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Abstract: As fuel efficiency and operational costs become critical concerns in the growing general
aviation sector, drag reduction technologies for small aircraft have gained paramount importance.
This review critically examines the current state of nanosecond laser etching technology for
microgroove-based drag reduction on aircraft skin materials. We synthesize advancements in
numerical simulations and experimental approaches while addressing key challenges such as
precision control of micrometer-level morphology, thermal-induced microcracks, and material
fatigue. A multidisciplinary framework integrating multi-physics modeling and fatigue life
prediction is proposed to bridge the gap between laboratory research and industrial implementation.
Our analysis highlights that optimized microgrooves can reduce aerodynamic drag in controlled
experiments, yet scalability and long-term durability remain critical barriers. This work provides
actionable insights for advancing nanosecond laser etching toward certification-ready solutions in
small aircraft manufacturing.

Keywords: nanosecond laser etching; microgroove drag reduction; aerodynamic drag optimization;
material fatigue durability

1. Introduction

With the continuous expansion of the general aviation field in the civil aviation industry, the
total number of small aircraft flights is steadily increasing at about 10% per year, which has increased
fuel consumption and exacerbated energy shortages [1]. Therefore, small aircraft have higher
requirements for improving fuel efficiency and reducing operating costs when performing tasks such
as flight training, business flights, and tourism (as shown in Figure 1) [2]. Exploring and developing
efficient, safe, and reliable drag reduction technologies can improve the aerodynamic efficiency of
small aircraft and directly affect flight safety and environmental sustainability [3], which has
important practical significance and profound strategic value.

Compared to ultrafast lasers (e.g., femtosecond lasers), nanosecond laser etching offers a cost-
effective solution for industrial-scale microgroove fabrication. It has become an emerging drag-
reduction strategy to prepare microgrooves on aircraft skin materials (such as 7075 aluminum alloy)
[4]. This method effectively reduces aerodynamic drag by changing the interaction between the
aircraft surface and the surrounding air, demonstrating great potential for application [5]. However,
nanosecond laser longer pulse duration (typically 10-100 ns) induces pronounced thermal effects,
leading to recast layers and microcracks that may compromise material integrity [5]. This trade-off
between scalability and precision underscores the need for advanced thermal management strategies.
Therefore, this technology still faces multiple challenges (as shown in Figure 2): the precise control of
nanosecond laser etching technology is extremely difficult, requiring precise changes in material
surface morphology at the micrometer level, involving complex physical phenomena such as thermal

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202504.0240.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 April 2025

effects, phase transitions, and dynamic processes of laser material interactions [6,7], which places
extremely high demands on numerical simulation technology (challenges (D). The optimization
problem of microgroove design is equally complex, and the drag reduction effect of microgrooves is
influenced by various factors such as their size, shape, and distribution [3]. These factors may have
completely different optimal solutions under different flight conditions (such as cruise speed), and
further research is needed on the mechanism of microgroove drag reduction (challenges @)). The
potential impact of microgroove preparation on material fatigue life is also a major challenge, as
nanosecond laser etching may introduce stress concentration or microcracks on the surface or
microstructure of metal materials, thereby affecting their long-term performance and safety
(challenges ®) [8,9].
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Figure 2. Challenges faced by nanosecond laser etching microgroove drag reduction technology.
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In response to the above challenges, from the research directions of numerical simulation of
microgroove drag reduction, nanosecond laser etching experiments of microgrooves, and numerical
simulation of laser processing, the problems of existing methods in various directions at home and
abroad are analyzed, providing process guidance and reference for the research of small aircraft wall
drag reduction.

2. Numerical Simulation Study on Microgroove Drag Reduction

Since the 1970s, when NASA Langley Research Center first revealed that down-stream
microgroove surfaces can effectively reduce wall friction resistance, microgroove drag reduction
technology has become a research hotspot in turbulent drag reduction [5]. This discovery challenges
the traditional view that the smoother the surface, the lower the drag, and provides a new perspective
for turbulence drag reduction [10].

With the development of computational fluid dynamics (CFD) technology, numerical
simulation has become an essential means of studying the drag reduction mechanism of
microgrooves. By finely simulating the flow field, scholars can delve into the influence of
microgrooves on fluid flow and reveal their drag reduction principles. Domestic and foreign scholars
have extensively researched wall drag reduction for large civil aircraft, such as A320 passenger planes
[5]. Luchini et al. [11] elucidated how microgroove surfaces effectively reduce turbulent drag by
studying parallel and cross flows in the viscous sublayer of microgroove surface flow. Research by
Martin et al. [12] showed that downstream microgrooves help block the lateral development of
vortices, thereby reducing turbulent drag. Choi [13] found that microgrooves can significantly reduce
velocity fluctuations in the near-wall boundary layer and decrease wall pressure fluctuations. In
addition, Fuaad et al. [14] confirmed the drag reduction effect of surface sinusoidal microgrooves
through direct numerical simulations (DNS), demonstrating that the flow direction of the sinusoidal
microgroove structure can induce stable secondary flow, thereby reducing frictional resistance.

Although domestic research started relatively late, domestic scholars have made significant
progress by adopting advanced numerical simulation methods such as Large Eddy Simulation (LES)
and the RANS. Liu et al. [15] used the LES method to study the entropy production changes caused
by microgrooves, providing a new theoretical basis for drag reduction optimization of microgrooves.
Hu et al. [16] used the Reynolds averaged method (RANS) to study the numerical calculation method
of flow field based on the surface shape characteristics of longitudinal microgrooves, further
enriching the numerical simulation research on drag reduction of microgrooves. Based on the RANS,
Xiao et al. [17] found that a large area near the surface of microgrooves contains airflow with shallow
velocity, forming a gas film that can effectively reduce airflow resistance and achieve drag reduction.
Inspired by the research methods of the scholars above, Wang et al. [6] proposed a high-precision
and efficient numerical simulation method for microgroove drag reduction based on the RANS. This
method adopts a computational domain model at the micrometer scale, overcoming the problem of
enormous model establishment and computational complexity caused by microgroove sizes being
much smaller than aircraft sizes. This method can provide a valuable reference for solving challenges
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Table 1. Comparison of numerical methods for microgroove drag reduction simulations.
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Through the joint efforts of domestic and foreign scholars, significant results have been achieved
in the numerical simulation research of microgroove drag reduction. As shown in Table 1, although
LES provides unparalleled turbulence structure resolution, its computational strength limits its
practical application to full-scale aircraft. On the contrary, the RANS based method can effectively
analyze large surfaces, but it oversimplifies the near wall flow physics, resulting in overestimation of
drag reduction rate [16]. As shown in Figure 3, in previous simulations of microgroove drag
reduction, it is usually to first extract the microgroove cross-section after removing the recast layer
or the theoretically designed microgroove cross-section as the unit cross-section and then stretch and
array the unit cross-section to establish the microgroove surface of its computational domain model
[6]. However, the microgroove cross-sections in the direction of nanosecond laser etching are not
strictly consistent [6,7]. Therefore, in the past, using microgroove cross-sections to establish a
computational domain model for drag reduction simulation inevitably led to deviations in fluid
analysis results and did not consider the recast layer at the edge of the microgroove (as shown in
Figure 2, there is a recast layer at the edge of the nanosecond laser etched microgroove), which may
over-look its potential impact on drag reduction effect; In addition, there is currently insufficient
research accumulation on wall drag reduction for small aircraft. The above issues have constrained
the engineering application process of nanosecond laser etching technology in small aircraft wall
drag reduction.
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Figure 3. Existing problems in numerical simulation methods for microgroove drag reduction.

3. Experimental Study on Nanosecond Laser Etching of Microgrooves

Since the microgroove drag reduction technology has attracted extensive attention in the
scientific community, nanosecond laser etching, as an accurate microgroove processing technology,
has gradually become a hot spot in material processing [18]. Nanosecond laser etching uses a laser
beam with high energy density to produce micro-scale physical or chemical changes on the material
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surface to realize the precise processing of microgrooves [7,19]. The research of this technology not
only expands the boundary of microgroove drag reduction applications and provides new theoretical
and technical support for microgroove processing [20].

Internationally, many research teams have revealed the processing mechanism and influencing
factors of nanosecond laser etching of microgrooves through experimental research. Takayama et al.
[21] conducted a series of nanosecond laser etching experiments on the surface of single crystal
diamond, explored the influence of processing times on the microgroove morphology, and found
that the microgroove morphology showed a specific change rule with the increase of processing
times. Charee et al. [22] studied the influence of laser etching on the quality of microgrooves from
two aspects: laser parameters and processing environment. It proposed a method of optimizing
processing parameters to reduce microgroove damage. Sahu et al. [23] studied the in-fluence of laser
parameters and auxiliary gas pressure on the side wall cone angle of the microgroove through
experiments, established a regression model, and obtained the influence law of the interaction of
process parameters on the side wall cone angle. In addition, Okamoto et al. [20] proposed a two-step
scanning method to prepare micro-grooves with large sizes and high quality on single crystal
diamonds.

Zhang et al. [24] used a high-energy nanosecond laser to process composites under high-
pressure auxiliary gas. They used single-factor experiments to explore the influence of pulse width
on the quality of microgrooves. Similarly, Zhang et al. [25] examined the impact of a single factor on
microgroove etching results, studied the material removal behavior of single crystal diamond in
multiple infrared nanosecond pulsed laser ablation, and revealed the laser etching mechanism.
Further, Xing et al. [26,27] explored the influence of various factors on the processing results. During
the nanosecond laser manufacturing process of microgrooves on the surface of the microcrystalline
diamond, the influence of laser parameters on the surface quality, microgroove size, and other
responses was studied through single-factor and multi-objective optimization experiments, and the
high-quality preparation of microgrooves was achieved. After that, Wang et al. [4,28] proposed a
multi-objective optimization method based on the response surface method and genetic algorithm in
nanosecond etching TC4 titanium alloy surface microgrooves and obtained the best combination of
laser parameters. In addition, Wang et al. [29] studied the nanosecond laser processing of micro
grooves on the surface of TC4 titanium alloy in the air and liquid environment. They found that the
processing in the static liquid environment slightly improved the recast layer.

As shown in Figure 4, scholars at home and abroad mainly realize high-quality nanosecond laser
preparation of microgrooves from process law research, process parameter optimization, and the
development of new processes. The above research tends to remove the recast layer to make the
microgroove section size and characteristics closer to the design parameters, which not only increases
the workload but also may ignore its potential impact on the drag reduction effect (the same as the
problem de-scribed in Figure 3). In addition, there needs to be more research on the influence of laser
parameters and microgroove structure on the fatigue life of aircraft skin materials after etching
microgrooves, which limits the application of nanosecond laser etching micro-groove on drag
reduction technology in small aircraft wall drag reduction. Therefore, nanosecond laser etching
microgrooves on drag reduction technology, considering the fatigue life of materials, will be a
direction for future research.
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Figure 4. Research status of nanosecond laser etching experiments on microgrooves.

4. Research on Numerical Simulation of Laser Processing

In exploring the laser machining process, the numerical simulation method has become an
indispensable tool in the guidance of precision machining materials by its ability to visually display
the machining process and mechanism. It can not only help to understand the complex process of
laser material interaction but also accurately predict the processing results and provide a scientific
basis for optimizing processing parameters.

Constructing an effective finite element model is crucial to realizing the numerical simulation of
laser processing. Stein et al. [30] pioneered establishing a two-dimensional finite element model for
pulsed laser processing of photovoltaic materials. Although this model fails to consider the
immediate evaporation removal of the material during irradiation, it provides an approximate
estimate of the laser processing profile by predicting the region beyond the gasification temperature.
Further, Vasantgadkar et al. [31] developed this model, considering the target's temperature-
dependent characteristics, plasma shielding effect, and absorption rate, significantly improving the
model's accuracy in predicting the ablation depth. Benton et al. [32] expanded to the three-
dimensional model. They analyzed the influence of laser processing parameters and material
thermophysical properties on the processing effect through COMSOL software, which further
enriched the research dimension of laser processing numerical simulation. Wang et al. [33] made
significant progress on this basis, taking into account the immediate removal effect of materials in
the ablation process, providing a new perspective for understanding the ablation depth under high
laser energy density. Courtois et al. [34] proposed a new method that calculates the laser reflection
by solving Maxwell equations, which improves the model's prediction accuracy and facilitates the
coupling with other physical process equations, providing a new tool for the numerical simulation
of laser processing.

A series of explorations have been conducted on laser processing simulation methods in China,
and Zhang et al. [35,36] established a three-dimensional finite element model of nanosecond pulsed
laser processing. To simulate nanosecond pulsed laser ablation morphology, ABAQUS was
redeveloped based on Fortran language to quickly remove materials that have reached the
vaporization temperature. Chu et al. [37] established a comprehensive transient two-dimensional
finite element model for laser drilling, considering the effects of laser beam spatial distribution and
material phase change latent heat on the hole and provided the small hole's transient temperature
field distribution and interface evolution process. Similarly, Zhang et al. [38,39] used an im-proved
level set method to track the solid/liquid/gas interface of laser drilling, considering complex dynamic
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effects including gravity, recoil pressure of metal vapor, surface tension, and Marangoni effect,
revealing the mechanism of laser drilling. Furthermore, Liang et al. [40] successfully simulated the
spiral drilling of large pores on the surface of titanium alloys using the method above. Wang et al.
[41] proposed a high-precision and efficient numerical simulation method for nanosecond laser
processing based on de-formation geometry technology. This method is based on the principle of
energy conservation to perform periodic continuity equivalence on pulsed lasers, significantly
improving computational efficiency. The response surface method is used to modify the finite
element model under the action of equivalent lasers to ensure computational accuracy. Next, Niu et
al. [42] successfully calculated the asymmetric heat transfer direction and thermal stress difference
between the front and rear edges in inclined drilling using this method to solve the problem of
thermal barrier coating delamination during laser drilling. Zhao et al. [43] established a complex,
comprehensive three-dimensional finite element model that couples heat transfer and molten metal
flow during laser etching, revealing the mechanism of titanium alloys' nanosecond laser etching.

As shown in Figure 5, the focus of domestic and foreign scholars on numerical simulation of
laser processing is on what methods can be used to accurately predict the laser processing results.
Therefore, factors such as changes in thermal properties of the target material, material state
transition, laser heat source distribution, thermal effects in the melt pool, and simulation methods for
ablating the melt pool are considered to make the numerical simulation more closely related to the
experimental process. Comprehensive analysis of the second and third parts of this paper, combined
with this chapter, future models should adopt a coupled framework that links laser processing
simulations (predicting microgroove morphology and recast layers) with CFD analyses (evaluating
drag reduction performance). It enables real-time optimization of both processing parameters (e.g.,
pulse energy, scanning speed) and microgroove designs.
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Scholars at home and abroad have considered the changes in the thermal physical parameters of the target, the
transformation of the material state, the distribution of laser heat source, the thermal effect in the molten pool, the simulation
method of ablating the molten pool, and other factors in the process of numerical simulation of laser processing, to make the
numerical simulation closer to the experiment.

Above research will provide theoretical guidance for the physical field setting of laser etching finite element models in multi-

physics coupling models.

Figure 5. Research status of numerical simulation in laser processing.

5. Conclusions and Prospect

This review comprehensively evaluates the advancements, challenges, and future directions of
nanosecond laser etching for microgroove-based drag reduction on small aircraft surfaces. Key
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findings from numerical simulations, experimental studies, and laser processing modeling are
synthesized to highlight the technology’s potential and limitations.
5.1. Key Conclusions

(1) Drag reduction performance: Optimized microgrooves fabricated via nanosecond laser
etching demonstrate the reduction in aerodynamic drag under controlled experimental conditions.
However, the scalability of these results to full-scale aircraft remains constrained by discrepancies
between idealized numerical models and real-world microgroove morphologies. Current
simulations often oversimplify laser-induced features (e.g., non-uniform cross-sections, recast
layers), leading to overestimated drag reduction rates.

(2) Laser-material interaction: Nanosecond laser etching offers a cost-effective method for
industrial-scale microgroove fabrication. Yet, thermal effects inherent to nanosecond pulses—such as
recast layers, microcracks, and residual stresses—compromise material integrity and long-term
durability. Experimental studies have focused predominantly on optimizing groove geometry and
process parameters, with limited attention to fatigue life implications.

(3) Modeling limitations: Existing numerical frameworks (e.g.,, RANS, LES) face trade-offs
between computational efficiency and accuracy. While RANS enables full-aircraft simulations, it
inadequately resolves near-wall turbulence. Conversely, LES captures fine-scale flow dynamics but
is computationally prohibitive. A unified approach integrating laser processing simulations with
CFD analyses is essential to bridge these gaps.

5.2. Critical Challenges

(1) Morphological inconsistencies: The cross-sectional variability of nanosecond laser-etched
microgrooves and the presence of recast layers are often neglected in drag reduction models,
introducing uncertainties in performance predictions.

(2) Fatigue life neglect: The impact of laser-induced surface modifications (e.g., stress
concentrations, microcracks) on the fatigue life of aircraft skin materials remains understudied,
hindering certification-ready applications.

(3) Lack of small aircraft focus: Most research targets large civil aircraft, leaving a knowledge
gap in drag reduction strategies tailored to small aircraft operating at lower Reynolds numbers.

5.3. Future Directions

To address these challenges, a multidisciplinary framework is proposed:

(1) Coupled multi-physics modeling: Develop integrated models that combine laser-material
interaction simulations (predicting microgroove morphology and thermal damage) with high-
fidelity CFD analyses. Such models will enable real-time optimization of laser parameters (e.g., pulse
energy, scanning speed) and microgroove designs for specific flight conditions.

(2) Fatigue life integration: Establish experimental protocols to quantify the relationship between
laser-processed microgrooves, surface integrity, and fatigue resistance. Machine learning techniques
could accelerate the identification of parameter sets that balance drag reduction with material
durability.

(3) Small aircraft specialization: Prioritize studies on microgroove configurations optimized for
small aircraft aerodynamics, including low-speed cruise and turbulent boundary layer characteristics.

By advancing these strategies, nanosecond laser etching can transition from laboratory
innovation to industrial implementation, offering a sustainable pathway to enhance fuel efficiency
and operational sustainability in the rapidly expanding general aviation sector.
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