the extracting process. And this can 
be addressed that this combination of two HBD-HBA may strengthen the hydrogen bonding force in 
solvent. 

 

Figure 6. Total ion profile of AGPL detected by UPLC-ESI-QTOF-MS/MS determination. 

Table 4. List of tentatively identified phenolic compounds in the extracts from leaves of A.grossedentata. 

Compound 

No. 

RT 

(min) 

Formula Adduct 

(m/z) 

Title 

1 0.652 C15H14O8 305.0542 Leucodelphinidin 

2 0.784 C15H14O7 306.0674 Leucocyanidin 

3 0.913 C15H12O6 289.0706 Aromadendrin 

4 1.251 C17H22O10 369.1184 4-O-beta-D-Glucosyl-sinapate 

5 1.683 C15H10O7 303.0491 Quercetin 

6 3.116 C15H10O6 287.0523 Fisetin 

7 4.189 C15H12O7 305.1982 Taxifolin 

8 4.232 C15H14O7 307.0832 (-)-Epigallocatechin 

9 4.423 C15H14O6 291.0844 Epicatechin 

10 4.574 C19H30O2 291.1961 Androsterone 

11 4.722 

C27H30O16 609.1377 

Quercetin 3-O-rhamnoside 7-O-

glucoside 
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12 4.920 C18H30O2 277.2247 Alpha-Linolenic acid 

13 5.176 C16H12O6 299.058 Kaempferide 

14 6.088 C20H32O2 303.2413 Arachidonic acid 

15 6.674 C19H38O2 297.2509 Nonadecanoic acid 

16 7.231 C20H28O2 300.2644 all-trans-Retinoic acid 

17 7.930 C21H20O10 431.0996 Apigenin 7-O-beta-D-glucoside 

18 8.418 C21H20O12 463.0815 Quercetin 3-O-glucoside 

19 8.901 C16H18O9 353.0882 Neochlorogenic acid 

20 9.623 C22H26O8 417.1609 (+)-Syringaresinol 

21 10.075 C15H12O8 319.04 Dihydromyricetin 

22 10.114 C21H20O12 463.0909 Myricitrin 

23 10.678 C15H14O8 305.0542 Leucodelphinidin 

2.8. Antioxidant Activity Analysis of AGPL in Vitro  

Oxygen radical absorbance capacity (ORAC) has been proved to effectively and tractably 
quantify the antioxidant capacity of drugs. It is conducted based on the chemical damage to β-PE 
caused by a peroxyl radical producing compound (AAPH), reducing the fluorescence emission of β-
PE. During existence of antioxidants in the medium, the damage can be recovered to some extent and 
the reduction in the fluorescence emission is prolonged. In this study, a calibration curve was 
constructed with Trolox concentration (μmol/L) as the abscissa and NetAUC (net area under the 
curve) as the ordinate [41]. As shown in Figure 7, the linear regression equation was determined as y = 
0.8981x + 2.8097 (R² = 0.9572), demonstrating satisfactory linearity. The NetAUC values of AGPL were 
interpolated into this standard curve to calculate corresponding Trolox-equivalent concentrations. 
The oxygen radical absorbance capacity (ORAC) was expressed as Trolox equivalents (μmol/g dry 
weight). Based on the calibration curve, the Carn-Bu4 assisted AGPL extract exhibited an ORAC 
value of 275.3 ± 0.64 μmol TE/g (mean ± SD, n = 6), indicating substantial antioxidant activity. These 
data suggest that AGPL extract could be an effective electron donor capable of reacting with free 
radicals to convert them into more stable products.    

 

Figure 7. Fluorescence consumption induced by AAPH-derived radicals in the presence of Trolox ranging from 
6.25 to 50 μM and AGPL at pH 7.4 phosphate buffer. 
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3. Materials and Methods 

3.1. Materials and Reagents 

The fresh leaves of Ampelopsis grossedentata Hand.-Mazz. were collected from the Dayang 
Mountain, Qingtian County, Zhejiang Province; All reactants and solvents were of analytical grade. 
The gallic acid standard (purity >98%) was purchased from Sigma-Aldrich (Shanghai, China). 
Choline chloride, L-carnitine, 1,4-butanediol, 1,3-butanediol, ethylene glycol and ethanol were 
provided from Sinopharm Chemical Reagent Co., Ltd; Distilled water was produced using a Kebang 
water treatment system (Kebang 210B, Hangzhou, China). Folin-Ciocalteu reagent, TPTZ [1,3,5-tri(2-
pyridyl)-2,4,6-triazine], 2,2’-azino-bis-(3-ethylbenzothiazoline-6–sulfonic acid) diammonium salt 
(ABTS), 2,2’-azobis (2-methylpropionamidine)-dihydrochloride (AAPH), fluorescein sodium salt, 6-
hydroxy-2,5,7,8 -tetramethylchroman-2-carboxylic acid (Trolox) were purchased from Sigma-Aldrich 
Chemical Co. (St. Louis, MO, USA). All other chemicals were at analytical grade. 

3.2. Preparation Under DESs formula 

Two kinds of formula were adopted to constitute the hydrogen bond acceptors and hydrogen 
bond donators of the DESs. Choline chloride and L-carnitine were selected for the HBAs parts while 
different alcohols, malonic acid and urea were chosen as the HBDs section. All the uniformed solution 
were strictly prepared by a constant stirring and heat in an oil bath at 80°C followed the procedures 
listed in Table 5. Then the transparent liquids were ready to be used in the following extraction 
process after cooling down. 

Table 5. List of preparation of DESs employed in this study. 

NO. HBA HBD Mole ratio Water Content Abbreviation 

DES-1 choline chloride 1,2-propylene glycol 1:2 10% Chcl-Pro 

DES-2 choline chloride malonic acid 1:2 10% Chcl-Ma 

DES-3 choline chloride urea 1:2 10% Chcl-Ur 

DES-4 choline chloride 1,4-butanediol 1:2 10% Chcl-Bu4 

DES-5 choline chloride 1,3-butanediol 1:2 10% Chcl-Bu3 

DES-6 choline chloride ethylene glycol 1:2 10% Chcl-Eg 

DES-7 L-carnitine 1,3-butanediol 1:2 10% Carn-Bu3 

DES-8 L-carnitine urea 1:2 10% Carn-Ur 

DES-9 L-carnitine 1,4-butanediol 1:2 10% Carn-Bu4 

DES-10 L-carnitine 1,2-propylene glycol 1:2 10% Carn -Pro 

DES-11 L-carnitine ethylene glycol 1:2 10% Carn -Eg 

DES-12 L-carnitine malonic acid 1:2 10% Carn -Ma 

3.3. DESs-Based Extraction and Contents Determination of AGPL  

Prior to the extraction, the freeze-dried leaves of A.grossedentata were smashed into small 
particles through a 100-mesh sieve. Then 2.000 g of powder in a glass conical flask were mixed with 
various concentrations of DESs solvents or water content and treated with ultrasonication at various 
power levels (300-900 w) in a water bath of 40-60℃ for the extraction process. After 8000 g of 
centrifugation, the supernatant was transferred to a 100 mL volumetric flask and followed by a 
volume make-up to 100 mL.  

For the content measurements of phenolic compound by Folin-Ciocalteu colorimetric method, a 
standard stock solution of gallic acid (0.234 mg/mL) was well prepared, and aliquots of 0.0, 0.1, 0.25, 
0.5, 0.75, and 1.0 mL were accurately pipetted and diluted to 2 mL with deionized water. 
Subsequently, 0.5 mL of Folin-Ciocalteu reagent was added to each mixture, followed by thorough 
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vortexing and incubation at room temperature for 3 min. Then, 4 mL of 7.5% (w/v) sodium carbonate 
(Na₂CO₃) solution was added, and the reaction mixture was vigorously mixed and allowed to stand 
for 60 min at ambient temperature. After the auto zero adjustment, a UV-Vis spectrophotometer 
(Hitachi 1000, Tokyto, Japan) was used to record the absorbance values (A) of all samples at 760 nm. 
Experimental data were analyzed to establish a linear regression equation (y = 16.784x - 0.0218, 
R²=0.9992), where the y-axis represents absorbance and the x-axis corresponds to gallic acid 
concentration. The percentage yield of polyphenols in leaves of A.grossedentata (Y,%) was calculated 
by the following equation: 

 Y= C×V ×r/ W                                                              (2) 
C means the tested polyphenol concentration in the tube (g/mL), V represents the volume of 

extraction (mL), r is the dilute ratio and W refers to the dry weight of raw material (g). 

3.4. The Effects of Molar Ratio and Water Content on Polarity of DESs 

In order to improve polar properties of DES system for maximum polar/nonpolar polyphenolics 
extraction, different molar ratios (1:1, 1:2, 1:3, 1:4 and 1:5) of the selected DES solvent and series of 
water contents (10%, 20%, 30%, 40%, and 50%) were carried out for the acquisition of the highest 
AGPL yields when the other conditions were constant.  

3.5. RSM-Based Model of AGPL Extraction Process 

For the optimization of the target extraction, four different single factors were immediately 
investigated before the RSM modeling, which were liquid-solid ratio (10:1 mL/g, 20:1 mL/g, 30:1 
mL/g, 40:1 mL/g and 50:1 mL/g), duration of extraction (20 min, 30 min, 40 min, 50 min and 60 min), 
extraction temperature (50 °C, 60 °C, 70 °C, 80 °C and 90°C), and ultrasonic power (300 W, 450 W, 600 
W,750 W and 900 W). Each experimental condition was tested 3 times for average value. 

A Box-Behnken design (BBD) (Design Expert Software, trial version 7.1.3; Stat-Ease Inc., 
Minneapolis, MN, USA) was used to determine the best combination of extraction variables for 
production of AGPL from the leaves of A.grossedentata. 3 variables were established on the basis of 
“one-factor-at-a-time” trials for AGPL yield (Table 6). The design included 17 experimental trials 
(Table 2). A total of 5 replicates at the center of the design were used to allow for estimation of a pure 
error sum of squares. Each experiment was performed in triplicate and the yield of AGPL (%) was 
interpreted as the response (Y).  

Table 6. Factors and levels of Box-Behnken response surface method. 

Variable Units 
Coded Levels 

Symbol -1 0 1 

Liquid-solid ratio mL/g X1 20 30 40 

Ultrosonic power W X2 450 600 750 

Extraction time min X3 30 40 50 

3.6. ANN Model  

The matlab 2020a software was used to construct an ANN model based on the experimental 
results of AGPL yield designed by RSM. As depicted in the left frame of Figure 8, the architecture of 
the artificial neural network model was initially established to simulate the human being’s brain by 
training the independent variables and testing the dependent variables [42]. For this study, it consists 
of an input layer (X1, X2, X3), a hidden layer, and an output layer (MPTGL yield). Prior to the 
simulation, all the data sets were categorized into three parts: training (70%), validation (15%), and 
testing (15%). Then the neural network model was trained iteratively until the mean of error between 
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the experimental and predicted values of AGPL yield reduced to its minimum. The hyperbolic 
tangent sigmoid function (tansig) was served for the communication between the input layer and 
hidden layer while the linear function (purelin) was selected for the combination of hidden layer and 
final outcomes. Among the ANN model, the hidden nodes were the crucial parameters which 
significantly affected its topology and predictive capacity. In this study, 10 neurons were examined 
to be suitable for the neural network prediction under the back-propagation Levenberg-Marquartd 
algorithm by controlling the weights and biases. Due to the discrepancy of actural values, the normal, 
all experimental results were standardized between -1 and 1 by Equation (3). These normalized 
values were subsequently converted back to actual values after processing through the output layer 
of the network [43]. 

𝑀௜= (ெ೘ೌೣିெ೘೔೙)(ே೔ିே೘೔೙)

ே೘ೌೣିே೘೔೙
 +𝑁௠௜௡                                                (3) 

Where Mi is the normalized value, Mmax and Mmin are the maximum and minimum values of the 
scaling range, Ni is the actual data to be normalized. Nmax and Nmin are the maximum and minimum 
values of the actual data. 

After the modeling, the well-trained ANN was transformed into a mathematical equation by 
combining the transfer function: 

Y(%)=purelin൫ൣ∑ 𝑤௜
ଶே

௜ୀଵ 𝑡𝑎𝑛𝑠𝑖𝑔൫∑ 𝑤௜௝
ଵ௝

௝ୀଵ 𝑋௝ + 𝑏ଵ௜൯൧ + 𝑏ଶ൯                            (4) 
tansig(x)= ଶ

ଵା௘௫௣(ିଶ௫)
−1                                                        (5) 

purelin(x)=x                                                                 (6) 
where x and j are the experimental factors (the input variables) and the number of input variables, 

respectively. w1 and b1 are the weight and bias of hidden layer, respectively. w2 and b2 are the weight 
and bias of output layer, respectively. 

 
Figure 8. The topology of ANN architecture (input layer, hidden layer and output layers) in red framework 
followed by the GA-based optimization (Blue parts). 
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3.7. Model Analysis 

Four classical indicators were employed to evaluate the prediction performance of RSM and 
ANN, which were values of R2, mean squared error (MSE), root mean squared error (RMSE), and 
absolute average deviation (AAD) with the equations as following: 

𝑅ଶ = 1 −
∑ (ଡ଼౟ିଡ଼౟ౡ)మ౤

౟సభ

∑ (ଡ଼౟ౡିଡ଼౰)మ౤
౟సభ

                                                          (7) 

MSE = 
ଵ

௡
∑ (X୧ − X୧୩)ଶ୬

୧ୀଵ                                                         (8) 

RMSE =ට
ଵ

௡
∑ (X୧ − X୧୩)ଶ୬

୧ୀଵ                                                      (9) 

AAD (%) = ቂ
∑ (|௑೔ೖି௑೔|/௑೔ೖ)೙

೔సభ

௡
ቃ ×100                                               (10) 

Where Xi is predicted APGL yield. Xik is the experimental or actual APGL yield. Xz   is the mean 
of experimental APGL yield. n represents the number of parameters in each model. 

3.8. Optimization of the Extraction Process 

In order to avoid the dilemma of local optima, the method of genetic algorithm was introduced 
to develop the neural network for searching the optimal the extraction parameters of AGPL [44]. Like 
the learning principle of biological evolution, a series of manipulation of species reproduction, 
crossover, mutation and selection were conducted to vary the fitness values in the trained BP 
network. Then the maximum yield was achieved by converting a function to an inverse function or 
by changing the sign. Based on MATLAB 2020a, a GA toolbox was adopted to simulate those natural 
evolution process. The population size, crossover fraction, mutation ratio and generations were set 
as 100, 0.8, 0.2 and 300, respectively. Other parameters were selected as default value. The above 
ANN-derived Equation (3) was introduced as a fitness function. The higher AGPL production, the 
greater the function value of the individual.  

3.9. Phenolic Composition Determination by UPLC/ESI-QTOF-MS/MS 

According to the method reported by Wang et al. [45], AGPL solid extract was dissolved into 
600 μL of methanol containing 2-chloro-L-phenylalanine (4 ppm), followed by vortex mixing for 30 
seconds. The mixture was then sonicated at room temperature for 15 min and centrifuged at 12,000 
rpm (4°C) for 10 min to get the supernatant. After filtration through 0.22 μm membrane, the sample 
was injected into an autosampler vial for the measurement by ACQUITY UPLC HSS T3 (50 mm×3.0 
mm, 1.8 μm, Thermo Fishier Technologies Co., Massachusetts, USA) coupled with Triple-TOF 5600+ 
Mass Spectrometry (AB SCIEX CO., Framingham, USA). The detected conditions were as following: 
The column temperature was maintained at 40°C. The mobile phase consisted of acetonitrile (A) and 
10 mM ammonium formate aqueous solution (0.1%, B) with a flow rate of 0.3 mL/min. The injection 
volume was set to 2 μL. The elution procedure was presented as following: 0-1 min, 0% to 8% B; 1-8 
min, 8%-98% B, 8-10 min, 98% B; 10-10.1 min, 98%-8% B, 10.1-12 min, 8% B. The MS conditions was 
set as positive/negative ion sweeping mode: capillary voltage 4 KV, capillary temperature 325℃, scan 
range 100-1000 m/z with the sweep resolution 60000, ion source gas 1 and 2 (air) 55 psi, curtain gas 
(N2) 35 psi, ion source temperature 600℃ (positive) and 550℃ (negative), source voltage 3.5 kv 
(positive) and -2.5 kv (negative), collision energy was set to 20 eV. Data was processed using Analyst 
software version 4.1 (MassLynx). 

3.10. In-Vitro ORAC Activities of AGPL 

96-well fluorescent plates were prepared to examine the experimental samples according to the 
method described in reference [46]. All groups were simultaneously supplemented with 40 μL of 
fluorescein salt (700 nM). Subsequently, 20 μL of phosphate buffered saline (PBS) was added to the 
control group, 20 μL of water-soluble VE derivative Trolox (200 μM) to the standard curve group, 
and 20 μL of test sample to the sample group. The plate was incubated at 37°C for 15 minutes. 
Following incubation, 140 μL of PBS was added to the negative control group, while 140 μL of AAPH 
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(12 mM) was added to all other test wells. Fluorescence intensity was immediately measured using a 
microplate reader under 485 nm excitation wavelength, with emission recorded at 538 nm. 
Measurements were conducted at 2-minute intervals from 0 to 120 minutes. The area under the curve 
(AUC) of the zero-order moment for fluorescence intensity changes was calculated using Equation 
(1). A Trolox standard curve was plotted to determine the oxygen radical absorbance capacity 
(ORAC) value of the samples. 

                  AUC = 1 + fଵ f଴⁄ + fଶ f଴⁄ + fଷ f଴⁄ + ⋯ + f୬ f଴⁄                    (11) 
                          ORAC =

୅୙େ౩౗ౣ౦ౢ౛ି୅୙େశఽఽౌ

୅୙େ౐౨౥ౢ౥౮ି୅୙େశఽఽ
×

୬౐౨౥ౢ౥౮

୬౐౨౥ౢ౥౮
                   (12) 

Where f0 is the initial fluorescence value at 0 min and fi the fluorescence read at i min. 

3.11. Statistical Analysis  

The data were expressed as mean ± standard error. Differences were tested by ANOVA. 
Differences with P< 0.05 were considered significant and differences with P< 0.01 were considered 
extremely significant. 

4. Conclusions 

In this study, an ecofriendly and effective DES system consisting of L-carnitine-1,4-butanediol 
in the molar ratio of 1:4 with 20% water content was conducted to extract the polyphenols from the 
leaves of Ampelopsis grossedentata. In order to avoid the overfitting of searching the optimal solution, 
a genetic algorithm-artificial neural network was employed to make the prediction based on the 
reasonable experimental data designed by RSM. After the training, validation and test, the optimal 
conditions were achieved as following: liquid to solid ratio of 35.5 mL/g, ultrasonic power of 697 W 
and extraction duration of 46 min. With those parameters, the ideal AGPL yield was 15.32% ± 0.12% 
with higher R2=0.9809 in GA-based ANN model compared to R2=0.9145 in RSM. Considering the 
lower MSE (0.0279), RMSE (0. 1669) and AAD (0.1336), GA-ANN model exhibited a better 
performance on the prediction than RSM. Then some more bioactive acids including nonadecanoic 
acid and neochlorogenic acid were extracted correspondingly with other 21 phenolic substances by 
carn-but4 system, which were determined by HPLC-Q-TOF-MS/MS. And this kind of extract had 
potent antioxidant activity with ORAC value of 275.3 ± 0.64 μmol TE/g. Those findings would 
accelerate the application of polyphenols in the leaves of Ampelopsis grossedentata and highlight the 
advantages of nonlinear multilayer perception network for the process optimization. 
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