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Abstract: The timely identification of probable causes in aviation incidents is crucial for averting future
tragedies and safeguarding passengers. Typically, investigators rely on flight data recorders, yet delays
in data retrieval or damage to the devices can impede progress. In such instances, experts resort to
supplementary sources like eyewitness testimonies and radar data to construct analytical narratives.
Delays in this process have tangible consequences, as evidenced by the Boeing 737 MAX accidents
involving Lion Air and Ethiopian Airlines, where the same design flaw resulted in catastrophic
outcomes. To streamline investigations, scholars advocate for natural language processing (NLP) and
topic modeling methodologies, which organize pertinent aviation terms for rapid analysis. However,
existing techniques lack a direct mechanism for deducing probable causes. Bridging this gap, this
study proposed a transformer-based model for predicting likely causes from raw text narrative inputs,
leveraging advancements in long-input transformers. By training the model on comprehensive aviation
incident investigation reports like those from the National Transportation Safety Board (NTSB), the
proposed approach exhibits promising performance across key evaluation metrics, including Bilingual
Evaluation Understudy (BLEU) with (M=0.727, SD=0.33), Latent Semantic Analysis (LSA similarity)
with (M=0.696, SD=0.152), and Recall Oriented Understudy for Gisting Evaluation (ROUGE) with
a precision, recall and F-measure scores of (M=0.666, SD=0.217), (M=0.610, SD=0.211), (M=0.618,
SD=0.192) for rouge-1, (M=0.488, SD=0.264), (M=0.448, SD=0.257), M=0.452, SD=0.248) for rouge-2
and (M=0.602, SD=0.241), (M=0.553, SD=0.235), (M=0.5560, SD=0.220) for rouge-L, respectively. This
demonstrates its potential to expedite investigations by promptly identifying probable causes from
analysis narratives, thus bolstering aviation safety protocols.

Keywords: NLP in aviation safety; aviation incidents analysis; BERT; multi-head attention; transformers

1. Introduction
Establishing the cause of an aviation incident or accident, to prevent it from re-occurring in the

future, is the core goal of any aviation safety occurrence investigation and analysis. Hereafter, aviation
accidents will be considered a subset of aviation incidents. Conventionally, whenever an investigation
is deemed necessary in the event of an aviation incident or accident, the primary source of information
is usually the Cockpit Voice Recorder (CVR) and Flight Data Recorder (FDR) devices [1]. Data from
these two devices is vital in giving an account of what was happening within the cockpit and the
input to the aircraft received from the pilot, respectively, minutes before and at the time of the incident.
However, retrieving these two devices can take months or even years and in the worst case, the devices
get severely damaged during or after the incident making the data irretrievable [2]. In such cases,
where the data on the devices does not give conclusive findings or is not readily available for the
investigations to start, the experts often divert their attention to other sources which can include
eyewitnesses, pilot reports, air traffic controllers, satellite images, radar information, damaged aircraft
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components, and weather stations readings at the time of the incident [3]. This gathered information is
often prepared and presented as a narrative describing the series of events and conditions under which
the incident/accident occurred. This information is then analysed by experts to establish the likely
cause of the incident [4], allowing them to suggest possible measures that can deter such incidents
from happening again.

However, this entire process is time-consuming, and in the event of a design flaw, until the cause
is established, and a preventative measure designed and implemented, the lives of passengers flying
with such an aircraft model remain at risk. As an example, the flaw in the design of Boeing 737 MAX’s
Manoeuvring Characteristics Augmentation System (MCAS) feature which in certain circumstances
counteract the pilots’ input caused two fatal accidents including the crash of Lion Air (JT610) [5] flight
followed, five months later, by Ethiopian Airlines Flight 302. Both aircraft crashed a few minutes after
taking-off killing all 189 and 157 people on board respectively [5,6]. If the cause of the Lion Air accident
had been established quickly and acted upon appropriately, the ET-302 [6] accident would likely have
been avoided. With the aim of shortening aviation incident/accident investigation time, and allowing
the quick establishment of the cause, researchers have proposed various natural language processing
(NLP) and topic modeling-based approaches like Latent Dirichlet Allocation (LDA), Latent Semantic
Analysis (LSA), Parallel Latent Dirichlet Allocation (PLDA), among others [7–11]. These proposed
schemes analyse and group aviation terms with related meanings or that are connected to a given
phase of flight, field of aviation, flight conditions, and/or causes into related topics. Such approaches
could help the investigation team to establish the area of concentration and consequently, lead to quick
establishment of the causes.

However, no previous study has proposed a scheme for generating the probable causes given
the analysis narrative of the pre-incident conditions and activities. To this end, this work builds
and deploys a transformer-based model to predict the probable cause of an aviation incident from
the initial analysis narrative. Transformer models like Bidirectional Encoder Representations from
Transformers (BERT) [12] and its variants [13–18] have demonstrated cutting-edge performance across
various challenging NLP tasks. Since the analysis narratives often contain long textual paragraphs,
The researchers hypothesized that the resulting model would produce enhanced performance if based
upon recent studies on long-input transformers [19–22] which have revealed that increasing the
Transformer’s input length positively correlates with model performance.

The training approach for the transformer model deployed in this work aligns with the funda-
mental principles of a language translation transformer. However, it deviates in that, instead of setting
the masked input to the transformer’s decoder as the target language during training, it utilizes the
target probable cause. Upon evaluation on the NTSB dataset, the model showcased the potential for
transformers to accelerate aviation incident investigations by generating the probable causes based on
the analysis narrative. The contribution of this study is two-fold:

1. A new generative model based on multi-head attention transformer is proposed and trained for
generating the probable cause of an aviation incident when given as input the raw text narrative
of series events before, during or after the accident. The model accepts both long and short input
narratives which should expedite the investigation process enhance air transport safety.

2. Many aviation incident dataset have instances with analysis narratives but with no corresponding
entry for the probable causes. This leads to eliminating many instances during model training
and consequently leads to poor model performance in terms of generalization to new instances.
With the ability to generate missing probable cause, instances with missing values can be retained,
likely leading to better model performance and generalization.

The rest of this paper is organized as follows: Section 2 presents a review of prior related work
followed by Section 3 where a detailed description of the our approach is presented. In Section 4 the
findings of this study are presented. In Section 5 a detailed discussion of the findings is presented,
highlighting the contributions and limitations of our study and finally section 6 gives concluding
remarks, highlighting the direction of future work.
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2. Related Work
The utilization of machine learning and deep learning methods and techniques in aviation analysis

and prediction has garnered increasing attention from aviation safety researchers. This interest is
driven by objectives such as expediting aviation incident investigations, promptly determining the
causes of incidents for swift mitigation of future occurrences, predicting incidents, and extracting
knowledge to enhance air transport safety. This section delves into key prior studies that have
employed AI-based techniques in alignment with aviation safety.

Burnett et al., [23] trained four conventional ML classifiers, including Decision Trees, KNN,
SVM, and ANN with back propagation for prediction of aviation injuries and fatalities. The authors
employed a cross validation training approach with 10 folds and looked at how factors like pilots’
accumulated flight hours and age impacted the rate of injuries and fatalities. Experimental results
revealed ANN to be superior for the task when evaluated on datasets sourced from Federal Aviation
Administration (FAA) between 1975 and 2002 inclusive.

Nanyonga et al., [24] utilized NLP and other AI to analyze text narratives, aiming to determine
aircraft damage levels from safety incidents. Four learning models: Long Short-Term Memory (LSTM),
Bidirectional LSTM (BLSTM), and Gated Recurrent Units (GRU), Simple recurrent Neural Network
(sRNN) and hybrid architecture models including GRU+LSTM, sRNN+BLSTM+GRU, etc, were as-
sessed on 27,000 NTSB reports. Results indicated all models achieved over 87.9% accuracy, surpassing
random guessing (25%) for a four-class problem.

Another study [25], assessed the risk created by various anomalies in aviation events using of
a hybrid classifier constituting proposed a hybrid model comprising a SVM and and several neural
networks. The four-step method involved all events being categorized into five risk-level groups,
followed by application of a SVM model to determine the link between textual event synopses and
the resulting consequences. Next the hybrid model was trained to capture the correlations between
contextual event attributes and risk-level groups. A fusion rule was then proposed to combine
outcomes from the two models and finally, a stochastic-base decision tree was used to predict the risk
level.

Both [26] and [27] deployed Bayesian inference-based techniques for aviation incident modeling
and analysis. Study [27] aimed to forecast aircraft safety incidents by employing an inventive statistical
method. This method utilized Bayesian inferences and hierarchical structures to build learning models
of varying complexities and goals. In contrast, [26] focused on analyzing commercial aviation accidents
spanning the period between 1982 and 2006, as documented by the NTSB. This second study proposed
a four-phase approach to build a Bayesian network capable of capturing the relationship between
the sequence of events that led to the accidents. The methodology encompassed creating a graphical
representation for visualizing aviation accident events, forming a Bayesian network representation
by amalgamating the graphical representations of all accidents, while accounting for the causal and
dependent relationships between aircraft damage and personnel injury.

In their study [13], trained and evaluated two models, ResNet and simple RNN, to classify the
phase of flight during which the incident happened. Various NLP-based techniques were sequentially
deployed including word tokenization, punctuation, unwanted characters and stopword removal,
lemmatization operations and word2vec transformation of the unstructured textual analysis narratives
extracted from the NTSB aviation incident investigation reports. The models recorded a classification
accuracy of more than 68% on a 7-class classification problem.

In study [28], Nanyonga et al., carried out a comparative study of two topic modeling analysis
techniques: LDA and Non-negative Matrix Factorization (NMF) regarding aviation accident reports.
Using Coherence Value for performance evaluation the quality of generated topics was evaluated
with LDA, displaying superior topic coherence and indicating its robustness in extracting semantic
connections among words within topics. NMF, on the other hand, showcased exceptional performance
in line with generating unique and detailed topics, facilitating a more targeted examination of particular
aspects of aviation accidents.
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Their study [29] showcased an automated text classification approach, utilizing machine learning,
that could enhance analysts’ efficiency by accurately categorizing “Occurrence” in aviation incident
reports, thereby enabling more precise querying of reporting databases. Using a Random Forest
algorithm to classify more than 45,000 textural reports, an accuracy of 80-93% was recorded based on
the ICAO “Occurrence” Category. The authors also conducted text cleaning that encompassed use
of standard NLP techniques including stemming, removal of irrelevant words and symbols like stop
words, punctuation characters and other special symbols, and then deployed the n-gram techniques
including bi-gram, tri-gram, etc for feature extraction prior to passing the reports to the ML algorithm
for classification.

Studies including [30–32] deployed NLP-based techniques including topic modelling, and text
classification, for information extraction from, and analysis of, aviation incident reports and have
reported competitive results regarding causal factor analysis like human factors analysis, and aviation
incident risk classification, aircraft damage classification, aviation report clustering and grouping, and
many other AI-based tasks.

One research gap revealed in our literature review concerns attention-based transformers. De-
spite the attention-based transformer models achieving outstanding performance on various NLP
tasks, including machine translation [33–35], text summarization [36,37], text simplification [38,39],
grammatical error correction [40,41] and question answering [42], little-to-no attention has been paid
to their deployment in the field of aviation safety to establish the likely causes of an aviation incident
given the raw text analysis narrative. The work in this study aims to close this knowledge gap by
proposing and training a transformer-based model for such tasks.

3. Proposed Approach
3.1. Dataset

Several aviation, and transport safety agencies, such as the Australian Transport Safety Bureau
(ATSB), Aviation Safety Reporting System (ASRS), and the NTSB, actively gather and release reports
detailing aviation incident investigations. This research utilized aviation incident reports provided by
the NTSB. These reports, along with accompanying metadata, are available on the NTSB’s website in a
variety of formats, such as monthly-published .pdf documents, .json files, or by querying individual
reports through their online platform. A summarized version in .csv format can also be obtained.
For this study, the researchers focused on .json files containing detailed incident investigations from
the years 2001 to 2020. Importantly, the only included incidents where investigations that had been
concluded, resulting in a dataset comprising 29,676 cases. From each report, the analysisNarrative were
extracted and probableCause sections to facilitate model training and validation processes. Additionally,
a comprehensive statistical analysis was carried out to assess the distribution of text lengths within
these fields. It was found that the average length of the analysisNarrative was 1,116 words, while the
probableCause field averaged 165 words, with standard deviations of 858.36 and 93.12, respectively.
Further examination revealed that the shortest analysisNarrative entry contained only 4 words, while
the longest reached 36,544 words. In comparison, the probableCause field ranged from 7 to 1,600 words.
Figures 1 and 2 visually represent the distribution of text lengths for both the analysisNarrative and
probableCause fields.

3.2. Data Pre-Processing

Data pre-processing involved removing HTML tags and urls, transforming wrongly-encoded
characters; that is, characters encoded with the ASCII equivalent codes were decoded to their natural
language characters. Also, reports whose analysisNarrative entries were longer than 10,000 words, and
probableCause entries longer than 1,000 words, were treated as outliers and discarded for this study.
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Figure 1. Text length distribution of the analysisNarrative field entries

Figure 2. Text length distribution of the probableCause field entries

3.3. The Transformer

The Transformer architecture, introduced in study [43], represented a revolutionary advancement
in the NLP domain, yielding remarkable outcomes. Departing from traditional RNN models, the
Transformer employs multi-head self-attention, enabling parallel processing and overcoming the
limitations of sequential training inherent in conventional RNNs. This self-attention mechanism not
only enhances computational efficiency but also captures intricate dependencies among various text
components. As described by the authors, the attention process involves associating a given query,
Q, with key(K)-value(V) pairs for sequence generation. Within this framework, Q, keys K, V, and
the prediction are expressed as vectors. The resulting sequence is computed through a weighted
summation of the V entries, with each value’s weight determined by a passing a scaled-dot product of
Q and K vectors through a softmax function as depicted in Eq.(1). Figure 3 shows the architecture of
the transformer model and the architectural components of its encoder, decoder and output blocks.

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (1)
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Where;

dk is the dimensional size of K.
T transposes K to allow matrix multiplication.

.
In order to facilitate concurrent processing, the multi-head self-attention mechanism utilizes

several linear projections of Q, K, and V, each mapped to dimensions dk, dk and dv respectively.
These parallel operations generate outputs within the dv-dimensional space, which are combined
and mapped again to derive the ultimate V entries. This approach results in a model capable of
simultaneously attending to information across many representational vector subspaces at various
locations. The multi-head self-attention mechanism, featuring p heads, is defined as presented in
Eq.(2).

MultiHead(Q, K, V) = cancat(headi, . . . , headp)Wa (2)

Given that Wa ∈ Rpdv×dmodel

(a) (b) (c) (d)

Figure 3. Transformer model architecture and and a break down of its architectural components-(a): Full
transformer block architecture; (b) Architectural components of the encoder block; (c) Architectural components
of the decoder block; (d) Components of the transformer output block.

3.4. Experimental Setup

For our experiments, the model constituted 8 encoder and decoder layers and its embedding
dimension was set to 1024 to enable long inputs. For multi-head attention, 8 attention heads were
employed, while a dropout of 0.1 was used at each Batch normalization layer, and Feed-forward
layer for regularisation and to prevent model over-fitting. In addition, the input sequence length was
set to 1024 and the dimension of the Feed-Forward network’s inner-layers was set to 2048, both the
“analysisNarrative” and“probableCause”’s vocabulary sizes were set to 100,000.

The model was trained on 90% of the dataset while the remaining 10% was used for testing
following study [44] in which this split ratio produced the best prediction results. Training was done
for 50 epochs using a learning rate of 0.001 with Adam optimizer, betas were set to (0.95, 0.96), epsilon
set to 1e − 10, batch-size set to 64, and cross-entropy as the loss function.

3.5. Performance Metrics

To evaluate the quality of generated probable cause, three metrics commonly used tasks involving
natural language generation problems such as text summarizing, machine translation, question
answering and grammatical error correction are used in this study.
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3.5.1. Bilingual Evaluation Understudy (BLEU)

BLEU [45] deploys an n-gram based evaluation metric approach that is extensively utilized in
Machine Translation assessment. It is precision-centric and assesses the degree of overlap between
n-grams from the target and generated texts. This overlap is insensitive to word position, except
for n-gram term associations. However, BLEU imposes a brevity penalty when the generated text is
substantially shorter than the reference text. Besides Machine Translation, BLEU finds application in
problems where the input and output use the same natural language, including grammatical error
correction [46,47], summarization [48,49], and text simplification [39,50], which involves rewriting a
sentence into one or more simpler sentences. The BLEU score can be computed using Eq.(3) [45].

BLEU = BP · exp (
N

∑
i
(wi · ln pi)) (3)

where;

BP → Brevity Penalty, calculated using Eq.(4)
wi → order i n-gram precision’s weight.
pi → n-gram’s modified precision score of order i
N → maximum n-gram order to consider

BP = exp(1 −
lp

lravg
) (4)

lp → length of predicted cause
lravg → average length of reference cause.

3.5.2. Recall Oriented Understudy for Gisting Evaluation (ROUGE)

ROUGE [51] applies a definition similar to that of BLEU. However, unlike BLEU which empha-
sizes precision, ROUGE’s emphasis is on recall. ROUGE comes in three main versions [52,53]: n-rouge,
primarily examining n-gram overlap (such as 2-rouge and 1-rouge for 2-grams, and 1-gram respec-
tively); L-rouge, which evaluates the Longest Common Text Sub-sequence; and s-rouge, emphasizing
skip grams. Like BLEU, ROUGE finds application in both machine translation and in problems where
the input and output use the same natural language, including summarizing [54–56], grammatical
error correction [53,57], and text simplification [58–60], which involves rewriting a sentence into one or
more simpler sentences. For each of rouge-1, rouge-2 and rouge-L, the precision, recall, and F-measure
are calculated using Eqs.(5), (6), (7) [51].

Precision =
Countmn−gram−ap

Countn−gram−p
(5)

Recall =
Countmn−gram−ap

Countn−gram−a
(6)

F1 − Score = 2 × precison × recall
precison + recall

(7)

where’

Countmn−gram−ap is the number of n-grams from the target probable cause matching with the
predicated probable cause.
Countn−gram−p is the count of n-grams in predicted probable cause
Countn−gram−a is the count of n-grams in actual probable cause
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3.5.3. Latent Semantic Analysis (LSA)

LSA [61], presented in 1997 by Landauer and Dumais in [62], calculates the semantic similarity
between a reference sentence and the model’s generated sentence. It relies on pre-computed word
co-occurrence counts from a large corpus. Employing the bag of words (BOW) approach, it treats
word order as irrelevant. Unlike ROUGE and BLEU, LSA is lenient on variations in word choice,
such as "hard" versus "difficult." In essence, LSA encodes sentences or documents into vectors using a
bag of words technique. These vectors enable the computation of similarity metrics, such as cosine
similarity, to assess the likeness between generated and target texts. Like BLEU and ROUGE, LSA
has seen application in measuring the output quality of various natural language generation models
including text summarizing, grammatical correction, translation, and text simplification [63–67]. The
cosine similarity between sequences, s1 and s2, can be obtained by converting the sequences to numeric
vectors, v1 and v2, and then using Eq.(8) for similarity calculation [68].

Similarity(v1, v2) =
dot(v1, v2)

||v1|| × ||v2||
(8)

4. Results
For model inference, instances from the test were fed into the model and it generated a probable

main cause for each analysis narrative. The example of training cases are shown in Figure 4, where
random samples of analysis narratives from the test set are passed to the model. The model generated
almost semantically perfect probable causes concerning each input narrative.

Figure 4. Some examples of analysis narratives with corresponding probable causes as presented in the original
report and the model’s predicted probable causes
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4.1. Model Performance Based on the BLEU Score

The BLEU Score was used to measure how closely the predicted probable cause matched the
reference probable cause. For each pair of sentences, BLEU gives a value between 0 and 1, with 1
indicating a perfect match. The minimum n-gram order was set to 1 while N was set to 4 for this work.
After a series of evaluations with various random samples of size 500 from the test set, in comparison
with results from other metrics, the weight vector, w was set to (0.1, 0.1, 0, 0).

For each instance in our test set, the BLEU score was computed, recording a mean score of 0.727
with a standard deviation of −/ + 0.330. A scatter distribution of the obtained BLEU scores between
the first 1000 (probable cause, predicted probable cause) pairs is shown in Figure 5.

Figure 5. BLEU scores for the first 1000 test instances

4.2. Model Performance Based on the LSA Similarity Score

LSA Similarity gives the semantic similarity between vector representations of the output probable
cause and target probable cause. It represents the semantic similarity rather than lexical similarity. A
high similarity score implies that the sequences have closer meanings. Like the case of BLEU scores,
for each instance in the test set obtained the (probable_cause, predicted_probable_cause) pair.

Each component of the pair was then converted into its numeric vector representation using
Google’s pretrained Universal-Sentence-Encoder Version 4, which is the latest version at the time
of writing this paper. Universal-sentence-Encoder models were introduced by Google Researchers
in study [69] where the cosine similarity was deployed consequently placing vector embeddings of
semantically similar words close to each other. The pretrained Universal-Sentence-Encoder model
used in this work can be downloaded from the TensorFlow hub 1. Our model recorded a mean LSA
similarity score of 0.697 with a standard deviation of −/ + 0.153. A distribution of the obtained
Similarity scores is visualized in Figure 6

1 https://tfhub.dev/google/universal-sentence-encoder/4
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Figure 6. LSA-similarity scores for the first 1000 test instances

Table 1. ROUGE Results: Precision, Recall, and F-measure from Rouge-1, Rouge-2, and Rouge-L

Metric Precision Recall F-measure
Mean Stddev Mean Stddev Mean Stddev

rouge-1 0.666 0.217 0.610 0.211 0.618 0.192
rouge-2 0.488 0.264 0.448 0.257 0.452 0.248
rouge-L 0.602 0.241 0.553 0.235 0.560 0.220

4.3. Model Performance Based on the ROUGE Scores

For ROUGE Scores, this study considered n-rouge(rouge-1, rouge-2) and L-rouge(rouge-L). These
scores measure the overlap of n-grams between the candidate and reference sentences. Rouge-1 gives
score from unigrams, rouge-2 gives score from bi-grams, while rouge-L gives score from the longest
common sub-sequence. Higher scores indicate better overlap between the sentences.

4.4. AnalysisNarrative Length Vs BLEU/LSA Scores

Further investigations were carried out on how the length of the input analysis narrative impacted
the model’s output in terms of the BLUE and LSA similarity scores. The results revealed that the
analysis narrative length had no direct correlation with the model’s BLUE score as shown in Figure 7.
On the other hand, the LSA similarity score shows no correlation with the length of the input analysis
narrative for shorter inputs. However, it tends to converge to the mean score as the length of the analy-
sis pattern increases as shown in Figure 8. This finding emphasizes the researchers’ hypothesis which
stated that working with long input sequences would enhance the model’s predictive performance.
This also emphasises the finding of prior studies on long-input transformers including [19–22] which
revealed that increasing the Transformer’s input length positively correlates with model performance.
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Figure 7. Impact of Analysis narrative’s length on the model’s BLEU score.

Figure 8. Impact of analysisNarrative length on the model’s LSA similarity score.

5. Discussion
Having the ability to predict the probable causes of an aviation incident can greatly expedite the

investigation process. The results from this study revealed that a multi-head attention-based trans-
former model is a tool for solving this problem. However, although the model recorded commendable
results across all metrics, by their formula, the LSA similarity score is more reliable compare to BLEU
and ROUGE metrics. This is because the model’s output and reference sentence can constitute a
different set words for the same semantic content. Since the LSA similarity score computes the overall
semantic similarity between the sentences, it will more likely produce a high score if the two sentences
are similar and vice-versa. On the other hand, the BLEU score requires that the weight vector, w
for each n-gram is manually determined. This means that the final BLEU score greatly depends on
the accuracy of the values of w which requires human expert and if wrongly determined can lead to
misleading results. Also, the computation of BLUE and ROUGE scores like the uni-gram, bi-gram,
etc, depend on the overlap of words between the reference and predicted sentence, that is, observed
probable cause and predicted probable cause for this study.
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For instance, considering the output in the screenshot in Figure 9, the reference probable cause as
given in the dataset is:

Figure 9. Reference model output screenshot for discussing the BLEU, ROUGE and LSA Similarity scores: The
model’s output constitutes a slightly different word set from the reference probable cause

“The mechanic’s improper maintenance of the main transmission aft pinion nut and belt drive system,
which resulted in the uncoupling of the tail rotor driveshaft and the subsequent loss of helicopter control”.

While the model’s prediction given the same analysis narrative, is:
“The failure of the main rotor drive belts due to a loss of belt tension on the main rotor drive system as a

result of maintenance personnel s failure to properly secure the - nut and the helicopter s main rotor drive belts.”
Although the semantic meanings of the two narratives are close and would both draw the incident

investigator’s attention to the same component and attribute the failure to the maintenance personnel’s
not properly securing the nut and belt drive system, BLEU scores differed across different weight
vector values as shown in Table 2.

Table 2. BLEU-scores for various weight vector values

Weight vector BLUE-Score

[0.1, 0.1, 0.1, 0.1)] 8.67 × 10−32

[0.01, 0.01, 0.01, 0.01] 7.83 × 10−4

[0.25, 0.25, 0, 0] 0.459
[0.1, 0.1, 0, 0] 0.732
[0.01, 0.01, 0, 0] 0.969

On the other hand, the ROUGE scores were rouge-1: precision=0.476, recall=0.606, Fmea-
sure=0.533, rouge-2: precision=0.146, recall=0.188, Fmeasure=0.164 and rouge-L: precision=0.310,
recall=0.394, Fmeasure=0.347. As it can be seen, the results from the BLEU score largely depend on
the values of vector w. It is also clear that the score greatly degrades when w contains entries for
the tri-gram and quad-gram which correspond to the third and fourth entries of w respectively. The
value is also, misleading for very small entries of the uni-gram and bi-gram as seen when w is set to
(0.01, 0.01, 0, 0).

Generally, the recorded scores in the case of ROUGE metrics are relative more reliable for the
rouge-1 and rouge-L. The rouge-2 has recorded poor performance due to the fact that the word sequence
in the reference text does not always overlap with the word sequence in the model’s output. For the
example output in Figure 9, the recorded ROUGE scores are poor in terms of precision, recall, and
F-measure for all the three n-grams used in this study despite the semantic meaning being very similar.
On the other hand, because the LSA returns the semantic similarity between two text sequences, its
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output is considerably high (0.757) for this particular example indicating that despite the discrepancies
in the used set of words, the semantic meaning is greatly similar.

Finally, the LSA Similarity score’s input length-model performance analysis indicated that training
the model with long inputs can result in stable model performance as the score converged to the mean
score with increasing input length (See Figure 8). It is worth noting that training a highly efficient
transformer model requires huge amounts of training data which was a great limitation for this study.

6. Conclusion
Identifying potential causes in aviation incidents quickly is crucial for preventing future tragedies.

While flight data recorders are commonly used, delays or damage can obstruct their effectiveness. The
Boeing 737 MAX accidents with Lion Air and Ethiopian Airlines highlight the impact of such delays.
To improve investigation efficiency, this study developed a transformer-based model for predicting the
probable cause of an aviation incident given an analysis narrative of the pre/post incident series of
events that can be collected from sources including eyewitnesses, radar systems, Air traffic controllers
that were in charge of the flight under investigation, maintenance history/logs, etc. The model was
trained on extensive NTSB aviation incident reports and allows short- and long-input narratives. This
approach shows promise in expediting investigations and enhancing aviation safety through key
metrics like BLEU, ROUGE, and LSA.

The assumption is that the model’s output can improve with a larger training dataset. Therefore,
as a direction for future work, analysis narratives from other aviation investigation bureaus, such
as the ATSB, can be combined with the NTSB narratives, and the model can be retrained on a larger
dataset for improved predictions.
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52. Kryściński, W.; Paulus, R.; Xiong, C.; Socher, R. Improving abstraction in text summarization. arXiv preprint
arXiv:1808.07913 2018.

53. Jain, M.; Saha, S.; Bhattacharyya, P.; Chinnadurai, G.; Vatsa, M.K. Natural Answer Generation: From Factoid
Answer to Full-length Answer using Grammar Correction. arXiv preprint arXiv:2112.03849 2021.

54. Ng, J.P.; Abrecht, V. Better summarization evaluation with word embeddings for ROUGE. arXiv preprint
arXiv:1508.06034 2015.

55. Dorr, B.; Monz, C.; Schwartz, R.; Zajic, D. A methodology for extrinsic evaluation of text summarization:
does ROUGE correlate? In Proceedings of the Proceedings of the ACL Workshop on Intrinsic and Extrinsic
Evaluation Measures for Machine Translation and/or Summarization, 2005, pp. 1–8.

56. Barbella, M.; Tortora, G. Rouge metric evaluation for text summarization techniques. Available at SSRN
4120317 2022.

57. Huang, J.; Jiang, Y. A DAE-based Approach for Improving the Grammaticality of Summaries. In Proceedings
of the 2021 International Conference on Computers and Automation (CompAuto). IEEE, 2021, pp. 50–53.

58. Banerjee, S.; Kumar, N.; Madhavan, C.V. Text Simplification for Enhanced Readability. In Proceedings of the
KDIR/KMIS, 2013, pp. 202–207.

59. Zaman, F.; Shardlow, M.; Hassan, S.U.; Aljohani, N.R.; Nawaz, R. HTSS: A novel hybrid text summarisation
and simplification architecture. Information Processing & Management 2020, 57, 102351.

60. Phatak, A.; Savage, D.W.; Ohle, R.; Smith, J.; Mago, V. Medical text simplification using reinforcement
learning (teslea): Deep learning–based text simplification approach. JMIR Medical Informatics 2022, 10, e38095.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2025 doi:10.20944/preprints202502.1196.v1

https://doi.org/10.20944/preprints202502.1196.v1


16 of 16

61. Landauer, T.K.; Foltz, P.W.; Laham, D. An introduction to latent semantic analysis. Discourse processes 1998,
25, 259–284.

62. Landauer, T.K.; Dumais, S.T. A solution to Plato’s problem: The latent semantic analysis theory of acquisition,
induction, and representation of knowledge. Psychological review 1997, 104, 211–240.

63. Steinberger, J.; Jezek, K.; et al. Using latent semantic analysis in text summarization and summary evaluation.
Proc. ISIM 2004, 4, 8.

64. Ozsoy, M.G.; Alpaslan, F.N.; Cicekli, I. Text summarization using latent semantic analysis. Journal of
information science 2011, 37, 405–417.

65. Gong, Y.; Liu, X. Generic text summarization using relevance measure and latent semantic analysis. In
Proceedings of the Proceedings of the 24th annual international ACM SIGIR conference on Research and
development in information retrieval, 2001, pp. 19–25.

66. Hao, S.; Xu, Y.; Ke, D.; Su, K.; Peng, H. SCESS: a WFSA-based automated simplified chinese essay scoring
system with incremental latent semantic analysis. Natural Language Engineering 2016, 22, 291–319.

67. Vajjala, S.; Meurers, D. Readability assessment for text simplification: From analysing documents to
identifying sentential simplifications. ITL-International Journal of Applied Linguistics 2014, 165, 194–222.

68. Salton, G.; Buckley, C. Term-weighting approaches in automatic text retrieval. Information Processing &
Management 1988, 24, 513–523. https://doi.org/https://doi.org/10.1016/0306-4573(88)90021-0.

69. Cer, D.; Yang, Y.; Kong, S.y.; Hua, N.; Limtiaco, N.; John, R.S.; Constant, N.; Guajardo-Cespedes, M.; Yuan,
S.; Tar, C.; et al. Universal sentence encoder for English. In Proceedings of the Proceedings of the 2018
conference on empirical methods in natural language processing: system demonstrations, 2018, pp. 169–174.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2025 doi:10.20944/preprints202502.1196.v1

https://doi.org/https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.20944/preprints202502.1196.v1

	Introduction
	Related Work
	Proposed Approach
	Dataset
	Data Pre-Processing
	The Transformer
	Experimental Setup
	Performance Metrics
	Bilingual Evaluation Understudy (BLEU)
	Recall Oriented Understudy for Gisting Evaluation (ROUGE)
	Latent Semantic Analysis (LSA)


	Results
	Model Performance Based on the BLEU Score
	Model Performance Based on the LSA Similarity Score
	Model Performance Based on the ROUGE Scores
	AnalysisNarrative Length Vs BLEU/LSA Scores

	Discussion
	Conclusion
	References

