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Abstract: Recognizing trust as a pivotal element for success within Human-Robot Collaboration (HRC)
environments, this article examines its nature, exploring the different dimensions of trust, analysing the factors
affecting each of them, and proposing alternatives for trust measurement. To do so, we designed an
experimental procedure involving 50 participants interacting with a modified ‘Inspector game’ while we
monitor their brain, electrodermal, respiratory, and ocular activities. This procedure allowed us to map
dispositional (static individual baseline) and learned (dynamic, based on prior interactions) dimensions of trust
considering both demographic and psychophysiological aspects. Our findings challenge traditional
assumptions regarding the dispositional dimension of trust and establish clear evidence that the first
interactions are critical for the trust-building process and the temporal evolution of trust. By identifying more
significant psychophysiological features for trust detection and underscoring the importance of individualized
trust assessment, this research contributes to understanding the nature of trust in HRC. Such insights are crucial

for enabling more seamless human-robot interaction in collaborative environments.

Keywords: Human-Robot Collaboration (HRC); trust dimensions; trust dynamics; experimental
process

1. Introduction

Human-Robot Collaboration (HRC) has emerged as a critical area in the engineering and social
sciences domain. This paper ventures into this dynamic domain with a keen focus on environments,
where the collaboration pivots on execution of routine tasks involving manipulation of components
on recycling disassembly lines as well as management and classification of various electronic devices.
We particularly explore the performance of collaboration with robotic arms, capable of a spectrum of
autonomous actions under the guidance of a computer program.

In any kind of collaboration, including HRC, trust has been identified as a significant factor that
can either motivate or hinder cooperation, especially in scenarios characterized by incomplete or
uncertain information. Despite the ubiquitous understanding of the concept of “trust”, its definition
has proven to be complex due to the range of fields it applies in and the individual context in which
it is studied. Several perspectives contribute to the understanding of trust, depending on the
theoretical focus and the specific field of study it is applied to. While interpersonal trust is the most
studied, there is also an increasing focus on the trust between humans and technology, which is
essential in HRC.

This paper aims to delve into significant research questions about the function of trust in HRC:
1) What are the fundamental factors influencing trust in HRC?, 2) Is it possible to identify
demographic or contextual variables that affect the nature and dynamics of trust?, and 3) Can trust
in HRC be measured using psychophysiological signals?

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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The paper is organized as follows: Section 1 introduces the concept of trust in HRC, highlighting
its general framework and outlining the major research questions this paper intends to explore.
Section 2 provides a theoretical background, covering current research and explaining the importance
of defining trust in HRC. Section 3 describes the Materials and Methods, with a detailed explanation
of the experimental design and methodologies used in the data analysis. Section 4 presents the
Results, providing the empirical findings form the experimental process. In Section 5, a
comprehensive Discussion is included, thoroughly exploring the implications of the research
findings for trust in HRC. Lastly, Section 6 offers the Conclusion and provides answers to the research
questions.

2. Background)

2.1. Theoretical Foundations of Trust

Trust is a crucial determinant of effective collaboration, in both human-to-human and human-
to-machine interactions. Consequently, studies on trust modelling and measurement span a variety
of disciplines, including psychology, sociology, biology, neuroscience, economics, management, and
computer science [1-10]. These two approaches (- modelling and measuring —) share common
knowledge, but with differing purposes and considerations. Trust modelling aims to depict human
trust behaviour, extrapolating individual responses to a universal level, whereas trust measurement
seeks quantifiable involuntary body responses to varying trust-related stimuli.

The multidisciplinary nature of human trust research signifies that defining a unique modelling
approach is complex. A variety of trust definitions catered to specific topics contribute to a
consolidated and detailed definition of the concept (see Table 1 for more details).

Table 1. Multidisciplinary definitions of Trust [2].

Discipline Meaning of Trust

Sociology Subjective probability that another party will perform an action that will
not hurt my interest under uncertainty and ignorance [1].

Philosophy  Risky action deriving from personal and moral relationships between
two entities [3].

Economics Expectation upon a risky action under uncertainty and ignorance based
on the calculated incentives for the action [4].

Psychology = Cognitive learning process obtained from social experiences based on the
consequences of trusting behaviours [5].

Organizational Willingness to take risk and being vulnerable to the relationship based on

management ability, integrity, and benevolence [6].

International Belief that the other party is trustworthy with the willingness to

relations reciprocate cooperation [7].

Automation  Attitude that one agent will achieve another agent’s goal in a situation
where imperfect knowledge is given with uncertainty and vulnerability
[8].

Computing & Estimated subjective probability that an entity exhibits reliable behaviour

Networking  for particular operation(s) under a situation with potential risks [9].

In general terms, trust is perceived as a relationship where a subject (trustor) interacts with an
actor (trustee) under uncertain conditions to attain an anticipated goal. In this scenario, trust is
manifested as the willingness of the trustor to take risks based on a subjective belief and a cognitive
assessment of past experiences that a trustee will demonstrate reliable behaviour to optimize the
trustor’s interest under uncertain situations [2].

This definition emphasizes several issues concerning the nature of trust:

e A subjective belief: Trust perception heavily relies on individual interactions and the
preconceived notion of the other’s behaviour.
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e To optimize the trustor’s interest: Profit or loss implications for both the trustor and trustee
through their interactions reveal the influence of trust/distrust dynamics.

¢ Interaction under uncertain conditions: The trustor’s actions rely on expected behaviours of the
trustee to optimize the anticipated outcome, but it may yield suboptimal or even prejudicial
results.

e  Cognitive assessment of past experiences: Trust is dynamic in nature, initially influenced by
preconceived subjective beliefs but evolving with ongoing interactions.

Authors have proposed varying dimensions of trust to explain different elements of trust
development. Some differentiate between moralistic trust, based on previous beliefs about behaviour,
and strategic trust, based on individual experiences [10]. Other approaches identify dispositional,
situational and learned trust as distinct categories [11]. Trust is also described as a combination of
individual trust (derived from own personal characteristics and conformed by logical trust and
emotional trust) and relational trust, referenced to the dimensions of trust that rise from the
relationship with other entities [2].

Even if different authors use different classifications, it is possible to map similarities between
different approaches. Despite omitting minor particularities, Table 2 shows the convergence of these
classifications. For convenience, we will use the nomenclature defined in [11] — dispositional,
situational and learned trust — without loss of generality.

Table 2. A rough similarity map between trust dimensions among different authors.

Similarity map of trust dimensions according to different authors

[10] [11] [12] (2]
Moralistic Dispositional =~ Phenomenon-based Emotional
Situational Sentiment-based Relational
Strategic Learned Judgement-based Logical

In essence, trust relies on multiple, complex factors, encompassing both individual and
relational aspects. Notwithstanding the diverse disciplinary perspectives and methodologies in
researching trust, there is considerable consensus on the fundamental concept and dimensions of
trust. However, understanding, modelling, and measuring trust, particularly in human-to-machine
contexts, continue to pose considerable challenges.

Tackling these challenges requires an in-depth understanding of multifaceted trust dynamics.
The primary challenge lies in encapsulating the complexities of human trust in a computational
model, given its subjectivity and dynamic nature. Quantifying trust is another significant obstacle, as
trust is an internal and deeply personal emotion. The novelty of trust in the human-robot
collaboration domain implies a lack of historical data and testing methodologies to build the trust
models upon. Furthermore, implementing these models in real-world scenarios is another challenge
due to constraints related to resources, variability in responses and the need for instantaneous
adaptation. Despite these hurdles, the potential rewards of successfully modelling and measuring
trust in human-robot collaborations - including enhanced efficiency, increased user acceptance and
improved safety - are immense.

2.2. Trust in Human-Robot Collaboration

within the field of Human-Robot Collaboration, trust plays a crucial role and is considered a
significant determining factor. Various studies, including [13,14], have dedicated efforts to
investigate and identify the factors that influence trust in this collaborative context. These factors
have not only been structured within a single matrix but also classified based on their origins and
dimensions of influence, which are instrumental in facilitating trust and designing experimental
protocols.

Authors in [15] provide a series of controllable factors with correlation to trust:

e  Robot behaviour: This factor relates to the necessity for robot companions to possess social skills
and be capable of real-time adaptability, taking into account individual human preferences
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[16,17]. In the manufacturing domain, trust variation has been studied in correlation to changes
in robot performance based on the human operator’s muscular fatigue [18].

¢ Reliability: An experiential correlation between subjective and objective trust measures was
demonstrated through a series of system failure diagnostic trials [19].

e Level of automation: Consistent with task difficulty and complexity and corresponding
automation levels, alterations in operator trust levels were noted [20].

e  Proximity: The physical or virtual presence of a robot significantly influences human
perceptions and task execution efficiency [21].

e  Adaptability: A robot teammate capable to emulate the behaviours and teamwork strategies
observed in human teams has a positive influence in trustworthiness and performance [22].

e  Anthropomorphism: With anthropomorphic interfaces, greater trust resilience was recorded
[23].

e  Communication: Trust levels fluctuated based on the transparency and detail encapsulated
within robot-to-human communication [24,25].

e  Task type: The task variability was recorded to influence interaction performance, preference,
engagement, and satisfaction [26].

Less controllable dimensions of trust include dispositional trust that is influenced exclusively by
human traits and the organizational factors linked to the Human-Robot team [13,14]. These factors
exhibit limited flexibility as they depend directly on the individual or the organizational culture. On
the other hand, situational trust is controllable, heavily dependent on various factors such as the
characteristics of the task being developed, making it possible to manipulate it based on the
experiment’s objective [13,14].

Moreover, trust manifests through brainwave patterns and physiological signals, making their
use in assessing trust crucial [27,28]. Biologically driven, these elements foster a more symbiotic
interaction, allowing machines to adapt to human trust levels.

Notably, trust in HRC is dynamic and influenced by a myriad of factors. Understanding the
various dimensions of trust and the controllable and uncontrollable factors encompassed allows for
the creation of experimental protocols and strategies to enhance trust, a hypothesis evident in studies
looking into the triad of operator, robot, and environment [14]. The importance of fostering and
maintaining trust in the HRC domain, especially considering the complexity of trust in the ever-
evolving landscape of Human-Robot interaction.

2.3. Trust measuring using different and combined psychophysiological signals

Studies on trust have traditionally been situated within the context of interpersonal
relationships, primarily utilizing various questionnaires to evaluate levels of trust [29-31]. However,
due to the arrival of automatic systems and the decreased cost of acquiring and analysing
psychophysiological signals, focus has shifted towards examining these types of signals in response
to specific stimuli in a bid to lower the subjectivity and potential biases associated with questionnaire-
based approaches. Recent studies, like [9,32-34], have been centred on the usage of
psychophysiological measurements in the study of human trust.

The choice of these psychophysiological sensors can differ, depending on which human
biological systems (central and peripheral nervous systems) they are applied to. A common pattern
has emerged from studies in which EEG is the most used signal to measure central nervous system
activity, with fMRI closely behind it - the latter being more extensively used in the context of
interpersonal trust [35]. Additionally, attempts have been made to study trust through EEG
measurements which only look at event-related potentials (ERPs), but ERP has proven to be
unsuitable for real-time trust level sensing during human-machine interaction due to difficulty in
identifying triggers [33,36].

Similarly, sensors measuring signals from the peripheral nervous system, notably ECG
(electrocardiography) and GSR (galvanic skin response), have been frequently used in assessing trust
[35]. GSR, a classic psycho-physiological signal that captures arousal based on the conductivity of the
skin’s surface, not under conscious control but instead modulated by the sympathetic nervous
system, has seen use in measuring stress, anxiety, and cognitive load [37]. Some research revealed
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that the net phasic component as well as the maximum value of phasic activity in GSR, might play a
critical role in trust detection [33].

In contrast, the use of single signals most commonly involves only EEG, succeeded by fMRI [35].
However, some studies have proposed that combining different psychophysiological signals (like
GSR, ECG, EEG, etc.) improves the depth, breadth, and temporal resolution of results [38,39].
Interestingly, pupillometry has been recently highlighted as a viable method for detecting human
trust, revealing that trust levels may be influenced by changes in partners’ pupil dilation [40-42].

In short, the current state of the art exhibits an increasing trend towards the use of
psychophysiological signals emanating from both central, and peripheral nervous systems. Also, it
showcases an interest in combining these signals to create more robust trust detection mechanisms
with an improved breadth and depth of results.

3. Materials and Methods

The study of the dynamics that determine trust is a topic of great interest, although there is
limited collected data available for analysis to draw conclusions. In our case, the objective of the
experimentation is to design and implement a process that can identify in real time if there has been
a breach of trust between the operator and their robot companion (cobot) and to understand the
factors that cause these variations in trust and identify the biological reactions related to it.

To minimize the inclusion of excessive variables that could occlude the true nature of trust, we
imply that the cobot is a non-humanoid robotic arm with limited interaction capabilities. Thus, the
only interaction with the human counterpart is reduced to the effectivity and performance of tasks
under its control. Additionally, in order to avoid contextual randomness, we decided that every
participant should interact with the system in a similar environment, and thus, we determined that
the experimental study will focus solely in the dispositional and learned dimensions of trust.

Consequently, in the context of this research, trust is defined as the predictability of the human
that the robot will exhibit appropriate behaviour, following the established guidelines for the
performance of its work in an orderly manner, without failure or errors that could be interpreted as
dangerous to the person, the robot itself, or its work environment.

Our strategic planning for the experimental process aimed at achieving the following objectives:
e  Systematically collect a diverse array of relevant psychophysiological signals, emphasizing

signal cleanliness and minimizing signal randomness;

e Investigate the influence of human traits on various aspects of human-machine trust, specifically
in the context of dispositional and learned trust dimensions;

¢  Examine the role of the system’s capabilities, especially predictability and reliability, in shaping
the evolutionary process of trust.

In the following subsections, the conceptual design of the experimentation, as well as the
equipment and method used for this research, are described in detail.

3.1. Conceptual design of the experiment

Considering the objectives to be satisfied and to expose participants to different trust stimuli
towards machines, this experimental stage has been designed as a game following a variant of the
Prisoner’s Dilemma, known as the Inspection Game. These types of games are mathematical models
that represent a non-cooperative situation where an inspector must identify whether his counterpart
adheres to the established guidelines or, on the contrary, shrinks work duties. In this case, the
participants take the role of the inspector and their mission is to detect if their robotic counterpart is
carrying out their job adequately.

Simplicity has been kept to a maximum during the design of this experiment, thus participants
interact with a single screen that provides them the sensor feedback. The trust decision process is
implemented via a single command bottom. Participants are exposed to 120 iterations during an
approximate time of 30 minutes. However, the first 20 iterations are part of the learning and
familiarization process and, thus, only 100 iterations per participant are considered in the
experimental analysis.
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Unknown to the participants, two experimental models were performed. Both had the same
trustworthiness (the virtual sensor provided a correct answer 75 out of the 100 iterations), but in one
of the cases the machine worked perfectly during the first 20 iterations whereas the second model
presented 50% success rate during the same first 20 iterations.

3.2. Experimental sample

The experimental sample must be selected according to the population in which it is desired to
validate the experimentation. In this case, since the final objective is still oriented to an industrial
work environment, the target population is very broad, since it covers all individuals of active
working age.

To refine the profile of the desired sample, its implications within the broader research context
must be considered. Specifically, the demographical distribution of the sample has a direct impact on
the collection of human traits and their eventual influence in the dispositional dimension of trust.

Taking into account these considerations, three factors are determined with which to compose
the selected sample: Gender (Male/Female), Age (Under and over 40 years old) and Role in the work
team (Technical/Non-technical). The first two belong to the category of human traits, while the third
falls into the scope of the work environment. Figure 1 shows the distribution of the participants in
this experimental stage according to the indicated categories, revealing balanced sample, with the
exception of the age segment.

Demographical distribution of the experimental sample
Gender e Role
70% s
63%
60% 57%

0,
50% 51% 49%

43%

5
R

37%

30%

Percentage

20%

10%

0%
M F Sr. Jr. Tech. Non-Tech.

Gender Age Role

Figure 1. Categorical distribution of participants.

3.2. Equipment used

Given the specific objectives of this experimental phase, it may be prudent to consider acquiring
a maximal number of psychophysiological signals possible to subsequently discriminate which ones
are truly significant for the study of trust. However, this approach presents two significant
challenges. Firstly, the acquisition of a multitude of signals for subsequent treatment without prior
consideration could pose serious logistical problems for the experimental design and significant
difficulties in their subsequent analysis. Secondly, the consideration of signals that, due to their
acquisition methods, could be incompatible with real activity in industrial environments would not
align with the approach of this research.
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After analysing the different bibliographic sources referring to previous studies, as well as the
signals used during their execution and the acquisition systems used in each case, it is determined
that the most appropriate signals to propose are those linked to:

e  Brain activity (EEG): Rigid headband with twelve dry electrodes for reading of brain activity in
anterior frontal regions AF [7-8], frontopolar Fp [1-2],frontal F [3-4], parietal P [3-4], parieto-
occipital PO [7-8] and occipital O [1-2].

e  Galvanic skin response (GSR): Electrodes positioned on the index and ring fingers non-dominant
hand. In state excitement, glands sweat glands are activated, varying the electrical resistance of
the skin. An applied low voltage current between both points allows detect these variations.

e  Respiration (RSP): Elastomeric band located at the height of the diaphragm. Issue small electrical
signals when varying its extension, so it is possible identify inhalation and exhalation cycles.
They provide information about the frequency respiratory, tidal volume and characteristics of
the respiratory cycle.

e  Pupillometry (PLP): Glasses equipped with eye tracking sensors which enable the identification
of the fixation point of gaze or eye movement refixation saccades. In addition to the direction of
the gaze, they also provide information about the diameter of the pupil of each eye, which allows
for the derivation of other parameters such as blinking frequency.

3.3. Experimental process

In order to ensure that the experimental phase aligns with the established objectives, it is
imperative to define a set of guidelines during execution that endorse the accurate execution of the
process. The tasks earmarked for experimentation are delineated below.

e  Participants reception: Participants are briefed about the project and the experimentation, ensuring
they are informed about the purpose, the physiological signals that will be collected, and the
treatment they will receive. They are assured of data privacy through pseudo-anonymization and
told of their right to opt-out anytime. Once they consent, they provide demographic data and
complete a technology trust survey. They are then familiarized with the experimental setup and
equipment to capture psychophysiological signals. Participants are instructed to minimize
movement during the experiment for data quality control.

e  Biocalibration: The biocalibration phase ensures the equipment is accurately tuned to individuals’
varying physiological responses. This adjustment considers that without context, a specific value
cannot conclusively indicate high or low intensity. This phase helps define the participant’s normal
thresholds in varied states of relaxation and excitement. After equipping the participants with the
measuring gear, they perform tasks designed to both stimulate and soothe their signals, thereby
minimizing uncontrolled disturbances.

e  Familiarization: The familiarization stage aims at ensuring participants completely understand their
tasks and possible implications during the experiment. In this phase, participants repetitively interact
with the machine to understand its workings, ensuring they can easily express their trust or mistrust.
Unlike the experimental stage, they’re made aware of the sensor’s performance, helping them form
trust-based responses. This process also helps them become accustomed to the screens displaying
crucial information during the interaction process.

e  Experimental process: During the experiment, participants interact with the machine and gauge the
sensor’s trustworthiness. They are presented with a system state (“well lubricated” or “poorly
lubricated”) and the default action matches the system state. They only interact if choosing to
disregard the sensor. They are then informed on the real machine state and the result of their decision.
This cycle repeats a hundred times with varying patterns unknown to the participants.

e Informal interview: A brief interview follows the experimental phase for each participant to assess
their experience, identify disruptions, and understand areas of future improvement. It is especially
important for participants presenting anomalies in signal visualization or behaviour. It helps filter
data from those negatively affected by conditions like discomfort with measuring instruments or
misunderstanding their tasks. This interview also aids in understanding participants’ perception of
the system’s reliability and identifying personal traits influencing their perception.
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Figure 2. Experimental phase.

4. Results

The following section comprises the experimental results, divided according to the research
interests and main findings.

4.1. Factors affecting dispositional trust

We utilized information from a concise affinity survey during participants’ orientation to
identify potential factors influencing their natural inclination to trust in a Human-Robot
environment. These data were collected before any interaction with the designed experiment,
ensuring they remain unaffected by procedural biases in the experiment and reflect individuals’
intrinsic perspectives on trust in robot collaboration.

Additionally, each participant provided demographic information, including gender, age, and
the technological intensity of their work role, along with a self-assessment of their trust in robots. At
this stage, we investigated potential relationships between these variables and the ex-ante self-
assessed trust in robots.

Figure 3 presents descriptive charts (histogram, probability density function -PDF-, cumulative
distribution function -CDF-, and boxplot chart) illustrating dispositional trust across three
dimensions of interest: gender (male versus female), age (juniors -younger than 40 years old- versus
seniors -older than 40 years old), and work profile (highly technical versus non-technical).
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Figure 3. Dispositional trust distribution per different demographical factors.

Figure 3 highlights differences among the analyzed demographic groups. For instance, both the
histogram and PDF reveal a noteworthy peak at the 70%-80% trust level for females, and a similar
peak is observed for juniors. This pattern is absent in their respective counterparts (males and
seniors). The boxplot chart also indicates that senior individuals exhibit a slightly superior mean trust
level compared to their younger counterparts.

To validate these perceptions, and considering the non-normal distribution of data, we
conducted a Mann-Whitney U-test to check for disparities in data distribution of the different gender,
age and role collectives. Table 3 presents the obtained p-values from both single-tailed and double-
tailed tests. The results indicate that, while differences may exist, demographics alone are not
significant enough to explain such disparities.

Table 3. Results of the Mann-Whitney U-test for dispositional trust between different

demographics.
Demographic Segments Statistic Test p-value
Gender Female (X0) — Male (X1) 3220 X0<>X1  0.9621

X0>X1 0.5265
X0<X1 0.4810
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Age Junior (X0) — Senior (X1) 247.5 X0<>X1 0.2713
X0>X1 0.8685
X0<X1 0.1357
Role Non-Technical (X0) — Technical (X1)  372.0 X0 <> X1 0.3141
X0>X1 0.1570
X0<X1 0.8475

4.2. Factors affecting perceived trust

After the experimental session, we instructed the participants to assess the system’s
trustworthiness. It is important to note that, regardless the interaction model the participants
experimented, the system behaved correctly 75% of the times, resulting in a consistent objective trust
level across all cases which allowed us to compare results.

Once more, we examined the distribution of perceived trust and explored the influence of
demographic factors on this variable, mirroring the analysis conducted for dispositional trust.
However, given that these assessments were ex post, we also considered the impact of the interaction
model to which participants were exposed. Figure 4 and Table 4 provide a summary of these results.

Perceived trust
8 3

Distribution per Gender Distribution per Age Distribution per Role Distribution per Model
10 Gender Age Role Model
[ 1 1 Non-Tech. [ I Model-0
8 171 M l Sr. ] Tech. Model-1
§ 6
4
2 HH il
0
0 25 50 100 O 25 50 75 100 O 25 100 O 50 75 100
0.03 g
2002
e}
[
Q
o
T 001
0.00
10 0 25 100 O 25 50 75 100 O 100 O 50 75 100
2
5 08
[
Qo
o
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(]
2
T 04
=
=
£ 02
=1
O
0.0
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20 —[—
) % %

F M Jr. Sr. Non-Tech. Tech. Model-0 Model-1

Figure 4. Perceived trust distribution per different demographical factors.

Similarly to dispositional trust, Figure 4 shows some possible differences regarding the
demographical data distribution such as higher trust values for senior participants and subjects
exposed to the experimental Model-1. However, the results of the conducted Mann-Whitney test
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compiled in Table 4 show that these divergences are not significant enough to explain such
disparities.

Table 4. Results of the Mann-Whitney U-test for perceived trust between different demographics.

Demographic Segments Statistic Test p-value
Gender Female (X0) — Male (X1) 352.5 X0 <> X1 0.6050
X0>X1 0.3025
X0 <X1 0.7041
Age Junior (X0) — Senior (X1) 282.5 X0 <>X1 0.6775
X0>X1 0.6685
X0<X1 0.3388
Role Non-Technical (X0) — Technical (X1)  293.0 X0<>X1 0.6220
X0>X1 0.6956
X0 < X1 0.3110
Exp. Model = Model-0 (X0) - Model-1 (X1) 270.5 X0 <> X1 0.3001
X0>X1 0.8539
X0 <X1 0.1505

4.3. Influence of past iteraction in trust dynamics

The experimental process exposed participants to a series of interactions with an overall 75%
reliability. Two experimental models were conceived to alter the sequence in which participants faced
the test. Both models alternated between a fully reliable scenario and a chaotic sequence where only
50% of the readings were correct. Model-0 began with trustworthy iterations, while Model-1
presented chaotic iterations first. This setup allows us to investigate whether the order in which
participants faced the test influences the propensity to trust.

To integrate the interaction results, we counted the times participants chose to trust the sensor’s
reading on each experimental stage and divided the result by the number of interactions on that stage,
obtaining the trust rate for each stage. These results were aggregated according to the experimental
model they interacted with. Figure 5 shows the distribution of trust rates among the different models
and experimental stages, along with the mean trust rate for each case.

To verify the impact of past interactions on the conformation of trust, we decided to perform a
statistical test on the trust rate distributions among the different experimental models for both the
case of perfectly working sensors and for the randomly working sensor scenarios. Since Figure 5
shows that the trust rate distribution does not follow normality, we conducted the Mann-Whitney U-
test to check the significance of the trust rate differences among experimental models. Table 5 shows
the results of these tests, emphasizing those with statistical significance.
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Figure 5. Trust rate distribution among experimental model and stages.

Table 5. Results of the Mann-Whitney U-test for trust dynamics between different models and
experimental stages.

Stage Segments Statistic Test p-value
Correct sensor Model-0 (X0) — Model-1 (X1) 2231.0 X0<>X1 (*) 0.0042
X0>X1 0.9979
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X0 < X1 (*) 0.0020
Random sensor Model-0 (X0) — Model-1 (X1) 4692.0 X0<>X1 (**) 3.840e-09
X0>X1 (**) 1.920e-09
X0<X1 1.000

(*) Results presenting statistical significance.

(**) Results presenting very strong statistical significance

4.4. Universality of trust detection models

Deciphering trust in the intricate dynamics of human-robot requires many variables. The
physiological signals captured during the experiment, including 12 detailed signals related to brain
activity (EEG), skin conductance response (GSR), respiratory band extension (RSP), and pupil
diameter variations (PLP), offer a variety of information to train a suitable model. However, there are
some considerations to ponder to choose the most suitable approach. We analyzed three distinct yet
complementary approaches in creating a trust detection model.

The General Approach involved constructing an expansive dataset comprising all participants’
data and iterations. This method allowed us to leverage a broad dataset, providing a comprehensive
overview of general trust trends. However, it introduced the challenge of potential information leaks
between the training and test sets, as participant-specific information was included in both sets.
Under this approach a single model covers all the trust detection need for every participant.

In the Leave-One-Out Approach, we addressed the risk of information leaks by training
algorithms using the complete dataset, excluding participant-specific information. While this
approach maintained a substantial amount of data, it sacrificed personalized information crucial for
trust detection, leaving out precise the data that could contain the most valuable information. This
approach created a specific classifier for each participant and the results where later aggregated.

The Individual Approach focused on the uniqueness of trust reactions. By exclusively utilizing
each participant’s individual dataset, this method created personalized algorithms for each
individual. Despite having the smallest dataset for training, the Individual Approach allowed for the
detection of specific trust nuances in each participant. As in the previous case, a specific model was
created for every participant.

Table 6 presents key metrics, including minimum, mean, and maximum F1 scores, obtained with
each training model, showcasing the strengths and nuances of each approach.

Table 6. F1 scores.

Minimum Mean Maximum
General Approach - 0.6172 -
Leave-One-Out 0.6098 0.6207 0.6326
Individual Approach 0.6363 0.7661 0.9219

4.5. Universality of signals used for trust detection

During the experiment we recorded a large variety of signals, including brain activity,
electrodermal response, respiration, and pupillometry. However, whether these signals are valuable
to detect general variations of trust is unclear. We seek to discern whether these signals exhibit
consistent patterns applicable to detect trust variations in all the participants or whether they may be
referred as key elements to detect trust variations on certain individuals.

To analyze this issue, we systematically computed the frequency with which each signal
contributed to the general analysis approach and, concurrently, how frequently it featured in
individualized models. Figure 6 succinctly encapsulates the outcomes, providing insights into the
role of each signal in both general and individualized trust detection models.
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Figure 6. Summary of signal contribution to general and individual models.

5. Discussion

Throughout this article, we have presented the different dimensions of trust (dispositional,
situational, and learned) and outlined the experimental process undertaken to determine the factors
influencing them.

The literature consulted indicates a marked influence of personal factors on dispositional trust.
Nevertheless, our empirical results contradicted conventional expectations by unveiling the absence
of statistically significant correlations between these customary demographic indicators and the
participants’ dispositional trust in automated systems. Since our analysis focused on gender, age, and
occupational role, we suggest to further analyze the potential influence of unexplored demographic
aspects. Variables such as social status, educational background, and nationality, may wield a
significant. Their potential significance to shape dispositional trust cannot be disregarded, and
further studies are needed to analyze their impact.

To analyze the evolution and dynamics of learned trust, we designed two experimental models
with similar iterations arranged in different orders, and thus, allowing the detection of variations in
trust evolution dynamics. As indicated by statistical tests, the behavior of both groups is disparate.
Specifically, participants who start with a series of iterations exhibiting random behavior
(participants interacting with Model-1) experience a higher dynamic variation compared to their
counterparts (participants interacting with Model-0), thus exhibiting higher trust levels when the
system functions properly and lower trust levels when the system’s performance is erratic. In this
context, it could be argued that the initial iterations with the system significantly influence the
trajectory of future iterations. Drawing an analogy with classical mechanics, it can be asserted that
the initial iterations are critical in determining the level of “trust inertia” individuals have towards
automated systems and their future interactions.

Regarding the third component of trust, situational trust, its influence is not directly covered by
the experimentation and analysis conducted in this research. However, a small portion of it is
reflected in the link between post-trust perception and the interaction model to which each
participant has been subjected. This is justified by considering that this combination incorporates
elements external to the individual into a static value of trust and, therefore, cannot correspond to
dispositional (individual) trust or learned (dynamic) trust. The analyses performed highlight a low
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significance in the link between these elements. This is mainly because this factor is not the main
focus of the study, and thus, the experimental process is not designed to emphasize its influence.

Regarding mathematical models aimed at trust detection, we designed a common model for all
participants using the generalist approach. The Leave-One-Out approach is also suitable, in general
terms, for any individual and, in this regard, allows the same universalization as the general model.
These models offer a moderate performance, achieving an F1 score close to 0.61-0.62. On the other
hand, individualized models show much higher performance than these approaches, achieving F1
values that surpass those of the previous models in all cases, reaching an average F1 score of 0.76 and
even reaching occasional values of 0.92 on this score. This indicates that, compared to generalist
models, individualized models offer better performance in detecting trust violation and recovery
situations. However, the implementation of this approach faces other challenges, such as the need to
train independent algorithms for each subject.

The influence of the different psychophysiological signals in the proposed prediction models
must also be considered. Variables such as pupil dilation or changes in breathing patterns play a
fundamental role in implementing personalized trust detection models, buts lack significance in the
generalist model. Conversely, signals like the brain activity in the parietal-occipital lobe (electrodes
PO7 and PO8) contribute to the generalist model but has very little influence on personalized models.
Although the cause of these phenomena has not been studied in detail, it can be inferred that signals
included in the generalist model exhibit similar behavior in most individuals, but these changes are
not necessarily the most sensitive to variations in trust situations.

Having outlined the scope of the results obtained, it is worth mentioning some points that
remain inconclusive in this research and could be addressed in future work.

6. Conclusions

To conclude our study, we need to review the core research questions that guided our research
regarding the nature of trust in Human-Robot Collaboration.

First, we aimed to identify the fundamental factors affecting trust in HRC environments. We
addressed this issue with an extensive literature review that revealed three distinct dimensions of
trust: dispositional, situational, and learned. This review also stressed several demographic aspects
that influence the dispositional dimension of trust.

The second question, aimed to identify specific variables that could influence the previously
disclosed dimensions of trust. To answer this issue, we created a specific experimental process that
allowed us to identify potential factors affecting dispositional and learned trust. The literature
suggested a marked influence of personal factors such as gender, age, and occupational roles on
dispositional trust. However, our empirical findings challenged conventional assumptions, revealing
no statistically significant correlations between these traditional demographic markers and
participants’ dispositional trust in automated systems. This unexpected result prompted us to delve
further into broader demographic factors—social status, educational background, and nationality —
which were not explicitly considered in our initial study. On the other hand, the study proved that
the first iterations between humans and robots play a crucial role the evolution of trust dynamics.
Presumably, this points out that the learned dimension of trust is more sensible and susceptible to
change than the other dimensions.

The third and final research question aimed to identify crucial human signals for measuring
trust in HRC and understand their contributions to the development of trust detection models.
Following previous works detailed in the literature review, our exploration into psychophysiological
signals encompassed brain (EEG), electrodermal (GSR), respiratory (RSP), and ocular (PLP) activities.
We focused on three different approaches, varying from a generic to individualized trust models.
Results revelled the difficulty to extrapolate a general model of trust. On one hand, the individualized
models worked better than the general model, and, on the other hand, several individually significant
psychophysiological signals showed very particular responses and, thus, resulted irrelevant in the
general model. This issue emphasizes the very complex and personal nature of trust.
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In conclusion, our study effectively addresses the research questions, shedding light on the
intricate interplay of factors influencing trust, the temporal dynamics of trust evolution, and the
optimal human signals for trust measurement in HRC. We are confident that this research will
empower the design of future reliable, robust and trusted Human-Robot collaborative environments.
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