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Article 
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Abstract: Aiming at the problem that the existing human skeleton behavior recognition methods 
are insensitive to human local movements and have inaccurate recognition in distinguishing similar 
behaviors, a multi-scale spatio-temporal graph convolution method incorporating multi-granularity 
features is proposed for human behavior recognition. Firstly, a skeleton fine-grained division 
strategy is proposed, which initializes the skeleton data into data streams of different granularities. 
Using a normalized Gaussian function, an adaptive cross scale feature fusion layer is designed for 
feature fusion between different granularities, and fine-grained features guide the model to focus 
on discriminative feature expressions between similar behaviors. Secondly, a sparse multi-scale 
adjacency matrix is introduced to solve the bias weighting problem that amplifies the multi-scale 
spatial domain modeling process under multi granularity conditions. Finally, an end-to-end graph 
convolutional neural network is constructed to improve the feature expression ability of spatio-
temporal receptive field information and enhance the robustness of recognition between similar 
behaviors. The feasibility of the proposed algorithm was verified on the public behavior recognition 
dataset MSR Action 3D, with a recognition rate of 95.67%, which is superior to most existing 
behavior recognition methods. 

Keywords: graph convolutional network; behavior recognition; multiscale; bias weighting 
 

1. Introduction 

As an extremely important component of the computer vision field, research on behavior 
recognition has always been of great concern and widely applied, with broad application prospects 
in intelligent monitoring, motion analysis, human-computer interaction, and other fields [1–3]. At 
present, human skeleton behavior recognition based on deep learning is mainly divided into three 
categories: The first type is to use Convolutional Neural Networks [4–6] to model skeleton data as 
pseudo images, extracting highly abstract skeletal structural features. The second type is to use 
Recurrent Neural Networks [7–10] to model skeleton data as sequences of coordinate vectors, 
capturing the dynamic correlations between consecutive frames of skeletal data to predict behavior 
categories. The last type is Graph Convolutional Network (GCN), which represents the human 
skeleton sequence as a spatio-temporal topological graph, by using graph convolution, the global 
features of the skeleton spatial structure are effectively extracted, which can better model the spatio-
temporal characteristics of human skeleton information. Therefore, graph convolution based human 
skeleton behavior recognition methods have become a research hotspot in recent years. 

Reference [11] proposed a Spatio-Temporal Graph Convolutional Network (ST-GCN), which 
was used for the first time to model human skeleton data in a spatio-temporal graph and achieved 
good recognition results. Shi et al. [12] proposed adaptive graph convolution, which calculates the 
similarity between joint points based on input skeleton data of different action classes to adaptively 
measure the degree of correlation between joint points. Li et al. [13] proposed a motion structure that 
emphasizes the dependency relationship between non-adjacent joint points in space through action 
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linking modules and structural linking modules. References [14–16] proposed a multi-scale spatial 
graph convolutional network to capture feature information between nodes in a wider space, using 
high-order polynomials of the adjacency matrix to aggregate features between remote nodes. 
However, these methods have bias weighting issues in the process of spatial domain modeling, which 
means that in the process of modeling spatial position relationships using high-order adjacency 
matrices, nodes far from the target joint point make little contribution to recognition, and the final 
recognition result will be dominated by joints from local body parts. Meanwhile, due to the presence 
of information from different modalities and spatio-temporal scales within the skeleton, all of which 
are crucial for behavior recognition, many works have attempted to explore and utilize this 
information. Shi et al. [12] added the inter-frame difference between the bone flow and keypoint flow 
in 2s-AGCN as the information for keypoint motion flow and bone motion flow. The Shift-GCN 
network proposed by Cheng et al. [17] performs more processing on the original data, extracting 
frame differences as dynamic information between keypoints and bones based on keypoint 
coordinates and bone vectors, these four different forms of data are used as inputs to jointly predict 
category features. 

In Li et al.'s [18] study, higher-order transformations were applied to the original skeleton data, 
subsequently, a multi-stream network was employed for decision-level fusion of advanced 
information, such as joint and bone details, thereby further improving the performance of the model. 
However, these methods do not take into account the spatial granularity featrues of human behavior 
processes, from the perspective of human kinematics, the recognition of certain behavioral actions 
depends on the characteristics between distant nodes, while the recognition of similar behaviors 
relies more on subtle motion differences between local nodes. 

Therefore, aiming at the above problems, a multi-scale spatio-temporal graph convolution 
method incorporating multi-granularity features is proposed for human behavior recognition. 
Initialize the input skeleton data into data streams of different gTherefore, aiming at the above 
problems, a multi-scale spatio-temporal graph convolution method incorporating multi-granularity 
features is proposed ranularities to guide the network to learn the differences between similar 
behaviors, and construct a cross scale fusion module for feature fusion between different 
granularities; by constructing a multi-scale adjacency matrix and subtracting adjacent adjacency 
matrices at different spatial scales, a sparse adjacency matrix is constructed to solve the bias 
weighting problem in the process of multi-scale spatial modeling; an end-to-end multi-scale graph 
convolution network incorporating multi-granularity features is constructed, and the feasibility of 
the algorithm is verified on the public behavior recognition dataset MSR Action 3D.. 

2. Skeleton Behavior Recognition Based on Graph Convolution 

2.1. Spatio-Temporal Graph Convolutional Network 

GCN is widely used in the modeling of human skeleton data, in this method, the human skeleton 
is generally represented as a spatio-temporal graph G = (V, E) with N joints and T frames, where V 
represents the joints of the skeleton and E represents the edges connecting the human joints. The 
skeleton coordinates of human actions can be expressed as X ∈ Rେ×୘×୒, where C is the number of 
channels, T is the number of frames in the video, and N is the number of nodes in the human skeleton. 
The GCN-based model mainly consists of two parts: spatial graph convolution and temporal 
convolution. 

In the spatial dimension, the feature extraction of any joint point 𝑣௧௜ in the skeleton graph by 
graph convolution operation is expressed as: 𝑓௢௨௧(𝑣௧௜) = ∑  ௩೟ೕ∈஻(௩೟೔) ଵ௓೟೔(௩೟ೕ) 𝑓௜௡(𝐩(𝑣௧௜, 𝑣௧௝)) ⋅ 𝐰(𝑣௧௜, 𝑣௧௝)  (1)

Where f1 and f2 represent the input and output features respectively; B(vti) = ൛v୲୧|r൫v୲୨, v୲୧൯  ∈Rൟ represents the set of neighboring nodes of 𝑣௧௜, and R controls the range of neighboring nodes 
selected, 𝑍௧௜൫𝑣௧௝൯ = ห൛𝑣௧௞|𝑙௧௜(𝑣௧௞)  =  𝑙௧௜൫𝑣௧௝൯ൟห is the normalization term; w is the weighting function 
of neighboring joint points. 
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The operation of graph convolution in the time domain can be extended from graph convolution 
in the spatial domain, by using parameter Γ as the time range to control the neighbor set, the 
neighbor set in both spatial and temporal dimensions is given by: 𝐵(𝑣௧௜) = {𝑣௤௝|𝑑(𝑣௧௝, 𝑣௧௜) ≤ 𝐾, |𝑞 − 𝑡| ≤ ⌊Γ/2⌋} (2)

The corresponding label mapping set for its neighboring nodes is: 𝑙ୗ୘(𝜈௤௝) = 𝑙௧௜(𝜈௧௝) + (𝑎 − 𝑡 + Γ/2)𝐾 (3)

where 𝑙௧௜(𝜈௧௝) represents the label mapping of 𝑣௧௜ the case of a single frame. 
Therefore, on the skeleton input defined by feature 𝑋 and graph structure 𝐴, the output of the 

network after a layer of graph convolution can be represented as: 𝑓௢௨௧ = 𝜎 ൬𝐷ିଵଶ𝐴ሚ𝐷ିଵଶ𝑓௜௡𝑊൰ (4)

In the formula, 𝐴ሚ = 𝐴 + 𝐼 represents the skeleton graph structure of the human body, and the 
connection relationship between joints in the skeleton graph is represented by an 𝑁 × 𝑁 adjacency 
matrix 𝐴 and an identity matrix 𝐼, 𝐷 is the degree matrix of each joint point, 𝐷ିଵ/ଶ(𝐴 + 𝐼)𝐷ିଵ/ଶ 
represents the normalized skeleton structure, 𝑊 represents learnable weight matrix of the network, 
and 𝜎 is the activated linear layer. 

2.2. Analysis of Bias Weighting Problem Methods 

The existing methods use high-order polynomials of adjacency matrices to aggregate multi-scale 
spatial structural information at different moments. Based on formula (4), the update rules for high-
order matrices are as follows: 𝑓௢௨௧ = 𝜎 ቀ∑  ௄௞ୀ଴ 𝐷ିభమ𝐴ሚ௞𝐷ିభమ𝑓௜௡𝑊ቁ  (5)

Where 𝐾 is the highest power of the adjacency matrix, and 𝐴ሚ௞ represents the k-th power matrix 
of 𝐴ሚ. 

The K-order adjacency matrix in a graph convolutional network represents K paths between two 
nodes, Due to the existence of cyclic traversal between nodes, the number of paths with a distance of 
K to nodes closer to the current node is greater than the number of nodes that are actually K steps 
away. This leads to a situation where the network assigns greater weights to nodes that are closer in 
distance during the modeling process, therefore, when conducting multi-scale modeling in the spatial 
domain, the aggregated features will be dominated by the motion information of local body parts, 
making it difficult for the network to effectively capture the dependency relationships between nodes 
that are farther away. 

To address the bias weighting issue mentioned above, reference [19] proposes a multi-scale 
adjacency matrix, the construction method of the adjacency matrix is redefined as follows: 

[𝐀෩(௞)]௜,௝ = ൝1    if    𝑑(𝑣௜, 𝑣௝) = 𝑘,1                  if    𝑖 = 𝑗,0                 otherwise
 (6)

Where 𝑑(𝑣௜, 𝑣௝) provides the shortest distance between two nodes v୧ and v୨, different scales of 
adjacency matrices can be obtained by setting different k values, meanwhile, the K-order adjacency 
matrix formula can also be calculated using the following formula: 𝐀෩(௞) = 𝐈 + ℶ൫𝐀෩௞ ≥ 1൯ − ℶ൫𝐀෩௞ିଵ ≥ 1൯ (7)

Where ℶ൫𝐀෩௞ ≥ 1൯ represents assigning values greater than or equal to 1 in the matrix to 1, 
replacing 𝐀෩௞ in equation (5) with 𝐀෩(௞), we obtain: 𝑓௢௨௧ = 𝜎 ቆ∑  ௄௞ୀ଴ 𝐷(௞)ିభమ 𝑨෩(௞)𝐷(௞)ିభమ 𝑓௜௡𝑊(௞)ቇ  (8)
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Where 𝐷(௞)ିభమ 𝑨෩(௞)𝐷(௞)ିభమ  represents the standardized K-order adjacency matrix. In this paper, we 
propose a method of subtracting the K-order adjacency matrix from the K-1 order matrix to eliminate 
the bias weighting problem that exists in the original modeling approach, which enables the model 
to better capture the relationship between action categories that are more dependent on features 
between distant nodes. 

As shown in Figure 1, (a), (b), and (c) represent the topological diagrams of the first-order, 
second-order, and third-order adjacency matrices used to connect human skeletal nodes in a multi-
scale spatial model. As the order of the adjacency matrix increases, nodes closer to the current node 
are assigned greater weights (the darker the color, the greater the weight assigned to the node). 
Especially when introducing new joint points to refine human skeletal features, the distance between 
the original two joint points may increase due to the newly added nodes, thus the weight assigned to 
each other by the two nodes will be further reduced. (d), (e) and (f) represent the topological graphs 
after constructing a multi-scale adjacency matrix, at this time, the adjacency matrix is reasonably 
sparsified, allowing the model to assign equal weights to nodes that are farther away, which can 
better capture the relationships between nodes that are farther away.  

（a） （b） （c）

（d） （e） （f）
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Figure 1. Adjacency matrix topology diagram. 

3. Improved Graph Convolutional Human Behavior Recognition Algorithm 

3.1. The Multi-Scale Spatio-Temporal Graph Convolution Network Incorporating Multi-Granularity 
Features 

In order to fully consider the granularity features of human behavior and leverage its advantages 
in different behavior recognition processes, this paper proposes a multi-scale spatio-temporal graph 
convolutional network incorporating multi-granularity features for human behavior recognition, the 
network model framework is shown in Figure 2. Firstly, initialize the joint information of the human 
body into data streams of different granularity sizes, considering the highly similar behavior 
categories in the dataset used in this article, it is necessary to refine the joint data to capture more 
subtle semantic information between behaviors. Secondly, the refined data is fed into the Multi-scale 
Spatio-temporal Graph Convolutional Block (MS-TGCN) to extract its spatio-temporal features . 
Then, the obtained output features are fed into the Cross-scale Feature Fusion Layer (CSFL) to blend 
coarse and fine grained features to capture the differences in features between similar behavior 
categories. Finally, the fused features are fed into the MS-TGCN layer to further extract its spatio-
temporal features, and the prediction results of three granularities are weighted and fused to obtain 
the classification results. 
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Figure 2. The framework of multi-scale spatio-temporal graph convolutional network model 
incorporating multi-granularity features. 

The model framework of the multi-scale spatio-temporal convolution module is shown in Figure 
2b. Firstly, the normalized multi-granularity data stream is fed into MS-TGCN, and the topological 
relationships between nodes are reconstructed in the spatial domain using a multi-scale adjacency 
matrix method, by setting different K values, spatial feature fusion is performed on nodes at different 
distances. Secondly, input the data into two multi-scale time convolutional layers with different step 
sizes to capture broader temporal contextual features. Finally, the residual module is used to connect 
the input and output, and the MS-TCN and MS-GCN modules mentioned in reference [19] are used 
as the multi-scale spatio-temporal graph convolution module in this paper. 

3.2. Skeleton Fine-Grained Partitioning Strategy 

Due to the high degree of overlap between similar behaviors in the spatio-temporal domain, 
traditional graph convolutional models are difficult to capture the semantic information that truly 
distinguishes categories and learn accurate representations. In order to accurately depict fine-grained 
human behavior, this paper introduces a multi granularity feature learning method, initializing the 
human skeleton map into different fine-grained levels, as shown in Figure 3. Expand the connections 
in coarse-grained graphs to tighter connections in fine-grained graphs, enabling fine-grained graphs 
to represent refined semantic information. 

 

Figure 3. Three granularity representation methods for MSR Action 3D. 

The average of multiple adjacent nodes in the coarse-grained graph is calculated through two-
dimensional average pooling to represent a supplemented node in the fine-grained scale graph, and 
then the overall representation of the fine-grained graph is obtained through concatenation. The 
formula for multi-granularity initialization is expressed as: 𝑉௖௞ = pooling(𝑉fଵ + 𝑉fଶ +∙∙ +𝑉fh),k ⩽ h (9)
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𝐺𝑟𝑎𝑝ℎnew = concate(𝑉cଵ, 𝑉cଶ,∙∙, 𝑉ck) (10)

Where 𝑉௖௞ represents the joint information of k supplemented nodes in the fine-grained graph, 𝑉fh represents the joint information of h nodes in the fine-grained graph, and 𝐺𝑟𝑎𝑝ℎnew represents 
the physical skeleton of the fine-grained graph. 

3.3. Cross-Scale Feature Fusion Layer 

To achieve feature fusion between coarse and fine granularity, fine-grained features are used to 
guide the original granularity features to learn discriminative feature expressions between similar 
behaviors, inspired by reference [12], this paper proposes an adaptive cross-scale feature fusion 
module, as shown in Figure 4. 

𝜽k（1×1） 

C×T×V20

C×T×V25

𝝋k（1×1） 

Reshape

Reshape

V20×(C1×T)

(C1×T)×V25

嵌入归一化
高斯函数

softm
ax

(C×T)×V25

CSFL

转换矩阵AXA,XB

 

Figure 4. Cross-scale feature fusion layer. 

Namely, embedding a normalized Gaussian function in the network to calculate the feature 
mapping relationship between two sizes and generate a cross-scale feature fusion matrix. The specific 
operation is as follows: 𝑓൫𝑣௜, 𝑣௝൯ = expൣ𝜓்(𝑣௜)𝜃൫𝑣௝൯൧ / ∑ exp [𝜓்(𝑣௜)𝜃(𝑣௝)]ே௝ୀଵ   (11)

Where ψ୘(v୧) = Wநv୧  and θ൫v୨൯ = W஘v୨  represent embedded operations, while W஦  and W஘ 
are corresponding weight parameters. 

Taking 20 coarse-grained skeleton information and 25 fine-grained skeleton information as 
examples, the feature dimensions of the two input granularity features fଵ and 𝑓ଶ are C × T × Vଶ଴ 
and C × T × Vଶହ respectively, where C represents the number of channels of the embedded Gaussian 
function. The two streams of data undergo a 1×1 convolution operation separately, after performing 
a dimension transformation on both, matrix multiplication is applied, and finally, an adaptive 
transformation matrix is obtained through a Softmax classifier as follows: 𝐴௙భ,௙మ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓ଵ் 𝑊ట் 𝑊ఏ𝑓ଶ) ∈ [0,1] (12)

This adaptive transformation matrix can dynamically adjust the mapping relationship between 
different granularity features,and the fused 20-joint feature X୭୳୲෪  after scale fusion can be represented 
as: X୭୳୲෪ = λGCN൫A୤భ,୤మ, fଶ൯ + fଵ (13)GCN൫A୤భ,୤మ, fଶ൯  represents the fused features obtained through graph convolution operation 
using the transformation matrix A୤భ,୤మ on a 25-node scale. Studies have shown that the output feature 
maps from the shallow layers of the network can improve the quality of semantic segmentation and 
capture finer details [20,21]. This is because the deep feature maps of the graph convolution network 
often focus on high-level semantic information, while the local detail information of various skeleton 
parts usually exists in the shallow features, as the network goes deeper, these local details are 
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gradually destroyed or even completely lost. Therefore, we choose to perform cross-scale feature 
fusion after a multi-scale graph convolution of the data, and introduce a hyperparameter λ in the 
fusion process to adjust the fusion ratio reasonably. 

4. Experiment and Result Analysis 

4.1. Experimental Dataset 

The MSR Action 3D dataset is the 3D coordinates of 20 human skeleton nodes collected by the 
Microsoft Kinect v1 depth camera, it consists of 10 subjects performing 20 actions, each action 
repeated 2 to 3 times, with frame rates ranging from 10 to 100, resulting in a total of 567 action 
sequences. Due to the presence of highly similar action categories in this dataset, it serves as an 
excellent benchmark to validate the effectiveness of the algorithm proposed in this paper. The cross 
validation method based on subject classification is used to test the performance of the model, where 
subjects 1, 3, 5, 7, and 9 are used for training, and subjects 2, 4, 6, 8, and 10 are used for testing. 

4.2. Experimental Environment and Settings 

This experiment is implemented based on a multi-scale spatio-temporal graph convolutional 
network that incorporates multi-granularity features, as shown in Figure 2. The benchmark network 
is a stacked three-layer multi-scale spatio-temporal graph convolutional network (MS-TGCN), with 
input and output channels of (3, 96), (96, 192), (192, 384), and initialization representing fine-grained 
data initialization, CSFL is a cross scale fusion layer, GPA is a global average pooling layer, and FC 
is a fully connected layer. The entire model sets the batch size of the dataset to 64, and the number of 
iterations (epochs) for the network model is 150. The initial learning rate is 0.1, and when the number 
of iterations reaches 80 or 120, the learning rate decays to one tenth of the original, the weight 
coefficient (weight decay) is 0.0001, and the randomly discarded parameter is 0.25. 

4.3. Experimental Results and Analysis 

4.3.1. Comparative Experiment Using Unbiased Weighting Method 

To verify the effectiveness of the proposed multi-scale adjacency matrix method, this paper 
designs an experiment to compare the performance differences of the model before and after the 
introduction of this method. The experiment uses a stacked three-layer MS-TGCN network, where 
MS-TGCN-D represents the multi-scale spatio-temporal graph convolution after applying the multi-
scale adjacency matrix method, and the maximum value of the adjacency matrix for spatial positional 
relationships in the MSR Action 3D dataset is set to K=10. 

As shown in Table 1, when only using the MS-TGCN network to train model parameters, the 
accuracy of behavior recognition roughly shows a decreasing trend with the continuous increase of 
K value, which well proves the bias weighting problem caused by using high-order adjacency 
matrices. When using the MS-TGCN-D network, the introduction of the multi-scale adjacency matrix 
method brings a 2.76% improvement to the network at K=6, for other values of K, it can also bring 
improvements ranging from 0.19% to 0.79%, thus verifies the effectiveness of introducing multi-scale 
adjacency matrix. However, when K=8 and K=10, the accuracy of the network decreased by 0.72% 
and 0.39% respectively, this is due to the highly similar characteristics of the action categories in the 
dataset, and the distant nodes contribute little to the recognition performance of the network, if a 
larger K value is adopted, the network's ability to capture the characteristics of distant nodes 
increases, resulting in a decrease in recognition accuracy. Therefore, in the subsequent experiments 
involving multi-granularity feature fusion, the value of K should not be too large, in this paper, K=6 
is selected for verification in the following experiments. 
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Table 1. Comparison of training accuracy using multi-scale adjacency matrix method (%). 

Model methods 
The value of K in K-order Adjacency Matrix 

K = 2 K = 3 K = 4 K = 5 K = 6 K = 8 K = 10 
MS-TGCN 94.09 93.31 92.52 92.91 92.12 92.91 92.12 

MS-TGCN-D 94.28 93.70 93.31 92.91 94.88 92.13 91.73 

4.3.2. Comparative Experiments on Fusing Multi-Granularity Features 

The fine-grained feature of human joint information can fully represent the refined semantic 
features during human movement. Therefore, this paper conducts comparative experiments on the 
proposed method. Refine the data of 20 human joint points in the MSR Action 3D dataset into 23 and 
25-joint points respectively using the method proposed in Section 3.2, as shown in Figure 5. 

The comparative experiment for fusing multi-granularity features uses MS-TGCN-D as the 
backbone network, fully integrating joint information of different granularities: 20-joints, 23-joints, 
and 25-joints; at the same time, incorporating the Cross-scale Feature Fusion Layer (CSFL) to guide 
the discriminative feature expression between similar behaviors learned from fine-grained data to 
distinguish the original granularity. The accuracy of behavior recognition using different 
granularities is shown in Table 2. 

The accuracy rates of each behavior recognition tested by MS-TGCN-D (20-joints) and MS-
TGCN-D (25-joints) are shown in Table 3. By comparison, it can be seen that fine-grained data can 
effectively distinguish some similar behaviors (such as drawing a fork, drawing a circle, and drawing 
a tick), the recognition rate of punching from the side has increased from 86.7% to 100%, and the 
accuracy improvement in bending action is the highest, reaching 19.5%. This is because the inserted 
joint points are the waist, wrist, and calves, inserting the wrist joint points allows the model to capture 
the differences in motion feature between drawing a fork, drawing a circle, and drawing a tick, while 
inserting the waist joint points helps the model capture the feature expression during bending 
process. However, the recognition accuracy of this model has decreased for some other behaviors 
(such as high waving, hand serve, and pounding). This is because these actions rely heavily on the 
movement state of the entire arm, and the inserted joint points make it easier for the network to 
capture the movement differences at the front end of the arm, resulting in a decrease in the ability to 
capture the motion state of the arm near the torso. The CSFL layer proposed in this paper blends 
different granularity features, allowing the network to fully integrate fine-grained features on the 
basis of its original performance, thereby improving network performance. 

 
swing tennis racket 

 
drawing a fork 

 
punch from the side 

(a) 20-joint skeleton graph 
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swing tennis racket 

 
drawing a fork 

 
punch from the side 

(b) 23-joint skeleton graph 

 
swing tennis racket 

 
drawing a fork 

 
punch from the side 

(c) 25-joint skeleton graph 

Figure 5. Skeleton graph of different granularities. 

Table 2. Accuracy of recognition using different granularity data on MS-TGCN-D network. 

Number of joint points / (pieces) 
accuracy rate (%) 

20 23 25 
   94.88 
   94.09 
   93.31 

Table 3. Accuracy rates of each behavior recognition using data of different granularities. 

MSR Action 3D behavior types 
Accuracy rate of behavior recognition (%) 

MS-TGCN-D (20-joints) MS-TGCN-D (25-joints) 
Raise your hand high(HiW) 100 81.8 

Wave your hand in front of your chest(HoW) 100 100 
Hammering(H) 92.3 75.0 

Hand catch(HCh) 100 100 
Forward punch(FP) 100 90.9 

High throw(HT) 100 88.9 
Drawing a fork(DX) 92.3 100 
Drawing a tick(DT) 100 100 

Drawing a circle(DC) 93.8 93.8 
Hand Clap(HCp) 100 100 

Two Hand Wave(HW) 100 100 
Punch from the side(SB) 86.7 100 

Bending down(B) 58.3 77.8 
Kick Forward(FK) 100 100 

Kick Side(SK) 100 100 
Jogging(J) 100 100 

Swing tennis racket(TSw) 93.8 83.3 
Overhand serve(TSr) 100 93.8 
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Swing a golf club(GS) 100 100 
Picking up and throwing(PT) 75 75 

Overall recognition accuracy rate 94.88 93.31 

The cross-scale feature fusion experiment adopts three settings: fusing 20-joints with 23-joints 
and 25-joints respectively, and fusing all three of them simultaneously for the experiment. Among 
them, a Cross-scale Feature Fusion Layer (CSFL) is integrated into the backbone network (MS-TGCN-
D), different fusion ratio parameters can balance the influence between coarse-grained and fine-
grained. To verify the impact of fusing different granularity data under different fusion ratio 
parameters on network performance, this paper conducted comparative experiments on the values 
and fusion methods, the experimental results are shown in Table 4. According to the experimental 
results, it can be seen that when the network fuses three granularity data and the fusion ratio 
parameter is set to 0.1, the recognition accuracy reaches 95.67%, which is 0.79% higher than the 
accuracy without multi-granularity fusion, the network performance is optimized at this point, fully 
demonstrating the effectiveness of the neural network with fused multi-granularity features. 

Table 4. Recognition accuracy of MS-TGCN-D (CSFL) model by fusing different numbers of joint-
points under different proportional parameters. 

The number of joint-points 
The value of the proportional parameter 𝛌 accuracy rate (%) 

20 23 25 

   
0.1 94.09 
0.2 94.28 
0.3 93.70 

   
0.1 93.31 
0.2 94.88 
0.3 92.92 

   
0.1 95.67 
0.2 92.92 
0.3 93.70 

With a network recognition accuracy of 95.67%, the confusion matrix of the MSR Action 3D 
dataset is shown in Figure 6. As shown in the figure, the multi-scale spatio-temporal graph 
convolutional network that incorporates multi-granularity features can improve the discrimination 
rate of similar behaviors, such as drawing a fork, drawing a circle, picking up and throwing, bending 
down, and swinging tennis rackets on the basis of the original network, especially,the recognition 
accuracy of bending actions has reached 100%, which is a significant improvement compared to the 
original network. However, the recognition rates for behaviors such as hammering, hand catch, raise 
your hand high have decreased, indicating that for behaviors that rely on the entire arm movement, 
the arm should be endowed with more refined granularity features, rather than just focusing on the 
front end of the arm,this provides ideas for future work directions. 
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Figure 6. The confusion matrix of the MSR Action 3D dataset. 

4.3.4. Comparison Experiment with other Models 

In order to better verify the improvement of the model on behavior recognition performance, 
this paper compared and analyzed the recognition accuracy with existing behavior recognition 
methods on the MSR Action 3D dataset. The comparison results are shown in Table 5. 

The multi-scale spatio-temporal graph convolutional network proposed in this paper, which 
integrates multi-granularity features, achieves a behavior recognition accuracy of 95.67% on the MSR 
Action 3D dataset, and its experimental results are superior to most existing behavior recognition 
methods. Compared with the methods proposed in references [20,22], the accuracy has been 
improved by 2.04% and 3.77% respectively; compared with the adaptive skeleton center point 
method proposed in reference [21], the accuracy has been improved by 7.2%; compared with the 
method of combining graph convolution with Long Short-Term Memory (LSTM) networks[10] and 
the multi-view depth motion map method STACOG [23], the accuracy is improved by 1.17% and 
2.27% respectively; compared with the enhanced data-driven algorithm proposed in reference [24] 
and the method of using point cloud data as input for behavior recognition [25], the accuracy has 
been improved by 0.86% and 0.49% respectively; compared with the fusion multi-modal data feature 
method proposed in reference [26], the accuracy has been improved by 3.76%. By comparison, it can 
be seen that the algorithm proposed in this paper has a high recognition accuracy in using 3D human 
skeleton information for human behavior recognition, and also has strong competitiveness compared 
to existing methods. 

Table 5. Comparison of recognition accuracy with other methods on the MSR-Action 3D dataset. 

method accuracy rate (%) 
Yang et al. [20] 93.63 

adaptive skeleton center point [21] 88.47 
Agahian et al. [22] 91.90 

Zhao et al. [10] 94.50 
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STACOG [23] 93.40 
Zhang et al. [24] 94.81 

Wu et al. [25] 95.18 
You et al. [26] 91.91 

Ours 95.67 

5. Conclusion 

The fine-grained features of human skeleton data can represent semantic features of different 
levels during behavioral process, and integrating the motion features at different granularity levels 
can effectively improve the recognition effect of the network for similar behaviors. This paper 
proposes a multi-scale spatio-temporal graph convolution method that integrates multi granularity 
features for human behavior recognition. The skeleton fine-grained partitioning strategy initializes 
human skeleton data into data streams of different granularities, and the spatio-temporal graph 
convolutional network with multi-scale adjacency matrices can effectively improve the network's 
spatio-temporal representation capabilities. The adaptive cross-scale fusion layer guides the model 
to learn discriminative feature expressions between similar behaviors with fine-grained features, 
thereby improving the robustness of the network in recognize similar behaviors. The experimental 
results on the MSR Action 3D dataset show that the accuracy of our algorithm for behavior 
recognition is superior to most existing methods, thus verifying the effectiveness of our algorithm. 

At present, most models extract features from the global perspective, and their ability to capture 
local differences between fine-grained actions is insufficient, the focus of further research is on how 
to extract representations of locally sensitive actions, so as to better characterize the small local 
differences between fine-grained actions. In the future, the application of the algorithm proposed in 
this paper will be studied under different scene features, considering the characteristics of human 
motion processes in different scenes and using different features of coarse and fine granularity 
reasonably to improve the accuracy of skeleton behavior recognition. 
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