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Abstract

Small and Medium-sized Enterprises (SMEs) face disproportionately high risks from Advanced Persis-
tent Threats (APTs), which often evade traditional cybersecurity measures. While existing frameworks
catalogue adversary tactics and defensive solutions, they offer limited quantitative guidance for opti-
mal resource allocation under uncertainty—a challenge intensified by the proliferation of AI, which
empowers both adaptive attacks and forensic complexity. To address this gap, we propose a novel
game-theoretic model for enhancing Digital Forensic Readiness (DFR). Our methodology integrates
the MITRE ATT&CK and D3FEND frameworks to systematically map APT behaviors to defensive
countermeasures. We then define 32 custom DFR metrics, weighted via the Analytic Hierarchy Process
(AHP), to compute quantitative utility functions for both adversaries and defenders. Equilibrium
analysis reveals one Pure Nash Equilibrium (PNE) and five Mixed Nash Equilibria (MNE), indicating
that allocating 90–95% of resources to proactive control modeling, while reserving a smaller portion
for real-time detection, yields optimal strategic resilience. Simulations demonstrate that this strategy
reduces attacker success rates by up to 30% in multi-vector APT scenarios. Furthermore, comparative
analysis shows that SMEs with weak logging and limited forensic capabilities suffer 15–25% higher
attack success rates; however, readiness improves markedly with enhanced data preservation and log-
ging quality. Although the model’s precision depends on AHP weighting assumptions, the proposed
framework provides SMEs with actionable, equilibrium-informed strategies to significantly improve
forensic preparedness and mitigate advanced cyber threats.

Keywords: digital forensic readiness; advanced persistent threats (APT); resource constraints; small
and medium-sized enterprises (SMEs); MITRE ATT&CK; MITRE D3FEND; game theory; cybersecurity;
security threats; artificial intelligence (AI); cybersecurity awareness

1. Introduction
Digital forensic readiness (DFR) enables organizations to proactively collect and preserve admissi-

ble digital evidence, reducing legal risks and supporting business continuity. It is particularly valuable
for Small and Medium-sized Businesses and Enterprises (SMBs/SMEs)—encompassing both the
commercial/business context (SMB) and the broader organizational/industrial context (SME)—which
often face resource constraints in cybersecurity operations. A robust DFR strategy ensures that signifi-
cant cyber incidents can be addressed efficiently, lawfully, and professionally, conserving investigative
resources, reducing costs, protecting organizational reputation, and maintaining compliance with
applicable regulations.

Despite heavy investment in Computer Security Incident Response Teams (CSIRTs), Digital
Forensics and Incident Response (DFIR) units, and advanced monitoring technologies—such as EDR,
XDR, NDR, SIEM, and IDPS—organizations still struggle to achieve effective incident detection and
response. Such limitations become especially pronounced against Advanced Persistent Threats (APTs),
which are sophisticated, well-funded actors conducting prolonged cyber campaigns APTs are stealthy,
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long term cyberattacks by unauthorized entities to remain undetected in networks [1–3]. Studies
indicate that the average dwell time before breach detection exceeds 190 days, granting adversaries
ample time for network infiltration and data exfiltration [4]. Moreover, about 60% of small enterprises
cease operations within six months of a major incident [5]. For example, Baker [6] notes that in the
SolarWinds incident, threats persisted within networks for prolonged periods without detection.

The rapid proliferation of artificial intelligence (AI) has further complicated this landscape. AI-
driven tools empower attackers with advanced automation, adaptive tactics, and the ability to launch
more sophisticated and targeted attacks, thereby increasing the potency of APTs. Conversely, while
AI offers defenders enhanced capabilities for faster and more accurate detection, it also introduces
unprecedented forensic challenges. These include the complexity of analyzing AI-generated attacks,
the potential for AI-based evidence manipulation, and the need for new techniques to handle AI-
related incidents. For SMBs, these challenges are particularly acute due to resource constraints. These
technical challenges are compounded by the broader organizational struggle to effectively govern AI
systems and mitigate associated risks, a problem highlighted in recent literature [7].

Organizations often perceive this issue as primarily technical in nature. However, this challenge
fundamentally encompasses the interplay of technology, human expertise, and processes. Without
skilled personnel and planning, even the most advanced technology stack may fail against determined
assailants. We use the term ‘non-forensicability’ to refer to situations where inadequate DFR hinders
effective cyber security incident investigations, often due to poor data retention, ineffective log
management, or compromised digital evidence integrity. Wrightson [8] emphasizes that understanding
an attacker’s motivations and capabilities, as well as knowing their past actions, helps investigators
categorize and respond to diverse cyber threats.

Digital forensic investigators must know both defense and offense strategies, preempt emerging
attack techniques, and collaborate closely with defense teams. Årnes [9] characterizes digital forensics,
as a sub-discipline of forensic science, as encompassing scientifically validated methods for the
management of digital evidence. These methods are essential for reconstructing criminal incidents or
anticipating unauthorized activities.

To address the need for a formal strategic framework for DFR, we propose a game-theoretic
approach to model the strategic interactions between cyber attackers and defenders. This approach
helps organizations anticipate threats, optimize defense strategies, and make more informed decisions.
We focus on the strategic behavior in digital forensics, drawing from Sun Tzu’s wisdom in ‘The Art of
War,’ which emphasizes the importance of understanding both one’s own abilities and the opponent’s
strengths and strategies. As Tzu [10] states, “If you know the enemy and know yourself, you need not
fear the result of a hundred battles. If you know yourself but not the enemy, for every victory gained,
you will also suffer a defeat. You will succumb in every battle if you know neither the enemy nor
yourself.” This highlights the importance of knowing the adversary’s motivations, methods, and goals,
as well as the capabilities and limitations of one’s own tools and techniques.

Inspired by Sun Tzu’s philosophy, our game-theoretic model operationalizes this wisdom by
quantifying how knowledge asymmetries between attacker and defender impact forensic readiness.
We formalize three strategic states: comprehensive knowledge (targeted defense), partial knowledge
(vulnerable defense), and ignorance (minimal resilience). This approach is especially important in the
AI era, where modeling emerging AI-powered attack surfaces and their forensic implications becomes
essential for building resilient systems.

Game theory provides a mathematical foundation for analyzing strategic interactions among
rational decision-makers [11]. Its application in cybersecurity is growing, as it offers a structured
approach to:

• Model Strategic Decisions: Capture the objectives and constraints of both attackers and defenders
[12].

• Conduct Risk Analysis: Elucidate payoffs and tactics to identify critical vulnerabilities and
optimal defensive strategies [13].
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• Enable Adaptive Defense: Capture the dynamic nature of cyber threats, including those aug-
mented by AI, to inform adaptive countermeasures [14].

• Optimize Resource Allocation: Evaluate strategy effectiveness to guide efficient investment of
limited defensive resources [15].

To operationalize this game-theoretic approach, our methodology is grounded in established
cybersecurity standards and formal decision-making processes. We build upon best practices from the
National Institute of Standards and Technology (NIST) for metric development and forensic readiness
[16]. Specifically, we integrate the MITRE ATT&CK framework to systematically model adversary
behaviors and the complementary MITRE D3FEND framework to map defensive countermeasures.
This integration provides a standardized taxonomy that bridges attacker tactics with defender re-
sponses. Based on these frameworks, we define 32 custom DFR metrics, weighted using the Analytic
Hierarchy Process (AHP), to compute quantifiable utility functions for both attackers and defenders.
This addresses a critical gap in the field: the absence of quantifiable payoffs in strategic DFR planning.
Furthermore, we present an end-to-end algorithmic suite for scoring, classification, and gap analysis,
moving beyond fragmented assessments towards a holistic readiness model.

This paper makes the following key contributions:

• A novel game-theoretic model for DFR that quantifies strategic attacker-defender interactions.
• The integration of MITRE ATT&CK and D3FEND with AHP-weighted metrics to ground utilities

in real-world tactics and techniques.
• An equilibrium analysis that yields actionable resource allocation guidance for SMBs/SMEs.
• An evaluation demonstrating the framework’s efficacy in reducing attacker success rates, even in

complex, multi-vector APT scenarios influenced by modern AI-powered tools.

The remainder of this paper is structured as follows: Section 2 reviews the related works in
digital forensics investigation and readiness. Section 3 describes our game-theoretic approach and
algorithms for DFR. Section 4 presents our experimental analysis and results. Section 5 concludes with
our findings and future work.

2. Related Works
Enhancing cybersecurity and digital forensics has spurred a plethora of studies. These founda-

tional works span technical defenses, strategic modeling, and simulation of cyber interactions. While
appreciating their contributions, we identify areas for further exploration.

2.1. Game Theory in Digital Forensics

Alpcan et al. [17] provided a foundational contribution to the field of network security by pre-
senting theoretical approaches for decision-making in security from a game-theoretic perspective.
Their work serves as a valuable reference not only for researchers and graduate students but also
for practitioners such as system administrators and security officers seeking to apply quantitative
models grounded in control, optimization, and decision theory. Casey [18] established the conceptual
foundation for incorporating game theory into digital forensics, contextualizing how strategic analysis
can enhance forensic practices.

Manshaei et al. [19] offered a comprehensive overview of game-theoretic methods in network
security and privacy, highlighting their capability to model strategic interactions in complex adversarial
environments. Their study provided in-depth insights into how game theory can strengthen computer
and communication network security across multiple layers, including physical and MAC layers,
self-organizing networks, intrusion detection systems, anonymity and privacy mechanisms, network
security economics, and cryptography. The authors summarized key concepts such as equilibrium
analysis and mechanism design, emphasizing the significance of addressing information limitations
and learning factors in developing effective security solutions.

Several subsequent studies have built on this foundation to explore game-theoretic applications
in digital forensics. Nisioti et al. [20] presented a Bayesian game model for analyzing interactions
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between a forensic investigator and a strategic attacker on a multi-host forensic investigation graph.
Hasanabadi et al. [21] developed a model representing attacker–investigator dynamics involving
rootkits and anti-rootkits, defining each player’s actions and profiling their characteristics. Extending
these ideas, Karabiyik et al. [22] proposed a game-theoretic approach to optimize tool selection in
digital forensics, particularly focusing on file carving tools and the strategic adaptation of selection
decisions during investigations. Hasanabadi et al. [23] later introduced a memory-based mechanism
to expand action spaces within forensic game models, reducing convergence iterations when new
anti-forensic or counter-anti-forensic tools emerge. Caporusso et al. [24] further analyzed post-attack
decision dynamics in human-controlled ransomware scenarios, modeling negotiation strategies and
emphasizing the role of information availability, user education, and human factors in developing
resilient defensive responses.

2.2. Digital Forensics Readiness and Techniques

Kebande et al. [25] introduced a technique for implementing DFR in cloud computing environ-
ments through a modified obfuscated Non-Malicious Botnet (NMB). Operating as a distributed forensic
Agent-Based Solution (ABS), this method enables forensic logging for readiness purposes across cloud
infrastructures. In a related effort, Kebande et al. [26] proposed the construction of a Digital Forensic
Readiness Intelligence Repository (DFRIR) founded on knowledge-sharing principles. The repository
cross-references potential evidence sources, aims to reduce the time required for forensic investigations,
and supports sharing across multiple jurisdictions.

Englbrecht et al. [27] developed a DFR-specific Capability Maturity Model (CMM) to guide
organizations in implementing readiness measures. The framework draws on COBIT 5 IT-Governance
principles and incorporates the core characteristics necessary for effective DFR implementation. Reddy
et al. [28] built a Digital Forensic Readiness Management System (DFRMS) tailored for large organi-
zations. Based on requirements identified through a comprehensive literature review, the DFRMS
architecture comprises five modules: event analysis, DFR information management, costing, access con-
trol, and user interface. A proof-of-concept prototype demonstrated the system’s practical feasibility
and its potential to improve readiness in enterprise contexts.

Grobler et al. [29] positioned DFR as a means to strengthen organizational security strategies
by preparing for incidents while minimizing disruptions to business processes. Their guidelines
emphasize ensuring legal admissibility of evidence, detecting resource misuse, and demonstrating
due diligence in protecting valuable company assets. The authors contend that revisions to current
information systems architectures, strategies, and best practices are needed to enable successful
prosecutions, pointing to deficiencies in admissible evidence and procedural rigor. Lakhdhar et al. [30]
proposed a game-theoretic model for forensic-ready systems utilizing cognitive security concepts;
however, this work lacks practical tools applicable to SMBs/SMEs.

Elyas et al. [31] designed and validated a DFR framework through expert focus groups. The frame-
work assists organizations in assessing their forensic strategies by identifying critical factors in capacity
development. It categorizes governance, top management support, and culture as organizational
dimensions, while technology and architecture are grouped under forensic infrastructure. Baiquni and
Amiruddin [32] applied the Digital Forensic Readiness Index (DiFRI) to quantitatively evaluate a cyber
organization’s operational readiness, offering tailored improvement recommendations. Although
informative, this methodology does not address strategic adversary behavior or optimal resource
allocation—gaps targeted by our proposed game-theoretic approach.

Complementing DFR frameworks with an SME-focused perspective, Rawindaran et al. [33]
introduce an enhanced ROHAN model integrated with the Cyber Guardian Framework (CGF) to
improve cybersecurity resilience in resource-constrained organizations. Their mixed-methods study
emphasizes role-specific awareness, continuous improvement, and the use of AI-enabled decision
support—principles aligned with readiness thinking. However, while ROHAN+CGF advance organiza-
tional practice, they do not explicitly model adversarial strategy or attacker–defender interdependence;
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our game-theoretic formulation targets precisely this gap by coupling readiness with strategic behavior
and optimal resource allocation.

Trenwith et al. [34] advocated centralized logging as a cornerstone of effective DFR, enabling
rapid acquisition of evidential data and accelerated investigative analysis. While centralized log
management streamlines evidence collection, it does not account for the diverse evidence types
necessary in investigations, particularly within cloud environments. Cloud systems present additional
challenges due to the dynamic and distributed nature of data storage and processing, which demand
solutions beyond efficient logging.

In the context of microservice architectures, Monteiro et al. [35] proposed “Adaptive Observability,”
a game theory-driven method designed to address evidence challenges in ephemeral environments
where traditional observability mechanisms fail after container termination. By dynamically adjusting
observability based on user–service interactions, the approach enhances evidence retention while
optimizing resource consumption. Comparative evaluations show performance improvements rang-
ing from 3.1 % to 42.50 % over conventional techniques. The authors suggest future work should
incorporate varying attacker risk preferences and extend into industrial case studies, with additional
metrics covering cost-effectiveness and scalability.

2.3. Advancement in Cybersecurity Modeling

Xiong et al. [36] developed a threat modeling language for enterprise security based on the MITRE
Enterprise ATT&CK Matrix and implemented using the Meta Attack Language framework. This
language enables the simulation of cyberattacks on modeled system instances to analyze security
configurations and assess potential architectural modifications aimed at improving system resilience.

Wang et al. [37] proposed a sequential Defend-Attack framework that integrates adversarial risk
analysis. Their approach introduces a new class of influence diagram algorithms, termed hybrid
Bayesian network inference, to identify optimal defensive strategies under adversarial conditions.
This model enhances understanding of the interdependent decision processes between attackers and
defenders in dynamic threat environments.

Usman et al. [38] presented a hybrid methodology for IP reputation prediction and zero-day attack
categorization that fuses Dynamic Malware Analysis, Cyber Threat Intelligence, Machine Learning,
and Data Forensics. This integrated system simultaneously evaluates severity, risk score, confidence,
and threat lifespan using machine learning techniques, illustrating how data-driven analytics can
support forensic and security objectives. The study also highlights persistent data forensic challenges
when automating classification and reputation modeling for emerging cyber threats.

2.4. Innovative Tools and Methodologies

Li et al. [39] introduced LEChain, a blockchain-based lawful evidence management scheme for
digital forensics designed to address security and privacy concerns often overlooked in cloud comput-
ing and blockchain-based evidence management. LEChain implements fine-grained access control
through ciphertext-policy attribute-based encryption and employs brief randomizable signatures to
protect witness privacy during evidence collection.

Soltani and Seno [40] presented a Software Signature Detection Engine (SSDE) for digital forensic
triage. The SSDE architecture comprises two subsystems: signature construction and signature
detection. Signatures are generated using a differential analysis model that compares file system states
before and after execution of specific software. Their study evaluates multiple design parameters,
resulting in the creation and assessment of 576 distinct SSDE models.

At the storage–firmware boundary, Rother and Chen [41] present ACRecovery, a flash-translation-
layer (FTL) forensics mechanism that can roll back OS access-control metadata after an OS-level
compromise by exploiting out-of-place updates in raw flash. Their prototype on EXT2/EXT3 and
OpenNFM demonstrates efficient recovery with minimal performance impact, highlighting a promising
post-compromise remediation path. While orthogonal to our strategic readiness modeling, such FTL-
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aware techniques complement DFR by preserving evidential integrity and enabling rapid restoration
when preventive controls are bypassed.

Nikkle [42] described the Registration Data Access Protocol (RDAP) as a secure, standardized,
and internationalized alternative to the legacy WHOIS system. While WHOIS and RDAP are expected
to coexist for some time, RDAP offers enhanced security, automation capabilities, tool integration,
and authoritative data sourcing—features that strengthen its utility in digital forensic investigations.
Furthermore, Nikkle [43] introduced the concept of Fintech Forensics as a new sub-discipline, noting
how the rise of digital transformation and financial technology has created novel avenues for criminal
activity, necessitating dedicated forensic methodologies for financial transactions.

2.5. Digital Forensics in Emerging Domains

Seo et al. [44] proposed a Metaverse forensic framework structured around four phases derived
from NIST’s digital forensic guidelines: data collection, examination and retrieval of evidence, anal-
ysis, and reporting. The study also outlines three procedures for data collection and examination
distributed across user, service, and Metaverse platform domains, providing a systematic approach for
investigating offenses occurring in virtual environments.

Malhotra [45] explored the intersection of digital forensics and artificial intelligence (AI), pre-
senting current approaches and emerging trends. The author emphasized that in today’s increasingly
digital society, the rise in cybercrimes and financial frauds has made digital forensics indispens-
able. Integrating AI techniques into forensic analysis offers promising opportunities to address these
challenges effectively. Malhotra further argued that AI-driven digital forensics could transform in-
vestigative efficiency, catalyzing the so-called Fourth Industrial Revolution. Consequently, continued
investment in AI-enabled forensic technologies, specialized training, and advanced analytical tools is
critical for ensuring preparedness against evolving cyber threats.

Tok and Chattopadhyay [46] examined cybersecurity challenges within Smart City Infrastructures
(SCI), proposing a unified definition and applying the STRIDE threat modeling methodology to identify
potential offenses and evidence sources. Their study provides valuable guidance for investigators by
mapping technical and legal aspects of digital forensics in SCI environments. However, the authors
note that the applicability of their framework may depend on contextual variations in regulatory
standards and implementation practices across jurisdictions.

2.6. Advanced Persistent Threats and Cybercrime

Han et al. [47] examined defensive strategies against long-term and stealthy cyberattacks, such as
Advanced Persistent Threats (APTs). Their work underscores the necessity of strategic and proactive
measures to counter increasingly sophisticated adversaries capable of prolonged network infiltration.

Chandra and Snowe [48] defined cybercrime as criminal activity involving computer technology
and proposed a taxonomy built upon four foundational principles: mutual exclusivity, structural
clarity, exhaustiveness, and well-defined categorization. This taxonomy facilitates the classification
and differentiation of various cybercrime types and could be extended to organizational applications,
metrics development, integration with traditional crime taxonomies, and automated classification for
improved efficiency.

Collectively, these contributions highlight the potential of combining game theory with advanced
technologies—such as artificial intelligence and blockchain—to enhance the effectiveness of digital
forensic investigations. Casey et al. [49] introduced the Cyber-investigation Analysis Standard Ex-
pression (CASE), a community-driven specification language designed to improve interoperability
and coordination among investigative tools. By building upon the Unified Cyber Ontology (UCO),
CASE offers a standardized structure for representing and exchanging cyber-investigation data across
multiple organizations and jurisdictions. Its versatility allows application in criminal, corporate,
and intelligence contexts, supporting comprehensive analysis. Through illustrative examples and a
proof-of-concept API, Casey et al. demonstrated how CASE enables structured data capture, facilitates
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sharing and collaboration, and incorporates data marking for controlled dissemination within the
cyber-investigation community.

Despite notable progress in cybersecurity and digital forensics—particularly via the integration of
game theory, enhanced readiness techniques, and diverse modeling tools—several critical challenges
remain. Current approaches often struggle to represent the dynamic and asymmetric interactions
between attackers and defenders in APT scenarios. Moreover, game-theoretic models frequently
overlook nuanced decision-making processes inherent to forensic investigations and fail to fully
account for the rapidly evolving tactics of modern cyber adversaries. Additionally, many DFR
frameworks emphasize technical countermeasures while insufficiently addressing strategic adversary
dynamics, leaving organizations vulnerable and less responsive to emerging threats.

3. Materials and Methods
In this section, the problem statement is provided in Subsection 3.1. The methodology of the

research is stated in Subsection 3.2. The fundamental concepts of game theory are presented in
Subsection 3.3. The proposed approach is detailed in Subsection 3.4, followed by the utility function
discussion in Subsection 3.5. The identification of improvement areas and prioritization of DFR are
addressed in Subsections 3.6 and 3.7, respectively. The reevaluation of DFR is covered in Section 3.8.

3.1. Problem Statement

Let A represent the set of attackers and D represent the set of defenders in a cyber environment.
The objective of this research is to model the strategic interactions between A and D during the DFR
phase using game theory.

Let us define the following variables:

• SA: Strategies available to attackers, corresponding to MITRE ATT&CK tactics (e.g., Reconnais-
sance, Resource Development, Initial Access, Execution, Persistence, etc.).

• SD: Strategies available to defenders, corresponding to MITRE D3FEND countermeasures (e.g.,
Model, Detect, Harden, Isolate, Deceive, etc.)

• P: Parameters influencing game models, such as attack severity, defense effectiveness, and
forensic capability.

• UA(sA, sD): Utility function for attackers, representing the payoff based on their strategy sA and
the defenders’ strategy sD.

• UD(sA, sD): Utility function for defenders, representing the payoff based on their strategy sD and
the attackers’ strategy sA.

The research aims to solve the following problems:

• Model Construction: Construct game models G(A, D, SA, SD, P) to represent the interactions
between A and D.

• Equilibrium Analysis: Identify Nash equilibria (s∗A, s∗D) such that:

UA(s∗A, s∗D) ≥ UA(sA, s∗D) ∀sA ∈ SA

UD(s∗A, s∗D) ≥ UD(s∗A, sD) ∀sD ∈ SD

The goal is to derive optimal strategies (s∗A, s∗D) that enhance DFR, thereby informing the devel-
opment of effective cybersecurity policies and strategies. This research contributes to the theoretical
understanding of strategic interactions in cybersecurity, providing a foundation for future empirical
studies and practical applications.

3.2. Methodology

This subsection outlines the research methodology, which is structured around the following
components:
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3.2.1. Research Design

• Theoretical Framework: The study employs game theory to analyze strategic interactions between
attackers and defenders in the context of DFR.

• Model Representation: Game theory models are used to represent the decision-making process
of both attackers and defenders, considering their incentives, strategies, and potential outcomes.

3.2.2. Materials

The primary materials used in the research include:

• Game Theory: The research uses game theory literature to build theoretical foundations and
employ advanced modeling techniques for analyzing the strategic interactions between attackers
and defenders.

• DFR Frameworks: The study uses established DFR frameworks to understand the requirements
and strategies involved so our models reflect real world forensic readiness scenarios.

• Computational Tools and Software: Advanced computational tools and software are used to
simulate game scenarios and analyze the strategic behavior of both attackers and defenders.
These tools allow us to model complex interactions and generate insights from the simulations.

3.2.3. Procedure

• Development of Game Models: Construct game models to represent the interactions between
attackers and defenders in DFR scenarios.

• Identification of Strategies: Define strategies available to attackers and defenders, such as
investing in security measures, launching attacks, or conducting forensic investigations.

• Parameterization: Assign values to parameters within the game models, representing factors like
attack severity, defense effectiveness, and forensic capability.

• Simulation and Analysis: Simulate scenarios using game-theoretic algorithms to evaluate model
performance and outcomes.

• Sensitivity Analysis: Conduct sensitivity analysis to assess the impact of varying parameters on
strategic outcomes and forensic readiness scores.

3.2.4. Data Analysis

• Quantification of Strategic Behaviors: Quantify the strategic behaviors of attackers and defenders
based on game-theoretic metrics such as equilibrium outcomes, payoffs, and dominance strategies.

• Interpretation: Interpret the results of the analysis to identify optimal strategies for improving
DFR, including investment priorities, resource allocation, and policy adjustments.

3.2.5. Validation

• Validation of Model Assumptions: Validate game models against real-world scenarios and
empirical data where possible, ensuring that the theoretical framework accurately captures the
dynamics of DFR.

• Sensitivity Testing: Perform sensitivity testing to assess the robustness of the findings against
variations in the assumptions and parameters of the model.

3.2.6. Reporting

• Documentation: Document the methodology, assumptions, and results of the study in a compre-
hensive research report or academic paper.

• Discussion: Discuss the implications of the findings for improving DFR, addressing limitations,
and suggesting avenues for future research.

This study aims to provide valuable information on the strategic behaviors of attackers and
defenders in DFR scenarios, forming the development of more effective cybersecurity strategies and
policies.
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3.3. Game Theory Background

Game theory provides a framework for analyzing strategic decision-making among agents, or
players, whose choices influence one another’s outcomes.

3.3.1. Players and Actions

We focus on games with a finite number of players, denoted by N = {1, 2, ..., n}. Each player i has
a set of available actions represented by Ai. The combination of all players’ actions, called the action
profile, is calculated using the Cartesian product:

A = A1 × A2 × · · · × An

3.3.2. Payoff Functions and Utility

Each player has a payoff function, denoted by ui : A→ R. This function maps an action profile
a = (a1, a2, ..., an) to a real number representing their utility or satisfaction with the outcome.

The payoff function captures the player’s preferences, considering how their benefits depend on
the actions chosen by all players. Digital forensics plays a crucial role in incident response, relying
heavily on preparedness during the readiness phase. This section explores how game theory can be
utilized to enhance decision-making in this critical stage.

3.3.3. Scenario Analysis

Consider a company (Defender) that anticipates potential data breaches and contemplates in-
vesting in additional forensic tools (FT) to improve their readiness. However, the optimal level of
investment (High Investment: HI, Low Investment: LI) remains unclear. Simultaneously, an Attacker
is contemplating the type of attack to launch: a sophisticated attack (SA) or a simpler attack (SI).

3.3.4. Formalizing the Game

This scenario can be modeled as a two-player, non-cooperative game with the following elements:

• Players: Defender (D), Attacker (A)
• Actions:

– Defender: D ∈ {HI FT, LI FT} (Set of defender’s investment choices)
– Attacker: A ∈ {SA, SI} (Set of attacker’s attack choices)

• Payoff Functions:

– Defender’s Payoff Function: uD(D, A) (Maps a combination of defender’s investment (D)
and attacker’s attack (A) to a real number representing the defender’s utility)

– Attacker’s Payoff Function: uA(D, A) (Maps a combination of defender’s investment (D)
and attacker’s attack (A) to a real number representing the attacker’s utility)

The interaction can be represented by the following payoff matrix:

Table 1. Payoff Matrix for Defender-Attacker Game.

Attack (SA) Attack (SI)

Defender (HI FT) (uD(HI FT, SA), uA(HI FT, SA)) (uD(HI FT, SI), uA(HI FT, SI))
Defender (LI FT) (uD(LI FT, SA), uA(LI FT, SA)) (uD(LI FT, SI), uA(LI FT, SI))

3.3.5. Payoff Analysis

Details of the payoff matrix are as follows:

• Defender’s Payoffs:

– HI FT: High investment in forensic tools leads to high readiness for a sophisticated attack
(SA), resulting in low losses (high utility) for the defender. However, if the attacker chooses
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a simpler attack (SI), the high investment might be unnecessary, leading to very low losses
(moderate utility) but potentially wasted resources.

– LI FT: Low investment translates to lower readiness, making the defender more vulnerable
to a sophisticated attack (SA), resulting in high losses (low utility). While sufficient for a
simpler attack (SI), it might not provide a complete picture for forensic analysis, leading to
moderate losses (moderate utility).

• Attacker’s Payoffs:

– SA: A sophisticated attack offers the potential for higher gains (data exfiltration) but requires
more effort and resources to bypass advanced forensic tools (HI FT) implemented by the
defender. If the defender has low investment (LI FT), the attack is easier to conduct, resulting
in higher gains (higher utility).

– SI: This requires less effort but might yield lower gains (lower utility). If the defender has
high investment (HI FT), the attacker might face challenges in extracting data, resulting in
very low gains (low utility).

This scenario represents a non-cooperative game where both players make independent decisions
to maximize their own utility. A potential Nash Equilibrium exists where the defender chooses
High Investment (HI FT) and the attacker chooses Simpler Attack (SI). The defender prioritizes high
readiness, while the attacker avoids the risk of encountering advanced forensic tools.

This simple game shows the importance of considering attacker behavior in the readiness phase.
By understanding attacker strategies through game theory, defenders can make informed decisions
about where to allocate forensic tools and training.

3.3.6. Advanced Persistent Threats (APTs) and Equilibrium Concepts

APTs present a significant challenge due to their sophisticated, multi-stage attack lifecycle. Analyz-
ing these dynamics requires equilibrium concepts beyond Pure Nash Equilibria (PNE). A Mixed Nash
Equilibrium (MNE) is often more representative, as it models the strategic uncertainty where players
randomize their actions. For instance, a defender, uncertain of the APT’s exact target, might proba-
bilistically allocate security resources across critical servers. Concurrently, the APT might randomize
its attack vectors to avoid predictable patterns. This MNE state introduces optimal unpredictability,
preventing either party from gaining an advantage by deviating unilaterally.

3.4. Proposed Approach

Inspired by Sun Tzu’s strategic principles, our approach models digital forensics as a normal-form
game between two primary entities: attacker and defender. This game captures their strategy sets and
resulting payoffs as follows:

• Players:

– Attacker: 14 strategies (s1, s2, . . . , s14)
– Defender: 6 strategies (t1, t2, . . . , t6)

• Payoff Matrices: Shown in Table 2 for the attacker and Table 3 for the defender, each matrix
displays payoffs for every strategy combination.

• Rationality: Both players are presumed rational, seeking to maximize their individual payoffs
given knowledge of the opponent’s strategy. The game is simultaneous and non-zero-sum.

Attacker strategies include actions such as reconnaissance, execution, privilege escalation, and
others. Defender strategies encompass modeling, detecting, deceiving, and additional controls. Model-
ing these interactions provides insight into the dynamic strategic landscape of digital forensics. As
visualized in Figure 1, analysis of the payoff matrices reveals both outcomes and equilibrium points,
highlighting the evolving nature of cyber threats. Darker matrix shades indicate higher attacker
payoffs.
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Table 2. Attacker’s Payoff Matrix A(s, t).

t1 t2 t3 t4 t5 t6
s1 5 6 7 8 9 10
s2 0 0 1 2 3 4
s3 14 13 12 11 0 0
s4 16 17 18 18 0 0
s5 19 20 20 18 0 0
s6 23 22 21 7 6 5
s7 24 25 26 24 25 26
s8 32 28 29 30 33 32
s9 33 34 35 30 33 32
s10 32 35 36 6 7 5
s11 36 37 38 6 35 30
s12 37 38 39 39 0 0
s13 38 39 40 0 0 0
s14 39 40 41 0 0 0

Table 3. Defender’s Payoff Matrix D(s, t).

t1 t2 t3 t4 t5 t6
s1 5 7 1 1 7 5
s2 6 8 10 2 6 6
s3 7 9 11 5 8 11
s4 8 10 25 25 9 12
s5 9 11 24 8 10 13
s6 10 12 24 8 11 10
s7 11 21 20 10 12 7
s8 18 14 25 9 5 25
s9 13 15 23 12 4 8
s10 14 16 22 11 14 9
s11 15 17 20 12 13 14
s12 16 18 21 13 15 25
s13 17 20 20 10 16 17
s14 12 19 29 16 17 16

Figure 1. Visualization of payoff matrices depicting strategic interactions between attacker and defender. Darker
shades indicate higher attacker payoffs.
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3.4.1. PNE Analysis

The PNE was determined using support enumeration [50], systematically exploring all possible
strategy profiles. Starting from the smallest supports, we iteratively increased complexity and verified
for PNE by ensuring each strategy profile was a mutual best response.

For example, for strategy s∗14 (’Impact’) to form a Nash Equilibrium with the defender’s strategy
t∗3 (’Detect’), the following must hold:

A(s14, t∗3) ≥ A(sk, t∗3) ∀k ∈ {1, 2, . . . , 14}, k ̸= 14 (1)

This means ’Impact’ gives the attacker at least as much payoff as any alternative when the
defender uses ’Detect’. The reciprocal check for the defender is:

D(s∗14, t3) ≥ D(s∗14, tl) ∀l ∈ {1, 2, 4, 5, 6} (2)

confirming that ’Detect’ is optimal for the defender against ’Impact’. This NE is highlighted in Figure 1.

3.4.2. MNE Analysis

To capture the adaptive nature of cyber threats, we analyze MNE, where players randomize over
multiple strategies. The triangular membership function in Algorithm 1, defined by parameters (a, b,
c), is used for fuzzy payoff assessment:

µ(x) =

max
(

0, min
(

x−a
b−a , c−x

c−b , 1
))

, if a ≤ x ≤ c

0, otherwise
(3)

This enables categorization of payoffs (e.g., “Low,” “Medium,” “High”), reflecting the fuzziness of real
security outcomes. Tables 2 and 3 present the resulting values.

Algorithm 1 Attacker–Defender Payoff Matrix Calculation

Input: AttackTactics, DefenseTactics, FuzzySets, FuzzyRules
Output: FuzzyPayoffMatrix

1: Initialize FuzzyPayoffMatrix as empty
2: for each attacker tactic t do
3: for each defense tactic d do
4: FuzzyPayoffMatrix[(t, d)]← (None, None)
5: for each rule r in FuzzyRules do
6: for each cell (t, d) do
7: if rule matches t and d then
8: Compute and aggregate membership degree using triangular function
9: Update FuzzyPayoffMatrix[(t, d)]

10: Defuzzify payoff values using the center-of-gravity method return FuzzyPayoffMatrix

3.4.3. Payoff Matrix Calculation Algorithm

Fuzzy payoff matrices are computed via Algorithm 1, which uses triangular membership defini-
tions and fuzzy rule evaluation.

3.4.4. Payoff Matrices

The final payoff matrices for attacker and defender strategies are shown in Tables 2 and 3.

3.4.5. Mixed Nash Equilibrium Computation

MNEs are computed through enumeration of pure strategy vertices, followed by construction of
best-response polytopes for mixed strategies, as described in [50]. For payoff matrices A and D, an
MNE consists of mixed strategies (x∗, y∗) fulfilling:
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6

∑
j=1

14

∑
i=1

aijx∗i y∗j ≥
6

∑
j=1

14

∑
i=1

aijxiy∗j ∀x ∈ ∆14 (4)

14

∑
i=1

6

∑
j=1

dijx∗i y∗j ≥
14

∑
i=1

6

∑
j=1

dijx∗i yj ∀y ∈ ∆6 (5)

Nashpy [51] is used for vertex enumeration. Analysis yielded five MNEs, each illustrating
different patterns of mixed strategic play (see Figure 2).

Figure 2. Probability distributions over attack tactics (red) and defensive controls (blue) in the five identified
Mixed Nash Equilibria (MNE1–MNE5).

MNE Analysis Results

• First MNE: The attacker prefers ’Command_and_Control’ (57%), while the defender favors
’Model’ (95%) with some likelihood for ’Detect’.

• Deterministic Scenarios: Certain equilibria show exclusive preference (e.g., attacker fully on
’Exfiltration’, defender on ’Model’ or ’Detect’).

• Variable Strategies: Some MNEs distribute probabilities across two or more strategies, reflecting
tactical unpredictability.

3.4.6. Convergence Analysis

Convergence points (Figure 3) represent stable game states where each player’s optimal mixed
strategy is fixed, given the opponent’s choices. Let α∗ and β∗ denote the optimal mixed strategies for
attacker and defender, respectively:
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A(Sk, α∗, β∗) ⪰ A(s, α∗, β∗) ∀s ∈ S (6)

D(tl , α∗, β∗) ⪰ D(t, α∗, β∗) ∀t ∈ T (7)

Figure 3. Convergence trajectories: attractor points under uniform allocation (baseline) and equilibrium-informed
allocation.

The initial convergence suggests a scenario where both parties, respectively, favor ’Com-
mand_and_Control’ and ’Detect’, mirroring Nash Equilibrium conditions. In cyber conflict, both
pure and mixed equilibria provide valuable perspective—pure equilibria highlight steadfast strategy,
whereas mixed equilibria reveal the inherent unpredictability of advanced cyber contests.

3.5. Utility Function

We model attacker-defender interactions using utility functions that quantify the payoff for each
party. This is grounded in Multi-Criteria Decision Analysis (MCDA), a established framework for
evaluating complex, conflicting criteria [12,51,52]. MCDA is well-suited for assessing the multifaceted
nature of cybersecurity strategies.

3.5.1. Attacker Utility Function

The attacker’s utility is evaluated across 16 dimensions, such as Attack Success Rate, Resource
Efficiency, and Stealthiness. Each metric is normalized between 0 (least favorable) and 1 (most favorable),
and assigned a weight wi based on its relative importance. The attacker utility function is formulated
as:

UAttacker =
16

∑
i=1

wi Mi (8)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 October 2025 doi:10.20944/preprints202510.1285.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.1285.v1
http://creativecommons.org/licenses/by/4.0/


15 of 40

where Mi is the normalized score for the i-th metric. This provides a granular view of attacker priorities
and effectiveness (Table 4).

Table 4. Attacker Utility Metrics and Scoring Preferences.

Metric Description Score

Attack Success Rate (ASR) Attack success rate is nearly nonexistent 0
Attacks are occasionally successful 0.1–0.3
Attacks are successful about half of the time 0.4–0.6
Attacks are usually successful 0.7–0.9
Attacks are always successful 1

Resource Efficiency (RE) Attacks require considerable resources with low payoff 0
Attacks require significant resources but have a moderate
payoff

0.1–0.3

Attacks are somewhat resource efficient 0.4–0.6
Attacks are quite resource efficient 0.7–0.9
Attacks are exceptionally resource efficient 1

Stealthiness (ST) Attacks are always detected and attributed 0
Attacks are usually detected and often attributed 0.1–0.3
Attacks are sometimes detected and occasionally attributed 0.4–0.6
Attacks are seldom detected and rarely attributed 0.7–0.9
Attacks are never detected nor attributed 1

Data Exfiltration Effectiveness (DEE) Data exfiltration attempts always fail 0
Data exfiltration attempts succeed only occasionally 0.1–0.3
Data exfiltration attempts often succeed 0.4–0.6
Data exfiltration attempts usually succeed 0.7–0.9
Data exfiltration attempts always succeed 1

Time-to-Exploit (TTE) Vulnerabilities are never successfully exploited before patching 0
Vulnerabilities are exploited before patching only occasionally 0.1–0.3
Vulnerabilities are often exploited before patching 0.4–0.6
Vulnerabilities are usually exploited before patching 0.7–0.9
Vulnerabilities are always exploited before patching 1

Evasion of Countermeasures (EC) Countermeasures always successfully thwart attacks 0
Countermeasures often successfully thwart attacks 0.1–0.3
Countermeasures sometimes fail to thwart attacks 0.4–0.6
Countermeasures often fail to thwart attacks 0.7–0.9
Countermeasures never successfully thwart attacks 1

Attribution Resistance (AR) The attacker is always accurately identified 0
The attacker is often accurately identified 0.1–0.3
The attacker is sometimes accurately identified 0.4–0.6
The attacker is seldom accurately identified 0.7–0.9
The attacker is never accurately identified 1

Reusability of Attack Techniques (RT) Attack techniques are always one-off, never reusable 0
Attack techniques are occasionally reusable 0.1–0.3
Attack techniques are often reusable 0.4–0.6
Attack techniques are usually reusable 0.7–0.9
Attack techniques are always reusable 1

Impact of Attacks (IA) Attacks cause no notable disruption or loss 0
Attacks cause minor disruption or loss 0.1–0.3
Attacks cause moderate disruption or loss 0.4–0.6
Attacks cause major disruption or loss 0.7–0.9
Attacks cause catastrophic disruption or loss 1
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Table 4. Cont.

Metric Description Score

Persistence (P) The attacker cannot maintain control over compromised sys-
tems

0

The attacker occasionally maintains control over compromised
systems

0.1–0.3

The attacker often maintains control over compromised sys-
tems

0.4–0.6

The attacker usually maintains control over compromised sys-
tems

0.7–0.9

The attacker always maintains control over compromised
systems

1

Adaptability (AD) The attacker is unable to adjust strategies in response to
changing defenses

0

The attacker occasionally adjusts strategies in response to
changing defenses

0.1–0.3

The attacker often adjusts strategies in response to changing
defenses

0.4–0.6

The attacker usually adjusts strategies in response to changing
defenses

0.7–0.9

The attacker always adjusts strategies in response to changing
defenses

1

Deniability (DN) The attacker cannot deny involvement in attacks 0
The attacker can occasionally deny involvement in attacks 0.1–0.3
The attacker can often deny involvement in attacks 0.4–0.6
The attacker can usually deny involvement in attacks 0.7–0.9
The attacker can always deny involvement in attacks 1

Longevity (LG) The attacker’s operations are quickly disrupted 0
The attacker’s operations are often disrupted 0.1–0.3
The attacker’s operations are occasionally disrupted 0.4–0.6
The attacker’s operations are rarely disrupted 0.7–0.9
The attacker’s operations are never disrupted 1

Collaboration (CB) The attacker never collaborates with others 0
The attacker occasionally collaborates with others 0.1–0.3
The attacker often collaborates with others 0.4–0.6
The attacker usually collaborates with others 0.7–0.9
The attacker always collaborates with others 1

Financial Gain (FG) The attacker never profits from attacks 0
The attacker occasionally profits from attacks 0.1–0.3
The attacker often profits from attacks 0.4–0.6
The attacker usually profits from attacks 0.7–0.9
The attacker always profits from attacks 1

Reputation and Prestige (RP) The attacker gains no reputation or prestige from attacks 0
The attacker gains little reputation or prestige from attacks 0.1–0.3
The attacker gains some reputation or prestige from attacks 0.4–0.6
The attacker gains considerable reputation or prestige from
attacks

0.7–0.9

The attacker’s reputation or prestige is greatly enhanced by
each attack

1

3.5.2. Defender Utility Function

Similarly, the defender’s utility evaluates 16 dimensions such as Logging Capabilities, Evidence
Integrity, and Standards Compliance. The defender utility function is:

UDefender =
16

∑
j=1

wj Mj (9)
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where Mj is the normalized score for the j-th metric. This reflects the organization’s forensic readiness
(Table 5).

Table 5. Defender Utility Metrics and Scoring Preferences.

Metric Description Score

Logging and Audit Trail Capabilities
(L)

No logging or audit trail capabilities 0

Minimal or ineffective logging and audit trail capabilities 0.1–0.3
Moderate logging and audit trail capabilities 0.4–0.6
Robust logging and audit trail capabilities with some limita-
tions

0.7–0.9

Comprehensive and highly effective logging and audit trail
capabilities

1

Integrity and Preservation of Digital
Evidence (I)

Complete loss of all digital evidence, including backups 0

Severe damage or compromised backups with limited recov-
erability

0.1–0.3

Partial loss of digital evidence, with some recoverable data 0.4–0.6
Reasonable integrity and preservation of digital evidence,
with recoverable backups

0.7–0.9

Full integrity and preservation of all digital evidence, includ-
ing secure and accessible backups

1

Documentation and Compliance
with Digital Forensic Standards (D)

No documentation or non-compliance with digital forensic
standards

0

Incomplete or inadequate documentation and limited adher-
ence to digital forensic standards

0.1–0.3

Basic documentation and partial compliance with digital
forensic standards

0.4–0.6

Well-documented processes and good adherence to digital
forensic standards

0.7–0.9

Comprehensive documentation and strict compliance with
recognized digital forensic standards

1

Volatile Data Capture Capabilities
(VDCC)

No volatile data capture capabilities 0

Limited or unreliable volatile data capture capabilities 0.1–0.3
Moderate volatile data capture capabilities 0.4–0.6
Effective volatile data capture capabilities with some limita-
tions

0.7–0.9

Robust and reliable volatile data capture capabilities 1

Encryption and Decryption Capabil-
ities (E)

No encryption or decryption capabilities 0

Weak or limited encryption and decryption capabilities 0.1–0.3
Moderate encryption and decryption capabilities 0.4–0.6
Strong encryption and decryption capabilities with some lim-
itations

0.7–0.9

Highly secure encryption and decryption capabilities 1

Incident Response Preparedness (IR) No incident response plan or team in place 0
Initial incident response plan, not regularly tested or updated,
with limited team capability

0.1–0.3

Developed incident response plan, periodically tested, with
trained team

0.4–0.6

Comprehensive incident response plan, regularly tested and
updated, with a well-coordinated team

0.7–0.9

Advanced incident response plan, continuously tested and
optimized, with a dedicated, experienced team

1
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Table 5. Cont.

Metric Description Score

Data Recovery Capabilities (DR) No data recovery processes or tools in place 0
Basic data recovery tools, with limited effectiveness 0.1–0.3
Advanced data recovery tools, with some limitations in terms
of capabilities

0.4–0.6

Sophisticated data recovery tools, with high success rates 0.7–0.9
Comprehensive data recovery tools and processes, with ex-
cellent success rates

1

Network Forensics Capabilities (NF) No network forensic capabilities 0
Basic network forensic capabilities, limited to capturing pack-
ets or logs

0.1–0.3

Developed network forensic capabilities, with ability to ana-
lyze traffic and detect anomalies

0.4–0.6

Advanced network forensic capabilities, with proactive threat
detection

0.7–0.9

Comprehensive network forensic capabilities, with full spec-
trum threat detection and automated responses

1

Staff Training and Expertise (ST) No trained staff or expertise in digital forensics 0
Few staff members with basic training in digital forensics 0.1–0.3
Several staff members with intermediate-level training, some
with certifications

0.4–0.6

Most staff members with advanced-level training, many with
certifications

0.7–0.9

All staff members are experts in digital forensics, with rele-
vant certifications

1

Legal & Regulatory Compliance
(LR)

Non-compliance with applicable legal and regulatory require-
ments

0

Partial compliance with significant shortcomings 0.1–0.3
Compliance with most requirements, some minor issues 0.4–0.6
High compliance with only minor issues 0.7–0.9
Full compliance with all relevant legal and regulatory require-
ments

1

Accuracy (A) No consistency in results, many errors and inaccuracies in
digital forensic analysis

0

Frequent errors in analysis, high level of inaccuracy 0.1–0.3
Some inaccuracies in results, needs further improvement 0.4–0.6
High level of accuracy, few inconsistencies or errors 0.7–0.9
Extremely accurate, consistent results with virtually no errors 1

Completeness (C) Significant data overlooked, very incomplete analysis 0
Some relevant data collected, but analysis remains substan-
tially incomplete

0.1–0.3

Most of the relevant data collected and analyzed, but some
gaps remain

0.4–0.6

High degree of completeness in data collection and analysis,
minor gaps

0.7–0.9

Comprehensive data collection and analysis, virtually no in-
formation overlooked

1

Timeliness (T) Extensive delays in digital forensic investigation process, no
urgency

0

Frequent delays, slow response time 0.1–0.3
Reasonable response time, occasional delays 0.4–0.6
Quick response time, infrequent delays 0.7–0.9
Immediate response, efficient process, no delays 1
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Table 5. Cont.

Metric Description Score

Reliability (R) Unreliable techniques, inconsistent and unrepeatable results 0
Some reliability in techniques, but results are often inconsistent 0.1–0.3
Mostly reliable techniques, occasional inconsistencies in results 0.4–0.6
High reliability in techniques, few inconsistencies 0.7–0.9
Highly reliable and consistent techniques, results are depend-
able and repeatable

1

Validity (V) No adherence to standards, methods not legally or scientifi-
cally acceptable

0

Minimal adherence to standards, many methods not acceptable 0.1–0.3
Moderate adherence to standards, some methods not acceptable 0.4–0.6
High adherence to standards, majority of methods are accept-
able

0.7–0.9

Strict adherence to standards, all methods used are legally
and scientifically acceptable

1

Preservation (P) No procedures in place for evidence preservation, evidence
frequently damaged or lost

0

Minimal preservation procedures, evidence sometimes dam-
aged or lost

0.1–0.3

Moderate preservation procedures, occasional evidence dam-
age or loss

0.4–0.6

Robust preservation procedures, rare instances of evidence
damage or loss

0.7–0.9

Comprehensive preservation procedures, virtually no dam-
age or loss of evidence

1

3.5.3. Expert-Driven Weight Calculation

Accurate weighting of strategies, particularly MITRE ATT&CK tactics, is vital for realistic game
outcomes. We employ expert judgment to assign preference weights, following this process:

1. Identify relevant security experts with domain-specific ATT&CK knowledge.
2. Analyze the threat landscape and associated TTPs.
3. Establish weighting criteria such as Likelihood, Impact, Detectability, and Effort.
4. Present tactics and criteria simultaneously to experts for independent evaluation.
5. Aggregate weights (average or weighted average depending on expertise level).
6. Normalize aggregated weights to ensure comparability.
7. Output a set of normalized tactic weights representing collective expert judgment.

3.5.4. Utility Calculation Algorithms

The computation of utility scores is structured in Algorithm 2:

Algorithm 2 Computing the Utility Function

Input: Metrics array M, weights array W
Output: Utility score u

1: u← 0
2: if length(M) ̸= length(W) then
3: abort with “Mismatch in array lengths.”
4: for i← 0 to length(M)− 1 do
5: u← u + M[i] ·W[i]
6: Output: “Utility score:” u return u

The DFR status is determined by comparing utility scores to a predefined threshold (Algorithm 3):
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Algorithm 3 Analyzing Utility Outcomes

Input: Utility score u, Threshold T
1: if u ≥ T then
2: Output: “High DFR.”
3: else
4: Output: “DFR improvement required.”
5: Invoke Algorithm 4 for targeted metric review.

Figure 4. Expert-driven weight calculation workflow for MITRE ATT&CK tactics.
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Algorithm 4 Identify Areas of Improvement

Input: Metrics array M, Threshold T
Output: List of metrics to enhance

1: improvement_areas← empty list
2: for each metric in M do
3: if metric score < T then
4: Append metric to improvement_areas
5: if improvement_areas ̸= ∅ then
6: Output: improvement_areas
7: else
8: Output: “No major improvement areas identified.”

return improvement_areas

3.6. Identify Areas of Improvement

Algorithm 4 identifies metrics scoring below threshold, guiding readiness enhancement efforts.

3.7. Prioritizing DFR Improvements

Enhancing DFR requires strategically targeting metrics within the utility function that have the
greatest potential impact. Calibration with real-world experimental data ensures the validity of the
model, aligning the results with operational realities [53].

To systematically determine improvement priorities, we apply the AHP, a structured multi-criteria
decision framework that combines quantitative and qualitative assessments [54]. AHP provides a
mathematical basis for ranking metrics, particularly highlighting low-scoring factors with high weight
(Figure 5).

Figure 5. Attacker and defender metric weights derived via AHP.

3.7.1. AHP Methodology for Weight Determination

To derive the specific weights wi and wj in the attacker and defender utility functions from
Equations 8 and 9, we proceed as follows:

1. Expert Pairwise Judgments: Ten domain experts completed two 16× 16 pairwise comparison
matrices (PCMs), one each for attacker and defender metrics. Entries aij were scored on the Saaty
scale (1/9–9), with reciprocity enforced via aji = 1/aij. Element-wise geometric means across all
expert inputs were computed:

āij =

(
10

∏
k=1

a(k)ij

)1/10

(10)

2. Eigenvector-Based Weight Derivation: For each consensus matrix Ā, we solved Āw = λmaxw
and normalized w such that ∑i wi = 1. These normalized weights are visualized in Figure 5.
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3. Weight Consolidation: Consensus weights were tabulated in Table 6 to integrate directly into the
utility functions.

4. Consistency Validation: We calculated the Consistency Index (CI) and Consistency Ratio (CR)
using CI = (λmax − n)/(n− 1) with n = 16 and RI = 1.59 [50]. Both attacker and defender
PCMs achieved CR < 0.1:

• Attacker PCM: λmax = 16.32, CI = 0.0213, CR = 0.038
• Defender PCM: λmax = 16.3157, CI = 0.0210, CR = 0.0132

Table 6. AHP-derived metric weights for attacker and defender utility functions.

Metric (Attacker) Weight Metric (Defender) Weight
ASR 0.1094 L 0.0881
RE 0.0476 I 0.0881
ST 0.0921 D 0.0423
DEE 0.0887 VDCC 0.0642
TTE 0.0476 E 0.0461
EC 0.0887 IR 0.0881
AR 0.0814 DR 0.0481
RT 0.0476 NF 0.0819
IA 0.0921 ST 0.0819
P 0.0814 LR 0.0481
AD 0.0571 A 0.0557
DN 0.0264 C 0.0460
LG 0.0433 T 0.0693
CB 0.0262 R 0.0531
FG 0.0210 V 0.0423
RP 0.0487 P 0.0557

Reporting Precision and Repeated Weights

Weights in Table 6 are shown to four decimals for readability. Because (i) judgments use a discrete
1–9 Saaty scale and (ii) we aggregate experts multiplicatively via geometric means, priority-vector
components can legitimately cluster; rounding can therefore make nearby values appear equal (e.g.,
0.0881 repeated). We provide six-decimal weights in Table S1; except where experts explicitly judged
equal importance (yielding proportional rows/columns and thus equal eigenvector components),
clustered entries separate at higher precision. Both aggregated PCMs satisfy the usual AHP criterion
(CR < 0.10).

Plausibility of Small and Similar CR Values

For each consensus PCM, we compute CI = (λmax − n)/(n− 1) and CR = CI/RI with n=16
and RI=1.59. Our consensus matrices yield λmax=16.3200 and 16.3157, hence CI=0.02133, 0.02105
and CR=0.038, 0.0132. Low and similar CRs are expected under log-space geometric aggregation,
which reduces dispersion and improves consistency across both PCMs produced by the same expert
panel and protocol.

Additional AHP Diagnostics and Robustness

As robustness checks, we (i) recomputed priorities using the logarithmic least-squares (row
geometric mean, LLSM) method and obtained cosine similarity > 0.999 with the eigenvector solution
as well as identical top-k rankings; (ii) reported Koczkodaj’s triad inconsistency and the geometric
consistency index (GCI) for the consensus PCMs (Table S2); (iii) performed a local perturbation study
(1,000 runs) that jitters entries by ±1 Saaty step and applies ±5% multiplicative noise, observing
median Spearman rank correlation ρ ≥ 0.95 and CR ≪ 0.10 (Figure S1); and (iv) summarized per-
expert consistency via CR distributions, where aggregation reduces inconsistency (Figure S2).
Precision note. Values are rounded to four decimals for readability. Six-decimal weights are provided
in Table S1; apparent duplicates at four decimals are either rounding artifacts or reflect intended
equal-importance judgments.
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3.7.2. Prioritization Process

1. Identify metrics with high weight but low scores.
2. Assess potential readiness gains from targeted improvement.
3. Develop tailored enhancement strategies considering cost, time, and resource constraints.
4. Implement, monitor, and iteratively refine improvements.

3.7.3. DFR Improvement Algorithm

Algorithm 5 DFR Improvement Plan

Input: priorityList of metrics for improvement
Output: Structured DFR action plan

1: Initialize improvementList← empty
2: for each metric in Utility Function do
3: scoreWeight← score × weight
4: Append (metric, score, weight, scoreWeight) to improvementList
5: Sort improvementList ascending by scoreWeight
6: for each metric in improvementList do
7: if feasibility check passes (cost/time/resources) then
8: Add to priorityList
9: for each metric in priorityList do

10: Implement improvement strategy
11: Monitor resulting metric score changes
12: Adjust strategy as required

This process ensures high-impact improvements are implemented first, maximizing readiness
gains within resource constraints.

3.8. Reevaluating the DFR

Following improvement implementation, the system’s forensic readiness is reevaluated by com-
paring updated utility scores to baseline values. An increased score confirms readiness enhancement,
whereas stagnant or diminished scores indicate the need for further targeted measures.

This reevaluation provides a quantitative, evidence-based feedback loop, reinforcing decision-
making grounded in rigorous analysis. A comprehensive understanding of potential threats, combined
with expertise in defensive and forensic techniques, enables organizations to continually strengthen
preparedness and accelerate investigative processes.

4. Results
This section presents a detailed analysis of cyber threat dynamics, emphasizing the interplay

between attacker tactics and defender strategies. It integrates empirical data, game-theoretic insights,
and readiness evaluation to examine how different strategic behaviors influence DFR. Our findings
illustrate the alignment between simulated outcomes and practical cybersecurity trends, providing a
comprehensive understanding of real-world implications.

4.1. Data Collection and Methodology

Data were collected from the MITRE ATT&CK and MITRE D3FEND matrices, which are widely
adopted frameworks for classifying attacker tactics and defensive countermeasures. The dataset
includes tactics from several Advanced Persistent Threat (APT) groups: LeafMiner, SilentLibrarian,
Oilrig, AjaxSecurityTeam, MosesStaff, Cleaver, CopyKittens, APT33, APT39, and MuddyWater.

Each identified tactic from ATT&CK was systematically mapped to its corresponding D3FEND
countermeasure, establishing a one-to-one relationship between attacker and defender behaviors. This
mapping enabled a comparative study across multiple layers of readiness and adaptive response.
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4.2. Analysis of Tactics and Techniques

Figure 6 illustrates the interplay between D3FEND and ATT&CK tactics for selected APT groups. The
distribution indicates dominant and underrepresented strategies: detection and modeling are prominent in
Command-and-Control operations, while reconnaissance and resource development show fewer defensive
associations. Such variations highlight asymmetrical emphasis in current cybersecurity practices.

Figure 6. Mapping of D3FEND and ATT&CK tactics across APT groups.

The frequency analysis of attacker methodologies (Figure 7) reveals which ATT&CK tactics recur
most frequently, offering insights into adversarial preferences and operational focus.

Figure 7. Frequency of ATT&CK tactics across APT groups.

4.3. DFR Metrics Overview and Impact Quantification

Our analysis employs a set of 32 DFR metrics—16 attacker-centric and 16 defender-centric—detailed
in Tables 4 and 5. Each metric is normalized and weighted according to expert-driven AHP priorities.

The aggregate utility scores are computed as weighted sums of these metric values (Equations 8
and 9). Simulation studies compare baseline and post-intervention scenarios by calculating the relative
reduction in attacker success rate as:

Reduction (%) = 100×
Successbaseline − Successpost

Successbaseline

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 October 2025 doi:10.20944/preprints202510.1285.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.1285.v1
http://creativecommons.org/licenses/by/4.0/


25 of 40

For example, SMEs with limited logging capabilities exhibit attacker success rates 15–25% higher
than SMB counterparts. Strategic improvements focusing on logging and forensic data preservation
reduce attacker success by up to 30%, validating the efficacy of equilibrium-informed resource allocation.

This explicit linkage confirms the abstract’s key quantitative claims, grounded in our comprehen-
sive DFR metric framework and empirical simulations.

4.4. Attackers vs. Defenders: A Comparative Study

We analyzed how defensive techniques correspond to attacker strategies in frequency and efficacy.
Figure 8 shows the distribution of D3FEND methods, such as Detect, Harden, Model, Evict, Isolate, and
Deceive.

Our results indicate that attackers most frequently employ the Credential Access technique, with
Impact-related tactics demonstrating the highest success rates. On the defense side, Detect emerged as
the most frequently employed strategy, albeit with data limitations for the Impact category within the
MITRE frameworks.

Figure 8. Frequency of defensive tactics based on MITRE D3FEND.

4.5. Game Dynamics and Strategy Analysis

The PNE analysis indicates that the Impact strategy for attackers and the Detect strategy for
defenders form the dominant equilibrium. MNE results further demonstrate that attackers diversify
tactics in response to defender adaptations, while defenders strategically redistribute effort based on
attack probability.

Both analyses align with empirical evidence, showing that strategic flexibility—not rigid plan-
ning—enhances readiness. Convergence between theoretical modeling and real-world data reveals
interdependencies between adaptive behaviors, informing more resilient DFR optimization frameworks.

While support enumeration formally identifies the PNE at the Attacker strategy ’Impact’ paired
with the Defender strategy ’Detect’, the dynamic convergence analysis reveals that early trajec-
tory states—starting from uniform or neutral mixed strategies—tend to gravitate toward the ’Com-
mand_and_Control’ strategy for the attacker paired with ’Detect’ for the defender. This suggests that
during the learning or adaptation phase, the system often stabilizes near this local attractor before
potentially progressing to the PNE or possibly remaining trapped depending on the’ adaptation
dynamics and information of the players. Therefore, both states are significant: the PNE represents the
theoretically stable solution assuming full rationality and optimal play, whereas the observed conver-
gence behavior reflects realistic intermediate strategic positioning players may occupy during actual
cybersecurity engagements. Recognizing this duality informs defenders that while ’Impact/Detect’ is
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a strategic target equilibrium, adaptive defense must also address the commonly emerging patterns
around ’Command_and_Control/Detect’ to guide attackers toward less damaging behaviors.

4.6. Real-World Case Assessment

Ten real-world case studies were used to validate the effectiveness of our proposed framework by
comparing readiness scores before and after implementing the model (Tables 7–8).

Table 7. DFR Scores Before Implementation of the Proposed Framework

File No. L I D VDCC E IR DR NF ST LR A C T R V P

case1 0.5 0.6 0.3 0.4 0.5 0.6 0.2 0.5 0.2 0.6 0.7 0.2 0.6 0.1 0.2 0.4
case2 0.1 0.2 0.7 0.6 0.1 0.2 0.6 0.1 0.6 0.4 0.2 0.6 0.2 0.1 0.6 0.5
case3 0.6 0.1 0.6 0.5 0.6 0.4 0.2 0.2 0.6 0.1 0.6 0.1 0.2 0.6 0.1 0.6
case4 0.7 0.2 0.2 0.7 0.2 0.6 0.4 0.6 0.2 0.1 0.2 0.6 0.1 0.2 0.6 0.2
case5 0.7 0.6 0.3 0.5 0.6 0.7 0.4 0.2 0.6 0.3 0.6 0.2 0.1 0.6 0.2 0.3
case6 0.5 0.7 0.5 0.7 0.5 0.4 0.6 0.6 0.3 0.2 0.6 0.1 0.6 0.2 0.4 0.6
case7 0.4 0.6 0.3 0.6 0.7 0.6 0.2 0.2 0.7 0.6 0.2 0.7 0.6 0.2 0.5 0.4
case8 0.1 0.2 0.6 0.5 0.6 0.2 0.5 0.4 0.2 0.6 0.1 0.2 0.6 0.7 0.6 0.2
case9 0.6 0.3 0.2 0.6 0.2 0.3 0.6 0.6 0.4 0.2 0.6 0.3 0.2 0.6 0.2 0.5

case10 0.5 0.6 0.3 0.2 0.6 0.2 0.7 0.2 0.5 0.6 0.2 0.4 0.2 0.6 0.5 0.2

Table 8. DFR Scores After Implementation of the Proposed Framework.

File No. L I D VDCC E IR DR NF ST LR A C T R V P

case1 0.8 0.8 0.7 0.9 0.8 0.8 0.7 0.9 0.7 0.6 0.8 0.7 0.8 0.7 0.7 0.7
case2 0.9 0.8 0.9 0.8 0.7 0.9 0.7 0.8 0.6 0.7 0.7 0.8 0.7 0.6 0.6 0.8
case3 0.8 0.7 0.8 0.9 0.8 0.9 0.8 0.9 0.7 0.8 0.8 0.7 0.7 0.7 0.8 0.7
case4 0.8 0.9 0.9 0.8 0.7 0.9 0.9 0.8 0.7 0.7 0.7 0.8 0.7 0.7 0.6 0.8
case5 0.7 0.7 0.9 0.7 0.8 0.9 0.7 0.9 0.8 0.8 0.7 0.7 0.6 0.8 0.7 0.7
case6 0.7 0.8 0.8 0.9 0.7 0.8 0.6 0.9 0.6 0.7 0.6 0.8 0.7 0.9 0.7 0.7
case7 0.8 0.7 0.9 0.7 0.6 0.9 0.8 0.9 0.7 0.8 0.7 0.7 0.8 0.7 0.8 0.8
case8 0.7 0.6 0.9 0.8 0.8 0.9 0.8 0.8 0.8 0.7 0.7 0.8 0.7 0.6 0.8 0.7
case9 0.9 0.7 0.8 0.7 0.7 0.9 0.7 0.8 0.7 0.8 0.8 0.7 0.6 0.7 0.7 0.7

case10 0.8 0.8 0.9 0.7 0.7 0.9 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.8 0.6 0.8

A comparative visualization (Figure 9) shows measurable improvement in post-implementation
readiness scores for most metrics, validating the framework’s effectiveness.

Figure 9. Mean readiness score before and after implementation.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 October 2025 doi:10.20944/preprints202510.1285.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.1285.v1
http://creativecommons.org/licenses/by/4.0/


27 of 40

4.7. Sensitivity Analysis
4.7.1. Local Perturbation Sensitivity

We assess ranking robustness for both attacker and defender criteria using local perturbations
of the aggregated AHP pairwise comparison matrices. For each metric i in turn, all entries in the i-th
row/column (i.e., all comparisons involving i) are shifted by exactly one step on the Saaty 1–9 scale
(up or down with equal probability), reciprocity is re-enforced, and a multiplicative uniform noise
of ±5% is applied. We repeat this R = 200 times per metric and recompute the principal-eigenvector
weights after each perturbation. The stability of metric i is quantified as

Stabilityi =
1
n

n

∑
j=1

∣∣∣rank(i)
j − rank(orig)

j

∣∣∣,
where rank(orig) are ranks under the unperturbed matrix and rank(i) are ranks after perturbing metric
i. Lower values indicate higher rank stability. The combined results for attacker (orange) and defender
(blue) metrics are shown in Figure 10. In our data several metrics (e.g., ASR on the attacker side and
L_d on the defender side) exhibit relatively low average rank changes.

Figure 10. AHP-based rank-stability under ±1 Saaty step plus ±5% noise (lower bars = more stable).

4.7.2. Monte Carlo Simulation

To examine how uncertainty in metric levels affects overall readiness, we run a Monte Carlo
simulation with N = 20,000 draws. For each run we sample attacker and defender metric values
independently from [0, 1] and compute weighted scores using the AHP-derived weights. We define
readiness as

Readiness = ∑
k

w(d)
k x(d)k − ∑

ℓ

w(a)
ℓ x(a)

ℓ ,

it means that defender score minus attacker score. We quantify each metric’s global sensitivity as
the absolute Pearson correlation between the metric value and the readiness score. Figure 11 reports
these correlations (higher bars indicate stronger influence). Figures 12 and 13 visualize the bivariate
relationships for each side.

Parameters including Collaboration (CB), Reputation and Prestige (RP), and Volatile Data Capture
Capabilities (VDCC) had lower sensitivities (Figure 12), but their presence contributes to broader defense
stability.
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Figure 11. Global sensitivity of parameters to readiness (absolute Pearson correlations).

Figure 12. Relationship between attacker parameters and readiness scores.

Figure 13. Relationship between defender parameters and readiness scores.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 October 2025 doi:10.20944/preprints202510.1285.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.1285.v1
http://creativecommons.org/licenses/by/4.0/


29 of 40

Overall, a few high-sensitivity metrics drive most of the variability in readiness, while the
remaining ones provide complementary signal that stabilizes performance.

4.8. Distribution of Readiness Score

The histogram in Figure 14 displays the standardized (z-scored) readiness values, z = (x− µ)/σ,
centered at zero. Because readiness is defined as defender minus attacker score, the raw values
lie approximately in [−1, 1]; standardization clarifies relative deviations from the mean, hence the
presence of both negative and positive values. The near-symmetric shape indicates a balanced spread
around the average level of preparedness, with low-frequency tails representing unusually weak or
unusually strong cases.

Figure 14. Distribution of readiness scores across evaluated cases.

Key observations include:

• Central Peak at 0.0: A high frequency around 0.0 indicates balanced readiness in most systems.
• Symmetrical Spread: Even tapering on both sides suggests system stability across environments.
• Low-Frequency Extremes: Outliers at the tails (−0.3 and +0.3) denote rare but critical deviations

requiring targeted intervention.

This symmetrical distribution implies consistent readiness performance with occasional excep-
tional cases—either highly prepared or notably weak systems. When combined with sensitivity
outcomes, this distribution reinforces the importance of continuous evaluation, adaptive planning,
and targeted investment in high-impact metrics to sustain forensic readiness.

5. Discussion
Applying the proposed game-theoretic framework within an organizational cybersecurity context

entails multiple phases and distinct challenges. Figure 15 could visualize these steps, which are
summarized as follows:
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Figure 15. Implementation roadmap and outcomes. Left: key adoption challenges. Center: phased workflow for
deploying the game-theoretic DFR framework. Right: expected outcomes. Bottom band: cross-cutting enablers
(policy, collaboration, upskilling, and measurement).

1. Implementation Challenges: Real-world adoption may encounter barriers such as limited
resources, integration costs, and the need for game theory expertise. Organizational resistance to
change and adaptation to new analytical frameworks are additional challenges.

2. Integration with Existing Tools: The framework can align synergistically with existing platforms
such as threat intelligence systems, SIEM, and EDR tools. These integrations can enhance
decision-making and optimize forensic investigation response times.

3. Decision Support Systems: Game-theoretic models can augment decision support processes by
helping security teams prioritize investments, allocate resources, and optimize incident response
based on adaptive risk modeling.

4. Training and Awareness Programs: Building internal capability is crucial. Training programs
integrating game-theoretic principles into cybersecurity curricula can strengthen decision-making
under adversarial uncertainty.

5. Collaborative Defense Strategies: The framework supports collective defense through shared in-
telligence and coordinated responses. Collaborative action can improve deterrence and resilience
against complex, multi-organizational threats.

6. Policy Implications: Incorporating game theory into cybersecurity has policy ramifications,
including regulatory alignment, responsible behavior standards, and ethical considerations
regarding autonomous or strategic decision models.

7. Case Studies and Use Cases: Documented implementations of game-theoretic approaches
demonstrate measurable improvements in risk response and forensic readiness. Future research
can expand these to varied industry sectors.

8. Future Directions: Continued innovation in game model development, integration with AI-
driven threat analysis, and tackling emerging cyber challenges remain promising directions.

While adoption may face organizational or technical barriers, the approach remains adaptable.
Incorporation with SIEM, EDR, and threat intelligence workflows allows for effective deployment,
while targeted training mitigates skill gaps. Ultimately, these methods can significantly enhance
decision support and defense coordination across security ecosystems.

5.1. Forensicability and Non-Forensicability

The dual concepts of forensicability and non-forensicability capture the degree to which digital
systems are prepared to support forensic investigation and incident response.

Non-forensicability refers to an environment’s inability to effectively preserve or provide forensic
evidence, typically arising from poor data retention, weak logging, or compromised evidence integrity.
It represents a subjective assessment grounded in measurable deficiencies of DFR. Quantitatively, this
can be evaluated via parameters such as log resolution, retention time, or audit trail completeness.

Conversely, forensicability characterizes systems that exhibit the structural and procedural maturity
necessary for reliable forensic investigations. Hallmarks of forensicable systems include secure log
management, redundancy in evidence capture, and adherence to recognized forensic standards. These
factors not only strengthen internal visibility but also ensure evidence admissibility in legal contexts.
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For organizations, enhancing forensicability means institutionalizing proactive DFR prac-
tices—ensuring data capture, protection, and retrieval mechanisms are integral to operations. Continu-
ous assessment through forensic readiness metrics helps organizations transition from fragile, reactive
postures to resilient, evidence-supported defenses.

5.2. Evolutionary Game Theory Analysis

Using Evolutionary Game Theory (EGT) enables modeling of how attacker and defender strategies
evolve concurrently over time. This approach captures adaptation cycles that traditional static game
models overlook.

The simulation results in Table 9 and Figure 16 illustrate how strategy populations change across
generations. Attackers and defenders adjust probabilistically based on observed payoffs, with defender
readiness influencing long-term stability.

Table 9. Simulation Results Based on Evolutionary Game Theory.

Resources Defenders Attackers Scenario Final Value Avg. Attacker Strategy Avg. Defender Strategy Avg. Readiness

1 10 5 a 0.56 0.84 – 0.00
1 15 5 b 0.52 0.94 – 0.00
1 25 5 c 0.61 0.69 – 0.00
3 10 5 d 0.96 0.58 – 0.00
3 25 5 f 1.00 1.00 – 0.00
5 15 5 h 0.91 0.75 – 0.03

Figure 16. Evolution of attacker and defender strategies in EGT simulation.

Key insights derived from EGT include:

• Evolutionary Dynamics: Attackers and defenders co-adapt in continuous feedback cycles; the
success of one influences the next strategic shift in the other.

• Replication and Mutation: Successful tactics replicate, while mutations introduce strategic
diversity critical for both exploration and adaptation.

• Equilibrium and Stability: Evolutionary Stable Strategies (ESS) represent steady states where
neither party benefits from deviation.
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• Co-evolutionary Context: The model exposes the perpetual nature of cyber escalation, showing
that proactive defense and continuous readiness optimization are essential to remain resilient.

5.3. Attack Impact on Readiness and Investigation Phases

The simulation represented in Figure 17 demonstrates how attacks influence DFR through over-
lapping utility functions between attackers and defenders during investigation phases. Each incident
reveals opportunities for defenders to improve readiness, forming a feedback mechanism between
preparedness and investigative learning.

Figure 17. Effect of attacks on investigation phases: (a) Pareto chart; (b) Attacker and defender utility; (c) Utility
coordination visualization.

Observed overlaps indicate that investigation phases contribute directly to capability growth—highlighting
that post-incident analysis enriches strategic defense planning and improves future preparedness.

5.4. Readiness and Training Level of the Defender

Simulations comparing varying defender experience levels (Junior, Mid-level, Senior) reveal a
direct correlation between training maturity and overall forensic readiness (Figure 18). Higher training
levels correlate with improved detection accuracy and evidence capture, illustrating that defensive
effectiveness is both strategic and skill-dependent.
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Figure 18. Defender readiness vs. training level in three maturity regimes: (a) Junior+Mid+Senior, (b) Mid+Senior,
and (c) Senior.

5.5. Attack Success and Evidence Collection Rates

Monte Carlo simulations of attack outcomes (Table 10) show that higher attacker capability in-
creases success rates, while robust forensic processes substantially raise evidence collection probability
across scenarios.

Table 10. Simulation results (mean ± 95% CI; N = 50,000 trials per setting).

Low Medium High

Attack success rate 0.25 ± 0.0038 0.53 ± 0.0044 0.75 ± 0.0038
Evidence collection rate 0.93 ± 0.0022 0.96 ± 0.0017 0.94 ± 0.0021

5.6. Comparative Analysis in SMB and SME Organizations

Recognizing that SMEs and SMBs differ in resource availability and defensive maturity, a com-
parative simulation was conducted (Tables 11–12). Results show that SMBs typically exhibit higher
resilience, yet both types face elevated risks under “irrational” attacker behaviors.

Table 11. Simulation results of attack success rate for SME and SMB organizations.

ID SME SMB Impact metrics
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.
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.
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SS

W
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d
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il.

C
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f.

In
te

g.

0 DDoS 0.75 1.12 High 7 DDoS 0.75 1.12 High 7 1.125 0.8 0 0
1 SQLI 0.75 1.12 High 9 SQLI 0.75 1.12 High 9 2.7 2.58 7.2 7.2
2 DDoS 0.75 1.12 Med 0 DDoS 0.75 1.12 Med 0 1.125 0.96 0 0
3 SQLI 0.75 1.12 High 9 SQLI 0.75 1.12 High 9 1.125 1.005 7.2 7.2
4 DDoS 0.75 1.12 Low 0 DDoS 0.75 1.12 Low 0 1.125 0.96 0 0
5 SQLI 0.75 1.12 Med 7 SQLI 0.75 1.12 Med 7 2.7 2.58 2.8 2.8

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 October 2025 doi:10.20944/preprints202510.1285.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.1285.v1
http://creativecommons.org/licenses/by/4.0/


34 of 40

Table 12. Simulation result of attack success rate—irrational behavior.

ID SME SMB Impact metrics
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0 SQLI 0.49 0.73 Med 7 SQLI 0.49 0.73 Med 7 0.73 0.61 2.8 2.8
1 DDoS 0.75 1.12 High 7 DDoS 0.75 1.12 High 7 1.12 0.80 0 0
2 DDoS 0.80 1.21 High 7 DDoS 0.80 1.21 High 7 1.21 0.80 0 0
3 SQLI 0.16 0.24 High 9 SQLI 0.16 0.24 High 9 0.24 0.12 7.2 7.2
4 SQLI 0.58 0.87 High 9 SQLI 0.58 0.87 High 9 2.45 2.33 7.2 7.2
5 DDoS 0.84 1.26 High 7 DDoS 0.84 1.26 High 7 2.84 0.80 0 0
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Figure 19. Impact comparison for SMEs and SMBs under SQLi and DDoS scenarios (baseline vs. irrational).

5.6.1. Irrational Attacker Behavior Analysis

By modeling partial randomness in adversarial decision-making, “irrational behavior” introduces
deviations from expected attacks, thus reflecting real-world unpredictability. Figures 20 and 21
illustrate the expanded range of outcomes.
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Figure 20. Impact of irrational attacker behavior on SQLi and DDoS for SME and SMB simulations.
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Figure 21. Behavioral distribution under irrational attack scenarios for SMEs and SMBs.

This model highlights the necessity for robust intrusion detection, endpoint monitoring, and
anomaly-based analytics to counteract unpredictable threats and enhance resilience in both small- and
mid-scale organizations.

5.7. Limitations and Future Work

While this research offers a structured quantitative contribution to DFR and security strategy
development, certain limitations acknowledge the boundaries of current modeling:

• Model Complexity: Real-world human elements and deep organizational dynamics may extend
beyond current model parameters.

• Data Availability: Reliance on open-source ATT&CK and D3FEND datasets limits coverage of
emerging threat behaviors.

• Computational Needs: Evolutionary modeling and large-scale simulations require high-
performance computing resources.

• Expert Bias: AHP-based weighting depends on expert judgment, introducing potential subjective
bias despite structured controls.

Future research could pursue:

• Real-time Adaptive Models: Integrating continuous learning to instantly adapt to threat changes.
• AI/ML Integration: Employing predictive modeling for attacker intent recognition and defense

automation.
• Cross-Organizational Collaboration: Expanding to cooperative game structures for shared threat

response.
• Empirical Validation: Conducting large-scale quantitative studies to reinforce and generalize

model applicability.

6. Conclusion
This study presents a comprehensive game-theoretic framework that formalizes classical strate-

gic principles, notably those of Sun Tzu, into a structured model applicable to contemporary cyber
conflict analysis. By modeling the strategic interplay between attackers and defenders, the frame-
work bridges traditional strategic insight and modern decision-theoretic planning. It integrates
MITRE ATT&CK–D3FEND mappings, incorporates readiness scoring across simulated organizational
scenarios, and aligns these insights with quantitative game-theoretical analyses.

Our results identify one PNE and five MNEs. The PNE emphasizes the defender’s Detect strategy
as a robust counter to attackers’ Impact-focused operations. MNE findings further suggest that defend-
ers should allocate approximately 90–95% of their forensic effort toward modeling controls, preserving
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a smaller fraction for real-time detection. This balance introduces useful strategic unpredictability,
increases the attacker’s required effort, and diminishes overall intrusion success probabilities.

Operationally, these insights were translated into a four-phase assessment process encompassing
readiness scoring, maturity classification, gap identification, and roadmap prioritization. Through
this practical translation, our model enables measurable digital forensic improvements. Empirical
evaluation revealed that SMEs face attacker success rates 15˘25 percentage points higher than those
of SMBs under similar threat conditions. This gap largely reflects foundational deficiencies—such as
inadequate logging, inconsistent volatile-data retention, and weak evidence-integrity controls. When
SMEs strategically invested in high-impact defensive measures, including enhanced logging and
forensic data preservation, average attacker success rates decreased by up to 30%, demonstrating the
tangible value of equilibrium-based allocation.

6.1. Limitations

The framework’s accuracy depends on the quality and granularity of metric data as well as
expert input for AHP weighting. Factors such as organizational diversity, resource variability, and
evolving adversary behaviors could influence transferability. Additionally, the assumption of static
utility parameters between iterations simplifies real-world dynamics, which are inherently fluid and
adaptive.

6.2. Future Research Directions

Building upon this foundation, several research extensions are envisaged:

• Extended Environmental Applications: Adapting the framework to cloud-native, IoT, and
blockchain ecosystems where architectural differences create distinct forensic challenges.

• Dynamic Threat Intelligence Integration: Employing real-time data feeds and AI-based analytics
to enable adaptive recalibration of utilities and strategy distributions.

• Standardized Readiness Benchmarks: Developing comparative industry baselines for forensic
maturity that support cross-organizational evaluation and improvement.

• Automated Response Coupling: Integrating automated incident response and orchestration tools
to bridge the gap between detection and remediation.

• Enhanced Evolutionary Models: Expanding evolutionary game formulations to capture longer-
term strategic co-adaptations between attackers and defenders.

• Large-Scale Empirical Validation: Conducting multi-sector, empirical measurement campaigns
to statistically validate and refine equilibrium predictions.

In conclusion, the proposed game-theoretic approach provides a mathematically grounded, strate-
gically informed basis for advancing DFR. By linking equilibrium analysis with empirical readiness
metrics, the framework offers a repeatable methodology for optimizing resource allocation, reducing
attacker advantage, and fostering systemic resilience against persistent and adaptive cyber threats.
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Abbreviations
The following abbreviations are used in this manuscript:

AHP Analytic Hierarchy Process
APT Advanced Persistent Threat
ATT&CK MITRE Adversarial Tactics, Techniques, and Common Knowledge
CASE Cyber-investigation Analysis Standard Expression
CIA Confidentiality, Integrity, Availability (triad)
CSIRT Computer Security Incident Response Team
CVSS Common Vulnerability Scoring System
D3FEND MITRE Defensive Countermeasures Knowledge Graph
DFIR Digital Forensics and Incident Response
DFR Digital Forensic Readiness
DDoS Distributed Denial of Service
EDR Endpoint Detection and Response
EGT Evolutionary Game Theory
ESS Evolutionarily Stable Strategy
IDPS Intrusion Detection and Prevention System
JCP Journal of Cybersecurity and Privacy
MCDA Multi-Criteria Decision Analysis
MNE Mixed Nash Equilibrium
NDR Network Detection and Response
NE Nash Equilibrium
PNE Pure Nash Equilibrium
SIEM Security Information and Event Management
SMB Small and Medium Business
SME Small and Medium Enterprise
SQLi Structured Query Language injection
TTP Tactics, Techniques, and Procedures
UCO Unified Cyber Ontology
XDR Extended Detection and Response

Appendix A. Simulation Model and Settings
Readiness Components

Let T ∈ [0, 1] (training), E ∈ [0, 1] (experience), and V ∈ [0, 1] (attacker capability; larger is
stronger). We define

C = wT T + wAw Aw, F = wE E + wP P,

where Aw is security awareness and P denotes forensics procedures. We use (wT , wAw) = (0.7, 0.3)
and (wE, wP) = (0.8, 0.2), with C, F ∈ [0, 1].

Outcome Probabilities

For attacker strength s ∈ {Low, Med, High},

pattack(s | C) = clip(bs [1− α (C− µC)], 0, 1), (A1)

pcollect(s | F, κ) = clip(es + β (F− µF)− γ (κ − µκ), 0, 1), (A2)
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where (bLow, bMed, bHigh) = (0.25, 0.53, 0.75), (eLow, eMed, eHigh) = (0.93, 0.96, 0.94), α = 0.5, β = 0.20,
γ = 0.25, and µC = µF = 0.75, µκ = 0.60 are centering constants. Evidence complexity κ ∼
U (0.30, 0.90). The function clip(x, 0, 1) truncates to [0, 1].

Sampling and Maturity Regimes

For each trial we draw T, A, E, P from regime-specific ranges:

• Junior+Mid+Senior: T ∼ U (0.40, 0.90), E ∼ U (0.40, 1.00);
• Mid+Senior: T ∼ U (0.60, 0.90), E ∼ U (0.60, 1.00);
• Senior: T ∼ U (0.70, 0.90), E ∼ U (0.70, 1.00).

Attacker capability V used in Figure 18 is sampled per point to shape the green curve.

Experiment Size and Uncertainty

We run N = 50,000 trials per attacker strength with seed 42. Rates are reported as p̂ ±
1.96

√
p̂(1− p̂)/N (95% CI).
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