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Abstract: Researchers often need to justify their choice of sample size, particularly in fields such as 
animal research, where there are obvious ethical concerns about relying on too many or too few 
study subjects. The common approach is still to depend on statistical power calculations, typically 
carried out using simple formulas and default values. Over-reliance on power, however, not only 
carries the baggage of statistical hypothesis tests that have been criticized for decades, but also 
blocks an opportunity to strengthen the research in the design phase by learning about challenges 
in interpretation before the study is carried out. We recommend constructing a “quantitative 
backdrop” in the planning stage of a study, which means explicitly connecting ranges of possible 
research outcomes to their expected real-life implications. Such a backdrop can then in principle 
serve to identify single values of interest for use in traditional power analyses; or better, inform 
sample size investigations based on the goal of achieving an interval width narrow enough to 
distinguish values deemed practically or clinically important from those not representing practically 
meaningful effects. The latter bases calculations on a desired precision (rather than desired power) 
and relies on meaningful context rather than estimates obtained from previous research. Sample 
size justification should not be seen as an automatic math exercise with a right answer, but as a 
nuanced a priori investigation of measurement, design, analysis, and interpretation challenges. 

Keywords: compatibility interval; confidence interval; precision; statistical significance; alpha level; 
dichotomania 

 

Study proposals, particularly for animal research, typically require justification for a proposed 
sample size based on statistical power calculations, which are often carried out automatically under 
defaults in web applets or statistical software. The cost-benefit analysis of this effort to researchers 
needing funding is easy – and following the usual procedure typically requires little, if any, 
justification. In our view, however, the foundations of statistical power deserve less blind acceptance 
and more healthy interrogation by researchers and reviewers. 

We see research design as an underemphasized part of the research process and support the 
expectation that researchers meaningfully justify sample size choices – particularly when there are 
ethical concerns, such as in animal research. When taken as more than default mathematical 
calculations, sample size investigations can motivate deeper evaluation of plans for study design, 
analysis, and interpretation, and expose limitations early enough to promote improvement while 
taking advantage of the subject matter expertise and creativity of researchers. Before we discuss an 
alternative path, we visit some concepts we are implicitly trusting by relying on statistical power. 

This short communication does not provide yet another tutorial of power-based sample size 
calculations meant to return a clear-cut answer to the question of exactly how many participants are 
needed per group; instead, it is meant to spark more critical evaluation of measurement, design, 
analysis, and interpretation in the research design phase, before resources (including animal lives) 
are used to carry out the study. 
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Entering the Hypothetical Land of Error Rates 

Opening up the baggage of statistical power starts with interrogating the concepts of Type I and 
Type II error rates. Under a null hypothesis statistical framework, errors are defined relative to a 
simple decision around whether to reject the null hypothesis – it is either rejected in error (“reject 
when we should not”) or not rejected in error (“fail to reject when we should”). The former is a Type 
I error, the latter is a Type II error, and power is associated with “rejecting when we should,” the non-
error compliment to a Type II error. Power calculations are based on long-run rates of these errors 
over hypothetical replications: Type I error rate (α), Type II error rate (β), and Power (1-β). 

Error rates (as opposed to single errors) are conceptually based on a hypothetical collection of 
many decisions, a proportion of which are errors. The collection of decisions may correspond to many 
hypothetical identical replications of a study and an analysis under the same statistical model; a 
collection that is not constructed in real life, thus leaving the error rates as hypothetical – and these 
are the fundamental ingredients underlying power calculations used to justify real-life research 
decisions. While we appreciate the theoretical attractiveness and mathematical convenience error 
rates offer, we question handing them too much authority. They seem to bring an air of objectivity 
and comfort to an otherwise challenging and messy research process; but their roots inhabit the same 
soil as statistical hypothesis tests that have been criticized for decades, for example for their rigid 
focus on often poorly justified null hypotheses and decision rules [1–4]. 

Problems Arising Back in Reality 

When we leave the hypothetical land of a having a collection of data sets and associated 
decisions about rejecting the null hypothesis, we inevitably face issues: Real-life error rates are 
unknown and even difficult to fully conceptualize – we are not able to repeat experiments identically, 
we know that assumptions used in the calculations are violated in practice, and, even if the true effect 
could be equal to null hypothesized value, we never know if the decision about rejecting a null 
hypothesis is in error for any individual study. Theoretical error rates are only as trustworthy as the 
assumed model of the process that generated the real-life data – and this statistical model is inherently 
based on assumptions about reality that are violated and uncertain by definition (otherwise they 
would not be called assumptions). 

While similar cautions apply broadly for statistical methods, in power-related practices we often 
see blatant ignoring of the underlying model and its connection to theoretical error rates, leading to 
overconfident expectations about reality and questionable study design decisions. This is exemplified 
by misleading statements such as “we will be wrong 5% of the time” if we reject a test (null) 
hypothesis based on a p-value threshold of 0.05; this statement would only be true if the statistical 
model and all its assumptions were correct and if it would be possible to conduct identical 
replications of a study – but there are countless explicit and implicit assumptions that are part of a 
statistical model [5], so a statement that uses the word “will” is overconfident in almost all cases. The 
same applies to “we will obtain a statistically significant result in 80% of cases” (if power is 80%), 
which is misleading for the same reasons stated above. Further, power is not the “probability of 
obtaining a statistically significant result”, as one can often hear; it is this probability only if the true 
effect is exactly equal to the alternative hypothesis used for power calculation and if all other model 
assumptions are correct, which almost never applies in practice. 

In general, power calculations beg a lot of trust in unknowns, and yet it is common to treat 
resulting sample size numbers as if they provide concrete and objective answers to inform crucial 
research decisions, and often ones with ethical implications. We hope this glimpse into the baggage 
associated with error rates, and thus power, will spur some healthy skepticism; but motivating 
change must also acknowledge the unfortunate reality that incentives from peers, funding bodies 
and animal welfare committees (whether explicit or only assumed by the researchers) promote the 
comfortable status quo instead of rewarding curiosity about limitations of current methodological 
norms. Pushback against dichotomous statistical hypothesis testing has gained traction within 
analysis [3,4], but influence on use of power calculations has been limited, despite reliance on the 
same criticized theory and practices [6]. An over-focus on simple statistical power also inadvertently 
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encourages ignoring more sophisticated design and analysis principles available to increase precision 
(and thus decrease, for example, number of animals used), because calculating statistical power with 
such analyses is often not straightforward or not implemented in default statistical procedures. 

An Alternative Definition of Success Tied to Research Context 

It is possible to let go of much of the baggage of error rates by shifting away from defining a 
research “success” in terms of avoiding theoretical Type I and Type II errors toward a context-
dependent success based on ranges of values instead of single values for null and alternative 
hypotheses. A successful study should result in useful information about how compatible the data 
(and background assumptions) are with values large (or small) enough to be deemed practically 
important (e.g., clinically relevant) as compared to values too small (or large) to be considered 
practically important. 

For example, suppose the effect of a new anti-hypertensive drug on average systolic blood 
pressure has to be a reduction of at least 10 units to be deemed clinically relevant, with a reduction 
of 5–10 units representing gray area (unclear clinical relevance), and less than 5 clearly not clinically 
meaningful (though clearly not “no effect”). Then, a sample-size related goal might be to achieve a 
precision such that an interval is not wider than 5 units. That is, we aim for obtaining an interval that 
does not overlap both clinically relevant (values greater than 10) and not relevant values (values less 
than 5), which is only possible if an interval is wider than 5 units (Figure 1). Note that such a 
successful research outcome can accompany a range of p-values and thus is not defined by “statistical 
significance.” 

 

Figure 1. Example of a “quantitative backdrop” with hypothetical intervals that could arise after data 
collection and analysis. The number-line backdrop is context-dependent and honors a realistic gray 
area, in which the clinical relevance is unclear. The backdrop facilitates meaningful interpretation of 
potential study results and highlights the goal of designing a study to obtain values in either the blue 
or green region, not both regions simultaneously. Intervals A and B would be successful in helping 
distinguish between effects too small to be clinically relevant and those large enough to be clinically 
relevant. Interval C, on the other hand, would cover values in both regions – meaning the single study 
failed to distinguish between the two regions. In our sample size investigations, we can aim to avoid 
scenario C by trying to restrict the width of the interval enough so that an interval cannot contain 
values on both sides of the gray area (less than 5 and greater than 10, for example). Note that even 
with a desired width, an interval may end up in the gray area (see D), which, while not a “success”, 
is valuable information to inform future research. Guidelines on choosing a sample size based on 
precision can be found elsewhere [7–11]. The depicted single intervals are actually collections of 
intervals to better summarize a distribution and can be defined by any sets of quantiles (e.g., 95%, 
80%, 50%) deemed useful for the context. 

As alluded to in the example, one strategy for a researcher to exert control over the width of a 
future interval (precision) is through choice of sample size; more information and technical guidance 
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on choosing a sample size based on precision rather than power can be found elsewhere [7–11]. While 
precision-based approaches can be carried out in ways just as automatic and default as traditional 
power-based approaches, the focus on intervals invites use of context-dependent knowledge and 
expertise related to the treatment and proposed methods of measurement. In this spirit, we offer a 
larger framework for incorporating research context and interpretation of results a priori [12,13]. 

A picture can help clarify alternative definitions of success (Figure 1): Intervals A and B clearly 
distinguish between regions of different practical implications, and both are considered study 
successes because all values in A are deemed too small to be clinically relevant, and nearly all values 
in B are large enough to be clinically relevant. Interval C, on the other hand, is not considered a 
success because it contains values in both regions, not supporting a conclusion in either direction. 
Narrower intervals (greater precision) help to avoid scenario C and facilitate successes (A and B). 
Even with a narrow interval, we can still land in gray area (D); while potentially frustrating, such is 
the reality of doing research and D still provides valuable information to inform future research. 

As Figure 1 conveys, this approach requires initial context-dependent work to draw the number 
line delineating the regions. While simple in construction, the process is not trivial and can be 
surprisingly challenging, partly because it is a novel exercise for most researchers and statisticians. 
Assigning practical or clinical importance to values a priori can be compared to creating a backdrop 
in theatre productions – a picture hanging behind the action of a play to provide meaningful context. 
In research, a “quantitative backdrop” [13] provides a contextual basis in front of which study design, 
analysis, and interpretation of results take place, ideally without over-reliance on arbitrary default 
statistical criteria (Figure 1). 

Loosening Our Grip on Interval Endpoints 

Our use of the term “interval” thus far has been purposefully vague, as our definition of success 
does not depend on any particular method for obtaining intervals (whether they are called 
confidence, credible, or posterior intervals), only that the researcher sufficiently trusts the interval 
and can justify its use to others (Box 1). We promote relaxing long-held views of what a statistical 
interval does or should represent and see interpretating confidence or credible intervals as 
compatibility intervals [4,5,14,15] as a step in this direction. Compatibility encourages a shift from 
dichotomously phrased research questions (e.g., “is there a treatment effect?”) to the more 
meaningful “what are possible values for a treatment effect that are most compatible with the 
obtained data and all background assumptions?” (to which the answer would be: the values inside 
the obtained interval [15]). 

We can also relax the rigidity with which interval endpoints are interpreted. When drawing an 
interval, the line must have ends, but values beyond the endpoints do not suddenly switch from 
being compatible with the data and assumptions, to incompatible. Values inside the interval are just 
considered more compatible, and values outside are less compatible [4], and that applies whether we 
have a 95% or 80% or any other interval. Loosening our grip on the rigidity of endpoints can facilitate 
another shift from believing we are calculating the one and only sample size answer to undertaking 
an investigation that honors limitations and challenges. 

The reality is that to carry out a sample size calculation based on precision (via math or computer 
simulation), we must input a specific interval width. This may at first seem inconsistent with the 
recommendation to relax interpretations of intervals and rigidity of endpoints. However, there is no 
conflict if we also relax our belief that there is a single correct answer to the sample size question and 
instead use the exercise to motivate a nuanced investigation to help understand challenges inherent 
in carrying out the study. This can include many calculations to reflect different levels of precision 
and varying sensitivity to assumptions. 

As previously mentioned, precision-based methods can be easily used to carry out a typical 
power calculation in disguise, rather than the more holistic approach we are promoting. Several 
practices can help avoid using them as power calculations in disguise: (1) avoid using confidence 
intervals to carry out hypothesis tests by simply checking if they contain a null value (a null 
hypothesis), (2) embrace the a priori work of developing the context-specific backdrop identifying the 
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range of values to be considered practically, or clinically, relevant, (3) create the backdrop using a 
scale that facilitates practical interpretation within context (e.g., not standardized effect sizes), and 
(4) contrary to common advice, do not simply use a previously obtained estimate to delineate the 
ranges of values in the backdrop (e.g., the 5 or the 10 in Figure 1). 

The last point deserves further attention: it is common to use previous estimates (such as pilot 
study results) as the “(practically meaningful) alternative value” in traditional power calculations, 
though this is not necessary or recommended. The practice has negative implications for sample size 
justification [10], for example because published effect estimates are often exaggerated [16]. Such 
practice can lead to sample sizes that are smaller than needed (if the published estimate is larger than 
the smallest values deemed practically relevant) or larger than needed (if the published estimate is 
smaller than what is deemed practically relevant). There is no reason a previous estimate should 
automatically be judged practically relevant – it can fall anywhere relative to the backdrop and 
should not change the a priori developed backdrop! This can be confusing because it is counter to 
what is often taught and expected from funding agencies. Relative to the previous example, a pilot 
study may have produced an estimated reduction of 4 units – which when considered relative to the 
backdrop is not clinically relevant and therefore there is no reason to increase the sample size to 
attempt to detect an effect as small as 4 units. The decision of what values will be judged practically 
relevant should thus be made based on knowledge of the subject matter (e.g., medical) and of the 
measurement scale, not on previous estimates of an effect of interest. 

Taking Back the Power Shouldn’t Be Easy 

A common question when considering this framework is: What if researchers do not have 
enough knowledge of how the outcome variable’s measurement scale is connected to practical 
implications to create the quantitative backdrop? That is, what if they are not able to identify values 
that would be considered large, or small, relative to practical implications? If this is the case, then we 
argue researchers should honestly declare that with the currently available knowledge, it is 
impossible to come up with a justifiable sample size. In such a situation, using default power 
calculations will essentially just move the research challenge into the analysis and interpretation 
phase, after already using valuable resources for the experiment – because if practical implications of 
possible outcomes are unclear before the experiment, they are usually still unclear after results are 
in. Instead, an inability to identify practical implications of possible outcomes in the planning stage 
of a study would highlight the exploratory nature of the research and a need for better understanding 
of the outcome variable, which could be a valuable research goal by itself. 

Engaging in a sample size investigation as we are recommending will not feel easy. Investigating 
sample sizes, rather than calculating them using default power analysis settings will bring up hard 
questions, throw light on assumptions that were previously hidden, and create additional problems 
to address. We need constant reminders that statistical methods depend on a substantial set of 
background assumptions; and methods for justifying sample sizes are no exception. 

Sample size investigation presents an opportunity for researchers to give up simple math 
calculations in exchange for taking back some of the authority and creativity blindly given over to 
statistical power for decades. We have a responsibility as scientists to work to understand and 
interrogate our chosen scientific methodologies to the best of our ability – to avoid being fooled by 
our own assumptions. Embracing this challenge in the design phase of a study can lead to higher 
quality research, and ultimately to more efficient research spending and respect for animal lives. 
Box 1: Different sorts of intervals and motivations for their use 

The “coverage” rate definition of a 95% confidence interval says that 95% of the hypothetical 
confidence intervals coming from theoretical data sets generated under the same design and model 
would contain (or “cover”) the true value; 5% of such intervals are expected to be “errors” in terms 
of excluding the true value. 

Confidence intervals can be created by inverting hypothesis tests: a 95% confidence interval 
includes possible values (e.g., effect sizes) for the null hypothesis that would have p-values larger 
than 0.05, given the statistical model. The interval can thus be taken as conveying the effect sizes that 
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have the least information against them and are most compatible with the data, given all background 
assumptions; it can therefore be termed a compatibility interval [4,14,15]. 

Intervals matching classic confidence intervals can arise more generally as quantiles of a 
distribution summarizing the most common values of a distribution without any need for referencing 
a true value or defining an error rate. This is the motivation for using posterior intervals within 
Bayesian inference as summaries of the inner part of posterior distributions. In a non-Bayesian 
setting, intervals can be used to summarize randomization distributions or sampling distributions, 
again with no reliance on true or hypothesized values or error rates. A 95% interval, for example, 
provides the interval excluding values beyond the 97.5 percentile and below the 2.5 percentile. 

We encourage this more general “summarizing a distribution” interpretation that helps relax 
interpretation of the endpoints from hard-boundary thresholds to rather arbitrary summaries of a 
distribution of interest. Displaying intervals as a collection of segments representing different choices 
for quantiles (e.g., 95% and 80%) facilitates this view (Figure 1). 

The goal is to have a more general interpretation of intervals beyond error and coverage rates 
that allows their use as a way to (necessarily imperfectly) represent the values most compatible with 
the data and all background assumptions (the model), as well as with context-dependent knowledge. 
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