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Abstract: Seed quality traits, including seed size, oil and protein content, mineral accumulation, and
morphological characteristics, are essential for crop productivity, nutritional value, and marketabil-
ity. Traditional quantitative trait loci (QTL) mapping methods, such as linkage analysis and ge-
nome-wide association studies (GWAS), have significantly contributed to identifying genetic re-
gions controlling these traits. However, these approaches face challenges in handling high-dimen-
sional genomic data, capturing complex genetic interactions, and improving prediction accuracy.
Recent advancements in artificial intelligence (Al) and machine learning (ML) have revolutionized
QTL mapping, offering more robust and precise predictive models. This review explores the inte-
gration of Al and ML techniques—such as LASSO regression, Random Forest, Gradient Boosting,
and deep learning —to enhance QTL detection, genomic selection, and marker-trait association anal-
yses. A case study on soybean seed mineral nutrients accumulation (Kassem, 2025) demonstrated
the power of ML models in identifying key single nucleotide polymorphisms (SNPs) on chromo-
somes 8, 9, and 14 influencing the accumulation of Nickel (Ni), Molybdenum (Mo), Iron (Fe), Zinc
(Zn), Boron (B), and Manganese (Mn). Results showed that LASSO regression and ElasticNet con-
sistently outperformed tree-based models, emphasizing the importance of feature selection in ge-
nomic prediction. Beyond soybean, ML-driven QTL mapping has been successfully applied in var-
ious crops, including hyperspectral GWAS for seed yield prediction in wheat, convolutional neural
networks (CNNs) for seed morphology analysis in lettuce, and expression QTL (eQTL) analysis for
seed cotton yield. Additionally, deep learning models combined with high-throughput phenotyp-
ing and multi-omics integration have further improved trait prediction accuracy. Despite these ad-
vancements, challenges remain, including data availability, model interpretability, computational
scalability, and biological validation. Future research must focus on integrating explainable Al tech-
niques, multi-omics datasets, and climate-adaptive breeding models to refine Al applications in
plant genomics. This review provides a comprehensive overview of Al-powered QTL mapping,
discusses real-world case studies, and highlights emerging opportunities to accelerate genomic-as-
sisted breeding for improved seed quality traits.

Keywords: Artificial intelligence; machine learning; QTL mapping; seed quality; genomic predic-
tion; deep learning; phenomics; feature selection

1. Introduction

Seed quality traits play a fundamental role in crop production, influencing both agronomic per-
formance and consumer preferences. These traits include seed size, oil content, protein composition,
starch accumulation, germination rate, seed vigor, and longevity, all of which contribute to yield po-
tential, nutritional value, and marketability. Improving seed quality is a major goal in crop breeding
programs, as it directly impacts food security, industrial processing, and sustainable agriculture
(Ronald, 2011; Wimalasekera, 2015; Qaim et al., 2020). However, seed quality traits are typically
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controlled by multiple genes and are influenced by environmental factors, making their genetic dis-
section highly complex.

1.1. Traditional QTL Mapping and Its Limitations

Over the past few decades, significant progress has been made in identifying genetic loci asso-
ciated with seed quality traits using quantitative trait loci (QTL) mapping and genome-wide associ-
ation studies (GWAS). Traditional QTL mapping involves linkage analysis in biparental populations,
allowing for the identification of genomic regions associated with phenotypic variation. While effec-
tive, this approach is often constrained by limited genetic diversity, low mapping resolution, and
extensive time requirements for population development (Varshney et al., 2021). On the other hand,
GWAS leverages natural genetic variation in diverse populations to detect marker-trait associations
at a higher resolution (Zhu et al., 2008). However, GWAS is prone to false positives due to population
structure and requires large sample sizes to achieve sufficient statistical power (Korte and Farlow,
2013).

Despite the utility of these methods, traditional QTL mapping approaches face challenges in
accurately predicting seed quality traits due to the polygenic nature of these traits, gene-environment
interactions, and the complexity of underlying biological networks. The emergence of high-through-
put genotyping and phenotyping technologies has led to an explosion of genomic and phenomic
data, necessitating more advanced computational approaches to effectively analyze and interpret
these datasets.

1.2. The Role of Al and ML in QTL Mapping

Artificial intelligence (AI) and machine learning (ML) have emerged as transformative tools in
plant genomics, offering novel computational frameworks for handling high-dimensional data and
improving QTL identification. ML algorithms, including deep learning, support vector machines
(SVMs), random forests (RFs), and Bayesian networks, can efficiently process complex genomic da-
tasets, uncover hidden patterns, and improve trait prediction accuracy (Ma et al., 2018; Montesinos-
Lopez et al., 2021). Unlike traditional statistical models, ML approaches can capture non-linear rela-
tionships between genetic markers and phenotypic traits, making them particularly well-suited for
studying polygenic traits such as seed quality.

In recent years, Al and ML have been successfully applied in various aspects of crop breeding,
including genomic selection, multi-omics data integration, and predictive modeling of agronomic
traits (Desta and Ortiz, 2014; Crossa et al., 2017). These approaches enable the rapid identification of
key genetic markers and provide insights into gene interactions and regulatory networks underlying
seed quality traits. Additionally, Al-driven genomic selection models have demonstrated superior
performance in predicting breeding values, allowing for more efficient selection of high-quality seed
varieties in breeding programs.

Given the growing role of Al in plant genomics, this review aims to explore the application of
Al and ML in identifying QTL associated with seed quality traits. First, it provides an overview of
key seed quality traits and their genetic basis, emphasizing their importance in crop breeding and the
challenges associated with their genetic dissection. Next, it discusses various Al and ML techniques
used in QTL mapping and genomic prediction, highlighting how these approaches improve the ac-
curacy and efficiency of trait identification compared to traditional methods. Furthermore, the review
examines case studies that demonstrate Al-driven QTL discovery for seed quality traits, showcasing
successful applications of ML models in different crop species. In addition, it addresses the challenges
and limitations of Al-based QTL mapping, including issues related to data quality, model interpret-
ability, computational complexity, and biological validation. Finally, it outlines future research direc-
tions and opportunities for integrating Al in crop breeding programs, focusing on emerging technol-
ogies and interdisciplinary collaborations that could further enhance the precision and applicability
of Al in plant genomics. By synthesizing recent advancements in Al-driven QTL mapping, this re-
view provides valuable insights into how Al can revolutionize the genetic improvement of seed qual-
ity traits, ultimately contributing to the development of high-yielding, high-quality crop varieties.

2. Seed Quality Traits and their Genetic Basis
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Seed quality traits encompass a wide range of physical, biochemical, and physiological charac-
teristics that influence crop productivity and post-harvest quality. These traits can be broadly cate-
gorized into:

Physical Traits: Seed size, shape, weight, and texture, which affect germination and processing
quality (Lurstwut and Pornpanomchai, 2017).

Biochemical Traits: Oil, protein, sugars, isoflavones, fatty acids, fiber contents, etc. which influ-
ence nutritional quality and industrial applications (Kassem, 2021).

Physiological Traits: Germination rate, seed vigor, dormancy, and longevity, which are critical
for seed storage and crop establishment (Reed et al., 2022).

The genetic regulation of these traits is highly complex, often governed by multiple QTLs and
influenced by environmental factors (Kassem, 2021). High-throughput phenotyping techniques, such
as near-infrared spectroscopy (NIRS) and hyperspectral imaging, have enabled the precise measure-
ment of seed quality traits, providing large datasets for Al-driven analyses (Montesinos-Lopez et al.,
2021, 2024). Advances in genomics, including next-generation sequencing (NGS) and genotyping-by-
sequencing (GBS), have further facilitated the identification of genetic markers associated with seed
quality traits. Integrating Al and ML in this domain offers a powerful approach to deciphering com-
plex genotype-phenotype relationships and enhancing the efficiency of marker-assisted breeding.

3. Al and ML Techniques for QTL Mapping
3.1. Overview of Al and ML in Genomics

Artificial intelligence, particularly ML, has transformed the field of genomics by enabling high-
throughput analysis of complex genetic datasets. ML models can efficiently handle large-scale omics
data, uncover hidden patterns, and improve QTL prediction accuracy. Some of the most commonly
used ML approaches in genomics include:

Support Vector Machines (SVM): Effective in high-dimensional genomic datasets for classifi-
cation and regression tasks.

Random Forest (RF): An ensemble learning method that improves feature selection and predic-
tive accuracy in genomic studies.

Deep Learning (DL): Neural networks, including convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), for analyzing multi-omics data (Ma et al., 2018; Nguyen and
Wang, 2020; Montesinos-Lopez et al., 2021).

These Al techniques have been successfully applied in genomic selection, phenotypic prediction,
and integrative omics analyses, making them valuable tools for QTL mapping in crop breeding
(Crossa et al., 2017).

3.2. ML for QTL Mapping

Traditional QTL mapping approaches often rely on linear models, which may not effectively
capture complex genetic interactions. ML models offer a non-parametric approach, allowing for the
detection of epistatic interactions and gene-environment effects (Montesinos-Lopez et al., 2021, 2024).
Table 1 provides a comparative analysis of various ML models applied in QTL mapping, highlighting
their strengths, limitations, and suitability for genomic prediction (Table 1). Recent studies have
demonstrated the application of ML in QTL discovery, including;:

Feature Selection for Genetic Markers: RF and SVM are used to rank genetic markers based on
their importance in explaining phenotypic variance.

Genomic Prediction Using DL Models: CNNs and deep neural networks (DNNs) improve the
accuracy of genomic selection for seed quality traits (Montesinos-Lopez et al., 2021).

Integration of Multi-Omics Data: Al-driven multi-omics integration enhances the power of
QTL detection and trait prediction (Nguyen and Wang, 2020).

By leveraging these Al techniques, researchers can accelerate the discovery of key genomic re-
gions controlling seed quality traits and optimize breeding programs.

Table 1. Comparison of ML techniques in QTL mapping.

Machine Learning

Model Strengths Limitations
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Feature selection, reduces

LASSO Regression o Assumes linear relationships
overfitting
Handles correlated features, Requires careful hyperparameter
ElasticNet better than LASSO for large d YPEIp

datasets

tuning

Captures non-linear
Random Forest  relationships, provides feature

Prone to overfitting with noisy

. data

importance
Gradient Boosting Boosts Weak predictors for Computa'ti'onally exPensive,

high accuracy sensitive to tuning
Can model complex
Deep Neural . . 'p . Needs large datasets, ‘black box’
interactions, learns hierarchical . .

Networks (DNNss) interpretability issues

representations

4. Integrating Multi-Omics Data Using AI/ML for QTL Discovery

Recent advances in genomics have highlighted the importance of integrating multi-omics data—
genomics, transcriptomics, proteomics, metabolomics, and phenomics—to improve the accuracy of
QTL mapping. Each of these omics layers provides valuable insights into gene regulation, metabolic
pathways, and phenotypic expression. However, the integration of multi-omics data poses significant
computational challenges due to the high dimensionality and heterogeneity of datasets. Al and ML
techniques provide powerful solutions for handling and analyzing such complex datasets, allowing
for more precise identification of QTL associated with seed quality traits. Figure 1 illustrates the
AI/ML workflow for QTL mapping, demonstrating how genomic, phenotypic, and environmental
data are processed through ML models to enhance QTL identification and genomic selection (Figure

1).

Genomic
Data

/ Models
Phenotypic

Data \
QTL

Identification

~

Environmental
Data

Genomic
Selection

Breeding
Decisions

Figure 1. AI/ML workflow in QTL mapping.

4.1. Al-Based Approaches for Multi-Omics Integration
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ML models can efficiently process and integrate multi-omics data to identify the key genomic
regions associated with seed quality traits. Some of the most widely used Al-based approaches in-
clude:

Deep Neural Networks (DNNs): These models can learn hierarchical representations from
multi-omics data, allowing for better QTL prediction.

Bayesian Networks: These probabilistic graphical models help in modeling gene-trait interac-
tions across multiple omics layers.

Multi-View Learning: This technique integrates different types of omics data while maintaining
their unique contributions to the phenotype (Nguyen and Wang., 2020).

Graph Neural Networks (GNNs): Used for modeling gene regulatory networks and detecting
interactions between genes and metabolites (Hasibi et al., 2024).

4.2. Case Studies on Al-Driven Multi-Omics QTL Mapping

Several studies have successfully applied Al-driven multi-omics integration for QTL discovery
in crops. For example:

Soybean Seed Quality: Al models integrating genomics and metabolomics have identified key
QTLs controlling oil and protein content in soybean.

Rice Grain Quality: Deep learning-based multi-omics integration has improved genomic pre-
diction for starch composition and amylose content in rice (Montesinos-Lopez et al., 2021, 2024).

Wheat Seed Germination: ML-driven transcriptomic analysis has led to the identification of
genes regulating seed dormancy and vigor in wheat (Montesinos-Lopez et al., 2021, 2024).

By leveraging these Al techniques, researchers can gain deeper insights into the genetic mecha-
nisms underlying seed quality traits, ultimately enhancing breeding efficiency.

5. Case Studies on Al-Driven QTL Discovery

The application of Al and ML in QTL mapping has gained momentum in recent years, enabling
researchers to identify genetic loci associated with complex traits more efficiently. Several studies
have demonstrated the power of ML in genomic prediction, SNP selection, and marker-trait associa-
tion analysis, particularly for seed quality traits (Crossa et al., 2017; Ma et al., 2018; Kassem, 2025).
This section highlights a case study applying ML to identify QTLs for seed mineral nutrients in soy-
bean, illustrating the integration of Al techniques in genomic research.

5.1. ML-Based QTL Mapping for Seed Mineral Nutrients in Soybean

Seed mineral nutrients, such as Nickel (Ni), Molybdenum (Mo), Iron (Fe), Zinc (Zn), Boron (B),
and Manganese (Mn), play essential roles in both plant metabolism and human nutrition. These mi-
cronutrients are key targets in crop improvement programs, as their accumulation in seeds is influ-
enced by genetic factors and environmental interactions. Traditional QTL mapping approaches have
provided valuable insights into the genetic control of these traits, but integrating ML methods offers
a more data-driven approach to enhance prediction accuracy and marker selection.

5.1.1. Genetic Basis of Seed Mineral Nutrients

Recent studies utilized a Forrest x Williams 82 Recombinant Inbred Line (RIL) population grown
in two different environments — Spring Lake, NC (2018), and Carbondale, IL (2020)—to identify QTLs
influencing mineral nutrient accumulation (Bellaloui et al., 2023, 2024). Genetic analyses revealed
varying levels of heritability among different minerals, with Ni exhibiting higher heritability (H? =
0.311) compared to Mo, which showed strong gene-by-environment interactions and lower heritabil-
ity (Bellaloui et al., 2023). These findings indicate the complexity of mineral accumulation in soybean
seeds, where both genetic and environmental factors contribute to trait variation.

5.1.2. QTL Identification and Candidate Genes

Using 2,075 single nucleotide polymorphisms (SNPs), QTL mapping identified significant loci
associated with seed mineral content. SNPs on chromosomes 8, 9, and 14 were strongly associated
with Ni and Mo accumulation (Bellaloui et al., 2023). Additionally, Fe and Zn accumulation was
linked to candidate genes such as iron-ion binding oxidoreductase and zinc finger proteins (Bellaloui
et al.,, 2024), while the accumulation of B and Mn was associated with genes encoding ATP-binding
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ABC transporters and metal detoxification proteins. These findings align with previous studies that
have reported mineral-associated QTLs on multiple soybean chromosomes, reinforcing the polygenic
nature of these traits.

5.1.3. ML Applications for SNP Identification

To improve SNP selection and QTL identification, Kassem (2025) applied multiple machine
learning (ML) models—including LASSO Regression, Random Forest, Gradient Boosting, and Elas-
ticNet—to the Carbondale, IL (2020) dataset to predict significant SNPs associated with mineral ac-
cumulation. As shown in Figure 2, LASSO Regression and ElasticNet outperformed tree-based mod-
els, consistently yielding the lowest Root Mean Square Errors (RMSE) and the highest prediction ac-
curacy (R? scores) across most mineral traits. In contrast, Random Forest and Gradient Boosting ex-
hibited higher error rates and negative R? scores, indicating challenges in predictive accuracy and the
need for improved feature selection (Figure 2).

Performance of ML Models in QTL Mapping
1.0

Prediction Accuracy (R?)

LASSO Elastichet Random Forest Gradient Boosting
ML Model

Figure 2. Performance of ML models in QTL mapping.

These results underscore the importance of choosing appropriate ML algorithms and fine-tuning
hyperparameters to enhance SNP prediction. While ML-based feature selection provided valuable
insights, traditional QTL mapping methods—such as Interval Mapping (IM) and Composite Interval
Mapping (CIM)—were still recommended for validating SNP-trait associations and ensuring biolog-
ical relevance (Kassem, 2025).

5.1.5. Future Directions and Integration with Breeding Programs

The integration of machine learning (ML) with traditional QTL mapping provides a powerful
framework for identifying candidate genes and genomic regions associated with seed mineral con-
tent. By leveraging ML techniques, researchers can improve the precision of QTL detection, enhance
genomic prediction accuracy, and ultimately facilitate marker-assisted selection (MAS) in crop breed-
ing. However, to fully realize the potential of Al-driven QTL mapping, several key research direc-
tions must be pursued.

One crucial area for improvement is the refinement of ML models. Enhancing hyperparameter
tuning, feature selection strategies, and model interpretability will be essential for increasing the ac-
curacy and reliability of predictions. Advanced ML techniques, such as ensemble learning and deep
neural networks, could be explored to further optimize the identification of significant genetic mark-
ers.
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Expanding the genetic datasets used in ML training is another priority. Larger and more genet-
ically diverse populations will strengthen QTL validation, improving the generalizability of Al-
driven genomic predictions across different soybean varieties and environmental conditions. The in-
clusion of multi-omics data, such as transcriptomics and metabolomics, could further enhance the
predictive power of ML models.

Additionally, functional validation of candidate genes is necessary to confirm the biological rel-
evance of Al-identified genomic regions. Cutting-edge gene-editing tools like CRISPR-Cas9 can be
used to experimentally verify the role of key genes in mineral nutrient accumulation, ensuring that
computationally predicted loci translate into practical breeding applications.

Finally, Al-assisted breeding pipelines should be developed to integrate ML-driven QTL map-
ping into soybean breeding programs. These pipelines can streamline the selection of nutrient-rich
cultivars, accelerating the breeding cycle and enhancing the nutritional quality of crops. By incorpo-
rating Al-driven decision-making into traditional breeding workflows, researchers can make more
data-informed selections, ultimately contributing to improved agricultural sustainability and food
security.

5.2. ML Applications for Other Seed Quality Traits

Beyond seed mineral nutrient accumulation, machine learning (ML) and deep learning (DL) ap-
proaches have been increasingly utilized to predict and map QTLs for seed quality traits, including
seed morphology, oil and protein content, seed yield, image-based trait assessment, and biochemical
composition (Table 2). The following studies demonstrate the growing impact of Al and ML in ge-
nomic selection and plant phenotyping (Table 2).

Table 2. AI Applications in seed quality and other traits.

Crop & Trait AI Model Used Key Findings Reference
Soybean; Mineral = LASSO, ElasticNet, Identified SNPs on Kassem (2025)
nutrients Random Forest chromosomes 8, 9, 14
Multi- ; QTL ML-Based QTL Machine 1 ing i d
ulti crop; Q . ased Q achine earmn.g improve Lin et al. (2020)
discovery Discovery QTL gene discovery
Lettuce; Seed Instance Segmentation 11 QTLs 1dent'1f1ed for seed Seki and Toda (2022)
morphology (DL) traits
Soybean; Protein & SVR-GWAS SVR-GWAS mapped QTLs Yoosefzadeh-
Oil GWAS better than FarmCPU Najafabadi et al. (2023)
Soybean; Seed shape RF, MLR RF & MLR achieved Duc et al. (2023)
& weight
;1 - I hieved 989
Soybean; Image CNN + mage CNNs achieve 98% Miranda et al. (2023)
based HSW Processing segmentation accuracy

Barley; Seed Synthetic data improved
phenotyping neural network training

Tomato, Seed CNN + X-Ray Imaging Mask R-CNN accurately

Neural Networks (DL) Toda et al. (2020)

Pessoa et al. (2023)

quality classified seed quality
Cotton; S.eed size & XGBoost + eQTL XGBoost identified key yield Zhao et al. (2023)
yield genes
-SVR predicted yield with
Rapeseed; Seed yield Nu-SVR, MLPNN Nu-S pl;e<1: g 86}’16 Wi Shahsavari et al. (2023)

Panicle-iAnalyzer improved

Rice; Panicle traits Deep Learning rice breeding Geng et al. (2024)
Plgeonpe.a; Seed Multi-Omics + AI Multl-omlcs. identified seed Singh et al. (2020)
quality quality genes
Multi- ;1 Inst Review highlighted f
ulti-Crop; .mage CNNs + Ins .ance eview highlig e. CNN:ss for Tang et al. (2024)
segmentation Segmentation phenotyping

Multi-Crop; Seed Alseed Software + ML High-throughput seed

phenotyping Ph e notyping Tu et al. (2023)

5.2.1. ML for Seed Morphology and Phenotyping
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The ability to analyze seed morphology is essential for understanding genetic variation, domes-
tication, and breeding selection. Seki and Toda (2022) applied instance segmentation neural networks
to analyze seed shape in lettuce (Lactuca spp.) and identified 11 QTLs related to seed area, width,
length, circularity, and eccentricity. Notably, three QTLs —qLWR-3.1, qECC-3.1, and qCIR-3.1—were
located in a genomic region previously associated with lettuce domestication traits, highlighting the
genetic basis of seed shape selection (Seki and Toda, 2022).

High-throughput phenotyping techniques have also been enhanced using Al-driven tools.
Alseed, a novel automated seed image analysis software, enables large-scale assessment of seed
shape, color, and texture, reducing the need for manual annotation (Tu et al., 2023). Additionally,
QTG-Finder2, a ML algorithm, was designed to accelerate the discovery of causal genes linked to
quantitative traits in plants, facilitating genetic analysis across multiple crop species (Lin et al., 2020).

A study by Miranda et al. (2023) applied convolutional neural networks (CNNs) to analyze RGB
seed images, achieving 98% segmentation accuracy and predicting hundred-seed weight (HSW) with
high precision (Miranda et al., 2023). Similarly, Duc et al. (2023) used Random Forest (RF) and Mul-
tiple Linear Regression (MLR) to predict HSW in soybean, achieving R? values of 0.98 and 0.94, re-
spectively (Duc et al., 2023).

Deep learning approaches are also being optimized using synthetic datasets. A study on barley
seed morphology demonstrated that neural networks can be effectively trained with synthetic data,
eliminating the need for extensive manual annotation, making high-throughput seed phenotyping
more scalable (Toda et al., 2020).

5.2.2. ML for Seed Oil, Protein, and Biochemical Composition

Oil and protein content are key determinants of seed quality. Yoosefzadeh-Najafabadi et al.
(2023) applied support vector regression (SVR)-mediated GWAS to map QTLs linked to soybean seed
protein and oil content, identifying a higher number of relevant QTLs compared to conventional
FarmCPU-based GWAS (Yoosefzadeh-Najafabadi et al.,, 2023). Similarly, Parsaeian et al. (2020)
demonstrated how ANN models integrated with image processing can be used for non-invasive es-
timation of oil and protein content in sesame (Parsaeian et al., 2020).

Machine learning has also improved biochemical trait assessment in seeds. X-ray imaging com-
bined with CNNs has been used to assess tomato seed quality, revealing that low-opacity seeds with
minimal damage had the highest germination rates. The Mask R-CNN deep learning model effec-
tively categorized seed quality into four classes, demonstrating the potential for non-destructive seed
viability assessment (Pessoa et al., 2023).

5.2.3. ML for Seed Yield and Genomic Selection

ML models have been successfully used to predict seed yield and genomic selection traits in
crops. A study on rapeseed (Brassica napus L.) found that Nu-SVR (support vector regression) with a
quadratic polynomial kernel function achieved the highest performance in predicting seed yield (SY),
with an R? value of 0.86 (Shahsavari et al., 2023). The study also demonstrated that combining multi-
layer perceptron neural networks (MLPNNs) with feature selection techniques allowed accurate
yield predictions using only three agronomic traits (Shahsavari et al., 2023).

Similarly, XGBoost-based gene regulatory network analysis has been applied to seed cotton
yield prediction. This study combined expression quantitative trait loci (eQTL) mapping with ML-
driven gene prioritization, identifying NF-YB3, FLA2, and GRDP1 as key regulators of seed size and
yield in cotton (Zhao et al., 2023).

5.2.4. ML and Deep Learning in Multi-Omics and High-Throughput Plant Phenotyping

Multi-omics strategies are increasingly being used to enhance seed quality and nutritional traits.
A study on pigeonpea (Cajanus cajan) integrated genomics, transcriptomics, proteomics, and metab-
olomics to identify genes regulating seed size, protein content, and disease resistance, providing in-
sights into breeding nutrient-dense legume varieties (Singh et al., 2020).

Al-driven high-throughput phenotyping tools have also been developed for dynamic panicle
trait analysis in rice. Panicle-iAnalyzer, a deep learning-based pipeline, enables the measurement of
panicle traits (i-traits) and plant growth metrics, supporting rice breeding programs (Geng et al.,
2024). Furthermore, a comprehensive review of deep learning-based segmentation techniques has
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explored how CNNs and instance segmentation models can enhance plant phenotyping by overcom-
ing challenges like background noise and lighting variability (Tang et al., 2024).

These studies demonstrate the growing impact of ML in seed quality research, showcasing its
ability to enhance trait prediction, accelerate breeding cycles, and facilitate high-throughput pheno-
typing in diverse crop species.

6. Challenges and Limitations of AI/ML in QTL Mapping

Despite the remarkable advancements in Al and ML for QTL mapping, several challenges and
limitations remain. These challenges need to be addressed to ensure the reliability and applicability
of Al-driven approaches in crop breeding.

6.1. Data Quality and Availability

One of the primary challenges in applying Al to QTL mapping is the need for large, high-quality
datasets. ML algorithms require extensive training data to generate accurate predictions. However,
plant breeding programs often have limited datasets due to the cost and time required for phenotyp-
ing and genotyping (Montesinos-Lopez et al., 2021, 2024). Furthermore, missing data and batch ef-
fects in multi-omics datasets can introduce biases in Al models.

6.2. Model Interpretability and Biological Validation

Al models, particularly deep learning algorithms, often function as “black boxes,” making it
difficult to interpret the biological significance of the predictions (Montesinos-Lopez et al., 2021,
2024). While these models can accurately predict trait variations, they may not provide clear mecha-
nistic insights into gene function and regulation. Interpretability techniques, such as SHAP (Shapley
Additive Explanations) and attention mechanisms, are being developed to enhance transparency in
Al-driven QTL analysis. However, biological validation of Al-predicted QTLs remains a major chal-
lenge, requiring experimental confirmation through gene knockout or overexpression studies.

6.3. Computational Complexity and Scalability

Processing high-dimensional genomic and phenomic datasets requires significant computa-
tional resources. Training deep learning models on large-scale multi-omics data can be time-consum-
ing and computationally expensive. Cloud-based platforms and high-performance computing (HPC)
infrastructure are increasingly being used to address these scalability issues (Montesinos-Lopez et
al.,, 2021, 2024; Hasibi et al., 2024). However, accessibility to such resources remains a limitation for
many research institutions.

6.4. Ethical and Regulatory Concerns

The use of Al in plant genomics raises ethical and regulatory concerns, particularly regarding
data privacy and intellectual property rights. Large-scale genomic datasets are often shared across
institutions and countries, necessitating robust data governance frameworks to ensure ethical use
and equitable benefits. Additionally, Al-driven genomic prediction models may favor elite breeding
programs, potentially widening the gap between resource-rich and resource-poor breeding initiatives
(Nguyen and Wang., 2020).

Addressing these challenges will be crucial for the widespread adoption of Al in QTL mapping
and plant breeding.

7. Future Directions and Opportunities

Al and ML have immense potential to revolutionize QTL mapping and accelerate crop improve-
ment. Future research should focus on enhancing the accuracy, interpretability, and applicability of
Al-driven models.

7.1. Integration of Al with Emerging Technologies

The next frontier in Al-driven QTL mapping will involve integrating Al with emerging technol-
ogies such as:

Quantum Computing: To accelerate the processing of large-scale genomic datasets.

Edge Computing: For real-time genomic prediction and phenotyping.
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Synthetic Biology: To design Al-guided gene editing strategies for improving seed quality
traits.

7.2. Al-Assisted Breeding Pipelines

Developing Al-assisted breeding platforms that combine genomics, phenomics, and environ-
mental data will enable precision breeding. Al-driven decision support systems can help breeders
prioritize candidate lines with optimal seed quality traits.

7.3. Enhanced Model Interpretability

Developing explainable Al models will be essential for bridging the gap between computational
predictions and biological validation. Incorporating functional genomics and network-based ap-
proaches can improve model interpretability.

7.4. Open-Source Al Platforms for Genomics

Collaborative efforts to develop open-source Al tools for QTL mapping can democratize access
to cutting-edge Al technologies in plant breeding. Initiatives such as the Al for Agriculture Innova-
tion Consortium aim to create publicly available Al-driven genomic prediction models (Montesinos-
Lopez et al., 2021, 2024).

By addressing these future directions, Al-driven QTL mapping can significantly contribute to
sustainable agriculture and global food security.

8. Conclusion

Al and ML are transforming the field of QTL mapping by providing innovative solutions for
analyzing complex genomic datasets and predicting seed quality traits. By leveraging advanced com-
putational models, researchers can enhance the accuracy and efficiency of QTL identification, leading
to improved breeding strategies. However, challenges related to data quality, model interpretability,
and computational scalability must be addressed to fully realize the potential of Al in plant genomics.
Future research should focus on integrating Al with emerging technologies, improving model trans-
parency, and fostering collaborative Al-driven breeding initiatives. By embracing these advance-
ments, Al-powered QTL mapping can play a pivotal role in developing high-quality, climate-resilient
crop varieties, ensuring global food security.
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