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Abstract: The rising popularity of UAVs and other autonomous control systems, coupled with real-time operating

systems, has increased the complexity of developing systems with the proper robustness, performance, and

reactivity. The growing demand for more sophisticated computational tasks, proportionally larger payloads,

battery limitations, and smaller take-off mass requires higher energy efficiency for all avionics and mission

computers. This paper aims to develop the technique for experimental studies of indicators of reactivity and

energy consumption of the computing platform for unmanned aerial vehicles (UAVs). The paper provides an

experimental assessment of the ‘Boryviter 0.1’ computing platform, which is implemented on the ATSAMV71

microprocessor and operates under the open-source FreeRTOS operating system. The results are the basis for

developing algorithms and energy-efficient design strategies for the mission computer to solve the optimization

problem. The paper provides experimental results of measurements of the energy consumed by the microcontroller

and estimates of the reduction in system energy consumption due to additional time costs for suspending and

resuming the computer’s operation. The results show that the ‘Boryviter 0.1’ computing platform can be used

as a UAV mission computer for typical flight control tasks requiring real-time computing under the influence

of external factors. As a further work direction, the authors plan to investigate the proposed energy-saving

algorithms within the planned NASA F’Prime software flight framework. Such an investigation, which should be

done with the mission computer’s actual flight computation load, will help qualify the obtained energy-saving

methods and their implementation results.

Keywords: UAV; mission computer; software; Boryviter; Falco; computational efficiency; overhead costs; energy

efficiency; reactivity; ATSAMV71; FreeRTOS; earliest deadline first; rate monotonic scheduling; low power modes

1. Introduction

Today, unmanned aerial vehicles (UAVs) are widely used in many areas of human activity and
play an essential role in scientific, industrial, search and rescue, surveillance, cinematographic, and
other tasks [1]. The use of UAVs made it possible to carry out dangerous missions without risking
the health and life of the operators. With the beginning of Russia’s aggression in Ukraine, it became
clear that the effective use of UAVs on the battlefield was almost the only possibility for the Ukrainian
armed forces to oppose Russia’s massive military machine. Analyzing this confrontation, the Center
of Excellence for Integrated Air and Missile Defense in the report [2] emphasizes the need to adapt
NATO’s military doctrines, concepts, and tactics to the new realities of using UAVs, UGVs (unmanned
ground vehicles), UWVs (unmanned water vehicles/vessels) and countermeasure systems.

The works [3,4] overview UAV research and highlight the latest trends and achievements. The au-
thors also consider UAVs’ general hardware and software architecture and describe their applications.
The article [5] provides an overview and classification of UAVs. It also describes the capabilities and
characteristics of UAVs weighing 2 to 11,600 kg and operating up to 40 h.
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The UAV market is actively developing. According to Fortune Business Insights [6], the CAGR of
the global UAV market is 16.3% for the period 2023-2030, and the majority of the market is accounted
for by UAVs of small and tactical devices (Figure 1). For such UAVs, the requirements for the on-board
computer must correspond to the increased complexity of the system [7–10].

Figure 1. Global UAV Market Share by UAV Class (2022), source: Fortune Business Insights [6].

Every UAV that takes off has its mission to generate value for the operator of a UAV. A UAV shall
consist of reliable, powerful, and yet power-efficient avionics (Figure 2) with the required mission
capabilities to carry out its mission. The orchestration of the mission is done by a central computer,
which is called the mission computer. The typical tasks of the mission computer are to control the
entire avionics, compute the UAV’s route, ensure communication to the ground station (if required),
and control the onboard payload.

Figure 2. A typical build-up of the UAV (avionics, batteries, servos, IMUs.

This article will concentrate on the mission computer alone as this is the most complex yet flexible
and configurable part of modern UAV avionics.

The background of the research in this paper is the growing need for real-time mission computers
that are powerful and responsive yet power-efficient and cost-efficient.

Investigating the trade-off between system reactivity and the use of energy-saving modes of the
computing platform is vital in many situations, not only for UAVs but also in all real-time systems
with an autonomous power supply. These are embedded systems in industrial applications, Internet
of Things (IoT) devices, implanted medical devices, emergency notification systems, etc. During the

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 November 2024 doi:10.20944/preprints202410.2104.v2

https://doi.org/10.20944/preprints202410.2104.v2


3 of 28

operation of the computing platform, this compromise is achieved through software-implemented
algorithms that allow adaptive control of computer operating modes depending on current conditions
and requirements for reactivity and energy consumption of the system. To solve the question of the
expediency of spending on the development of new algorithms and software, an experimental study
is needed to build a mathematical model that comprehensively characterizes the reactivity and energy
consumption of the computer.

The purpose of this paper is to develop a technique for experimental studies of indicators of
reactivity and energy consumption of the computing platform for UAVs. All work in the paper is
carried out using the authors’ mission computer ‘Boryviter 0.1’.

The paper is structured as follows:

• Section 2—‘Domain Overview,’ introduces the reader to the mission of computers as the object of
the study, provides an overview of the real-time operation systems (RTOS) usage challenges, and
describes tools and needs of energy-saving solutions for embedded mission computers;

• Section 3—‘Materials And Methods’ describes the platform for conducting the study experiment,
defines a system model in the look of a power state machine, and describes the exact way of
measuring reactivity and power consumption of different modes of operation;

• Section 4—‘Results’ provides the obtained experiment results;
• Section 5—‘Discussion’ describes and presents the obtained results applied to the proposed

system model;
• Section 6—‘Conclusion’ concludes the article by describing the novelty of the research and its

further development.

2. Domain Overview

The chapter provides an extensive overview of the technology, design, and efficiency considera-
tions for mission computers in unmanned aerial vehicles (UAVs).

The modern approach for the avionics and mission computers development consists of the
following key steps:

• Select an appropriate ready-to-use avionics platform (including a mission computer);
• Use microcontroller-specific vendor toolchain;
• Ensure that a real-time operation system is in place and can be easily adapted to the selected

computation platform;
• Design and validate the required for the flight mission business logic (i.e., what exactly a UAV

shall do).

The items above do not guarantee that the selected platform, microcontroller, operating system,
and other components will allow the integrator to achieve the required results to fulfill the mission
objectives. In the chapter, an in-depth review of the technologies, techniques, parts, and problems
mentioned in the UAV avionics design process is reviewed.

2.1. UAV Avionics and Mission Computers

Typical UAV avionics (the on-board electronics) consist of several key parts, they are (Figure 3):

• Mission computer (often called an on-board computer or flight controller board);
• Navigation and orientation system (GNSS and GPS);
• Sensors board + sensors;
• Remote control and telemetry system (Communication unit);
• Energy and propulsion system (Driving unit);
• Payload (sometimes called an off-board module).
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Figure 3. Typical UAV avionics structure [11].

A mission computer is a specialized computer system integrated into the avionics of a UAV or, in
general, into another complex technical device that requires autonomous control and high reliability
[12]. Computational power, reactivity, energy efficiency, peripheral support, and real-time performance
are important considerations when choosing a mission computer. The reality of mission computer
build-up and development shows that most commercial off-the-shelf (COTS) products [13] are built on
a specific series of microcontrollers or microprocessors (main processors) known to the development
team or the vendor. This expertise significantly advances software quality, expedites time-to-market,
and enhances flight heritage.

Microcontroller units (MCUs) utilized in UAVs or nanosatellites generally exhibit substantial simi-
larities, except when considering radiation-hardened or radiation-tolerant microcontrollers [14]. These
specific microcontrollers are beyond the affordability of commercial electronics and, consequently, will
not be evaluated in this article. As a result, the spectrum of available components for utilization and
the associated toolchain for RTOSes and development tools is considerably broadened.

The similarity of the requirements for the construction of UAV and nanosatellites onboard systems
makes it expedient to use a standard technology stack [15] to address both application areas being part
of aerospace engineering. A description of the highly integrated onboard computing products used for
CubeSat missions (class of nanosatellites) is given in [16]. The most energy-saving solutions are based
on ARM Cortex-Mx (where x is 0 to 7), LEON3FT, and Atmel ARM 9.

Electronic component manufacturers constantly update available offers, allowing UAV developers
to achieve better results (appropriate productivity with low power consumption) when solving
complex tasks. Popular MCU series with brand new families that can be used in UAV onboard systems
include the SAMx Series (Atmel/Microchip) [17], PIC32 (Microchip), STM32 Series (STMicroelectronics)
and iMX.RT series (NXP). The characteristics of the popular series of 32-bit microcontrollers for
implementing UAV mission computers are listed in Table 1. The precise selection of the components
examined was determined by balancing between performance, available memory, and the availability
of energy-saving modes.
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Table 1. Key characteristics and low power modes (LPM) of a popular series of 32-bit microcontrollers
(F—the amount of Flash memory available onboard, R—the amount of RAM available onboard).

MCU Family Memories Temperature Voltage Low Power Modes

ATSAMV7x (Cortex-M7) F = 2 Mb, R = 384 Kb −40/+125 1.8–3.6 Vdc Sleep, Wait, Backup

PIC32CZ (MIPS) F = 2 Mb, R = 512 Kb −40/+105 2.5–3.6 Vdc Sleep, Wait, Backup

PIC32MX (MIPS) F = 512 Kb, R = 128 Kb −40/+105 2.3–3.6 Vdc Sleep, Idle

STM32H7 (Cortex-M7) F = 1 Mb, R = 564 Kb −40/+125 1.62–3.6 Vdc Sleep, Stop, Standby

STM32F7 (Cortex-M7) F = 2 Mb, R = 512 Kb −40/+105 1.7–3.6 Vdc Sleep, Stop, Standby

iMX.RT1024 (Cortex-M7) F = 4 Mb, R = 256 Kb −40/+105 3.0–3.6 Vdc LPR (24 MHz), Sleep

2.2. Problems and Researches in the Field of Mission Computers

Ensuring the ability to fly autonomously requires efficient sensor operation, appropriate flight
control, and mission software. There is a lot of research on using AI for these tasks, such as computer
vision for object recognition and tracking [18–20], reinforcement learning for mission control [21],
sensor fusion, and others. The success of missions in general and, in particular, the effectiveness of
the application of machine learning (ML) models critically depends on the reactivity of the onboard
system to ensure the prompt acquisition of data and the speed of execution of the relevant program
blocks.

Another area of research is the energy efficiency [15,22] of the onboard systems, which directly
affects the maximum duration of the UAV flight with the maximum reduction of the weight of
the powertrain and its energy source. Any calculations, from the business logic that performs the
business tasks (payload) and overall mission control (such as engine control) to system ones, such as
diagnosing the state of the computer and connected sensors and actuators, require software running
on the central processor or microcontrollers. The availability of microcontrollers does not play the last
role in selecting electronic components for mission computers. Research is being conducted on the
experimental comparison of the solution’s effectiveness based on various technology stacks, which
involve using budget solutions and open-source software. Thus, the paper [23] describes the creation
and experimental research of a hexacopter and a quadcopter built on different flight controllers and
software using budget components and free, open-source products. The authors of the paper [15]
provided the results of a stack layer comparison, including the use of open real-time operating systems
(RTOS), such as FreeRTOS, ROS, and Linux with real-time extensions, with open middleware such as
cFS (core Flight System) by NASA or F’ Prime by JPL/NASA [24], and image sharing firmware.

Assessment of electrical power consumption in microcontrollers requires the use of mathematical
models to delineate the relationship between energy consumption and the operational parameters
of the target computing platform. Typically, these models are expressed as mathematical functions
that correlate energy consumption with characteristics measured or estimated at a specific level of
abstraction in conjunction with the fundamental hardware architecture. The power consumption
model can be used as input data during development and for adaptive control of mission computer
operating modes during application. Depending on the specific target application, the power model
must meet different multi-domain and multi-criteria requirements and be designed accordingly. Power
analysis during design uses the power model offline to limit the design parameter space of the target
computing platform, allowing evaluation of their energy, power, performance, and other quality
indicators at an early stage of development. Conversely, monitoring consumed electrical power
during operation allows adaptive control of operating modes in real-time by comparing actual energy
consumption estimates and a pre-designed energy consumption model.

It is important to mention that complex mission computers contain many peripheral in-circuit
devices like external RAM, ROM, peripheral interface drivers, ADCs, DACs, IMUs, etc. Proper
peripheral control of these extra devices via correct microcontroller power modes ensures overall
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mission-computer energy efficiency. The rule of thumb is that the microcontroller and the rest of the
digital peripherals consume equal energy.

Looking into modern development approaches to embedded software development, it is pretty
easy to see that bare metal programming is becoming less and less used, whereas RTOS-based pro-
gramming is dominating. Using RTOS ensures interoperability and reuse of software components
and allows modern system architecture approaches such as microservices, containerization [25], and,
for larger microcontrollers, virtualization. This article focuses on optimizing the power consumption
of microcontrollers governed by RTOS without assessing the remaining peripherals of the mission
controller.

2.3. Real-Time Systems and Typical Scheduling Algorithms

Real-time systems must guarantee task execution within specified deadlines and time constraints
while ensuring energy-efficient computations. For mission computers, such tasks could lie in motor
control, ground station communication, sensor fusion tasks, orientation, aircraft and operator safety
handling, and navigation. The mission computer will handle all these typical tasks with a different
demand from real-time criticality.

All possible tasks performed by a microcontroller can be classified as follows, determined by the
nature of event occurrence:

• by execution reason: periodic and sporadic tasks;
• by constraint nature: tasks with hard or soft deadlines.

The execution schedule of a real-time system is correct if all time constraints are met.
For periodic tasks, the schedule will be a table that indicates at which point in time which task

should be executed. A minimum possible event occurrence period is determined for sporadic tasks,
allowing them to be artificially classified as periodic. This schedule must be compiled for a time
interval equal to all tasks’ hyperperiods (the least common multiple of periods) to guarantee their
execution without violating time constraints.

The classic work by Liu and Layland [26] proposed two main scheduling concepts for priority-
based real-time systems:

• static priority assignment in reverse order of known task periods—Rate-monotonic scheduling
(RMS);

• dynamic priority scheduling, where the highest priority is assigned to the task with the nearest
execution deadline—Earliest Deadline First (EDF).

RMS-based schedulers work on timer interrupts, with tasks simply being called at the right
moments from the interrupt handler. The advantage of this class of algorithms is the exceptional
simplicity and predictability that is confirmed by a large number of test results and experiments. The
disadvantages are:

• inflexibility, as the scheduler does not actually react to external world events and works exclu-
sively on timer interrupts;

• difficulty in scheduling sporadic tasks based on the minimum possible period of external events;
• very large size of the schedule table with appropriate ratios between task periods.

EDF-based schedulers define the task with the earliest absolute execution deadline as the highest
priority. However, in practical real-time systems, the relative deadline for task execution is not always
equal to its period. Hence, the above assumption greatly limits the usefulness of available scheduling
test results based on EDF usage. Analysis of the exact scheduling possibility for EDF scheduling with
arbitrary relative terms requires calculating processor requirements for a task set at each absolute term
to check if there is an overflow at a given time interval. This interval is limited by a certain value, which
guarantees we can find a failure point if the task set is not schedulable. Significant efforts to perform
schedulability checking according to EDF in real systems limit the possibilities of applying EDF in
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real-time systems. As a result, the EDF algorithm is not widely used as a fixed priority algorithm in
commercial real-time systems [27]. Weakly Hard Real-Time Systems or Firm Hard Real-Time Systems
were started in 2001 [28] to characterize real-time task constraints better. The concept is based on task
differentiation, assuming that not all task-time constraints must be satisfied. The concept is based
on task differentiation, assuming that not all task-time constraints must be satisfied. In general, it
is proposed to use a model (m, k) based on the assumption that out of any k consecutive instances
(jobs) of a task, at least m instances must meet time constraints. In other words, a one-time or multiple
violation of time constraints by one task is not always a failure if the number of these violations does
not exceed a predetermined number. This is explained by the existing redundancy of systems and is
applied to soft real-time tasks and hard or firm real-time tasks.

The concept of weakened systems has been further developed in many works, for example, in
articles [29,30]. It is based on the following task model in the form of a tuple:

τi = ⟨Ci, Di, Ti, mi, Ki⟩, (1)

where Ci is the maximum time required for the task; Ti is the minimum time interval for the arrival of
the task. If it is a periodic task, then Ti is its period; If sporadic, it is the minimum period of interruption
occurrence; Di is the time constraint for task execution (Di ≤ Ti);

⟨mi, Ki⟩, mi < Ki, (2)

are weakened constraints of real-time tasks: In a sequence of Ki jobs for this task, it can violate
deadlines no more than mi mi times. If this task belongs to the hard real-time class, then:

mi = 0, Ki = 1. (3)

The scheduler algorithm in a weak real-time hard system includes the following steps:

1. If all scheduled time constraints of all jobs for all tasks can be met using EDF, use EDF and finish.
If not, then go to Step 2.

2. Sort the jobs of all tasks according to the criterion of the number of time constraints of jobs that
are still allowed to be violated for the planning time interval. Class “0” will include all tasks that
do not allow any misses. Class “1” will include those that can violate the time constraint once.
Example: if (mi; Ki) for a task is equal to (2, 4), then it is allowed to violate the time constraint of 2
jobs out of 4 consecutive jobs, so the task can fall into classes 0, 1, 2 depending on the number of
jobs already missed.

3. Use EDF first for class 0, then for class 1, etc.

Many modern publications are devoted to technologies for evaluating microcontroller perfor-
mance indicators and measuring the time costs of typical algorithms on both widely used mass-
produced platforms and original developments.

In work [31], a comparison of performance indicators of the Raspberry Pi4, BeagleBone AI, and
TWR-K70F120M platforms, as well as the execution time of algorithms on these platforms under the
condition of multithreaded implementation of a specific set of executable tasks, was performed. The
leading indicators for real-time systems are task execution time, worst-case execution time, waiting
time, and response delays. To achieve the goal, a multithreaded test program was developed with
special computationally intensive sorting operations, matrix operations, and the lightweight crypto
library wolfCrypt, written in ANSI C and designed for embedded systems, real-time systems, and
resource-constrained environments.

The article [25] provides results that compare the computational performance of the open STEM-
like hardware project Pi Pico from Raspberry on the RP2040 processor [32] and the author’s solution
of the “Falco SBC/CDHM” computing platform based on the ATSAMV71 microcontroller (Microchip)
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[17] with improved performance. The possibility of using microservice architecture and the effec-
tiveness of the proposed new platform were experimentally verified by measuring the processor
time required to execute three typical algorithms of different algorithmic complexity and different
dimensions of initial data.

A common drawback of the considered works is the lack of evaluation of the energy efficiency of
computing platforms. An integral feature of real-time systems is redundancy, including time resources,
to guarantee the fulfillment of time constraints under any conditions. In real projects, such redundancy
exists at the hardware and software-algorithmic levels. It is essential to answer the question of how
energy-efficiently the platform behaves in the time interval when all current tasks have already been
completed, and there is no need to do anything until a new interrupt comes, either external from
connected devices or internal from the system timer. The ideal situation would be where the platform
consumes nothing during this time, but this is impossible. The reverse side of this problem is to
determine the indicators of deterioration in the reactivity of the computing system because before
starting to do something useful after an external event, the processor and other components of the
computing platform must first fully restore the normal operating mode.

2.4. Methods of Energy Consumption Management

The survey [33] provides the following classification of methods for ensuring the energy efficiency
of microcontrollers in embedded systems:

1. Methods of dynamic voltage and frequency scaling (DVFS) and power-aware scheduling;
2. Use of low power consumption modes, called Power Mode Management (PMM) or Dynamic

Power Management (DPM);
3. Microarchitectural techniques for energy conservation in individual components, such as memory

where the computational context is stored in memory during total or partial processor shutdown;
4. Use of non-traditional computers, such as DSP or GPU FPGA. This method is suitable for

computationally intensive tasks where traditional general-purpose processors perform worse
(mW/MIPS).

The article [34] explores the possibility of energy savings in wireless sensor networks through
DVFS in low-energy microcontrollers. The quantitative metric for evaluating energy efficiency is
normalized power, the ratio of electrical power consumed to performance (mW / MIPS). Normalized
power allows for a more accurate characterization of the microcontroller’s energy efficiency, as it
considers the consumed electrical power and the performance expressed in MIPS (Million Instructions
Per Second). The lower the value of normalized power, the less energy the microcontroller will
consume.

Overall, the article provides a reasonable basis for further research on DVFS in wireless sensor
networks, but some aspects require more thorough elaboration. The drawbacks of the article include
the difficulty in generalizing the results obtained to other platforms and architectures, the lack of
evaluating overhead costs for transitions between DVFS modes, and a limited number of measurements
for different voltage/frequency combinations.

The publication [35] comprehensively investigates the relationships between three components:

• real-time constraints;
• constraints on the energy consumption of the computer;
• software methods for ensuring fault tolerance.

It discusses the interdependencies of the probability of permanent failures on frequency and
supply voltage, the probability of temporary failures on task execution time, and the dependence of
consumed electrical power on the computer’s chosen fault tolerance policies and operating parameters.
The article proposes a joint model for analyzing scheduling and failures to highlight formal interactions
between fault tolerance mechanisms and temporal properties. The article suggests several vital
directions for future research in the field of fault-tolerant real-time systems:
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• development of scheduling algorithms that take into account the probability of failures to mini-
mize the active time of tasks and their total probability of failures while maintaining schedulabil-
ity;

• analysis of the impact of various fault tolerance strategies (re-execution, checkpoints, N-modular
redundancy (NMR)) on scheduling. In particular, the integration of different approaches and their
optimization to improve schedulability and compliance with requirements for failure probability;

• application of the mixed-criticality concept to make systems compatible with industry standards
and quantify the probability of transition to high criticality mode;

• analysis of trade-offs between energy consumption management (DVFS), thermal effects, resis-
tance to various types of failures, and real-time requirements;

• improvement of system software reliability, such as scheduler and failure detection mechanisms;
• use of probabilistic information about execution time to calculate a more accurate estimate of

failure probability;
• consideration of other failure models, such as (k, n), approximate computations, and malicious

failures.

The article [36] analyzes the reliability of embedded real-time satellite systems operating in harsh
space environments. Two types of errors characteristic of systems operating in harsh temperature
and/or radiation conditions are considered:

1. “Soft-error” or “soft fault”—a single-event upset (SEU), temporary distortion of a bit value in
memory or processor register caused by external factors that do not lead to permanent hardware
damage;

2. “Hard-error” or “hard fault”—permanent damage to a hardware component caused by wear or
degradation of materials due to prolonged operation or, for example, radiation exposure in space
use. Such errors are classified as single-event latchups (SEL).

Real-time system constraints are taken into account using a periodic task model to assess the
system load during redundant backup execution of tasks to detect soft errors and their subsequent
elimination by the requirements of functional safety standards such as DO-178B, IEC-61508 [37], and
ISO-26262 [38]. Increasing resistance to single soft errors and permanent hard errors is achieved by
solving an optimization problem.

The article [39] analyzes and develops methods to reduce energy consumption in ultra-low-power
embedded systems using dynamic voltage and frequency scaling (DVFS). The authors analyzed
energy consumption while performing computationally intensive operations such as the Fast Fourier
Transform (FFT), Cyclic Redundancy Check (CRC32), and the calculation of MD5 and SHA256 hash
functions. According to the results of experimental testing on the ARM Cortex-M0+ microcontroller,
it is confirmed that the application of DVFS can save from 27.74% to 47.74% of electrical energy.
The disadvantages include the lack of comparison with other energy-saving methods and a limited
set of test operations (FFT, CRC, hash functions), which may not represent other load types. The
problems of transient processes during dynamic voltage changes and related time delays have remained
unexplored.

The evaluation of the effectiveness of system planning and energy savings in embedded real-time
systems with low computational resources is a problem considered in the article [40]. In real-time
operating systems (RTOS), the characteristics of the implemented scheduling policy play an essential
role in both scheduling and energy consumption. Ideally, the scheduling policy should guarantee
adherence to task schedules and low energy costs during execution, allowing better use of the available
free time to save energy. The scheduling policy proposed in the article is based on fixed priority
scheduling (RMS), which provides low overhead and simplicity of implementation. According to this
scheme, a simple priority vector indicates that the current task is ready for execution. However, the
scheduling results are usually lower than those achieved by dynamic priority scheduling, according to
which task priorities are assigned during execution.
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A microcontroller with the FreeRTOS operating system manages a limited energy budget using
hardware and software tools [41]. FreeRTOS will execute the idle task with the lowest priority when
all other tasks transition to a blocked state (waiting for an event, resource, or the next timer-driven
run). Therefore, the idle task can be put into energy-saving mode when the processor is idle. This
mechanism is helpful in some scenarios, but if the clock frequency is too high, the processor will waste
energy and time entering and exiting the standby mode. Thus, saving energy using this mechanism
will not be beneficial. Therefore, to improve the corresponding energy-saving mechanism, a tickless
idle technique was introduced [42]. The technique uses a time-tracking mechanism to turn off the
source of periodic ticks for a certain period to put the processor into deep sleep mode until an external
interrupt or a higher-priority core interrupt occurs.

In work [43], a solution is proposed to optimize the energy efficiency of the operating system
scheduler of a microcontroller based on LM3S3748. It is proposed to use an “idle” system flow,
which, after completing its work, puts the microcontroller into Sleep or Deep Sleep modes. The
article provides quantitative experimental results of measurements of the energy consumed by the
microcontroller and estimates of the reduction in system reactivity due to additional time costs for
suspending and resuming the microcontroller’s operation. The disadvantage of the article is the lack
of generalization of results in the form of a general technology for optimizing the energy efficiency of
the microcontroller’s operation.

Article [44] provides an overview of the main energy-saving algorithms. DVFS (Dynamic Voltage
and Frequency Scaling)—dynamic change of processor voltage and frequency, and DPM (Dynamic
Power Management)—dynamic power management based on switching the processor to low power
consumption modes. This review highlights the main problems associated with the reactivity of
real-time systems when applying energy-saving methods. It emphasizes the complexity of balancing
energy efficiency and maintaining the required level of reactivity in real-time systems.

The reactivity-time indicators given in the article can be divided into two classes. The first class
includes delays that are determined mainly by the hardware component:

• • wake-up delays characterize the time required for full recovery of the processor from sleep
mode. They can be measured by determining the time interval from the moment of the interrupt
request to the first useful command in the interrupt handler;

• break-even time is an integral characteristic. The processor must spend the minimum amount
of time in low-power consumption mode to compensate for the energy and time costs of tran-
sitioning to this mode and back. Break-even time is the sum of wake-up and transition delays,
which characterize the time costs necessary for the processor to transition from active state to
sleep mode.

The second class includes delays that are determined only by software algorithms:

• procrastination delays, when some algorithms deliberately postpone the execution of tasks to
increase the duration of the idle period and more efficiently use low power consumption modes.
These delays are carefully calculated so as not to violate the time constraints of tasks;

• scheduling delays—the time required to make decisions about changing the power consumption
mode and rescheduling tasks;

• delays associated with calculating optimal moments for transitioning to sleep mode and waking
up. Some algorithms perform complex calculations to determine these moments, which can
introduce additional delays;

• early completion delays, which create additional space for energy saving but require dynamic
rescheduling.

Considering the delays of the first class is critical for the practical application of energy-saving
modes in real-time systems, as they directly affect the system’s ability to adhere to time constraints
while simultaneously reducing energy consumption. Therefore, only these delays are the subject of
further consideration.
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2.5. Overview of Existing Methods for Evaluating Performance and Energy Efficiency of Embedded Systems

Optimizing system indicators begins with measuring and analyzing the system parameters. While
there are many tools for measuring and evaluating performance and energy efficiency for modern
household PCs, the number of such tools for embedded computing is limited and very little known to
embedded system developers.

The authors of the work [45] investigate the computational performance and energy efficiency of
various microprocessors used as mission computers in nanosatellites in typical tasks of determining
and controlling the orientation of nanosatellites. The authors’ primary motivation for developing
a new specialized benchmark (software for measurement and comparison) instead of using known
benchmarks is the latter’s shortcomings.

In short, the following benchmarks were analyzed:

1. Benchmarks like EEMBC [46], ParMiBench [47], BEEBS [48], or EmsBench [49] do not contain a
sufficient number of operations with matrices, quaternions, and calculations typical for satellite
orientation control algorithms;

2. Most existing benchmarks are focused on performance evaluation, while energy efficiency of
calculations is critically important for satellite systems due to strict power constraints;

3. Requirements for large memory volumes or use of external files. Some benchmarks require
access to the file system, which can be problematic for embedded systems with limited memory
resources;

4. Lack of open source code or requirement of paid subscription. For example, EEMBC benchmarks
require a paid subscription to access test loads.

The authors tested their developed benchmark on three platforms often used in nanosatellites:
Arduino Uno, Texas Instruments MSP430, and STM32 Nucleo. The electrical energy consumed
was used as a key metric to compare different platforms. As a test set of tasks, the authors used
typical operations and algorithms for determining orientation and controlling nanosatellites, such as
operations with matrices of arbitrary dimensions and quaternion calculations.

3. Materials and Methods

3.1. Planning the Experiment

The hardware platform discussed in the following chapters falls within the first class and partially
in the second, specifically designed for unmanned aerial vehicles with a take-off weight range of 20
to 150 kg according to the NATO standard 4671 “Unmanned Aerial Vehicles Systems Airworthiness
Requirements” (USAR) (USAR) [50]. According to the standard, the authors consider MTOW of Class
II—“UAVs with MTOW between 150 and 600 kg”. Experimental research is carried out on the author’s
computer platform named ‘Boryviter 0.1’ (Figure 4), which is described in detail in the work [25] and
on the presentation page [51]. The platform is built based on a 32-bit Atmel ATSAMV71 microcontroller
(Figure 5), which belongs to the ARM Cortex M7 microcontroller family [17] and operates under the
control of the FreeRTOS Open Source Real-Time Operating System (RTOS).

The chosen ATSAMV71 microcontroller has three low power-saving modes: Sleep, Wait, and
Backup.

In the ‘Sleep’ mode, the processor core stops, and all other functions, that is, DMA and peripheral
digital automates, can work. The sleep mode best balances the power consumption of external events
and the response time.

All clocks and functions are stopped in the ‘Wait’ mode, but some peripherals can be configured
to wake up the system according to predefined conditions. This “SleepWalking” feature performs a
partial asynchronous wake-up, allowing the processor to exit sleep mode only when needed. A 32-bit
low-power real-time timer (RTT), real-time clock (RTC), and wake-up logic work in ‘Backup’ mode. In
addition, in this mode, the device can meet the most stringent key-off requirements when the system
or device is powered off. However, the microprocessor continues to operate with some activity level,

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 November 2024 doi:10.20944/preprints202410.2104.v2

https://doi.org/10.20944/preprints202410.2104.v2


12 of 28

storing one kB of SRAM. The system clock has been designed to support different clock frequencies for
selected peripherals to optimize power consumption. In addition, CPU and bus clocks can be changed
without affecting the operation of USB, U(S)ART, AFE, and timer counter.

Figure 4. The authors’ mission computer ‘Boryviter 0.1’ (eng. Falco), developed by Falco.
Engineering [51].

Figure 5. A ‘Boryviter 0.1’ microcontroller ATSAMV71Q21.

The ‘Backup’ mode achieves the lowest possible power consumption. This mode is quite suitable
for applications where recurring and periodic tasks are to be executed, and the microcontroller sleeps
the rest of the time. This is a good instrument for low-reliability or slow control systems and does not
fit very well with the real-time tasks of the mission control computer. It is essential to mention that
the core state after return from backup mode is ‘reset,’ which means that the specific software design
patterns are to be used to construct an appropriate use of this mode.

In our work, we used some effective measurement techniques from [52] to measure time costs for
such service operations as interrupt handling and thread-switching delays for virtual machines, which
in our article was adapted for a microcontroller and RTOS setup. Given that FreeRTOS operates with
the concept of Tasks and the interrupt handling exists within a context of parallel computation, which
is largely independent of the scheduler operation, we adopted the mentioned architectural approach
to our experiment needs.

3.2. Limitations and Assumptions

The following limitations and assumptions shall apply:

1. The supply voltage of the microcontroller is nominal and equal to 3.3 V. It is the most reliable
supply voltage for the electronics components on the mission computer and allows the best resis-
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tance to one-time failures and electromagnetic interference (EMI). There is a power consumption
dependence over the supply voltage, but this is not the subject of this research;

2. The priorities of the performed tasks are assigned according to the classical theory of Lew
and Leyland, called RMS (rate-monotonic scheduling). In this case, each task τi periodic and
characterized by two numbers:

τi = ⟨Ci, Ti⟩, (4)

where Ci—is the maximum time required for the task execution and Ti is the repetition period of
the task.

3. A set of N tasks to be performed:
T = {∪N

i=1τi}, (5)

is always formed in such a way that they meet the sufficient condition of scheduling tasks of hard
real-time systems formulated by Liu and Leyland [26]:

N

∑
i=1

Ti
Ci

≤ N(2
1
N − 1), (6)

4. The limit on the size of the system tick, which determines the frequency of interruptions from the
system timer, is obtained from the FreeRTOS documentation, taking into account the limitations
of the MPLAB X IDE development environment for the Atmel ATSAMV71 microcontroller:

T ∈ {1 ms, 4 ms}, (7)

5. The limits on the microcontroller clock frequency are determined based on the technical docu-
mentation for the ATSAMV71 microcontroller, hardware clock configuration of the ‘Boryviter 0.1’
mission computer and form the following set:

f ∈ {30 MHz, 100 MHz, 300 MHz}. (8)

3.3. Experiment Plan

Let’s define the ATSAMV71 microcontroller as a power-state machine with several operating
modes: an active mode enabling software to make its main calculations and low-power modes turning
off CPU peripherals and components (Figure 6). Dependencies on the clock frequency over the
electrical power consumed by the microcontroller in possible power states and the time spent on
transitions between them must be obtained based on the results of experiments. Such experiments are
conducted in more detail in this article.
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Figure 6. Power state machine of the ATSAMV71 microcontroller. The initial state is Active mode.
Transitions [1], [3], [5]) characterize the time it takes to enter energy-saving and low-power modes, and
transitions [2], [4], [6] are the time required to restore the active mode after an external interruption.

Let us divide all the necessary experimental dependencies and structure them into three classes:

1. The dependence of energy consumption on frequency. Dependencies of the consumed electric
power on the processor clock frequency N( f ) must be determined for each operating mode m.
The set of possible modes includes the active mode and power saving modes:

m ∈ {Active, Sleep, Wait, Backup}. (9)

2. Time spent by the operating system to perform functions related to rescheduling and dis-
patching tasks. These events could originate from forced software requests for rescheduling,
system timer interrupts due to the next system tick, or external unplanned interrupt triggering
OS synchronization facility—Mutexes, Semaphores, Event Groups, and Queues. Here are the
definitions of the events identified for the experiment:

(a) Forced software re-scheduling. The FreeRTOS taskYIELD() function is the basic function
of cooperative dispatching. It immediately causes rescheduling, forcing the scheduler
to check if another task is ready for execution. If such a task exists and has a higher or
equal priority than the current one, a context switch to this task will be performed. Unlike
external or system tick interrupts, taskYIELD() does not rely on hardware interrupts.
Instead, it is a software mechanism in which the running task voluntarily yields execution,
allowing other tasks to run. As a result, the taskYIELD() function represents a cooperative
approach to multitasking, where tasks manage their own execution time. At the same time,
external interrupts and system tick interrupts are part of a preemptive system where the
OS can forcefully manage task execution based on real-time events and regular scheduling
needs. The time required to perform the function is denoted by: LatY( f );

(b) System timer interrupt. The processor time spent processing interruptions from the system
timer IRQTimer depends on the clock frequency of the computing platform. It characterizes
the operating system’s overhead for working in the preemptive multitasking mode. System
tick interrupts occur regularly, triggering the OS to perform tasks such as updating the
system time, managing the scheduling process, and potentially preempting the current
task if necessary. The time required to perform the function is denoted by: LatT( f );

(c) External or peripheral interrupt. The time of the system and call of the interrupt service
routine (ISR) is the time from the moment of the occurrence of the external or peripheral
interrupt to the time of execution of the first command of the interrupt handler. The time
required to perform the function is indicated by Latext( f ). When an external interrupt
occurs, the Interrupt Service Routine (ISR) handler or the first-level interrupt handler
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(FLIH) is triggered immediately. This mechanism forces the OS to temporarily stop the
current process, handle the interrupt, and then return to the interrupted task or switch
to a different task based on priority. It is essential to mention that freeRTOS is a very
low-footprint RTOS, and in reality, the context of the ISR handler and the rest of the
RTOS context are not very closely coupled. In other words, the IRQ handling is like a
regular blocking function with an asynchronous call and a primitive calculation context
preservation that heavily leans on ARM Cortex M core capabilities.

3. The time spent entering and leaving the low power mode (LPM): The time required to enter
and leave a low-power mode will define how much energy can be saved and how bad system
reactivity will be decreased. According to the power state-machine definition, two transitions
shall be assessed:

(a) Entering. As entering a LPM requires a specific amount of instructions—its time shall be
properly measured. Only specific processor peripherals shall be shut off depending on the
exact LPM. No memory preservation actions are required.

(b) Leaving. The exit from an LPM requires more sophisticated actions. As some LPM modes
shut off the internal frequency generator or switch it to the low-power one, a specific
stabilization time is required before any processor instruction can be executed.

Thus, the independent factors of the experiment are the clock frequency and the operating mode,
and the data that shall be obtained via the experiment are energy consumption, processor time spent
on interrupt processing from the system timer, and the delay in the execution of the first instruction of
the interrupt processing procedure. A complete factor experiment is planned, in which the factors take
the following values:

f ∈ {30 MHz, 100 MHz, 300 MHz}, m ∈ {Active, Sleep, Wait, Backup}. (10)

3.4. Measurement Technique

Typically, all power-saving measurements in modern microcontrollers require quite a comprehen-
sive setup, as they require precise energy measurement, synchronized time-slice measurements, and
an external disturbance generator.

For our experiments, the research bench (Figures 7–10) was built with the following equipment:

• the square wave generator—GW Instek GFG-8219A that generates external interrupt signals with
a given period;

• the high-precision power supply unit and power meter—Keithley 2281S-20-6 that measures the
electric energy consumed. It guarantees the accuracy of the measurements (the measurement
error of the time interval is no worse than 15 ms, and the error of the electric power measurement
does not exceed 0.0001 W;

• the multi-channel storage oscilloscope—LeCroy WavePro 7200A provides the measurement of
the time interval between two events: an externally generated interrupt signal from a square
wave generator and the first command of the interrupt handler, which is a change of the state of a
predefined port—Port 1, to the opposite. Since the command to change the port is atomic, that is,
it is executed in one computing cycle in the RISC architecture, the time to change the state of the
port can be considered insignificant;

• A hand-modified ‘Boryviter 0.1’ mission computer where the oscilloscope is connected to the two
GPIO outputs (via flying wires) and to the signal generator.
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Figure 7. The connection of mission computer ‘Boryviter 0.1’ (eng. Falco), to the measurements laptop.

Figure 8. Measurement equipment used for the experiment.

We had to design a more complicated measurement connection diagram for the second part of
the measurements, entering the low-power modes. The key idea was to use the already soldered on a
mission computer shunt resistor and operational amplifier to ensure that the proper scale and linearity
of the current consumption are captured on the oscilloscope. So the connection diagram for the second
test bench includes:

• The high-precision power supply unit and power meter—Keithley 2281S-20-6 was used to
measure the electric power consumed;

• A multi-channel oscilloscope—Siglent SDS1204X-E measures the trigger event between the
processor command “go to the low-power mode” and the current consumption response of the
microcontroller;

• A modified ‘Boryviter 0.1’ mission computer where the oscilloscope is connected to the output of
the power-monitor operational amplifier to ensure proper signal linearity and low noise.

The following connection diagrams were designed:
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Figure 9. Test bench connection diagram for time measurements of the transitions [1], [3], [5] from
power state machine.

Figure 10. Test bench connection diagram for time measurements of the transitions [2], [4], [6] from
power state machine.

For the three classes of the dependencies defined above, the following measurement technique
was used:

1. To obtain dependencies of energy consumption on the frequency in the available modes of
operation of the microcontroller in the stationary mode of operation, it is enough to set one
of the four operating modes (Active, Sleep, Wait, and Backup) and record the electric power
consumption by the Keithley 2281S-20-6 power measurement unit;

2. Time spent by the operating system to perform functions related to the rescheduling and
dispatching tasks is measured as follows:

To estimate the pre-emptive dispatching time, we measured the execution time of the simple
pre-defined calculation algorithm with the known execution time for each CPU frequency. For
reliable results, a set of 1000 measurements were executed. It is expected that due to the overhead
required for handling external interrupts and interrupts from the system timer, some iterations
of the known algorithm will take longer. Suppose that the frequency of the external interrupt
differs by one and a half to two times from the frequency of the system timer, and the execution
time of one iteration is 20–30 percent of the value of the system tick. In that case, we will get the
following dependence of the execution time on the iteration number (Figure 11). Suppose the
frequencies of interruptions (external and from the system timer) differ by 1.5–2 times. In that
case, it is very easy to distinguish their influence on the general graph: it is enough to count the
number of measurements that got on the corresponding shelves.

The results of measurements of the actual execution time of each iteration are distributed on four
shelves, depending on whether the cycle was interrupted for processing interruptions. These
shelves correspond to the following situations:

• there are no interruptions;
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• an interrupt from the system timer occurred;
• an external interrupt occurred;
• the iteration was interrupted twice by the system timer and externally.

Figure 11. Example of the obtained dependence of the actual execution time on the iteration number.

The following algorithm was performed for each CPU frequency to estimate the cooperative
dispatch time.

The program first accumulates an array of data about the execution time of the mutex ‘take’
operation. The FreeRTOS is configured to have only one single task, which blocks and releases
the mutex and then records the time required to perform these two operations in the array.

In the second stage, several tasks are created, which block the mutex in a loop, record the time
and task number in the logEntries shared array, release the mutex, and then call system function
taskYIELD() to transfer control to other tasks. These tasks work in parallel, creating conditions
for estimating the overhead of switching between tasks. A hardware timer measures the time of
operations with a resolution equal to 66.66 ns. The logEntries array stores the execution time of
the operations and the task number, which enables the analysis of the results after the program is
executed.

Conditional Transition between Stages: The second stage begins after completing the first one,
ensuring the correctness of the accumulated data.

3. The time spent entering and leaving low-power modes (LPM). According to the processor
datasheet, the ‘Wait’, ‘Sleep’, and ‘Backup’ modes require a specific microcontroller shutdown
technique that, in return, requires a waiting loop to ensure that all peripherals are safely turned
off. However, as the most ‘deep’ power saving mode, the’ Backup’ mode can be exited only
if a processor resets. To measure it, it is necessary to apply external devices because when the
processor is turned off and the peripheral shut-off process has been initiated, it is impossible to
get information on when exactly the core has stopped working. The time for the transitions [1],
[3], [5] in Figure 6 can only be determined using an external oscilloscope since the program is not
executed in energy-saving modes. In this case, the actual time of entering the low-power modes
can be assessed by the drop in the supply current consumption and, thus, registered with the
oscilloscope:
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• Step 1. The test software toggles the output GPIO port state. This allows to trigger of the
connected oscilloscope;

• Step 2. Based on the triggered event of entering the LPM, the second channel of the con-
nected oscilloscope, which is connected to the operational amplifier, registers the current
consumption drop;

• Step 3. By calculating the time difference between the triggered event in Step 1 and the
current drop event in Step 2, the time required to enter an LPM is obtained.

The exit time measurement technique for the transitions [2], [4], [6] in Figure 6 is also rather hard
to do. Still, with the essence of having an external interrupt wake the processor up, it is pretty
straightforward to measure the time difference between the external interrupt signal from the
signal generator and the output pin toggle of the microcontroller.

However, as the most ‘deep’ power saving mode, the ‘Backup’ mode can be exited only during
a processor reset. For this specific case, the test software was modified so that the specific pin
toggle was the first operation from the start of the software. The exit from the LPM heavily
depends on the particular LPM and how it implements the microcontroller peripheral shutdowns.
If the Sleep and Wait modes are relatively straightforward to measure, as both allow them to
return to the ‘before the LPM’ computation context, the Backup mode is more nontrivial. The exit
from the Backup mode requires a RESET vector entrance, which means that the microcontroller
software starts from scratch. This behavior requires a more complex software architecture for
implementation and typically requires an external NVRAM that could be used as context memory.

So, we used two different test software scenarios to measure exit from LPM modes. For both
scenarios, the external interrupt from the signal generator was used. That signal triggers the con-
nected oscilloscope to capture the GPIO pin toggle as the first operation after the microcontroller
is ready to execute the following command on the program counter (PC).

• Scenario 1—Sleep and Wait modes:

– Step 1. The wakeup source is configured to react on the external interrupt from the
GPIO pin connected to the signal generator;

– Step 2. The external signal generator is set to generate 10 Hz square pulses;
– Step 3. The interrupt handler is done in a way that the first thing it does is the appointed

GPIO pin toggle;
– Step 4. The time difference between the rising edge of the square pulse from the signal

generator and the rising edge at the output GPIO pin could be considered the wakeup
time.

• Scenario 2—Backup mode:

– Step 1. The wakeup source is configured to react on the external interrupt from the
GPIO pin connected to the signal generator;

– Step 2. The external signal generator is set to generate 10 Hz square pulses;
– Step 3. As the microcontroller shall undergo a reset vector, the GPIO pin toggle was

done as the very first operation in the main() function, right after the GPIO configuration.
As the test software didn’t contain any major variables, the time for initialization of the
“.bss” section can be neglected;

– Step 4. The time difference between the rising edge of the square pulse from the signal
generator and the rising edge at the output GPIO pin could be considered the wakeup
time.
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4. Results

4.1. The Dependence of Energy Consumption on the Operating Frequency

The platform’s power consumption depends linearly on the frequency at a fixed supply voltage
(Figure 12). The constant, independent of the frequency of the processor energy consumption, is
approximately 130 mW. The slope coefficients of the linear dependencies of the energy consumption
on the frequency are shown in the figure. Using the low-power modes of the processor saves up to 60%
of energy. This advantage is most noticeable when the processor is running at maximum frequency.

Figure 12. Dependence of the power consumption of the platform on the frequency in different
operating modes of the computer and a fixed supply voltage.

4.2. Time Spent by the Operating System to Perform Functions Related to the Rescheduling and Dispatching
Tasks

The measurement technique is described in detail in Section 3.3, ’Time spent by the operating
system to perform functions related to rescheduling and dispatching tasks.’ The summary Table 2
characterizes the main reactivity indicators of the operating system on the ‘Boryviter 0.1’ platform.
In addition to reactivity indicators, the table contains the results of measuring operations with a
nonblocking mutex (’take’, ’give’).

Table 2. The summary table of the time spent by the operating system to perform functions related to
the rescheduling and dispatching tasks.

Frequency,
MHz

taskYield() Latency
t = LatY ( f ), uS

System Tick Interrupt
Latency t = LatT( f ), uS

External Interrupt Latency
t = Latext( f ), uS

Capturing and
Releasing

Non-Blocking Mutexes
Latency, uS

30 7.27 4.02 6.42 7.73

100 2.16 1.23 1.95 2.34

300 0.72 0.47 0.65 0.78

Due to the specifics of the ARM Cortex-M computing architecture, which has two independent
instruction counters: a full Program Counter (PC) and an “emulated” Link Register (LR), the computer
demonstrates sufficiently high reactivity indicators. FreeRTOS effectively supports the ARM Cortex-M
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architecture, as it does not distinguish between interrupt handling and normal functions. It has
been experimentally confirmed that with cooperative dispatching, the execution time of the function
taskYield() does not depend on the number of tasks in the system, since the FreeRTOS OS implements
the round-robin dispatching mechanism of queued tasks.

4.3. The Time Spent Entering and Leaving the Low Power Modes (LPM)

A typical oscillogram of the decrease in power consumption over time after execution of the
command to enter the LPM is shown in Figure 13.

Figure 13. Entering Wait Mode @ 100 MHz. Current consumption curve. Rough duration = 150 ±
10 uS. C1 (yellow) is a command for entering LPM, and C2 (pink) is the current consumption of the
microcontroller.

The following Figure 14 illustrates the measurement view of the delay in execution of the first
command of the interrupt handler after receiving an external interrupt when the processor was in
LPM mode.

Table 3 summarizes the results of the measurements of the integral indicators that characterize
the practicality of using LPM modes for energy savings.

Table 3. The time for wake-up delays and break-even time (uncertainty no more than 10%).

Mode Sleep, uS Wait, uS Backup, uS

Frequency Wake-Up
Delays

Break-Even
Time

Wake-Up
Delays

Break-Even
Time

Wake-Up
Delays

Break-Even
Time

30 MHz 5 45 1800 1950 5000 6500

100 MHz 1.7 31 1228 1388 5000 6500

300 MHz 0.6 21 105 255 5000 6500

There are two main characteristics: wake-up delays characterize the time required for the processor
to exit sleep mode fully, and the break-even time is the sum of the wake-up and transition to LPM
delays, last characterizes the time required for the processor to transition from the active state to the
sleep mode.
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Figure 14. Leaving LPM timing measurements. Sleep mode @ 30 MHz. C1—External signal generator
pulse, C2—GPIO pin toggle after wakeup, C3—the mathematical sum of the time between the rising
edges of the corresponding pulses = wakeup time.

5. Discussion

The data presented above confirm the possibility of experimentally determining the following
quantitative indicators characterizing the operation of the computing platform under the conditions of
time and energy constraints that exist in the on-board avionics of the UAV:

• dependence of power consumption on clock frequency for active mode and low-power modes;
• overhead costs of the operating system to support multitasking, namely delays in the execution

of operations of the scheduler and dispatcher of the operating system for the implementation of
cooperative and preemptive dispatching;

• break-even and wake-up times when using low-power modes.

Practical applicationWe will discuss the possibility of practical application of the results obtained.
We consider the scenario when at the stage of designing both hardware and software of a mission
computer of the UAV, there is the following need:

• to ensure that it is functioning energy-efficiently, i.e., spending only a minimum of electrical
energy on its operation;

• to guarantee that the required amount of computational work will be completed within the
established time frame;

• to ensure that the reaction time to external events will not exceed the established and required by
the end-application (mission) limits.

Then, in the list of possible design solutions, one or both of the following must be selected:

• set the clock frequency of the processor, which will be sufficient to guarantee the specified limits;
• apply a software solution to enable one of the existing low-power modes.

Of course, the use of software algorithms to manage power-saving modes has undoubted ad-
vantages in terms of flexibility. Still, the possibility of determining the processor’s clock frequency is
sufficient for practical use and should not be neglected.
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We will not consider the ‘Backup’ mode, as it requires a complete processor restart and is
characterized by sufficiently large payback time requirements and a completely different software
architecture to be applied.

Algorithms to design The results obtained make it possible to design algorithms and energy-saving
mechanisms for the mission computer as a solution to the optimization problem. The optimization
criterion is the minimum power consumption of the mission computer in various power-saving modes:

P(η) = min(PLF(η), PSleep(η), PWait(η)), (11)

where η = ∑N
i=1

Ti
Di

is the relative cost of processor time sufficient to ensure real-time constraints;
PLF(η), PSleep(η), PWait(η)—energy consumption for the operation of the mission computer when

applying the following approaches to energy saving: low-frequency mode (LF), software-defined tran-
sitions to ’Sleep’ and ’Wait’ modes with a return to active mode upon external/internal interruption.

Then, when using each of the low-power modes, the average power consumption will not be
greater than during the continuous operation of the processor at the maximum frequency. The relative
part of the energy savings (µ) for the three modes of energy savings depends on the processor load
factor—η and, in the case of an ideal mission computer, is calculated as µ = 1 − η.

The linear dependencies of the consumed electric power for the real computer modes on the
frequency can be summarized in the form of an equation:

Nm( f ) = N0 + am f , (12)

where the m modes take the following values: m ∈ {Active, Sleep, Wait}, and result as the following:
N0 = 120 mWt, aActive = 1.07 mWt

MHz , aSleep = 0.46 mWt
MHz , aWait = 0.20 mWt

MHz from the Section 4.1 (see
Figure 11).

So how much energy can we save? The relative part of the energy saved can be calculated for a real
computer using the following equations.

µLF(η) =
aActive fmax(1 − η)

N0 + aActive fmax
, (13)

µSleep(η) =
fmax(1 − η)(aActive − aSleep)

N0 + aActive fmax
, (14)

µWait(η) =
fmax(1 − η)(aActive − aWait)

N0 + aActive fmax
, (15)

Figure 15 illustrates the results of calculating energy savings using energy-saving modes. Limiting
the processor’s clock frequency at the design stage is the most beneficial if the system has excessive
computing power. Flexible software-controlled methods for switching between ‘Sleep’ and ‘Wait’
modes do not provide such benefits. However, they have the key advantage of adapting to a specific
situation onboard. Estimates of the reactivity of the system in different modes of operation and
operating system overheads for multitasking support obtained in the article make it possible to
consider overheads for operating system operations.
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Figure 15. Optimistic assessment of the possibility of energy saving due to software control of computer
operating modes.

6. Conclusions

The main goal of this work is to develop and test the experimental search technique for a
compromise between the required reactivity of the real-time system of the mission computer of the
UAV and its electrical energy consumption.

The technique was approved using the author’s computing platform ‘Boryviter 0.1’, which is
implemented on the ATSAMV71 microprocessor and operates under the control of the open operating
system FreeRTOS. The platform is intended to be used in the CubeSat class’s dual-purpose UAV
and nanosatellites. This technique is based on the system model. The system model is a power-
state machine that comprehensively characterizes the relationship between energy consumption and
reactivity. Next, we define three types of models that are needed to fill this system model. This depends
on the clock frequency:

• consumed electrical energy in the active mode and power-saving modes of the on-board com-
puter;

• time spent by the operating system to perform functions related to rescheduling and dispatching
tasks. We have considered all three possible cases when the OS performs rescheduling and
dispatching: cooperative dispatching, crowding out dispatching after an interrupt from the
system timer, and external interrupts;

• time spent on entering the energy-saving mode and returning to the active mode after an external
event (interruption) that requires the system to wake up.

Then we determined the measurement techniques to obtain the dependencies mentioned above.
As the work results, a generalization of the experimental results is presented, and quantitative estimates
of the measured characteristics for the author’s computing platform ‘Boryviter 0.1’ are provided.

We consider the following to be the scientific novelty of the work:

1. The task of finding compromises between reactivity and power consumption of the on-board
computer is formulated through a representation in the form of a system model—power state
machine;
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2. The developed technique for measuring the time spent pushing dispatching after an interrup-
tion from the system timer and processing an external interruption allows you to quickly and
accurately determine these costs;

3. The proposed time measurement technique for cooperative dispatching is also fast and accurate;
besides, it is well-scalable, as it allows us to figure out the system’s behavior with an arbitrary
number of tasks.

As a practical result, the article substantiates the conclusion that using a real-time operating
system (FreeRTOS) in the author’s computing platform, ‘Boryviter 0.1’, fully meets the task of quickly
adapting the computing context to changing external factors (like interrupt-driven UAV avionics
signals) and the required volume of calculations.

A limitation of our work is a certain idealization of measurement modes when the influence
of external factors was considered separately. For practical application, it is necessary to check the
adequacy of the obtained mathematical dependencies in the case of a more realistic picture of the
existence of many practical tasks inherent in a typical set of calculations when using UAVs. Such
practical and real-time deviations could be connected with avionics faults, external signals arrival
frequency, etc.

In addition to checking the adequacy of the mathematical models obtained, we plan to investigate
our computing platform’s reactivity and energy consumption if the component-oriented framework
F´ (F Prime) from NASA is used to develop onboard software. We plan to use it to allow us to quickly
develop and deploy the UAV and satellite mission computer software. Potentially, it can also be
used for software for other avionics parts. This framework is available for open access for reuse
and has a relatively high entry threshold. However, it provides mechanisms for component-oriented
development, making solving common problems easier.
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