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Abstract: This paper is our attempt on the basis of physical theory to bring more clarification on the
question “What is life?” formulated in the well-known book of Schrédinger in 1944. According to
Schrodinger, the main distinguishing feature of biosystem’s functioning is the ability to preserve its
order structure or, in the mathematical terms, to prevent increasing of entropy. Since any biosystem
is fundamentally open, it is natural to use open system’s theory. However, Schrodinger’s analysis
shows that the classical theory is not able to adequately describe the order-stability in a biosystem.
Schrodinger should also appeal to the ambiguous notion of negative entropy. We suggest to apply
the quantum theory. As is well-known, behaviour of the quantum von Neumann entropy crucially
differs from behaviour of the classical entropy. We consider a complex biosystem S composed of
many subsystems, say proteins, or cells, or neural networks in the brain, i.e., S = (5;). We study
the following problem: if the composed system S can preserve the “global order” in the situation of
increase of local disorder and if S can preserve its entropy while some of S; increase their entropies
We show that within quantum information theory the answer is positive. The significant role plays
entanglement of the subsystems states. In the absence of entanglement, increasing of local disorder
generates disorder increasing in the compound system S (as in the classical regime).

Keywords: biosystems; order-stability; classical versus quantum entropy; open quantum systems;
quantum channel; entanglement

1. Introduction

This paper is motivated by Schrodinger’s book [2] in that he considered one of the most
fundamental and intriguing problems of modern science: “What is life?” This was the attempt
to proceed towards clarification of this problem on the basis of quantum physics and thermodynamics.

Of course, from the purely biological viewpoint this attempt to resolve the basic problem of
biology in the purely physical framework may be considered as very naive. Schr’odinger by himself
pointed out the casualty of his approach. At the same the treatment of “What is life?” question in the
purely physical framework can have its advantages; in particular, clarifying cleaning the biological
details may enlighten a few basic issues related to this question.

1.1. Order-stability as a distinguishing feature of biosystems

Schrodinger tried to find analogies between physical and biological systems’ functioning. And he
emphasizes the amazing ability for order preservation as one of the basic features of functioning of biological
systems. He compares this feature of latter with thermodynamics of physical systems governed by the
Second Law of Thermodynamics:
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“What is the characteristic feature of life? When is a piece of matter said to be alive? It is alive
when it goes on ‘doing something’, moving, exchanging material with its environment, and so forth,
and that for a much longer period than we would expect of an inanimate piece of matter to ‘keep
going’ under similar circumstances.”

At the same time he stresses that, although any biosystem tries to minimize its coupling with
surrounding environment, a completely isolated biosystem is dead. Thus, biosystems form a subclass
of open systems that are weakly coupled with environments.

Entropy is the basic measure of disorder in physics and information theory. So, to be stable,
a biosystem should be able to control entropy and prevent its essential increasing. (It is clear that
the bio-entropy can fluctuate.) Schrodinger views the heuristic mechanism of entropy-stabilization
through its emission from a system S to the environment &, i.e., through increasing of disorder in £.
Such system’s behaviour doesn’t match the laws of physics [2]: “When a system that is not alive is
isolated or placed in a uniform environment, all motion usually comes to a standstill...” Schrodinger
continues to speculate and suggests that S absorbs the flow of “negative entropy” from £. From the
viewpoint of conventional physics, this notion is ambiguous and he points out that the mystery of life
cannot be explained without discovery of new physical laws.

1.2. Information biology and physics

The book [2] stimulated creation of a new area of science which is nowadays is known as
information biology by emphasizing that order stability or even its improvement for the alive-state
cannot be modelled solely in terms of the energy and matter flows between a biosystem S and
the environment £. Biosystems should be viewed as open systems interacting with the physical and
information components of the surrounding environment. Since 1970s, the information’s role was
highlighted in biology, see, e.g., the well known paper of Johnson [3] characterizing information
theory as a “general calculus for biology”. As was pointed by Gatenby and Frieden [4], “it is clear
that life without matter and energy is impossible, Johnson’s manuscript emphasizes that life without
information is likewise impossible. Since the article, remarkable progress has been made towards
understanding the informational fundament for life...” This information reconstruction of biology was
closely related to the similar process in physics, starting with Wheeler’s “It from bit” [5] to the recent
quantum information revolution. The latter led to information reconsideration of quantum foundations
[6]-[12]. Therefore, quantum information and open quantum systems [13] can contribute to modelling
of information interaction of the biosystem S and the environment £ (see monograph [14]).

1.3. Quantum-like models

This is a good place to make the remark on quantum and quantum-like modeling in biology. The first
one is known as quantum biophysics and it describes the genuine quantum processes in biosystems.
It operates on micro-scales, see, for example, the series of works [15]-[19] on modeling cognition
from genuine quantum physical processes in the brain. . Schrédinger’s book was the first step in
this direction. (Maybe the global aim of quantum biophysics is too ambitious - to reduce biological
functions, as say psychological functions, to quantum physical processes. The difference in scales, for
space, time, temperature, is too big.) In the quantum-like modeling, a biosystem is characterized from
the purely information processing viewpoint, i.e., its size and other scales, say of temperature, are not
important. As was shown in numerous studies (mainly in cognition, psychology, decision making, but
even microbiology) [20]-[61], in some contexts biosystems process information in accordance with the
quantum laws. Thus, they can be considered as quantum-like (although not genuinely quantum). In
this paper, we proceed in the quantum-like framework.

One may point to difference in the classical and quantum probabilistic descriptions [62-64] and
question applicability of quantum probability calculus and, hence, quantum information theory to
macroscopic biosystems. However, interrelation between these two descriptions is a complex problem
of quantum foundations which we are not able to discuss in this paper (see, e.g., [65]-[67]).
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1.4. Order-stability in a biosystem compounded of a few subsystems: quantum information approach

In this paper, we want to model the order stability inside of a complex biosystem S that is
composed of a few subsystems S;,i = 1,2..., N. We study the following problem of big complexity:

Can a composed system S = (S;) preserve the “global order” in itself, in spite of increase of local disorder
(i.e., in its subsystems)?

In the mathematical framework, this question is formulated as follows:
Can S = (S;) preserve its entropy while some of its subsystems S; (or even all) increase their entropies?

We show that within quantum information theory the answer is positive.

The key point is that in quantum theory the state of a compound system is not reduced to the
states of its subsystems. The entropy balance in S is not based on summation of the entropies generated
by subsystems. Here, the significant role is played by entanglement, nonclassical correlations between
the states of subsystems S; of S. In the absence of entanglement, entropy behaves classically: the
entropy of S equals the sum of entropies of S;.

We explore the following feature of quantum channels (dynamical maps describing the state
evolution): they can transfer non-entangled states into entangled. By using this feature we present the
scheme of the concrete quantum channels construction preserving the global entropy and increasing
all local entropies. The construction is technically quite complicated. We restrict considerations to
the case of two subsystems. We start with qubit state spaces of the subsystems and then consider the
general case of N-dimensional state spaces. Our construction is explicitly based on representation of
channels through orthonormal bases in the subsystems state spaces.

This construction of desired quantum channels is restricted to the unitary evolution of the S-state.
Generalization to non-unitary channels and complex systems with a large number of subsystems will
be presented in future publication.

Finally, we remark that our framework and the result on entropy-stability can be applied not
only to biosystemns compounded of subsystems, say organs compounded of cells or organisms
compounded of organs, but also to social science and management (see the paper of Lawless [58] who
also mentioned coupling with Schrédinger’s book [2]).

2. A few words about the quantum formalism

Denote by H a complex Hilbert space endowed with the scalar product (:|-). For simplicity, we
assume that it is finite dimensional. The space of density operators is denoted by & () The space of all
linear operators in H is denoted by the symbol £(7#). In turn, this is the complex Hilbert space with
the scalar product, (A|B) = TrA*B. We shall also consider linear operators acting in £(# ). They are
called superoperators.

A pure quantum state is represented by a vector |¢) € H that is normalized by 1, i.e., (¢|¢) = 1.
It can be represented as the density operator py = |¢) (4|, this is the orthogonal projector on the vector
|¢). States which are not pure are called mixed.

2.1. Von Neumann entropy

The von Neumann entropy is defined as
S(p) = —Trelne, 1)

where p is a density operator.
There exists an orthonormal basis (¢;) consisting of eigenvectors of p, i.e., pe; = pje; (where p; > 0
and Y; pj = 1). In this basis, the matrix of the operator p In p has the form diag(p; In pj; ) hence

S(p) = —ZP]‘ Inp;. 2)
j
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However, the von Neumann entropy has the Shannon form only w.r.t. this special basis.
We present three basic properties of the von Neumann entropy.

1. S(p) = 0if and only if p is a pure quantum state, i.e., p = |¢) (¢].

2. For a unitary operator U, S(UpU*) = S(p).

3. The maximum of entropy is approached on the state pgisorder = I/ N and S(pgisorder) = InN,
where N is the dimension of the state space.

It is natural to call pgisorder = I/ N the state of maximal disorder.

For an isolated quantum system, dynamics is represented by unitary evolution operator U(t).
Thus, in contrast to the classical case, the entropy of an isolated quantum system is not changed with time.
Hence, system’s order structure is preserved; disorder inside it is not increased with time. Behavior
of the quantum entropy significantly differs from behavior of the classical entropy. For the latter, the
Second Law of Thermodynamics implies entropy’s increase with time and, hence, destruction of order in
the system.

2.2. States of a compound system and its subsystems, entanglement

Let S = (51,52) be a compound system represented in Hilbert space H; ® Hy and let p €
S (H1 ® H2) . The states of its subsystems are calculated as the partial traces of p:

p1 = Try,p, p2 = Try,p, 3)

pi € 6 (H;).

Consider now a pure state of S that is factorisable w.r.t. the tensor product structure, i.e., |¥) =
[1) @ |ip,). States which are not represented in this form are called entangled. Entangled states plays
the crucial role in quantum information theory. In particular, this is the most important resource of
quantum computations. They represent the correlations between subsystems of a quantum system.
These correlations are nonclassical, in the sense that they cannot be adequately described by the
classical probability, the Kolmogorov measure-theoretic axiomatics [62].

The definition of entanglement can be generalized to mixed states. A state p € & (H1 ® Hyp) is
called separable if it can be represented in the form:

0= cimpl? @ pi™, @)
km

where pfj le s (Hi),i = 1,2. A compound state that cannot be represented in this form is called
entangled. However, in this paper we shall consider only entanglement of pure states.

Generally the entropies of the compound system S and its subsystems S; are constrained by the
inequality:
S(p2) = S(p1)| < S(p) < S(p1) + S(p2)- @)

If the state p is separable, then
S(p) = S(p1) +S(p2). (6)

This is the classical situation and the local entropy’s increase, in any subsystem, implies the global
entropy’s increase on the same amount. On the other hand, if the state p is entangled, then equality (6)
is violated; general inequality (5) permits consistent increase of the entropies of the both subsystems
without increase of the entropy of the compound system.

Consider now the pure state py = |'¥) (Y|, where [¥) € H1 ® Hj. The states of the systems S; are
pure if and only if |¥) is separable. Thus, for an entangled state py, the states p; are always mixed
states.

This fact is important for our further study. It implies that, for an entangled pure state, the
entropies of subsystem’s states S(p;) > 0, because p; is not pure.
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2.3. Open quantum system dynamics, quantum channels

Consider evolution of the state of the compound system S = (51,52), p(f) = A¢po and the
corresponding evolution of the states of S;,

pl(t) = TerAtPO; pz(t) = TTHlAtp(). (7)

In the framework of open quantum systems theory, for each ¢, state’s evolution of S is represented
by a quantum channel - trace-preserving completely positive map (superoperator) acting in the space
L (H1 ® Hz) . We remark that quantum channel Ay also generate quantum channels for subsystems’
states; they are given by superoperators

A1 = Trg, Avp1 @ 1, Apppr = Trg, Al @ po. 8)

Each subsystem S; of the compund system S can be considered as open quantum system. In the case
of the isolated system S, S, plays the role of the environment of 51 and vice verse. If S is not isolated,
the environment of S; includes S, and the environment of £g of S.

3. Formulation of the problem

We are interested in the condition of order-stability in the compound system S in the situation of
disorder-increasing in its subsystems S;, i.e., in the possibility that, for some t > 0,

S(pi(t)) > S(poi),i =1,2,but S(p(t)) = S(po). )

If the initial state of the compound system S is factorizable (non-entangled), i.e., pp = po1 ® po2, then
condition (9) can be rewritten as

S(Aipoi) > S(poi),i =1,2,but S(Atpo) = S(po), (10)

where subsystems’ quantum channels are defined by (8). In our model, we shall consider precisely this
case: non-entangled initial state pg of the compound system.

The simplest model of such behavior is based on the unitary evolution of S, i.e., one parameteric
group of unitary operators U; : H1 ® Hy — Hy ® Hy. In this case, Aypg = UipoU}. Such dynamics
transfers pure states into pure states. Hence, S(A¢po) = S(po)) = 0. If pg corresponds to a separable
pure state, then S(pg;) = 0,i = 1,2, as well.

If the quantum channel A; transfers a separable state into an entangled state, then p;(t),i = 1,2,
are mixed states and, hence, they have positive entropy. Thus, our desire is to construct a unitary
evolution operator that can transfer separable states into entangled states. It is well-known that such operators
exist and they are widely used in quantum computations. We shall construct the concrete operators
for state spaces of an arbitrary (finite) dimension. These operatores are explicitly expressed through
orthonormal bases in Hilbert spaces H; and entropy increase can be exactly calculated.

4. Complex systems

A biosystem S is typically composed of a large number of subsystems S;,i = 1,2, ..., M (say genes,
proteins, cells, organs, neural networks). Let subsystem S; is represented in Hilbert space H;. The
compound system S is represented in tensor product H = ®;—1#H;. For quantum state p € & (),
states of the subsystems are given by partial traces p; = Trg, LiHiP- Let Ay be a quantum channel
describing the dynamics of the compound state, p(f) = A¢p; then the states of subsystems evolves
as pj(t) = Tre,_ i, Apo- For the fixed subsystem Sj, the system S]’- = (Si)izj plays the role of its
environment (in the case of isolated S). We are interested in generalization of conditions (9), (10) for
i=1,2,.., M. However, even in the case M = 2 considered in this paper calculations are long. We do
not want to overshadow the main idea of compound-stability by even longer calculations. Although
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calculations for an arbitrary M are more complicated, but it is clear that desired quantum channles can
be constructed, especially for spaces of the dimension dim H = 2M, for M qubit spaces.

5. Quantum channel preserving compound system’s entropy, in spite increasing of subsystems’
entropies

Our constructions of the desired quantum channel for subsystem’s state spaces of dimensions
N = 2and N > 2 are different. In the latter case, the expressions for the von Neumann entropies of the
subsystems S;,i = 1,2, contain the factor log(N — 2). Therefore, we consider these cases separately.

5.1. Two subsystems with qubit state spaces

Let H; and H, be C% and {)x((f)> , ‘x%i) >} be a CONSin H; (i = 1,2). We define a completely
positive channel A* from & (H1 ® Hy) to & (H1 ® Hy) by

A" (o) =V (o) V*

where V is a linear map from H; ® H, to H1 ® Hy given by

V3 (R o) 47 7)) (6] o)
Az (7)o ) ) 7)) oo o
+ 1(x(()l)> ® x§2)> + x§1)> ® x(()z)> < gz)

L (0) 8 42 = 4 @ [x2)) (0] o (2
We remark that the operator V is unitary (see Lemma 1 in Appendix A). Thus this channel is

noiseless - it is given by the unitary dynamics.
Let ® be an initial compound state on 1 ® #H; denoted by

o= () ) (7] )

One has the von Neumann entropy of ® such as

M@ (x

S(®)=0
The two marginal states of ® are
=) () )

The von Neumann entropy of two marginal states p; and py are

S(p1) =0, S(p2) =0

The final compound state A* (®) transmitted through the CP channel is

A @) = /([ & ) + <) @ [2)) 5 (0] (2] + (V] ()

We emphasize that this is an entangled state.
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We also have the von Neumann entropy of A* (®) is
S(A* (@) =0=S5(P)
The two marginal states of A* (P) are
= H) 1)

The von Neumann entropy of two marginal states Ajp; and A are

S(Ajp1) = log2>S(p1)
S(Ayp2) = log2> S(p2)
5.2. Two subsystems with N-dimensional state spaces

We expand the above setting to N x N compound systems (N > 3).

= 31 )

7 of 19

N H\\ V! . . :
Let H; and Hjbe CV and {‘xk >} be a CONS in H; (i =1,2). We define a completely

positive channel A* from & (H; @ Hy) to & (H1 © Hy) by
A" (o) =V (o) V*
where V is a linear map from H; ® H to H1 ® H; given by

N-1

= Eomo (o

7

where

Pee) = 5 L e [57) @ |1k moan)

2
N
N2 i_
Qe = { 2 ({ ?) (k=0,1,2,--- ,N—1)
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vV o= ;<<N22> \x((f)>®‘x62)>+‘x§”>®‘x§2)>+-~+(x§)1>®\x§3)1>> <x(()1)‘®<x(()2)‘
2 () e )+ (SN2 Y o ) e s 1) ) (a1 (07
+% (‘x((ﬂ) ® x(()2)>+ ‘x§1)>® ‘x§2)>+...+ (_N;Z) xz(\}),1>® xﬁ)1>) <x(()1)‘ ®<x§11’
+% ((NZ—Z) ‘x51)>® ‘x§2>>+ ‘x§1)>®(x§2)>+---+ xz(vl),1>® x(()2)>) <x§1) ®<XS2)‘
e () @ )+ (552 W) o ) 4 ey e [5) ) (e (o)
+% ((x(()l)>® ) +[s0) @ [«2) 44 <_NZ—2> MR x(()z)>) (] ()|
+% ((—NZ_Z) ‘x61)>® ‘x§2)>+ ‘x§1)>®‘x§2)>+...+ x§11>® x§2)>) <x§1> ®<x(()2)‘
ry ()@ )+ (R ) [ e )+ ekl o <) ) (87 o ()
+% (‘x(()l)>® )x§2)>+ ‘x§1)>® ‘x§2)>+...+ <_N2_2) xg)_1>® x§2)>) <x§1) ®<x§3)_1’
e +
+% <( N2—2> ‘x[() >®‘xN 1> ‘ §)> ‘x82)>+...+ xﬁ),l>® x§)2>> <x(h})71 ®<x(()2)‘
2 (|s0) & [<2,) + ( )‘ ) o x4+ [0 e x§>2>> (0] (<)
TNt
2 () b)) o b o (52 ) o)) (o (o

The unitarity of the operator V is proved in Appendix B. Hence, this channel is noiseless.

Let ® be an initial compound state on #; ® #H; denoted by

o= ()2 1) (4] 1)

One has the von Neumann entropy of ® such as
S(®)=0
The two marginal states of @ are
=) (. =12 ()

The von Neumann entropy of two marginal states p; and p; are

S(p1) =0, S(p2) =0
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The final compound state A* (®) transmitted through the CP channel is
w@ = 2((NF) ) e )+ E e )
(N2 (o (] + E (7] ()

We also have the von Neumann entropy of A* (®) is
S (A" (@) =0 =5 (@)

The two marginal states of A* () are

o = O (5 ) )
o = G (5 ) O

The von Neumann entropy of two marginal states Ajp; and A are

* 2 I\]—l2 S8(N -1

S(A1p1) = ZlogN—(Tz)log(N—2)—%log2>S(pl)
§ 2(N—-1)° 8(N—1

S(A302) = 2logN — %log(N —-2)— %logZ > S (p2)

Consider the above general formulas for the case N = 3. Let ® be an initial compound state on

‘Hi ® Hy denoted by W 2 (1) (2)
o= () ) (] 57

One has the von Neumann entropy of ® such as
S(®)=0
The two marginal states of @ are

o =[") (=] e = [ (=]

The von Neumann entropy of two marginal states p; and p; are

$(p1) =0, S(p2) =0

The final compound state A* (®) transmitted through the CP channel is

i@ = () o)+ e 1)) o)
({47 (81 (| o P -3 () (2]

We also have the von Neumann entropy of A* (®) is

S(A* (®)) =0 =S (®)
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The two marginal states of A* () are

s = S0 (S ] )
M e v

The von Neumann entropy of two marginal states Ajp; and A3, are

7

1
S(Aip1) = 210g3—§10g2>5(p1)
S(A3p2) = 2log3— %logZ > S (p2)

6. Concluding discussion

Here we present a new approach to the problem of order-stability in biosystems formulated
by Schrodinger in 1944 [2]. This approach is based on the quantum-like paradigm realized in
the framework of the open quantum systems theory. The following particular problem is studied:
preservation of order-stability by biosystem S compound of subsystems performing some biological functions
generating disorder-increasing. In modelling we explored the features of quantum information processing,
especially constancy of an isolated quantum information system entropy and the possibility to generate
entangled states. The quantum-like model is purely informational, i.e., biosystems are considered as
information processors; for each subsystem S;, the rest of the compound system S is treated as the
information environment. The order-stability has the meaning of stability of information processing in S.
Thus, this paper is a part of the information approach to physics and biology, from Wheeler’s “It from
bit” [5] to the recent information interpretation of quantum theory [6]-[12] and Johnson’s emphasize that
life without information processing is impossible [3]. Once again, we stress that this approach is not
rigidly coupled to micro-world and it supports strongly the quantum-like paradigm - context sensitive
systems, e.g., biosystems can process information in accordance with the laws of quantum information theory.

In this paper, we consider the simplest situation of an isolated compound biosystem S. The next
step is modeling order stability of the quantum information state of a compound open system S
interacting with the information environment &s. Its state dynamics is non-unitary. In such a model,
disorder in the biosystem S is coming both from outside, namely from the information environment
&g, and from inside, that is to say, the subsystems S; of S. Of course, the phenomenon of life is not
reduced to order stability. But, even consistent modelling of information exchange stability in a
complex biosystem is a step towards clarification of this phenomenon. The authors hope that this
paper matches with Schrodinger vision [2] of information processes in biosystems (within modern
quantum information representation).

Appendix A: Unitarity of quantum channel: two dimensional state space

Consider the case of the qubit state spaces of subsystems S; and S; of the compound system S
and the quantum channel from section 5.1. We present the proof of its unitarity:

Lemmal VV=VV*=LQD
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Appendix B: Unitarity of the quantum channel: N-dimensional state space

Here we present the proof of unitarity of the quantum channel from section 5.2, i.e., for the
N-dimensional state spaces of two subsystems S; and S, of the compound system S.
Lemma2 VV=VV*=LR®1

Proof.
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