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Abstract: Extreme-mass-ratio inspirals (EMRIs) are significant observational targets for spaceborne

gravitational wave detectors, namely, LISA, Taiji, and Tianqin, which involve the inspiral of

stellar-mass compact objects into massive black holes with a mass range of approximately 104 ∼
107M⊙. EMRIs are estimated to produce long lived gravitational wave signals with more than 105

cycles before plunge, making them an ideal laboratory for exploring the strong-gravity properties

of the spacetimes around the MBHs, stellar dynamics in galactic nuclei, and properties of the

MBHs itself. However, the complexity of the waveform model, which involves the superposition

of multiple harmonics, as well as the high-dimensional and large-volume parameter space, make

the fully coherent search challenging. In our previous work, we proposed a 10-dimensional search

using Particle Swarm Optimization (PSO) with local maximization over the three initial angles. In

this study, we extend the search to an 8-dimensional PSO with local maximization over both the

three initial angles and the angles of spin direction of the MBH where the latter contribute a time

independent amplitude to the waveforms. Additionally we propose a 7-dimensional PSO search by

using a fiducial value for the initial orbital frequency and shifting the corresponding 8-dimensional

Time Delay Interferometry responses until a certain lag returns the corresponding 8-dimensional

log-likelihood ratio maximum. The reduced dimensionality likelihoods enable us to successfully

search for EMRI signals with duration of 0.5 years and signal-to-noise ratio of 50 within a wider

search range than our previous study. We discuss further developments, such as using a hierarchical

search to narrow down the search ranges of certain parameters, and applying Graphics Processing

Units to speed up the code. These advances aim to improve the efficiency and accuracy of the EMRI

search algorithm.

Keywords: LISA; gravitational waves; EMRI; PSO; likelihood ratio

1. Introduction

The extreme-mass-ratio inspirals (EMRIs) are sources of gravitational waves (GWs), where

stellar-mass compact objects (COs) are captured and spiral into massive black holes (MBHs) in the

centers of galaxies [1–3]. The emission of GWs gradually causes the eccentric orbit to shrink and

become more circular. During the last year of inspirals before plunge, it is estimated that over 105

cycles can be observed by space based GW observatories [4], such as Taiji [5,6], Tianqin [7] and

LISA [8]. This rich phase evolution information can be used to constrain gravity theories beyond

general relativity [9–11], test the no-hair theorem [12] and study the astrophysics of galaxies [13,14]

with a high precision. Therefore, EMRI data analysis becomes a crucial task.
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Time-frequency methods provide a straightforward solution for detecting high SNR signals

without the need for waveform models. Once the signal tracks in the time-frequency plane are well

fitted, the waveform models can be used to estimate a subset of source parameters [15,16]. The

advantage of this approach is that it is computationally cheap. However, the disadvantage is that it

requires a lot of tuning for the threshold fitting in the time-frequency plane, and it is difficult to detect

signals with low SNR. Recently, Convolutional Neural Network (CNN) based methods have been

developed, where different inputs such as time domain data [17], frequency domain data [18], and

time-frequency planes by Q-transform [19,20] are fed to the neural network. These methods provide

an alternative computationally efficient solution for EMRI data analysis, but they are still limited to

high SNR signals.

Template-based matched filtering is the best option for a deeper search in SNR, although it is

computationally expensive. In EMRI data analysis, accurate EMRI waveforms are quite complicated

and computationally expensive when considering the self-force of the COs [21]. As a result,

phenomenological waveforms from the kluge family are widely used at present in the development of

EMRI data analysis methods. The analytical kluge (AK) waveform [27] is used in the Mock LISA Data

Challenges (MLDCs) [22–25] and the latest LISA Data Challenge (LDC) [26], while the augmented

analytical kluge (AAK) waveform [28] is used in the Taiji data challenge [29]. The AK waveform

includes 14 parameters, with the spin of the COs usually being ignored. Six of these parameters

contribute to the phase evolution of the waveform and need to be estimated with high precision, thus

contributing a prominent 6-dimensional sharp peak to the signal location in the parameter space of

the fitness function. The AK waveform consists of superposition of multiple harmonics, resulting

in multiple secondary peaks surrounding the primary one in the parameter space [30]. The primary

peak indicates a good match of all the harmonics, while the secondary peaks indicate that a subset of

harmonics is matched well, especially the dominant ones. Therefore, it is difficult for a global optimizer

to locate a complete signal in such a high-dimensional and multimodal parameter space.

It is well known that longer duration signals contribute more sensitivity and less flexibility to

coherent matched filtering [31], and the sharp peak can only be located within a reasonable range

width [32]. As a result, hierarchical search methods are effective in overcoming the methodological

difficulties in EMRI data analysis. It can be implemented by either using shorter duration signal and

gradually turning to longer signal with the constrained information utilized in the next search [31,35]

or by initially searching for fixed duration signal within a wide range and later focusing on narrower

ranges extracted from the previous searches [32] in matched filtering. It is also beneficial to develop

mixed versions by combining these two approaches together.

Given the fitness function usually defined by the log-likelihood ratio (LLR), Bayesian [34] or

Fisherian methods [33] are the most commonly used ones for estimating the posterior probability

density function or the global best-fit fitness value and location, which are then used for signal

detection and parameter estimation. In EMRI data analysis, modified Markov Chain Monte Carlo

(MCMC) methods, such as constrained Metropolis–Hastings Monte Carlo (MHMC) [35], Evolutionary

Monte Carlo (EMC) [36] and parallel tempered Markov Chain Monte Carlo (PTMCMC) [37,38], have

been used in previous works. The global optimizer, Particle Swarm Optimization (PSO) [39–43],

has been used in our previous work for a 10-dimensional EMRI search problem [44] and proven

effective in the LIGO data analysis of inspiral signals [45–48] and transient signals [49–51], the pulsar

timing array data analysis of supermassive black holes [52–57], and the LISA data analysis of Galactic

binaries [58–62]. In this paper, we extend the application of PSO to an EMRI search problem with two

different dimensions: an 8-dimensional search and a 7-dimensional search, respectively. Our results

demonstrate that the PSO-based search algorithm is able to accurately estimate the simulated signals

with SNR value of 50 and duration of 0.5 years by using these reduced dimensionality LLR. Notably, it

should be emphasized that the current search ranges employed are substantially broader than those

utilized in our previous work, resulting in an significant increase in the parameter space volume,

approximately ∼ 50-fold for the 8-dimensional search and ∼ 100-fold for the 7-dimensional search.
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The rest of the paper is organized as follows. In Section 2, we describe the consistent TDI

combinations, noise model, and the signal model as LDCs used in the paper. In Section 3, we present

how the reduced dimensionality likelihoods are defined. The Particle Swarm Optimization algorithm

used for matched filtering are illustrated in Section 4. Finally, in Section 5 we report the results and

give the corresponding discussions in Section 6.

2. Data description

First, we describe the application of time-delay interferometry (TDI) [63] in this paper, which is

employed by space-based GWs detectors to mitigate the dominant laser frequency noise. Subsequently,

we present the theoretical model of power spectral densities (PSDs) utilized by LDCs. Lastly, we

provide a description of the current standard waveform model employed for EMRI data analysis.

2.1. TDI combinations

Throughout the paper, we adhere to the coordinate and TDI conventions defined in [64]. Given

the definitions of the polarization tensors ϵ+,× and LISA orbit, we can derive the corresponding

geometrical quantities n̂l and R̂k from the orbit. Here, n̂l represents the unit vector along the arm l, and

R̂k denotes the position vector of the k-th satellite. The sky location, θs and ϕs, can be used to define

the unit vector k̂ which indicates the direction of GW propagation. The antenna patterns F+,×
l of the

single arm l are given by [
F+

l

F×
l

]
=

[
cos(2ψ) − sin(2ψ)

sin(2ψ) cos(2ψ)

] [
U+

l

U×
l

]
, (1)

where ψ is the polarization angle and the quantities U+,×
l are defined by

U+
l =(n̂l ⊗ n̂l) : ϵ+ , (2)

U×
l =(n̂l ⊗ n̂l) : ϵ× . (3)

The symbol : denotes the contraction operation on arbitrary tensors U and V, namely U : V =

∑i,j UijVij, and ⊗ represents (a ⊗ b)ij = aibj for arbitrary vectors a and b.

By mapping the antenna patterns F+,×
l to the polarization waveforms h+,×, we can express the

corresponding strain response of the arm l as Φl ,

Φl = F+
l h+ + F×

l h× . (4)

The expression for the single arm response of the laser along the arm l can then be given as follows:

yGW
slr (t) =

Φl(t − k̂ · R̂s − Ll)− Φl(t − k̂ · R̂r)

2(1 − k̂ · n̂l)
, (5)

where the labels s and r represent the laser sender and receiver of the satellite, respectively, and l

denotes the arm link between the two involved satellites. The sign of l is positive when the label slr

follows a cyclic permutation of indices 1 → 2 → 3 → 1 labelling the three satellites; otherwise, it is

negative. By following the well-designed optical path of the TDI combinations X, Y and Z of the first

generation, the laser frequency noise can be cancelled under the approximation of constant arm length.

This cancellation is achieved by linearly combining the artificially delayed single arm responses yslr,L,

as shown below:

X =y1−32,32−2 + y231,2−2 + y123,−2 + y3−21 − y123,−2−33 − y3−21,−33 − y1−32,3 − y231 ,

Y =y2−13,13−3 + y312,3−3 + y231,−3 + y1−32 − y231,−3−11 − y1−32,−22 − y2−13,1 − y312 ,

Z =y3−21,21−1 + y123,1−1 + y312,−1 + y2−13 − y312,−1−22 − y2−13,−11 − y3−21,2 − y123 ,

(6)
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where the yslr,L are linked to the single arm responses yslr through yslr,L(t) = yslr(t − L). The

first generation TDI combination X (same for Y or Z) is calculated as the difference between two

Michelson-type responses. Each Michelson-type response consists of an optical path with 4 single arm

responses. Each single arm response introduces a delay corresponding to it’s arm length along the

optical path. Consequently, there are 0, 1, 2, and 3 accumulated indices for the delays L in the yslr,L of

Eq. 6, respectively, and the corresponding signs follow the same rule as the links l. Additionally, we

can obtain the mutually independent noise TDI combinations A, E and T by linearly combining the

TDI combinations X, Y and Z as follows:

A =
Z − X√

2
,

E =
X − 2Y + Z√

6
,

T =
X + Y + Z√

3
.

(7)

In this paper, we focus on the data analysis method for individual EMRI source. As a result, the

corresponding data model of each combination I is described by

d
I
= h

I
+ nI , (8)

where d
I

represents the TDI combination I, with I ∈ {A, E, T}, h
I

denotes the single EMRI signal, and

nI represents the purely instrumental noise for simplicity. We have chosen to concentrate solely on the

TDI combinations A and E because the TDI combination T is less sensitive to GWs, which aligns with

the treatment employed by numerous other studies.

2.2. Noise model and signal to noise ratio

We utilize the identical PSD model of TDI combinations A and E, as provided in [64],

SA
n ( f ) = SE

n ( f ) = Sn( f ) = 8 sin2 ωL
[
4(1 + cos ωL + cos2 ωL)SAcc + (2 + cos ωL)SIMS

]
, (9)

where f is the Fourier frequency, ω = 2π f is the corresponding angular frequency, and L is the arm

length which is constant in first generation TDI. The acceleration noise SAcc and the Instrumental

Optical Metrology System noise SIMS under the noise model ’SciRDv1’ are defined in [65] as follows:

SAcc( f ) =
9.0 × 10−30

(2π f c)2

[
1 +

(0.4mHz

f

)2][
1 +

( f

8mHz

)4] 1

Hz
,

SIMS( f ) =2.25 × 10−22
(2π f

c

)2[
1 + (

2mHz

f
)4
] 1

Hz
.

(10)

Having acquired the analytical expressions of the PSD, the inner product between two signals a

and b is defined by

(a|b) = 1

N fs

N−1

∑
k=0

ãk b̃∗k + ã∗k b̃k

Sn( fk)
, (11)

where x̃ denotes the DFT of a time series x = (x0, x1, . . . , xN−1),

x̃ = FxT , (12)

Flm = e−2πilm/N , (13)
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and fk = k fs/N, k = 0, 1, . . . , N − 1, with fs being the sampling frequency. In terms of the inner

product, the SNR of a signal can be defined as follows:

SNR2 = (h
A|hA

) + (h
E|hE

) . (14)

It is also convenient to define the combined overlap between two signals h
I
1 and h

I
2 (I ∈ {A, E}) as

following:

ffAE =
(h

A
1 |h

A
2 ) + (h

E
1 |h

E
2 )√

(h
A
1 |h

A
1 ) + (h

E
1 |h

E
1 )

√
(h

A
2 |h

A
2 ) + (h

E
2 |h

E
2 )

, (15)

which is commonly used to assess the quality of the match between injected and estimated signals in

mock data analysis [22]. The overlap of the individual combination, either A or E, can be obtained by

setting the other combination to zero.

2.3. Signal model: EMRI waveform

The AK waveform [27] includes 14 parameters, namely, µ, M, λ, S/M2, e0, ν0, θs, ϕs, θk, ϕk, ϕ0, γ̃0,

α0 and D. The first six parameters represent the mass of the COs, the mass of the MBH, the inclination

angle between the orbital angular momentum of the COs and the spin direction of the MBH, the

spin magnitude of the MBH, the initial orbital eccentricity, and the initial orbital frequency. These

parameters contribute to the orbital dynamics of EMRI sources. The angles θs and ϕs denote the ecliptic

colatitude and longitude of the source’s sky location in the Solar System Barycenter (SSB) frame, while

θk and ϕk represent the polar and azimuthal angles of the spin direction of the MBH in the SSB frame.

Additionally, ϕ0, γ̃0, and α0 correspond to the initial angles of orbital motion, pericenter precession,

and Lense-Thirring precession, respectively. Finally, D represents the distance between the source

and the SSB center. The polarization angle ψ is a constant in the static frame, as discussed in [35], and

depends on θs, ϕs, θk and ϕk.

The orbital dynamics in AK waveform are described by the following set of ordinary differential

equations (ODEs). These ODEs involve the five quantities: ϕ, ν, γ̃, e, and α, where the ν and e are the

orbital frequency and the orbital eccentricity, respectively, and ϕ, γ̃, and α are the phases describing

orbital motion, pericenter precession, and Lense-Thirring precession, respectively.

dϕ

dt
= 2πν , (16)

dν

dt
=

96

10π
(µ/M3)(2πMν)11/3(1 − e2)−9/2

{[
1 + (73/24)e2 + (37/96)e4

]
(1 − e2)

+(2πMν)2/3
[
(1273/336)− (2561/224)e2 − (3885/128)e4 − (13147/5376)e6

]

−(2πMν)(S/M2) cos λ(1 − e2)−1/2
[
(73/12) + (1211/24)e2

+(3143/96)e4 + (65/64)e6
]}

, (17)

dγ̃

dt
= 6πν(2πνM)2/3(1 − e2)−1

[
1 +

1

4
(2πνM)2/3(1 − e2)−1(26 − 15e2)

]

−12πν cos λ(S/M2)(2πMν)(1 − e2)−3/2 , (18)

de

dt
= − e

15
(µ/M2)(1 − e2)−7/2(2πMν)8/3

[
(304 + 121e2)(1 − e2)

(
1 + 12(2πMν)2/3

)

− 1

56
(2πMν)2/3

(
(8)(16705) + (12)(9082)e2 − 25211e4

)]

+e(µ/M2)(S/M2) cos λ (2πMν)11/3(1 − e2)−4
[
(1364/5) + (5032/15)e2

+(263/10)e4
]

, (19)

dα

dt
= 4πν(S/M2)(2πMν)(1 − e2)−3/2 . (20)
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It is computationally expensive to solve the ODEs using a time interval of 15 seconds, which

corresponds to the observational cadence of LISA. However, the slow evolution of the orbital

parameters predicted for most of EMRI sources allows us to use a larger cadence of 15360 seconds

when solving the ODEs. As suggested in [64], the fifth-order Cash-Karp Runge-Kutta ODEs solver [66]

is used at the larger cadence, and the solutions are then interpolated to the desired cadence of 15

seconds.

With the ODEs solutions at our disposal, we can now proceed to the calculation of the polarization

waveforms. For each harmonic labeled as (n, 2, m), the following quantities in it’s polarization

waveforms are time independent: (1) the amplitude factor A such as 1/D, (2) the initial phase

Φn2m
0 = nϕ0 + 2γ̃0 + mα0, and (3) the time independent amplitude Ac,m

+,×(θs, ϕs, λ, θk, ϕk). The exact

forms of Ac,m
+,×(θs, ϕs, λ, θk, ϕk) are provided in [64], and the superscript c indicates the quantity is an

unknown constant. Therefore, the polarization waveforms can be expressed as follows:

h
n2m
+,×(Θ) = A sn2m

+,×(θ
′) = A Re(eiΦn2m

0 Ac,m
+,×(θs, ϕs, λ, θk, ϕk)xn(θ′′)) , (21)

where the parameter set Θ contains 14 parameters, θ′ denotes the 13 parameters excluding D, θ

represents the 8 parameters excluding D, ϕ0, γ̃0, α0, θk, and ϕk, and the parameter set θ′′ includes the 6

ODEs-related parameters, µ, M, λ, S/M2, e0, and ν0. Thus we have

Θ = θ′ ∪ {D}, θ′ = θ ∪ {ϕ0, γ̃0, α0, θk, ϕk}, θ = θ′′ ∪ {θs, ϕs}. (22)

Based on the number of parameters that they depend on, h
n2m
+,×(Θ) and sn2m

+,×(θ′) denote the 14 and

13-dimensional polarization waveforms, respectively, while the time varying components correspond

to the term xn(θ′′), where the power distributions among harmonics depend on the index n. In the

case of the AK model, the range of values for m is from −2 to 2, resulting in a total of 5 harmonics for

each n. Here, we adopt the same choice as our previous work [44] to select the loudest 10 harmonics

by analyzing the xn(θ′′). Therefore, the choice is to pick up two values for n from the values 1, 2, 3, 4, 5

used in LDC. It is worth mentioning that additional harmonics could be considered once computational

limitations, such as accessing sufficient cores or utilizing a Graphics Processing Units (GPUs) code,

are overcome. However, for the current study, we will focus on the loudest 10 harmonics based on

the cluster resources available to us. As shown in Table 1, the power distributions among harmonics

indicate that the harmonics with n = 1 are considerably weaker compared to other harmonics with

different values of n. Furthermore, as n increases (with n ≥ 2), the strength of the harmonics diminishes.

This trend holds true for moderate eccentric sources, such as those with e0 ≤ 0.5. Table 1 follows

the same conventions as Table 1 in our previous paper [44], with two exceptions: (1) the harmonics

indices turn to n varying from 1 to 5, and (2) the power fraction is used instead of the SNR fraction, as

their summation equals unity. Therefore, for moderate eccentric sources, the optimal choice for the

loudest 10 harmonics would be those with n ∈ {2, 3}. It requires more attention to select the dominant

harmonics for high eccentric sources, e.g., e0 > 0.5, where the power distributions across harmonics

exhibit greater fluctuations.
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Table 1. Illustration of variation in the order of contributions of harmonics to the total power of an

EMRI signal as a function of its parameters. See the conventions in Table 1 of [44].

SNR order
(descending)

LDC
parameters

µ = 10M⊙ µ = 100M⊙ e0 = 0.5 e0 = 0.6

1 2/0.654 2/0.583 2/0.855 2/0.362 4/0.338
2 3/0.281 3/0.326 3/0.123 3/0.338 5/0.334

power
fraction

0.935 0.909 0.978 0.700 0.671

3 4/0.053 4/0.075 4/0.015 4/0.184 3/0.241
4 5/0.007 5/0.012 1/0.005 5/0.085 2/0.059
5 1/0.005 1/0.005 5/0.002 1/0.031 1/0.029

3. Generalized Likelihood Ratio Test

3.1. 13-dimensional LLR

In the context of stationary Gaussian noise, the log-likelihood ratio (LLR) of given data d
I

containing an assumed EMRI signal h
I
(Θ) is defined as follows:

Λ(Θ) = ∑
I∈{A,E}

[
−(h

I
(Θ)|hI

(Θ)) + 2(d
I |hI

(Θ))
]

. (23)

The h
I
(Θ) is usually called template in matched filtering to distinguish it from the unknown and true

signal encoded in the noisy data. In the Generalized Likelihood Ratio Test [33], the global maximum of

the LLR, LG and the corresponding location Θ̂

LG = Λ(Θ̂) , (24)

Θ̂ = argmax
Θ

Λ(Θ) , (25)

are used for signal detection and parameter estimation, respectively. Analytically maximizing over A

by ∂Λ(θ′, A)/∂A = 0 leads to

LG = max
θ′

ρ(θ′) , (26)

ρ(θ′) = max
A

Λ(Θ) =

[
∑I∈{A,E}(d

I |sI(θ′))
]2

[
∑I∈{A,E}(s

I(θ′)|sI(θ′))
] , (27)

with the maximizer being

Â = argmax
A

Λ(Θ) =

[
∑I∈{A,E}(d

I |sI(θ′))
]

[
∑I∈{A,E}(s

I(θ′)|sI(θ′))
] . (28)

We call ρ(θ′) the 13-dimensional LLR [35]. Creating further nested levels in the maximization of

ρ(θ′) that separate out the time-independent parts provide reduced dimensionality LLRs, namely

8-dimensional and 7-dimensional ones, as discussed below.
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3.2. 8-dimensional LLR

By incorporating the polarization waveforms of the i-th harmonic in Eq. 21 with the antenna

patterns of arm l in Eq. 1, we can obtain the corresponding strain response as follows:

si
l(θ

′) =F+
l (θs, ϕs, ψ)si

+(θ
′) + F×

l (θs, ϕs, ψ)si
×(θ

′) ,

=Re(eiϕi
0Ac

+(θk, ϕk, θs, ϕs, λ))F+
l (θs, ϕs, ψ)Re(xi(θ′′))

−Im(eiϕi
0Ac

+(θk, ϕk, θs, ϕs, λ))F+
l (θs, ϕs, ψ)Im(xi(θ′′))

+Re(eiϕi
0Ac

×(θk, ϕk, θs, ϕs, λ))F×
l (θs, ϕs, ψ)Re(xi(θ′′))

−Im(eiϕi
0Ac

×(θk, ϕk, θs, ϕs, λ))F×
l (θs, ϕs, ψ)Im(xi(θ′′)),

=
4

∑
p=1

ai
pxi

l,p(θ) .

(29)

Here the map for harmonics indices from (n, m) to i are n = floor((i − 1)/5) + 1 and m = mod(i −
1, 5)− 2 where i ranges from 1 to 25 in LDC.

The linearity from strain responses to TDI responses for combination I leads to the same linear

combination,

sI,i(θ′) =
4

∑
p=1

ai
pxI,i

p (θ) , (30)

because only the time varying terms xI,i
p (θ) are projected to the TDI delays and the time independent

coefficients ai
p, which absorb the parameters ϕ0, γ̃0, α0, θk, and ϕk, remain unchanged.

To apply this linear decomposition in Eq. 30 to the inner products in the 13-dimensional LLR in

Eq. 27, we can express the inner products as follows:

(d
I
(θ′)|sI(θ′)) =

N

∑
i=1

4

∑
p=1

ai
p(d

I ∣∣xI,i
p (θ)) ,

(sI(θ′)|sI(θ′)) =
N

∑
i=1

N

∑
j=1

4

∑
p=1

4

∑
q=1

ai
pa

j
q(xI,i

p (θ)
∣∣xI,j

q (θ)) .

(31)

In our previous work [44], we introduced an approach in which the three initial angles ϕ0, γ̃0, and α0 are

separated from the remaining 10 parameters in Eq. 27. This allows us to apply local maximization [67]

over the three initial angles for a given point in the 10-dimensional parameter space and perform the

search over the 10 parameters using PSO. In this paper, we extend the approach by employing local

maximization [67] over the five parameters: θk, ϕk, ϕ0, γ̃0 and α0, and using PSO for the remaining

8-dimensional search. The following quantities, (d
I ∣∣xI,i

p (θ)) and (xI,i
p (θ)

∣∣xI,j
q (θ)), can be pre-calculated

for each specific θ. This enables computationally efficient local maximization over the coefficients ai
p,

namely over θk, ϕk, ϕ0, γ̃0 and α0.

The nature of the fitness function over the 5-dimensional subspace, consisting of θk, ϕk, ϕ0, γ̃0 and

α0, is illustrated in Figure 1. The figure showcases the LLR (square root) landscape of a 2-dimensional

slice of θk and ϕk (Figure 1, a), as well as three randomly selected planes (Figure 1, b,c,d) in the

3-dimensional subspace composed of ϕ0, γ̃0 and α0. This representation is valid for the specific

location, although similar patterns have been observed from the other locations as well. Given the

presence of a fairly small number of local maxima with comparable or equal values, local maximization

approach is well-suited for handling this 5-dimensional subspace.
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Figure 1. Illustrations of structures of the 5-dimensional subspace evaluated at a location. The X and Y

axes lie in these planes in the 3-dimensional subspace composed of ϕ0, γ̃0 and α0, and the range along

both is [−π, π].

To ensure that the global maximum is caught, we employed a total of 243 independent runs of a

local maximizer starting from initial points distributed over a grid, with each angle in the 5-dimensional

subspace enumerated from the 1-dimensional grid {0, 2π/3, 4π/3}, which are uniform spacing from 0

to 2π. The best-fit 5-dimensional location is determined from the run that returns the highest value.

3.3. 7-dimensional LLR

The initial orbital frequency, namely ν0, corresponds to the moment t0 at which the EMRI signal is

captured by the detector, thus it’s varying results in a uniform shift of time label to all the harmonics of

the signal. As discussed in [36], the corresponding shift of the time label can be numerically maximized

in two ways for arbitrary harmonic, denoted as x here. The first is phase rotation in frequency domain,

x(t − n∆t) =
1

N

N−1

∑
k=0

x̃( fk)e
−i2π fk(t−n∆t) =

1

N

N−1

∑
k=0

[x̃( fk)e
i2π fkn∆t]e−i2π fkt , (32)

where n denotes the number of the shift and ∆t represents the observational cadence. The inverse Fast

Fourier Transform of the term x̃( fk)e
i2π fkn∆t, which rotate the x̃( fk) by the same amount of n∆t at each

fk, returns the delayed term x(t − n∆t). For the same shift, the second is straightforward lag sliding in

time domain as follows:

(x0, x1, . . . , xN−1)
n−→ (xn, xn+1, . . . , xN−1, 0, ..., 0) , (33)

where the zero paddings at the end of the shifted signal cover n zeros.

The detector noise in low frequency region is usually large, as a result, a fiducial ν0, e.g., 1mHz,

can be determined through a pre-analysis of the detector’s features, which indicates that the detector

has reached a level of sensitivity to detect the GWs of EMRI signals starting from the chosen fiducial ν0.

Therefore, the 8-dimensional TDI responses xI,i
p (θ) in Eq. 30 could be calculated by running forward

ODEs using θ with it’s initial ν0 specified as the selected fiducial value, and the initial e0 being one of

the parameters for matched filtering. We can then systematically shift the xI,i
p (θ) lag-by-lag starting

from the lag of the fiducial ν0 until the 8-dimensional LLR maximum is achieved, the corresponding lag
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provides the best-fit estimation of e0 and ν0. Here, we set the number of shifts to 11 for computational

limitations.

Figure 2 illustrates the 8-dimensional and the 7-dimensional LLRs as functions of the lag. The lag

varies from −10 to 10 where the zero lag corresponds to the true lag of LDC ν0, 7.3804631408 × 10−4

Hz. It can be observed that the 8-dimensional LLRs using the negative lags can be successfully mapped

to the 7-dimensional LLRs with a well fitted ν0 by properly shifting the corresponding xI,i
p (θ). This

is possible because the total 11 shifts can cover the zero lag anyway, whereas the positive lags fail to

locate the zero lag due to the rightward shift of xI,i
p (θ).

In this paper, the lag of the fiducial ν0 is determined by considering 4 lags ahead of the LDC true

lag, thus the corresponding value is 7.3804587134 × 10−4 Hz. In order to accurately capture unknown

EMRI signals, it would generally be necessary to fit more lags. However, due to the computational

expense of the shifting operations for xI,i
p (θ) and the evaluations of the 8-dimensional LLRs by using

the current code, only 11 lag-by-lag shifts are utilized, enumerating lags from −4 to 6 as illustrated in

Figure 2. This setting ensures the scanning of the true lag, and is used to demonstrate the functionality

of the 7-dimensional LLR. In future works, we plan to address these computational challenges by

implementing a GPU-accelerated code, which will allow for the exploration of additional lags.

Figure 2. Illustrations of the square root of the LLRs over lags. The square root of the 8-dimensional

LLRs are in red and the corresponding 7-dimensional values are in blue, connected with solid magenta

line for each lag.

4. Particle Swarm Optimization

As discussed earlier, the search using reduced dimensional likelihoods involves the following

steps. First, the distance D in the 14-dimensional LLR in Eq. 23 is analytically maximized. Next,

the local maximization over the five angles θk, ϕk, ϕ0, γ̃0, and α0 are carried out using the Simplex

algorithm of Nelder and Mead [67]. Finally the remaining parameters in the set θ (8-dimensional

search), or θ excluding ν0 (7-dimensional search), are numerically maximized by PSO. In this chapter,

we briefly describe the PSO algorithm [39–41].

Given the fitness function f (x) where x is defined in R
M, the optimization problem can be stated

as follows:

x∗ = argmax
x∈D⊂RM

f (x) , (34)

f (x∗) ≥ f (x) , ∀x ∈ D . (35)
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The best location, x∗, refers to the point in the search space D that yields the highest fitness value,

represented as f (x∗), M is the dimension of the parameter space for f (x). Locating the primary peak

of a multimodal fitness function can be challenging. The PSO algorithm, which is utilized in this paper

as a global maximizer, is a suitable approach for addressing such challenges. Successful applications of

PSO in handling similar issues are discussed in Section 1. It should be noted that in our case, the fitness

functions are the 8-dimensional LLR discussed in Section 3.2 and the 7-dimensional LLR discussed in

Section 3.3.

PSO consists of multiple agents, known as particles. Each particle updates it’s position by

considering the information from both itself and it’s neighbouring particles at each iteration. The

algorithm aims to converge towards the global maximum, which corresponds to the primary peak

of the fitness function within the search space, by utilizing a balance between global exploration and

local exploitation. Such balance typically results in good performance of PSO search. However, finding

the right balance requires tuning the related parameters, which is problem-specific. One of the key

advantages of PSO algorithm is that it requires only a few tunable parameters, namely the number of

iterations Niter and the number of independent runs Nruns of PSO. If the probability that an individual

PSO fails to locate the primary peak of the fitness function is denoted as p, then the probability that

at least one search from Nruns independent PSO searches, using different random seeds, succeeds in

locating the primary peak is given by 1 − pNruns . This probability approaches unity exponentially fast

with Nruns. Therefore, multiple independent runs are a quick and easy way to significantly enhance

the performance of a PSO-based search. It is recommended to start with Nruns in the range of 6 ∼ 12,

and Niter set to 2000, as discussed in [41]. These values can be adjusted based on the specific fitness

function being used. The actual values used in this paper are described in Section 5. For more detailed

information on an objective strategy for tuning PSO, refer to [45].

The PSO dynamics of the i-th particle in the swarm is described by two equations as follows:

xi(t + 1) = xi(t) + vi(t + 1) , (36)

v
j
i(t + 1) = wv

j
i(t) + c1r1(p

j
i(t)− x

j
i(t)) + c2r2(gj(t)− x

j
i(t)) , (37)

where t represent an iteration, xi(t) and xi(t + 1) denote the respective positions before and after the

update. vi(t + 1) represents the amount of position increment, referred to as velocity, while v
j
i(t + 1) is

the corresponding projection component for j-th parameter. The quantity x
j
i(t) and p

j
i(t) represent the

current location and personal best (pbest) location of the j-th parameter, while gj(t) represents the global

best (gbest) location among all particles of the j-th parameter. The Eq. 37 provides the key feature of

PSO update. The first term represents the influence of the momentum of the i-th particle with ω being

the inertia weight. The second and third terms represent the acceleration effects, where the former

considers the influence of the particle itself and the latter represents the influence from neighboring

particles, with c1 and c2 being the acceleration coefficients. The randomness of PSO algorithm arises

from the utilization of random variables r1 and r2 , which are drawn from a uniform distribution

between 0 and 1. The location of pbest and gbest are updated following the rules as below:

if f (xi(t)) > f (pi(t)), then pi(t + 1) = xi(t + 1) , (38)

if f (xi(t)) > f (g(t)), then g(t + 1) = xi(t + 1) . (39)

The typical settings for PSO are as follows: (1) c1 = c2 = 2, (2) linearly decreasing inertia weight ω

over iterations, (3) constraining the velocity by a given parameter, referred to as the maximum velocity,

Vmax, such that −Vmax ≤ v
j
i(t) ≤ Vmax for all iterations and particles, (4) randomly generating initial

positions and velocities for all particles, and (5) setting the number of particles Np in the swarm to

Np = 40. The "let-them-fly" boundary condition is used, where the position and velocity of a particle

remain unchanged, and a fitness value of −∞ is assigned once the particle leaves the search space.
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As a result, the actual number of fitness function (likelihood) evaluations for individual PSO search

would be smaller than the value of Niter · Np.

To enhance the exploitation capability of PSO, particularly for multimodal fitness functions, a

variation called local best (lbest) PSO [42] has been proposed as an improvement over the gbest PSO. In

the lbest PSO, for each particle i, a smaller swarm is utilized to determine the lbest position denoted as

plocal,i(t) and the corresponding fitness value f (plocal,i(t)). These values are then used to replace the

gbest position gj(t), g(t + 1) in Eq. 37 and the corresponding fitness value f (g(t)) in Eq. 39. The typical

configuration for the smaller swarm surrounding the i-th particle is a ring structure consisting of three

particles, whose indices are given by Ni = i − 1, i, i + 1, with the first and last particle connected in a

circular manner. It is worth noting that the lbest PSO reduces to the gbest PSO when the ring includes

all the particles. The selection of the fitness value for the lbest of the i-th particle follows the criteria, as

shown below,

f (plocal,i(t)) = max
j∈Ni

f (pj(t)) . (40)

Here, a more comprehensive exploitation is achieved by slower convergence in the lbest PSO, thus

making it more computationally expensive than gbest PSO.

5. Results

In this paper, we have utilized 0.5 years data containing a single EMRI signal with the same

source parameters as LDC-1.2 [64] except for a shorter distance D of 1.535300 Gpc, resulting in an SNR

value of 50 for the injected signal. This SNR value has been widely used as a benchmark for 0.5 years

signals in recent studies [19,20,32]. While our search method is not inherently restricted to a shorter

data length, constraints on computational resources and a pending GPU-acceleration of our code sets

the above limit on the data length. The noise realization used in our analysis is obtained by subtracting

the signal from the data, with both provided in LDC-1.2 [64], ensuring that our simulated data shares

the same characteristics as the LDC data but with a scaling of shorter duration and higher SNR. In

Figure 3, the spectra of the injected signal and the simulated data for TDI combinations A and E are

displayed, revealing the relatively weak nature of the injected signal compared to the simulated data.

Figure 3. Magnitudes of the FFTs of the injected signal with SNR = 50 in blue and the corresponding

data in red where the TDI combination A is illustrated in the left panel and the TDI combination E is

displayed in the right panel. See their definitions in Eq. 7.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 February 2024                   doi:10.20944/preprints202402.0442.v1

https://doi.org/10.20944/preprints202402.0442.v1


13 of 20

The values of the source parameters and the width of the search ranges used for the 8-dimensional

and the 7-dimensional searches are presented in Table 2. The FIM σ represents the estimation error of

the CRLB for each parameter at SNR of 50, evaluated at the injected source parameters. The injected

signal parameters are also called the true ones in the following.

Table 2. The injected source parameters and range width used in our search. Currently, the location

of the injected signal is set at the center of the given range. We leave a more general search, with

injected signals placed non-centrally in the search space, to future work. The value of 0.3456 (7D) is the

corresponding orbital frequency difference between the lag 6 and the lag −4 relative to it’s σ value, see

more details in Section 3.3.

Parameters LDC Values FIM σ
Search range

absolute value
Search range

in σ

µ(M⊙) 2.9490000e+01 4.872139e-02 1 20.5249
M(M⊙) 1.1349449e+06 3.582834e+03 105 27.9109
λ(rad) 2.1422000e+00 9.471417e-03 π/16 20.7307
S/M2 9.6970000e-01 3.153740e-03 0.1 31.7084

e0 2.2865665e-01 1.842612e-04 0.005 27.1354

ν0(Hz) 7.3804631e-04 3.202842e-09
3.202842e-07(8D)
11 lags (7D)

100 (8D)
0.3456 (7D)

θs(rad) 4.989445e-01 2.415649e-03 π 1.3005e+03
ϕs(rad) 2.232797e+00 1.708559e-03 2π 3.6775e+03

We set the tunable hyperparameters for PSO as follows: Nruns is set to 6, and Niter is set to 15000

for the 8-dimensional searches, 20000 for the first two 7-dimensional searches, and 25000 for the

remaining four 7-dimensional searches. Due to limited computational resources, the independent 6

searches have to be carried out serially. Due to the presence of noise in the data, both PSO and local

maximization are expected to find best-fit fitness values that are higher than that at the true location,

which are called successful search. In order to further reduce computational costs, the searches are

terminated once a successful search occurred. Consequently, the actual Nruns is 4 for the 8-dimensional

searches and 6 for the 7-dimensional searches.

The results obtained from the 8-dimensional and the 7-dimensional searches are summarized in

Table 3 and Table 4, respectively. We report the square roots of the best-fit fitness values from each

PSO search, which provide the estimated SNRs. Additional details regarding Table 3 and Table 4 are

provided below.

1. The 4-th PSO in the 8-dimensional searches is successful as indicated by the estimated SNR

shown in bold. However, no similar successful search is observed in the 7-dimensional searches.
2. Parameter estimation errors are determined by subtracting the corresponding signal parameter

best-fit values from their true values. For the six ODEs-related parameters, namely, µ, M, λ,

S/M2, e0 and ν0 are expressed relative to their respective FIM σ (evaluated at the true location).

The estimation error for D is expressed relative to its true value itself. For the parameters θs and

ϕs that represent the sky location, we show the errors themselves. The sky locations (θs, ϕs) and

(π − θs, ϕs + π) [15] contribute a degeneracy to the LLR in Eq. 27. As a result, we use the asterisk

(∗) to show the corresponding errors after the degeneracy is taken care of.
3. To consider the impact of weak harmonics beyond the loudest 10 on the estimation of the initial

angles ϕ0, γ̃0 and α0, as well as the angles θk and ϕk denoting the spin direction of the MBH,

we conduct a rerun of the 5-dimensional local maximization using waveform with all the 25

harmonics at the best-fit location from each PSO search, where the templates used in the search

are restricted to the loudest 10 harmonics with n ∈ {2, 3}. The estimated angles are then utilized

in the estimation of the distance D using Eq. 28.
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4. The recovered 14-dimensional parameters obtained previously are utilized in Eq. 6 and Eq. 7 to

estimate the signal of A and E. The separate and combined overlaps between the injected and

the estimated signal are quantified as ffA, ffE and ffAE, respectively.

For the 8-dimensional PSO outputs shown in Table 3, it can be observed that the errors in the

parameters µ, M, λ, S/M2 are ≈ 2σ, while the error in the parameter D is ≈ 1%. The errors in

the sky location are within ≈ 0.1 radians. However, the errors in the parameters e0 and ν0 vary

significantly among different PSO outputs where the successful PSO output returns a minimum error

of approximately ∼ 2σ with an overlap of 98%, and the other PSO outputs yield larger errors up to

∼ 8σ with smaller overlap values. Those discrepancies are reasonable because e0 and ν0 are the initial

values of the ODEs in Eq. 20 which describe the orbital dynamics of the EMRI source (the other three

initial angles don’t determine the morphology of the ODES solution, only contributing a constant shift).

Therefore, the phase match are more sensitive to these parameters, thus requiring longer iterations to

converge.

Table 3. PSO outputs of 8-dimensional searches. The square root of the fitness value at the true

8-dimensional location is 47.879594. Further details about the table are discussed in Sec. 5.

.

1st PSO 2nd PSO 3rd PSO 4th PSO

Square root of fitness values

Best location
from PSO

47.546001 46.381273 47.069351 47.988164

Parameter estimation errors

µ(M⊙) -3.1e+00 -2.3e+00 2.1e-01 2.4e+00

M(M⊙) 1.9e+00 2.1e+00 -1.1e+00 -2.6e+00

λ(rad) -2.1e+00 -2.1e+00 9.6e-01 2.5e+00

S/M2 -2.2e+00 -2.2e+00 9.1e-01 2.5e+00

e0 7.8e+00 2.9e+00 3.6e+00 -1.2e+00

ν0(mHz) -6.8e+00 -4.5e+00 -8.2e+00 -1.9e+00

D(Gpc) -0.030 0.00011 -0.12521 0.015
θs(rad) 6.8e-02 −0.078970∗ 1.3e-01 -1.2e-02
ϕs(rad) 1.5e-02 −0.167177∗ -6.2e-03 4.6e-02

Overlap between the estimated and true signals

ffA -0.970817 0.972518 0.964058 -0.990312
ffE -0.965563 0.940148 0.939171 -0.982537

ffAE -0.968851 0.959972 0.954244 -0.987405

For the 7-dimensional PSO outputs presented in Table 4, no successful search is found where the

best-fit fitness value exceeds that at the true location. However, the 4th PSO output returns errors of

approximately ∼ 1σ for the parameters µ, M, λ, S/M2, e0 and ν0, ∼ 5% for the distance D, and ∼ 5%

radians for the sky location, with an overlap of 97%. This indicates that the signal is indeed captured,

making it a successful search. The 3th and 5th PSO outputs exhibit similar features to the first three

PSO outputs in the 8-dimensional searches where the larger errors in e0 result in the smaller fitness

values. The errors in ν0 are same for the 1st, 2nd, 3rd and 5th PSO outputs, which may be attributed to

the small range of 11 lags used to shift the 8-dimensional A and E template starting from the lag of the

fiducial ν0. It should be noted that the fitting of ν0 should cover more lags to obtain a more accurate

estimation over ν0.
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Table 4. PSO outputs of 7-dimensional searches. The square root of the fitness value at the true

7-dimensional location is 47.882605. Further details about the table are discussed in Sec. 5.

.

1st PSO 2nd PSO 3rd PSO 4th PSO 5th PSO 6th PSO

Square root of fitness values

Best
location

from PSO

47.699082 47.329812 47.685694 47.738310 47.582240 47.023112

Parameter estimation errors

µ(M⊙) 4.7e+00 4.4e+00 4.8e-01 -1.3e+00 -8.9e-01 4.9e+00
M(M⊙) -5.1e+00 -5.0e+00 -9.2e-01 1.5e+00 2.8e-01 -4.3e+00
λ(rad) 5.0e+00 4.8e+00 8.4e-01 -1.5e+00 -3.8e-01 4.3e+00
S/M2 5.0e+00 4.8e+00 8.2e-01 -1.5e+00 -4.0e-01 4.3e+00

e0 -2.8e+00 -1.8e+00 1.5e+00 2.0e-01 3.2e+00 -7.0e+00
ν0(mHz) -2.1e-01 -2.1e-01 -2.1e-01 -3.5e-02 -2.1e-01 1.4e-01

D(Gpc) -0.09576 -0.08430 -0.04126 0.05260 -0.05899 -0.00204
θs(rad) 0.097603∗ 7.8e-02 4.2e-02 −0.043020∗ 9.4e-02 −0.019956∗

ϕs(rad) 0.006113∗ 6.0e-02 -4.8e-02 0.050827∗ 3.9e-02 0.091476∗

Overlap between the estimated and true signals

ffA 0.977230 0.959595 -0.976542 -0.989005 -0.969600 -0.973063
ffE 0.966966 0.951818 -0.969133 -0.976612 -0.958945 -0.955183

ffAE 0.973175 0.956625 -0.973700 -0.984385 -0.965498 -0.966438

The successful PSO searches (the 4th PSO for both dimension) demonstrate smaller errors in

the parameters µ, M, λ, S/M2, e0 and ν0 for the 7-dimensional search (∼ 1σ) compared to those for

the 8-dimensional search (∼ 2σ). This suggests that the utilization of reduced dimensional LLR and

increased iterations effectively reduce estimation errors, particularly for parameters that related with

GWs phase. The fact that all PSO runs found fitness values close to each other but at various offsets for

estimated errors, ranging from 1σ to 8σ, illustrates the presence of large number of secondary peaks in

the fitness function.

6. Discussion

We have extended the previous work on a 10-dimensional LLR [44] search to an 8-dimensional

and a 7-dimensional LLR search, in which progressively more parameters are locally maximized

while the remaining are globally maximized using PSO. In the 8-dimensional search, we performed a

5-dimensional local maximization over the three initial angles ϕ0, γ̃0 and α0, and the angles θk and ϕk

describing the spin direction of the MBH. In the 7-dimensional search, we used a fiducial value of ν0

and applied lag-by-lag shift to the 8-dimensional TDI responses to fit the true ν0.

The low estimated errors and the corresponding high overlap between the estimated and injected

signals indicate that both the 8-dimensional and the 7-dimensional search work well within a wider

search range. Our approach used the same search range widths for µ and M as the low mass-ratio

sources prescribed in MLDC 1.3.4 and 1.3.5, and half the width of the MLDC value for the parameter

S/M2 [23]. This serves as a guide for future hierarchical searches, as demonstrated in [32] using certain

clustering techniques, in how much they need to narrow down the search ranges for parameters such

as e0, ν0 and λ.

The larger errors observed for e0 and ν0, compared to the smaller errors for other parameters

in Table 3 and Table 4, indicate that matched filtering is more sensitive to these two parameters,

thus it becomes more difficult to accurately determine them. This insight inspires us to explore

more advanced optimization algorithms, such as the Cooperative Coevolution Particle Swarm

Optimization (CCPSO) [43], where only a subset of parameters are updated at each iteration to
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improve the optimization process. We expect that this approach will help PSO particles in escaping

from secondary peaks and converging faster towards the primary peak in the parameter space of the

fitness function. The additional computational cost can be mitigated by implementing a faster code

using GPU acceleration.

In systems with higher eccentricity (e0 > 0.5), the power distributions over harmonics become

more erratic, which depend on the harmonics index n only for the 8-dimensional waveform.

Consequently, the loudest 10 harmonics, with fixed values n belonging to the set {2, 3}, might not be

the optimal choice any longer. Hence, we need to develop methods to select the dominant harmonics

on the fly in such systems.

The existence of multiple secondary peaks can hinder the PSO update process, making it difficult

for particles to converge towards the primary peak. As a result, larger estimation errors of the signal

parameters may occur. To effectively tackle this issue, one possible approach is to employ the reduced

dimensional LLR and increase the number of iterations for PSO searches. Nevertheless, the increased

computational requirements necessitate the utilization of additional cores or GPUs in the code.

In our paper, we only search for the injected signal with SNR of 50 and duration of 0.5 years, due

to limited computational resources. This SNR value is higher compared to the SNR of the LDC-1.2

data with the same duration. In future work, it is important to explore lower SNR values to assess the

robustness of our method. We also plan to conduct additional tests, such as random placement of the

true location, wider search ranges, and longer data duration, to further validate our approach.
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Abbreviations

The following abbreviations are used in this manuscript:

AK Analytical Kludge

CO Compact Object

CRLB Cramer-Rao Lower Bound

DFT Discrete Fourier Transform

EMRI Extreme Mass Ratio Inspiral

FIM Fisher Information Matrix

GWs Gravitational Waves

GLRT Generalized Likelihood Ratio Test

GPUs Graphics Processing Units

LDC LISA Data Challenge

LLR Log-Likelihood Ratio

LISA Laser Interferometer Space Antenna

MCMC Markov Chain Monte Carlo

MLDC Mock LISA Data Challenge

MBH Massive Black Hole

ODEs Ordinary Differential Equations

PSD Power Spectral Density

PSO Particle Swarm Optimization

SNR Signal-to-Noise Ratio

SSB Solar System Barycenter

TDI Time Delay Interferometry
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