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Abstract: Recognizing trust as a pivotal element for success within Human-Robot Collaboration (HRC) 

environments, this article examines its nature, exploring the different dimensions of trust, analysing the factors 

affecting each of them, and proposing alternatives for trust measurement. To do so, we designed an 

experimental procedure involving 50 participants interacting with a modified ‘Inspector game’ while we 

monitor their brain, electrodermal, respiratory, and ocular activities. This procedure allowed us to map 

dispositional (static individual baseline) and learned (dynamic, based on prior interactions) dimensions of trust 

considering both demographic and psychophysiological aspects. Our findings challenge traditional 

assumptions regarding the dispositional dimension of trust and establish clear evidence that the first 

interactions are critical for the trust-building process and the temporal evolution of trust. By identifying more 

significant psychophysiological features for trust detection and underscoring the importance of individualized 

trust assessment, this research contributes to understanding the nature of trust in HRC. Such insights are crucial 

for enabling more seamless human-robot interaction in collaborative environments. 

Keywords: Human-Robot Collaboration (HRC); trust dimensions; trust dynamics; experimental 

process 

 

1. Introduction 

Human-Robot Collaboration (HRC) has emerged as a critical area in the engineering and social 

sciences domain. This paper ventures into this dynamic domain with a keen focus on environments, 

where the collaboration pivots on execution of routine tasks involving manipulation of components 

on recycling disassembly lines as well as management and classification of various electronic devices. 

We particularly explore the performance of collaboration with robotic arms, capable of a spectrum of 

autonomous actions under the guidance of a computer program. 

In any kind of collaboration, including HRC, trust has been identified as a significant factor that 

can either motivate or hinder cooperation, especially in scenarios characterized by incomplete or 

uncertain information. Despite the ubiquitous understanding of the concept of “trust”, its definition 

has proven to be complex due to the range of fields it applies in and the individual context in which 

it is studied. Several perspectives contribute to the understanding of trust, depending on the 

theoretical focus and the specific field of study it is applied to. While interpersonal trust is the most 

studied, there is also an increasing focus on the trust between humans and technology, which is 

essential in HRC. 

This paper aims to delve into significant research questions about the function of trust in HRC: 

1) What are the fundamental factors influencing trust in HRC?, 2) Is it possible to identify 

demographic or contextual variables that affect the nature and dynamics of trust?, and 3) Can trust 

in HRC be measured using psychophysiological signals? 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
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The paper is organized as follows: Section 1 introduces the concept of trust in HRC, highlighting 

its general framework and outlining the major research questions this paper intends to explore. 

Section 2 provides a theoretical background, covering current research and explaining the importance 

of defining trust in HRC. Section 3 describes the Materials and Methods, with a detailed explanation 

of the experimental design and methodologies used in the data analysis. Section 4 presents the 

Results, providing the empirical findings form the experimental process. In Section 5, a 

comprehensive Discussion is included, thoroughly exploring the implications of the research 

findings for trust in HRC. Lastly, Section 6 offers the Conclusion and provides answers to the research 

questions. 

2. Background) 

2.1. Theoretical Foundations of Trust 

Trust is a crucial determinant of effective collaboration, in both human-to-human and human-

to-machine interactions. Consequently, studies on trust modelling and measurement span a variety 

of disciplines, including psychology, sociology, biology, neuroscience, economics, management, and 

computer science [1–10]. These two approaches (– modelling and measuring –) share common 

knowledge, but with differing purposes and considerations. Trust modelling aims to depict human 

trust behaviour, extrapolating individual responses to a universal level, whereas trust measurement 

seeks quantifiable involuntary body responses to varying trust-related stimuli. 

The multidisciplinary nature of human trust research signifies that defining a unique modelling 

approach is complex. A variety of trust definitions catered to specific topics contribute to a 

consolidated and detailed definition of the concept (see Table 1 for more details). 

Table 1. Multidisciplinary definitions of Trust [2]. 

Discipline Meaning of Trust 

Sociology Subjective probability that another party will perform an action that will 

not hurt my interest under uncertainty and ignorance [1].  

Philosophy Risky action deriving from personal and moral relationships between 

two entities [3]. 

Economics Expectation upon a risky action under uncertainty and ignorance based 

on the calculated incentives for the action [4]. 

Psychology Cognitive learning process obtained from social experiences based on the 

consequences of trusting behaviours [5].  

Organizational 

management 

Willingness to take risk and being vulnerable to the relationship based on 

ability, integrity, and benevolence [6].  

International 

relations 

Belief that the other party is trustworthy with the willingness to 

reciprocate cooperation [7]. 

Automation Attitude that one agent will achieve another agent’s goal in a situation 

where imperfect knowledge is given with uncertainty and vulnerability 

[8].  

Computing & 

Networking 

Estimated subjective probability that an entity exhibits reliable behaviour 

for particular operation(s) under a situation with potential risks [9]. 

In general terms, trust is perceived as a relationship where a subject (trustor) interacts with an 

actor (trustee) under uncertain conditions to attain an anticipated goal. In this scenario, trust is 

manifested as the willingness of the trustor to take risks based on a subjective belief and a cognitive 

assessment of past experiences that a trustee will demonstrate reliable behaviour to optimize the 

trustor’s interest under uncertain situations [2]. 

This definition emphasizes several issues concerning the nature of trust: 

• A subjective belief: Trust perception heavily relies on individual interactions and the 

preconceived notion of the other’s behaviour. 
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• To optimize the trustor’s interest: Profit or loss implications for both the trustor and trustee 

through their interactions reveal the influence of trust/distrust dynamics. 

• Interaction under uncertain conditions: The trustor’s actions rely on expected behaviours of the 

trustee to optimize the anticipated outcome, but it may yield suboptimal or even prejudicial 

results. 

• Cognitive assessment of past experiences: Trust is dynamic in nature, initially influenced by 

preconceived subjective beliefs but evolving with ongoing interactions. 

Authors have proposed varying dimensions of trust to explain different elements of trust 

development. Some differentiate between moralistic trust, based on previous beliefs about behaviour, 

and strategic trust, based on individual experiences [10]. Other approaches identify dispositional, 

situational and learned trust as distinct categories [11]. Trust is also described as a combination of 

individual trust (derived from own personal characteristics and conformed by logical trust and 

emotional trust) and relational trust, referenced to the dimensions of trust that rise from the 

relationship with other entities [2]. 

Even if different authors use different classifications, it is possible to map similarities between 

different approaches. Despite omitting minor particularities, Table 2 shows the convergence of these 

classifications. For convenience, we will use the nomenclature defined in [11] – dispositional, 

situational and learned trust – without loss of generality. 

Table 2. A rough similarity map between trust dimensions among different authors. 

Similarity map of trust dimensions according to different authors 

[10] [11] [12] [2] 

Moralistic 

 

Strategic 

Dispositional Phenomenon-based Emotional 

Situational Sentiment-based Relational 

Learned Judgement-based Logical 

In essence, trust relies on multiple, complex factors, encompassing both individual and 

relational aspects. Notwithstanding the diverse disciplinary perspectives and methodologies in 

researching trust, there is considerable consensus on the fundamental concept and dimensions of 

trust. However, understanding, modelling, and measuring trust, particularly in human-to-machine 

contexts, continue to pose considerable challenges. 

Tackling these challenges requires an in-depth understanding of multifaceted trust dynamics. 

The primary challenge lies in encapsulating the complexities of human trust in a computational 

model, given its subjectivity and dynamic nature. Quantifying trust is another significant obstacle, as 

trust is an internal and deeply personal emotion. The novelty of trust in the human-robot 

collaboration domain implies a lack of historical data and testing methodologies to build the trust 

models upon. Furthermore, implementing these models in real-world scenarios is another challenge 

due to constraints related to resources, variability in responses and the need for instantaneous 

adaptation. Despite these hurdles, the potential rewards of successfully modelling and measuring 

trust in human-robot collaborations - including enhanced efficiency, increased user acceptance and 

improved safety - are immense. 

2.2. Trust in Human-Robot Collaboration 

within the field of Human-Robot Collaboration, trust plays a crucial role and is considered a 

significant determining factor. Various studies, including [13,14], have dedicated efforts to 

investigate and identify the factors that influence trust in this collaborative context. These factors 

have not only been structured within a single matrix but also classified based on their origins and 

dimensions of influence, which are instrumental in facilitating trust and designing experimental 

protocols. 

Authors in [15] provide a series of controllable factors with correlation to trust: 

• Robot behaviour: This factor relates to the necessity for robot companions to possess social skills 

and be capable of real-time adaptability, taking into account individual human preferences 
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[16,17]. In the manufacturing domain, trust variation has been studied in correlation to changes 

in robot performance based on the human operator’s muscular fatigue [18]. 

• Reliability: An experiential correlation between subjective and objective trust measures was 

demonstrated through a series of system failure diagnostic trials [19]. 

• Level of automation: Consistent with task difficulty and complexity and corresponding 

automation levels, alterations in operator trust levels were noted [20]. 

• Proximity: The physical or virtual presence of a robot significantly influences human 

perceptions and task execution efficiency [21]. 

• Adaptability: A robot teammate capable to emulate the behaviours and teamwork strategies 

observed in human teams has a positive influence in trustworthiness and performance [22]. 

• Anthropomorphism: With anthropomorphic interfaces, greater trust resilience was recorded 

[23]. 

• Communication: Trust levels fluctuated based on the transparency and detail encapsulated 

within robot-to-human communication [24,25]. 

• Task type: The task variability was recorded to influence interaction performance, preference, 

engagement, and satisfaction [26]. 

Less controllable dimensions of trust include dispositional trust that is influenced exclusively by 

human traits and the organizational factors linked to the Human-Robot team [13,14]. These factors 

exhibit limited flexibility as they depend directly on the individual or the organizational culture. On 

the other hand, situational trust is controllable, heavily dependent on various factors such as the 

characteristics of the task being developed, making it possible to manipulate it based on the 

experiment’s objective [13,14]. 

Moreover, trust manifests through brainwave patterns and physiological signals, making their 

use in assessing trust crucial [27,28]. Biologically driven, these elements foster a more symbiotic 

interaction, allowing machines to adapt to human trust levels. 

Notably, trust in HRC is dynamic and influenced by a myriad of factors. Understanding the 

various dimensions of trust and the controllable and uncontrollable factors encompassed allows for 

the creation of experimental protocols and strategies to enhance trust, a hypothesis evident in studies 

looking into the triad of operator, robot, and environment [14]. The importance of fostering and 

maintaining trust in the HRC domain, especially considering the complexity of trust in the ever-

evolving landscape of Human-Robot interaction. 

2.3. Trust measuring using different and combined psychophysiological signals 

Studies on trust have traditionally been situated within the context of interpersonal 

relationships, primarily utilizing various questionnaires to evaluate levels of trust [29–31]. However, 

due to the arrival of automatic systems and the decreased cost of acquiring and analysing 

psychophysiological signals, focus has shifted towards examining these types of signals in response 

to specific stimuli in a bid to lower the subjectivity and potential biases associated with questionnaire-

based approaches. Recent studies, like [9,32–34], have been centred on the usage of 

psychophysiological measurements in the study of human trust. 

The choice of these psychophysiological sensors can differ, depending on which human 

biological systems (central and peripheral nervous systems) they are applied to. A common pattern 

has emerged from studies in which EEG is the most used signal to measure central nervous system 

activity, with fMRI closely behind it - the latter being more extensively used in the context of 

interpersonal trust [35]. Additionally, attempts have been made to study trust through EEG 

measurements which only look at event-related potentials (ERPs), but ERP has proven to be 

unsuitable for real-time trust level sensing during human-machine interaction due to difficulty in 

identifying triggers [33,36]. 

Similarly, sensors measuring signals from the peripheral nervous system, notably ECG 

(electrocardiography) and GSR (galvanic skin response), have been frequently used in assessing trust 

[35]. GSR, a classic psycho-physiological signal that captures arousal based on the conductivity of the 

skin’s surface, not under conscious control but instead modulated by the sympathetic nervous 

system, has seen use in measuring stress, anxiety, and cognitive load [37]. Some research revealed 
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that the net phasic component as well as the maximum value of phasic activity in GSR, might play a 

critical role in trust detection [33]. 

In contrast, the use of single signals most commonly involves only EEG, succeeded by fMRI [35]. 

However, some studies have proposed that combining different psychophysiological signals (like 

GSR, ECG, EEG, etc.) improves the depth, breadth, and temporal resolution of results [38,39]. 

Interestingly, pupillometry has been recently highlighted as a viable method for detecting human 

trust, revealing that trust levels may be influenced by changes in partners’ pupil dilation [40–42]. 

In short, the current state of the art exhibits an increasing trend towards the use of 

psychophysiological signals emanating from both central, and peripheral nervous systems. Also, it 

showcases an interest in combining these signals to create more robust trust detection mechanisms 

with an improved breadth and depth of results. 

3. Materials and Methods 

The study of the dynamics that determine trust is a topic of great interest, although there is 

limited collected data available for analysis to draw conclusions. In our case, the objective of the 

experimentation is to design and implement a process that can identify in real time if there has been 

a breach of trust between the operator and their robot companion (cobot) and to understand the 

factors that cause these variations in trust and identify the biological reactions related to it. 

To minimize the inclusion of excessive variables that could occlude the true nature of trust, we 

imply that the cobot is a non-humanoid robotic arm with limited interaction capabilities. Thus, the 

only interaction with the human counterpart is reduced to the effectivity and performance of tasks 

under its control. Additionally, in order to avoid contextual randomness, we decided that every 

participant should interact with the system in a similar environment, and thus, we determined that 

the experimental study will focus solely in the dispositional and learned dimensions of trust. 

Consequently, in the context of this research, trust is defined as the predictability of the human 

that the robot will exhibit appropriate behaviour, following the established guidelines for the 

performance of its work in an orderly manner, without failure or errors that could be interpreted as 

dangerous to the person, the robot itself, or its work environment. 

Our strategic planning for the experimental process aimed at achieving the following objectives: 

• Systematically collect a diverse array of relevant psychophysiological signals, emphasizing 

signal cleanliness and minimizing signal randomness; 

• Investigate the influence of human traits on various aspects of human-machine trust, specifically 

in the context of dispositional and learned trust dimensions; 

• Examine the role of the system’s capabilities, especially predictability and reliability, in shaping 

the evolutionary process of trust. 

In the following subsections, the conceptual design of the experimentation, as well as the 

equipment and method used for this research, are described in detail. 

3.1. Conceptual design of the experiment 

Considering the objectives to be satisfied and to expose participants to different trust stimuli 

towards machines, this experimental stage has been designed as a game following a variant of the 

Prisoner’s Dilemma, known as the Inspection Game. These types of games are mathematical models 

that represent a non-cooperative situation where an inspector must identify whether his counterpart 

adheres to the established guidelines or, on the contrary, shrinks work duties. In this case, the 

participants take the role of the inspector and their mission is to detect if their robotic counterpart is 

carrying out their job adequately. 

Simplicity has been kept to a maximum during the design of this experiment, thus participants 

interact with a single screen that provides them the sensor feedback. The trust decision process is 

implemented via a single command bottom. Participants are exposed to 120 iterations during an 

approximate time of 30 minutes. However, the first 20 iterations are part of the learning and 

familiarization process and, thus, only 100 iterations per participant are considered in the 

experimental analysis. 
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Unknown to the participants, two experimental models were performed. Both had the same 

trustworthiness (the virtual sensor provided a correct answer 75 out of the 100 iterations), but in one 

of the cases the machine worked perfectly during the first 20 iterations whereas the second model 

presented 50% success rate during the same first 20 iterations. 

3.2. Experimental sample 

The experimental sample must be selected according to the population in which it is desired to 

validate the experimentation. In this case, since the final objective is still oriented to an industrial 

work environment, the target population is very broad, since it covers all individuals of active 

working age. 

To refine the profile of the desired sample, its implications within the broader research context 

must be considered. Specifically, the demographical distribution of the sample has a direct impact on 

the collection of human traits and their eventual influence in the dispositional dimension of trust. 

Taking into account these considerations, three factors are determined with which to compose 

the selected sample: Gender (Male/Female), Age (Under and over 40 years old) and Role in the work 

team (Technical/Non-technical). The first two belong to the category of human traits, while the third 

falls into the scope of the work environment. Figure 1 shows the distribution of the participants in 

this experimental stage according to the indicated categories, revealing balanced sample, with the 

exception of the age segment. 

 

Figure 1. Categorical distribution of participants. 

3.2. Equipment used 

Given the specific objectives of this experimental phase, it may be prudent to consider acquiring 

a maximal number of psychophysiological signals possible to subsequently discriminate which ones 

are truly significant for the study of trust. However, this approach presents two significant 

challenges. Firstly, the acquisition of a multitude of signals for subsequent treatment without prior 

consideration could pose serious logistical problems for the experimental design and significant 

difficulties in their subsequent analysis. Secondly, the consideration of signals that, due to their 

acquisition methods, could be incompatible with real activity in industrial environments would not 

align with the approach of this research. 
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After analysing the different bibliographic sources referring to previous studies, as well as the 

signals used during their execution and the acquisition systems used in each case, it is determined 

that the most appropriate signals to propose are those linked to: 

• Brain activity (EEG): Rigid headband with twelve dry electrodes for reading of brain activity in 

anterior frontal regions AF [7-8], frontopolar Fp [1-2],frontal F [3-4], parietal P [3-4], parieto-

occipital PO [7-8] and occipital O [1-2]. 

• Galvanic skin response (GSR): Electrodes positioned on the index and ring fingers non-dominant 

hand. In state excitement, glands sweat glands are activated, varying the electrical resistance of 

the skin. An applied low voltage current between both points allows detect these variations. 

• Respiration (RSP): Elastomeric band located at the height of the diaphragm. Issue small electrical 

signals when varying its extension, so it is possible identify inhalation and exhalation cycles. 

They provide information about the frequency respiratory, tidal volume and characteristics of 

the respiratory cycle. 

• Pupillometry (PLP): Glasses equipped with eye tracking sensors which enable the identification 

of the fixation point of gaze or eye movement refixation saccades. In addition to the direction of 

the gaze, they also provide information about the diameter of the pupil of each eye, which allows 

for the derivation of other parameters such as blinking frequency. 

3.3. Experimental process 

In order to ensure that the experimental phase aligns with the established objectives, it is 

imperative to define a set of guidelines during execution that endorse the accurate execution of the 

process. The tasks earmarked for experimentation are delineated below. 

• Participants reception: Participants are briefed about the project and the experimentation, ensuring 

they are informed about the purpose, the physiological signals that will be collected, and the 

treatment they will receive. They are assured of data privacy through pseudo-anonymization and 

told of their right to opt-out anytime. Once they consent, they provide demographic data and 

complete a technology trust survey. They are then familiarized with the experimental setup and 

equipment to capture psychophysiological signals. Participants are instructed to minimize 

movement during the experiment for data quality control. 

• Biocalibration: The biocalibration phase ensures the equipment is accurately tuned to individuals’ 

varying physiological responses. This adjustment considers that without context, a specific value 

cannot conclusively indicate high or low intensity. This phase helps define the participant’s normal 

thresholds in varied states of relaxation and excitement. After equipping the participants with the 

measuring gear, they perform tasks designed to both stimulate and soothe their signals, thereby 

minimizing uncontrolled disturbances. 

• Familiarization: The familiarization stage aims at ensuring participants completely understand their 

tasks and possible implications during the experiment. In this phase, participants repetitively interact 

with the machine to understand its workings, ensuring they can easily express their trust or mistrust. 

Unlike the experimental stage, they’re made aware of the sensor’s performance, helping them form 

trust-based responses. This process also helps them become accustomed to the screens displaying 

crucial information during the interaction process. 

• Experimental process: During the experiment, participants interact with the machine and gauge the 

sensor’s trustworthiness. They are presented with a system state (“well lubricated” or “poorly 

lubricated”) and the default action matches the system state. They only interact if choosing to 

disregard the sensor. They are then informed on the real machine state and the result of their decision. 

This cycle repeats a hundred times with varying patterns unknown to the participants. 

• Informal interview: A brief interview follows the experimental phase for each participant to assess 

their experience, identify disruptions, and understand areas of future improvement. It is especially 

important for participants presenting anomalies in signal visualization or behaviour. It helps filter 

data from those negatively affected by conditions like discomfort with measuring instruments or 

misunderstanding their tasks. This interview also aids in understanding participants’ perception of 

the system’s reliability and identifying personal traits influencing their perception. 
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Figure 2. Experimental phase. 

4. Results 

The following section comprises the experimental results, divided according to the research 

interests and main findings. 

4.1. Factors affecting dispositional trust 

We utilized information from a concise affinity survey during participants’ orientation to 

identify potential factors influencing their natural inclination to trust in a Human-Robot 

environment. These data were collected before any interaction with the designed experiment, 

ensuring they remain unaffected by procedural biases in the experiment and reflect individuals’ 

intrinsic perspectives on trust in robot collaboration. 

Additionally, each participant provided demographic information, including gender, age, and 

the technological intensity of their work role, along with a self-assessment of their trust in robots. At 

this stage, we investigated potential relationships between these variables and the ex-ante self-

assessed trust in robots. 

Figure 3 presents descriptive charts (histogram, probability density function -PDF-, cumulative 

distribution function -CDF-, and boxplot chart) illustrating dispositional trust across three 

dimensions of interest: gender (male versus female), age (juniors -younger than 40 years old- versus 

seniors -older than 40 years old), and work profile (highly technical versus non-technical). 
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Figure 3. Dispositional trust distribution per different demographical factors. 

Figure 3 highlights differences among the analyzed demographic groups. For instance, both the 

histogram and PDF reveal a noteworthy peak at the 70%-80% trust level for females, and a similar 

peak is observed for juniors. This pattern is absent in their respective counterparts (males and 

seniors). The boxplot chart also indicates that senior individuals exhibit a slightly superior mean trust 

level compared to their younger counterparts. 

To validate these perceptions, and considering the non-normal distribution of data, we 

conducted a Mann-Whitney U-test to check for disparities in data distribution of the different gender, 

age and role collectives. Table 3 presents the obtained p-values from both single-tailed and double-

tailed tests. The results indicate that, while differences may exist, demographics alone are not 

significant enough to explain such disparities. 

Table 3. Results of the Mann-Whitney U-test for dispositional trust between different 

demographics. 

Demographic Segments Statistic Test  p-value 

Gender Female (X0) – Male (X1) 322.0 X0 <> X1 0.9621 

   X0 > X1 0.5265 

   X0 < X1 0.4810 
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Age Junior (X0) – Senior (X1) 247.5 X0 <> X1 0.2713 

   X0 > X1 0.8685 

   X0 < X1 0.1357 

Role Non-Technical (X0) – Technical (X1) 372.0 X0 <> X1 0.3141 

   X0 > X1 0.1570 

   X0 < X1 0.8475 

4.2. Factors affecting perceived trust 

After the experimental session, we instructed the participants to assess the system’s 

trustworthiness. It is important to note that, regardless the interaction model the participants 

experimented, the system behaved correctly 75% of the times, resulting in a consistent objective trust 

level across all cases which allowed us to compare results. 

Once more, we examined the distribution of perceived trust and explored the influence of 

demographic factors on this variable, mirroring the analysis conducted for dispositional trust. 

However, given that these assessments were ex post, we also considered the impact of the interaction 

model to which participants were exposed. Figure 4 and Table 4 provide a summary of these results. 

 

Figure 4. Perceived trust distribution per different demographical factors. 

Similarly to dispositional trust, Figure 4 shows some possible differences regarding the 

demographical data distribution such as higher trust values for senior participants and subjects 

exposed to the experimental Model-1. However, the results of the conducted Mann-Whitney test 
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compiled in Table 4 show that these divergences are not significant enough to explain such 

disparities. 

Table 4. Results of the Mann-Whitney U-test for perceived trust between different demographics. 

Demographic Segments Statistic Test  p-value 

Gender Female (X0) – Male (X1) 352.5 X0 <> X1 0.6050 

   X0 > X1 0.3025 

   X0 < X1 0.7041 

Age Junior (X0) – Senior (X1) 282.5 X0 <> X1 0.6775 

   X0 > X1 0.6685 

   X0 < X1 0.3388 

Role Non-Technical (X0) – Technical (X1) 293.0 X0 <> X1 0.6220 

   X0 > X1 0.6956 

   X0 < X1 0.3110 

Exp. Model Model-0 (X0) – Model-1 (X1) 270.5 X0 <> X1 0.3001 

   X0 > X1 0.8539 

   X0 < X1 0.1505 

4.3. Influence of past iteraction in trust dynamics 

The experimental process exposed participants to a series of interactions with an overall 75% 

reliability. Two experimental models were conceived to alter the sequence in which participants faced 

the test. Both models alternated between a fully reliable scenario and a chaotic sequence where only 

50% of the readings were correct. Model-0 began with trustworthy iterations, while Model-1 

presented chaotic iterations first. This setup allows us to investigate whether the order in which 

participants faced the test influences the propensity to trust. 

To integrate the interaction results, we counted the times participants chose to trust the sensor’s 

reading on each experimental stage and divided the result by the number of interactions on that stage, 

obtaining the trust rate for each stage. These results were aggregated according to the experimental 

model they interacted with. Figure 5 shows the distribution of trust rates among the different models 

and experimental stages, along with the mean trust rate for each case. 

To verify the impact of past interactions on the conformation of trust, we decided to perform a 

statistical test on the trust rate distributions among the different experimental models for both the 

case of perfectly working sensors and for the randomly working sensor scenarios. Since Figure 5 

shows that the trust rate distribution does not follow normality, we conducted the Mann-Whitney U-

test to check the significance of the trust rate differences among experimental models. Table 5 shows 

the results of these tests, emphasizing those with statistical significance. 
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Figure 5. Trust rate distribution among experimental model and stages. 

Table 5. Results of the Mann-Whitney U-test for trust dynamics between different models and 

experimental stages. 

Stage Segments Statistic Test  p-value 

Correct sensor Model-0 (X0) – Model-1 (X1) 2231.0 X0 <> X1 (*) 0.0042 

   X0 > X1 0.9979 
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   X0 < X1 (*) 0.0020  

Random sensor Model-0 (X0) – Model-1 (X1) 4692.0 X0 <> X1   (**) 3.840e-09 

   X0 > X1 (**) 1.920e-09  

   X0 < X1 1.000 

(*) Results presenting statistical significance.

(**) Results presenting very strong statistical significance

4.4. Universality of trust detection models 

Deciphering trust in the intricate dynamics of human-robot requires many variables. The 

physiological signals captured during the experiment, including 12 detailed signals related to brain 

activity (EEG), skin conductance response (GSR), respiratory band extension (RSP), and pupil 

diameter variations (PLP), offer a variety of information to train a suitable model. However, there are 

some considerations to ponder to choose the most suitable approach. We analyzed three distinct yet 

complementary approaches in creating a trust detection model. 

The General Approach involved constructing an expansive dataset comprising all participants’ 

data and iterations. This method allowed us to leverage a broad dataset, providing a comprehensive 

overview of general trust trends. However, it introduced the challenge of potential information leaks 

between the training and test sets, as participant-specific information was included in both sets. 

Under this approach a single model covers all the trust detection need for every participant. 

In the Leave-One-Out Approach, we addressed the risk of information leaks by training 

algorithms using the complete dataset, excluding participant-specific information. While this 

approach maintained a substantial amount of data, it sacrificed personalized information crucial for 

trust detection, leaving out precise the data that could contain the most valuable information. This 

approach created a specific classifier for each participant and the results where later aggregated. 

The Individual Approach focused on the uniqueness of trust reactions. By exclusively utilizing 

each participant’s individual dataset, this method created personalized algorithms for each 

individual. Despite having the smallest dataset for training, the Individual Approach allowed for the 

detection of specific trust nuances in each participant. As in the previous case, a specific model was 

created for every participant. 

Table 6 presents key metrics, including minimum, mean, and maximum F1 scores, obtained with 

each training model, showcasing the strengths and nuances of each approach. 

Table 6. F1 scores. 

 Minimum Mean Maximum 

General Approach - 0.6172 - 

Leave-One-Out 0.6098 0.6207 0.6326 

Individual Approach 0.6363 0.7661 0.9219 

4.5. Universality of signals used for trust detection 

During the experiment we recorded a large variety of signals, including brain activity, 

electrodermal response, respiration, and pupillometry. However, whether these signals are valuable 

to detect general variations of trust is unclear. We seek to discern whether these signals exhibit 

consistent patterns applicable to detect trust variations in all the participants or whether they may be 

referred as key elements to detect trust variations on certain individuals. 

To analyze this issue, we systematically computed the frequency with which each signal 

contributed to the general analysis approach and, concurrently, how frequently it featured in 

individualized models. Figure 6 succinctly encapsulates the outcomes, providing insights into the 

role of each signal in both general and individualized trust detection models. 
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Figure 6. Summary of signal contribution to general and individual models. 

5. Discussion 

Throughout this article, we have presented the different dimensions of trust (dispositional, 

situational, and learned) and outlined the experimental process undertaken to determine the factors 

influencing them. 

The literature consulted indicates a marked influence of personal factors on dispositional trust. 

Nevertheless, our empirical results contradicted conventional expectations by unveiling the absence 

of statistically significant correlations between these customary demographic indicators and the 

participants’ dispositional trust in automated systems. Since our analysis focused on gender, age, and 

occupational role, we suggest to further analyze the potential influence of unexplored demographic 

aspects. Variables such as social status, educational background, and nationality, may wield a 

significant. Their potential significance to shape dispositional trust cannot be disregarded, and 

further studies are needed to analyze their impact. 

To analyze the evolution and dynamics of learned trust, we designed two experimental models 

with similar iterations arranged in different orders, and thus, allowing the detection of variations in 

trust evolution dynamics. As indicated by statistical tests, the behavior of both groups is disparate. 

Specifically, participants who start with a series of iterations exhibiting random behavior 

(participants interacting with Model-1) experience a higher dynamic variation compared to their 

counterparts (participants interacting with Model-0), thus exhibiting higher trust levels when the 

system functions properly and lower trust levels when the system’s performance is erratic. In this 

context, it could be argued that the initial iterations with the system significantly influence the 

trajectory of future iterations. Drawing an analogy with classical mechanics, it can be asserted that 

the initial iterations are critical in determining the level of “trust inertia” individuals have towards 

automated systems and their future interactions. 

Regarding the third component of trust, situational trust, its influence is not directly covered by 

the experimentation and analysis conducted in this research. However, a small portion of it is 

reflected in the link between post-trust perception and the interaction model to which each 

participant has been subjected. This is justified by considering that this combination incorporates 

elements external to the individual into a static value of trust and, therefore, cannot correspond to 

dispositional (individual) trust or learned (dynamic) trust. The analyses performed highlight a low 
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significance in the link between these elements. This is mainly because this factor is not the main 

focus of the study, and thus, the experimental process is not designed to emphasize its influence. 

Regarding mathematical models aimed at trust detection, we designed a common model for all 

participants using the generalist approach. The Leave-One-Out approach is also suitable, in general 

terms, for any individual and, in this regard, allows the same universalization as the general model. 

These models offer a moderate performance, achieving an F1 score close to 0.61-0.62. On the other 

hand, individualized models show much higher performance than these approaches, achieving F1 

values that surpass those of the previous models in all cases, reaching an average F1 score of 0.76 and 

even reaching occasional values of 0.92 on this score. This indicates that, compared to generalist 

models, individualized models offer better performance in detecting trust violation and recovery 

situations. However, the implementation of this approach faces other challenges, such as the need to 

train independent algorithms for each subject. 

The influence of the different psychophysiological signals in the proposed prediction models 

must also be considered. Variables such as pupil dilation or changes in breathing patterns play a 

fundamental role in implementing personalized trust detection models, buts lack significance in the 

generalist model. Conversely, signals like the brain activity in the parietal-occipital lobe (electrodes 

PO7 and PO8) contribute to the generalist model but has very little influence on personalized models. 

Although the cause of these phenomena has not been studied in detail, it can be inferred that signals 

included in the generalist model exhibit similar behavior in most individuals, but these changes are 

not necessarily the most sensitive to variations in trust situations. 

Having outlined the scope of the results obtained, it is worth mentioning some points that 

remain inconclusive in this research and could be addressed in future work. 

6. Conclusions 

To conclude our study, we need to review the core research questions that guided our research 

regarding the nature of trust in Human-Robot Collaboration. 

First, we aimed to identify the fundamental factors affecting trust in HRC environments. We 

addressed this issue with an extensive literature review that revealed three distinct dimensions of 

trust: dispositional, situational, and learned. This review also stressed several demographic aspects 

that influence the dispositional dimension of trust. 

The second question, aimed to identify specific variables that could influence the previously 

disclosed dimensions of trust. To answer this issue, we created a specific experimental process that 

allowed us to identify potential factors affecting dispositional and learned trust. The literature 

suggested a marked influence of personal factors such as gender, age, and occupational roles on 

dispositional trust. However, our empirical findings challenged conventional assumptions, revealing 

no statistically significant correlations between these traditional demographic markers and 

participants’ dispositional trust in automated systems. This unexpected result prompted us to delve 

further into broader demographic factors—social status, educational background, and nationality—

which were not explicitly considered in our initial study. On the other hand, the study proved that 

the first iterations between humans and robots play a crucial role the evolution of trust dynamics. 

Presumably, this points out that the learned dimension of trust is more sensible and susceptible to 

change than the other dimensions. 

The third and final research question aimed to identify crucial human signals for measuring 

trust in HRC and understand their contributions to the development of trust detection models. 

Following previous works detailed in the literature review, our exploration into psychophysiological 

signals encompassed brain (EEG), electrodermal (GSR), respiratory (RSP), and ocular (PLP) activities. 

We focused on three different approaches, varying from a generic to individualized trust models. 

Results revelled the difficulty to extrapolate a general model of trust. On one hand, the individualized 

models worked better than the general model, and, on the other hand, several individually significant 

psychophysiological signals showed very particular responses and, thus, resulted irrelevant in the 

general model. This issue emphasizes the very complex and personal nature of trust. 
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In conclusion, our study effectively addresses the research questions, shedding light on the 

intricate interplay of factors influencing trust, the temporal dynamics of trust evolution, and the 

optimal human signals for trust measurement in HRC. We are confident that this research will 

empower the design of future reliable, robust and trusted Human-Robot collaborative environments. 
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