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Abstract: Baseflow, the portion of streamflow sustained by groundwater discharge, is crucial for 

maintaining river ecosystems. Irrigation practices could influence baseflow, with varying impacts 

depending on the irrigation practices. This study evaluates the impact of irrigation expansion on 

baseflows, accounting for weather-driven irrigation demand. The SWAT+gwflow model was applied 

to the San Antonio Catchment (225 km²) in Uruguay, a region dominated by intensive horticulture 

and citrus farming reliant on groundwater. Irrigation expansion involves extending irrigated areas 

from 6,193 to 8,561 hectares, increasing average groundwater use from 2,247 to 2,835 hm³/yr. Model 

results predict that this expansion could cause annual groundwater depletion of up to 1.2 m and a 

2% reduction in annual baseflow over a 30 year. Increased summer extractions lead to a delayed 

impact on winter baseflows, with monthly baseflow reductions of 90% during dry years, especially 

in heavily irrigated areas. These results have implications for water management. Current regulations 

ignore groundwater-surface water interactions and fail to account for variable irrigation water 

demand in high variable weather conditions. This approach provides a tool to anticipate the 

environmental effects of irrigation expansion and supports the development of adaptive regulations 

that better align with hydrological realities. 

Keywords: seasonal impacts; surface water – groundwater interactions; irrigation expansion; 

SWAT+gwflow 

 

1. Introduction 

In hydrology, baseflow refer to the portion of streamflow sustained by groundwater seepage 

during dry periods [1], plays a critical role in maintaining ecological balance and supporting water-

dependent activities. However, groundwater extractions for irrigated agriculture, can deplete 

aquifers and reduce baseflow, potentially impacting ecosystems and downstream users [2–5]. While 

modern irrigation systems improve efficiency, they may paradoxically encourages the expansion of 

irrigated areas, leading to unintended consequences for water [6–11]. Therefore, understanding the 

interactions between groundwater, irrigation, and baseflow is key for sustainable water management 

[12].  

Climate variability is a major driver of yield fluctuations globally, accounting for around one-

third of observed variation [13]. In this context, supplementary irrigation offers farmers a way to 

stabilize yields and reduce losses in dry years [14,15]. Irrigation schedules are typically adjusted 

based on crop needs, weather, and soil moisture conditions [16,17], meaning that water use fluctuates 

annually even when crop types and irrigated areas remains constant [18]. However, water permits 

are often granted based on fixed annual requirements, rarely accounting for seasonal or inter-annual 

variability in demand [19,20]. This disconnect limits the effectiveness of regulation, which is often 

poorly equipped to address the dynamic nature of real-world water use, potentially masking the 

cumulative impacts of variable irrigation on baseflows.  
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These challenges are especially pronounced in groundwater-fed irrigation systems, where 

dynamic feedbacks between surface water, groundwater, and irrigation demands are difficult to 

quantify [21]. Understanding these dynamics is essential for developing sustainable irrigation 

strategies [22]. Here, hydrological models provide valuable tools for exploring such interactions and 

supporting decision-making [23,24]. 

The SWAT model (Soil and Water Assessment Tool) [25] has been widely used to simulate 

agricultural catchments, including hydrological processes and water management [26–30]. Enhanced 

versions of SWAT have aimed to better represent groundwater and surface water exchanges (GW-

SW). Among them, SWAT+gwflow [31] provides an improved, two-dimensional simulation of 

groundwater, capturing vertical (e.g. evapotranspiration, percolation, infiltration, exfiltration, 

pumping) and horizontal (e.g. later flows) water movements, and has been successfully applied in a 

wide range of studies [32–36]. Compared to SWAT+standalone [37], which represent vertical flow, 

SWAT+gwflow offers a better compromise between process realism and usability, making it well 

suited to the objectives of this work. Although SWAT-MODFLOW [38]  enables full 3D simulation 

and multi-layer aquifer representation[39,40], its high data requirements and computational costs 

limit its applicability.    

This study focuses on the San Antonio catchment, in northern Uruguay, an area dominated by 

intensive, groundwater-irrigated horticulture and citriculture [41,42]. Its high density of 

hydrometeorological data and sensitivity to El Niño–Southern Oscillation (ENSO)-driven climate 

variability [43], make it an ideal setting to investigate irrigation-groundwater-streamflow 

interactions. Increasing reliance on groundwater during dry years intensifies pressure on water 

resources [44], raising concerns about long-term impacts on baseflow. 

This study aims to evaluate how irrigation expansion affects baseflows under inter-annual 

weather variability. It hypothesizes that increased summer groundwater extraction reduces baseflow 

during the irrigation season, with the magnitude of this impact varying spatially across the catchment 

according to the degree of hydraulic connectivity between the aquifer and the stream. These effects 

are further influenced by climatic conditions, with more pronounced reductions in baseflow during 

dry periods. While climate change is not explicitly modeled, climate variability is treated as a key 

driver of irrigation dynamics and constraints. 

2. Materials and Methods 

This study establishes a groundwater–surface water modeling framework for the San Antonio 

catchment, located in northern Uruguay, an area characterized by a humid subtropical climate and 

intensive agricultural activity. The methodological approach combines field observations, farmer 

interviews, and global datasets to support the calibration and validation of a SWAT+gwflow model, 

capable of explicitly representing surface and subsurface hydrological processes. 

Section 2.1 describes the study area, the monitoring network, and the available datasets. Section 

2.2 details the model setup, including subbasins, stream channels, and the aquifer. The model 

calibration was conducted in two phases: an initial calibration focused on streamflow using observed 

discharge data, followed by a second phase aimed to minimize errors in simulated groundwater 

heads and baseflow using groundwater level observations. Land use and agricultural management 

practices were characterized through field surveys and interviews to accurately incorporate typical 

crops, irrigation schedules, and water allocation to set up the model. 

Section 2.3 outlines the assumptions made regarding groundwater pumping and irrigation 

expansion. The potential impacts of expanding irrigation in rainfed citriculture areas were evaluated 

over a 30-year historical period. Climate variability was accounted by classifying months as wet, 

normal, or dry based on precipitation percentiles, enabling a detailed analysis of water use dynamics 

under different climatic scenarios. 

All the figures in this work were generated in R. The R scripts are available in the PDF file in the 

supplementary material. 
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2.1. Study Area and Dataset 

The San Antonio Catchment, covers an area of 225 km², experiences a humid subtropical climate, 

as classified by the Köppen climate system [45]. The mean annual rainfall is 1,430 mm, with lower 

monthly precipitation during the winter months (June, July, and August). Average daily 

temperatures range from 10 to 15 °C in winter and from 20 to 30 °C in summer [41]. The monitoring 

network, maintained by the “Departamento del Agua - CENUR Litoral Norte” since 2018, includes 

eight observation wells for groundwater, one hydrometric station with reliable discharge 

computations for surface water (Figure 1c), and fourteen rain gauges distributed throughout the 

region. 

The land use within the catchment (Figure 1a) is characterized by a significant proportion of 

open field horticulture (OFCP, 34.7%) and citriculture (ORAN, 20.3%), both of which rely on a 

combination of rainfed crops and irrigation [46]. Most of the irrigation zones are in the southwest of 

the catchment, while the northern area holds potential for developing supplementary irrigation, 

particularly for citrus crops (Figure 1b). In addition, the catchment features a large proportion of 

grassland (GRAS, 35.6%) and pastures (PAST, 0.6%), both utilized for grazing livestock. Other minor 

land uses include forestry plantations (EUCA, 1.6%), native forest (FRSE, 4.2%), greenhouse 

horticulture (GHCP, 0.8%), summer crops (AGRL, 2.1%), and urban areas (URBN, 0.1%). This diverse 

land use pattern reflects the multifunctional nature of the catchment. 

The terrain is relatively flat, characterized by a rolling landscape with occasional small hills 

(Figure 1c). Groundwater heads at steady state range from 20 to 80 meters (Figure 1d) [44]. The upper 

catchment is dominated by silty clay-textured Haplic Vertisols (50–60% clay, 28–42% silt, 9–12% 

sand). These soils have high cation exchange capacity (CEC), elevated base saturation, and near-

neutral pH, contributing to their natural fertility. Their fine texture and expansive clays enhance 

water and nutrient retention but also reduce infiltration under saturated conditions, increasing the 

risk of waterlogging. In contrast, the lower catchment is mainly composed of Luvic Phaeozems with 

a humic phase. These soils are acidic, with low base saturation, reduced CEC, and a sandy surface 

horizon that transitions abruptly to a clay-rich subsoil (6–36% clay, 7–11% silt, 56–87% sand). This 

profile limits moisture retention. While moderate organic matter may mitigate some constraints, 

these soils are prone to nutrient leaching and have low water-holding capacity [47]. 

Cross-slope tillage is predominant in OFCP. The use of residue cover under conventional tillage 

is common in OFCP and AGRL, while GRAS typically lacks residue cover. Heavy forest cover and 

shortgrass are typical for EUCA, FRSE, and ORAN. Geology comprises sedimentary deposits and 

fissured basalt rocks from the Cretaceous-Tertiary periods, which form part of the Salto-Arapey 

aquifer [42,48]. The GLobal HYdrogeology MaPS (GLHYMPS) of permeability dataset [49] identifies 

four zones with distinctive aquifer hydraulic conductivities (Figure 1e). Additionally, SoilGrids data 

[50] indicates an absolute depth to bedrock (aquifer thickness) ranging from 10 to 40 meters (Figure 

1f). 
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Figure 1. (a) Landuse, (b) irrigation scenarios, (c) hypsometry, stations for observation of surface water (sw) and 

groundwater (gw), (d) steady-state hydraulic head, (e) hydraulic conductivity zones, (f) aquifer thickness for the 

San Antonio catchment - Uruguay. 

2.2. Groundwater – Surface Water Model 

SWAT+gwflow [31] is an extension of the SWAT+ model [37] that integrates a computationally 

efficient, 2D finite-difference groundwater flow model to enhance the simulation of GW-SW. This 

extension provides a more explicit representation of groundwater flow dynamics at a reasonable 

computation cost. In the model, surface water processes are represented through Hydrologic 

Response Units (HRUs), which are polygons defined by the combination of land use, soil type, and 

slope. HRUs serve as the primary elements for hydrological production functions, such as infiltration, 

exfiltration, and surface runoff. Their structure remains consistent with SWAT+standalone model. 

The model's transfer function—governing surface and subsurface routing as well as storage—is 

defined by channels and an aquifer grid. Each aquifer grid cell is linked to its corresponding HRU 

polygons through spatial overlap. The proportion of each HRU that falls within a grid cell, relative 

to its total area, is used to compute GW-SW and to calculate a partial recharge volume from a single 

HRU to the grid cell. As several HRUs can overlap a grid cell, the total recharge volume from HRUs 

is estimated by summing all partial recharge contributions. Stream cells are also identified by 

intersecting the stream network with the gwflow grid. This methodology follows the guidelines 

outlined in the gwflow tutorial [51]. These features allow for the representation of spatial variability 

in aquifer recharge (derived from SWAT+) and aquifer outflows (e.g., groundwater pumping or 

discharge to channels). 

The change in groundwater storage (∆S) is calculated as the difference between all inflows and 

outflows (1). 

∆S = rech + swgw – gwet - gwsw - satx - soil - ppag ± latl ± bndr (1) 
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Inflows (positive values, indicating water added to an aquifer grid cell) include soil water 

percolating to groundwater (rech), stream seepage to groundwater (swgw). Outflows (negative 

values, indicating water removed from an aquifer grid cell) include groundwater lost through 

evapotranspiration (gwet), discharge to streams (gwsw), saturation excess flow (satx), upward 

transfer to the soil zone (soil), and pumping for agricultural irrigation (ppag). Bidirectional fluxes 

(positive or negative values, indicating water added to or removed from an aquifer grid cell) include 

lateral groundwater flow between cells (latl) and boundary fluxes at the watershed edge (bndr). 

The San Antonio catchment is modelled with 411 HRUs, ranging in size from 0.1 to 2,200 

hectares; 37 channels, varying in length from 70 to 9,000 meters; 24 subbasins, spanning from 0.22 to 

31 km²; and an aquifer grid comprising 161 by 284 cells, each with a resolution of 100 by 100 meters. 

Precipitation from local rain gauges were pre-processed using inverse distance interpolation. This 

interpolation represents the average precipitation for each sub-catchment, which serves as the 

precipitation input for the model. Agricultural management practices, including crop types, planting 

and harvesting schedules, fertilization, and irrigation strategies, were identified through interviews 

with local farmers. This information was then incorporated into the model to reflect the dominant 

land uses across the catchment. Irrigation pumping rates were set based on the water demands of 

irrigated crops, ensuring that simulated water usage aligns with real-world agricultural 

requirements. Key aquifer properties, such as aquifer thickness and hydraulic conductivity, were 

defined using global datasets (Figure 1e and Figure 1f). Boundary conditions were assumed to have 

constant hydraulic heads, enabling groundwater exchange with adjacent catchments.  

The model was calibrated during the period from 1 February 2019 to 1 August 2021. Results 

were validated for the periods from 8 August 2018 to 1 February 2019 and 1 September 2021 to 5 

February 2021. These calibration and validation windows were selected to ensure the occurrence of 

dry and wet periods, with the calibration window comprising two-thirds of the total period of 

available data. For that purpose, a two-phase supervised random calibration process was used. This 

process involves a series of iterations, beginning with a uniform distribution across specified 

parameter ranges. In each iteration, the model runs 360 times, and each simulation is evaluated using 

the objective function specific to the corresponding calibration phase. The first phase prioritized 

achieving the best possible fit for streamflow simulations, assessed using the Kling-Gupta Efficiency 

(KGE) metric [52], as it has been proven to be a good criterion for model calibration [53]. The model 

parameters calibrated during this phase are listed in Table 1. For parameters marked as substitutive, 

values were assigned based on SWAT+ documentation [54], while for multiplicative changes, values 

were selected to limit the change to ±10% for the Curve Number and ±30% for the saturated hydraulic 

conductivity and the depth of the soil profile. The ±30% range was chosen to avoid large deviations 

from the expected values. In addition, Nash-Sutcliffe Efficiency (NSE) [55] and percentage bias (BIAS) 

were used solely for streamflow model validation in this phase. 

Table 1. Calibration parameter for the 1st phase (total streamflow). 

Parameter Description File Range Type of change Best fit 

cn 
Curve number compensation factor for 

soil group A, B, C and D [-] 
cntable.lum 0.9-1.1 multiplicative 0.937 

soil_k 
Saturated hydraulic conductivity of 

soil soil.sol 
0.7-1.3 multiplicative 1.07 

dp Depth of the soil profile  0.7-1.3 multiplicative 1.08 

epco Plant uptake compensation factor 

hydrology.hyd 

0.01-1 substitutive 0.92 

esco Soil evaporation compensation factor 0.01-1 substitutive 0.103 

perco Percolation coefficient 0-1 substitutive 0.568 

latq_co Lateral flow coefficient 0.01-0.99 substitutive 0.265 

surq_lag Surface runoff lag coefficient parameter.bsn 1-24 substitutive 2.03 

The second phase aimed to minimize the normalized root mean square error (nRMSE) for 

groundwater heads and surface baseflow, further improving the model’s accuracy in simulating 

subsurface hydrological processes and baseflow dynamics. Baseflow separation is made by Lyne-
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Hollick filter [56] with the R package grwat [57]. The parameters adjusted during this phase are 

detailed in Table 2. For the parameters corresponding to the aquifer (gwflow.input), the 

multiplicative changes were set within a wider range than in Table 1, since the initial values were 

taken from GLHYMPS and SoilGrids, which may deviate significantly from local conditions. 

Substitutive values were assigned based on the SWAT+gwflow documentation.[51]. For lum.dtl 

(water stress thresholds), independent substitutive values to trigger irrigation were set between 0.5 

and 1 (see section 2.3 for further details). Instead of using a partitioned period of the time series, six 

observation wells were used for calibration (gw46, gw56, gw57, gw67, gw75, gw84) and two for 

validation (gw52, gw83). This approach was chosen to address gaps in the records at certain sites. 

Table 2. Calibration parameters of 2nd phase (groundwater + baseflow). 

Parameter Description File Range Type of change Best fit 

specific yield 

Usable water released from an aquifer 

per unit volume when drained by 

gravity [-] 

gwflow.input 

0.2-0.35 substitutive 0.35 

aquhydracond 
Aquifer hydraulic conductivity factor 

[-] 
0.5-1.95 multiplicative 1.63 

sbedhydracond 
Stream bed hydraulic conductivity 

[m/d] 
0.1-50 substitutive 1.48 

sbedthick Stream bed thickness [m] 0.5-2 substitutive 1.94 

w_stress_oran 
Water stress for irrigated citriculture 

[-] 

lum.dtl 

0.5-1 sustitutive 0.51 

w_stress_ofcp 
Water stress for open field 

horticulture [-] 
0.5-1 sustitutive 0.85 

w_stress_ghcp 
Water stress for greenhouse 

horticulture [-] 
0.5-1 sustitutive 0.57 

Surface water prediction uncertainty was assessed by the streamflow logarithmic residuals (2). 

Lres = log(Qsim) – log(Qobs) (2) 

where Lres are the logarithmic residuals, Qobs the observed streamflow and Qsim the simulated 

streamflow. Groundwater prediction uncertainty was spatially evaluated using the absolute error (3). 

Egw = Hsim - Hobs (3) 

where Egw is the groundwater absolute error, Hsim is the simulated groundwater heads and Hobs the 

observed groundwater head at all locations. 

2.3. Water Pumping and Irrigation Expansion Criteria 

It is a challenging task to determine the amount of water extracted from groundwater in 

Uruguay, as the locations of all pumping wells are not well known, and the volume of water drawn 

from the aquifer by each well remains unknown. To address this issue, land use involving irrigated 

crops was identified through a field campaign and by referencing declared irrigation wells in the 

national database. Pumping wells used for other purposes, such as domestic and livestock water 

supply, were not considered, as the volume of water used for these purposes is assumed to be 

negligible compared to irrigation water in the catchment. Once the irrigated crops were identified, it 

was important to determine the amount of water extracted for irrigation. This volume was estimated 

based on crop water requirements. However, in practice, irrigation is applied in excess or deficit. For 

this reason, the water stress threshold that triggers irrigation in the model was calibrated (table 2). 

Water stress threshold in SWAT+ range from 0 (severe stress, no irrigation) to 1 (no stress, all water 

requirements are fully satisfied). Setting thresholds between 0.5 and 1 allows the model to simulate 

irrigation when water stress becomes critical (at 0.5) up to conditions where irrigation is triggered 

immediately when any water deficit occurs (close to 1). At this stage, citrus, greenhouse horticulture, 

and open-field horticulture were aggregated with different water stress thresholds. This approach 
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represents the average condition for farmers and allows for differentiation by crop types without the 

over-parameterization that would result from setting individual thresholds. 

The effect of irrigation expansion on baseflow was estimated using the calibrated 

SWAT+gwflow model over a 30-year period (1992–2021). To this end, it was assumed that irrigation 

expansion would occur only in areas currently dedicated to rainfed citriculture. This assumption was 

made on the basis that citriculture plays a crucial role in the local economy, providing employment 

and contributing to national exports, underscoring its potential for supplementary irrigation. As 

shown in Figure 1a and Figure 1b, irrigation expansion could take place in the northern part of the 

catchment, increasing the total irrigated area from 6,193 to 8,561 hectares, representing a rise from 

30% to 41% of the catchment area. In addition, climate variability was classified based moisture 

conditions to analyze water use dynamics in greater detail. Wet moisture conditions were defined as 

the months in which precipitation exceeded the 66th percentile of the annual monthly precipitation 

distribution, while dry moisture conditions were those with precipitation below the 33rd percentile. 

Normal moisture conditions felt between these thresholds (33rd–66th percentiles). This classification 

provides a clearer understanding of how water use varies according to the combination of rainfall 

and groundwater irrigation needed to meet crop water requirements.  

3. Results 

3.1. Model Development 

Figure 2 presents the calibration and validation results for the streamflow simulation. The box-

and-whisker plot (Figure 2a), density function (Figure 2c), and flow duration curve (Figure 2e) 

demonstrate that the simulated values closely align with the observed data. The streamflow 

hydrograph shown in Figure 2g is displayed on a logarithmic scale to better highlight and identify 

the baseflow pattern. Overall, total streamflow is well represented, though the model occasionally 

underestimates baseflow, with less frequent instances of overestimation (Figure 2g). There are also 

intervals where baseflow is accurately simulated (e.g., mid-2019). The same types of plots were used 

for validation (Figures 2b, 2d, 2f) to allow for an easy comparison with calibration (Figures 2a, 2c, 2e). 

While a slight decline in performance is visually noticeable during the validation period, the model 

continues to produce acceptable results, with KGE values of 0.72 for calibration and 0.74 for 

validation, NSE values of 0.59 for calibration and 0.53 for validation, and BIAS values of 15.9 for 

calibration and 9.8 for validation. No seasonal biases were detected. 

 

Figure 2. Model performance for streamflow (location: San Antonio at Ruta 3, sw107): (a,b) boxplots, (c, d) 

probability density function, (e, f) flow duration curves and (g) surface water hydrographs of observations (blue) 
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and simulations (red) for the (a, c, e) calibration and the (b, d, f) validation periods and 95% of prediction 

uncertainty (orange). 

Streamflow logarithmic residuals (Lres) follow a piecewise relationship (Figure 3a). When 

simulated streamflow is greater than 0.2, Lres are normally distributed with a mean of 0.47 and a 

standard deviation of 0.82. For simulated streamflow values less than 0.2, Lres follow a power-law 

relationship (Lres=5.93Qsim0.85, see supplementary material for details on the segmented regression). 

The error of the piecewise regression follows a normal distribution with zero mean and a standard 

deviation of 0.83 (Figures 3b and 3c). This error model was used to determine the 95% prediction 

uncertainty shown in Figure 2g. 

 

Figure 3. (a) Streamflow logarithmic residuals as a function of simulated streamflow (b) histogram and (c) Q-Q 

plot of errors of the piecewise relationship (location: San Antonio at Ruta 3, sw107). 

Figure 4 presents the hydrographs of groundwater levels at the observation wells. Inset tables 

compare statistics of observations and simulations. In general, the simulated groundwater levels 

exhibit less variability compared to the observed levels. Among the sites, the greatest variability is 

observed at the observation well gw67 (Figure 1c), which suggests that this well is more strongly 

connected to the stream, indicating a rapid response to streamflow changes. Additionally, the scatter 

plot demonstrates a strong correlation between the simulated and observed data, indicating the 

spatial reliability of the simulations in replicating the observed trends. 
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Figure 4. Hydrographs of groundwater levels (simulations: red line, observations: black points) with the 

minimum (min), maximum (max), mean, and standard deviation (SD) statistics in the inset table, along with a 

scatter plot of all observations and simulations and the 95% of spatial prediction uncertainty. 

3.2. Irrigation Expansion and Aquifer Water Balance 

A 30-year period (1992–2021) was simulated to assess long-term water balances under both 

current conditions and irrigation expansion. Table 3 presents the overall water balance of the aquifer. 

The supplementary material shows the daily groundwater balance error to verify that the time step 

is adequate.  

Table 3. Groundwater balance over a 30-year period under actual conditions and irrigation expansion. 

 
Inflows (mm) Outflows (mm) 

∆S 
rech swgw bndr gwet gwsw satx soil ppag latl 

Actual 301 41251 2995 -2.11 -1151 -17053 -22440 -3218 0 683 

Expansion 302 41749 3250 -1.93 -1139 -17275 -22346 -3845 0 693 

Difference (%) 0.33 1.21 8.51 -8.53 -1.04 1.30 -0.42 19.5 - 1.46 

The irrigation expansion will withdraw 19.5% more water from the aquifer. Table 4 presents the 

volume of irrigation water used by land use and the percentage of water allocation relative to the 

total water used in the catchment. The sector that consumes the most water is OFCP, followed by 

ORAN, with only a marginal water allocation for GHCP. This pattern aligns with the land use 

distribution, which follows a similar trend.   

Table 4. Average annual pumped water for irrigation for a 30-year period (1992-2021). 

  Actual Expansion 

Land use Irrigation (mm/yr) Water allocation (%) Irrigation (mm/yr) Water allocation (%) 

GHCP 3.0 2.8 2.8 2.2 
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OFCP 86.5 80.6 81.3 63.4 

ORAN 17.8 16.6 44.1 34.4 

Total 107.3  128.2  

At the catchment scale, monthly average groundwater heads over the simulation period are 

shown in Figure 5. Under actual conditions, the mean groundwater head is 43.07 meters, while under 

the irrigation expansion scenario, it is 42.78 meters. The differences in mean groundwater heads range 

from -0.5 to 0 meters, indicating a modest but consistent decline in groundwater levels associated 

with increased irrigation. The difference is more pronounced during periods when the mean 

groundwater level is already low, suggesting that irrigation expansion may have greater impacts in 

drier months. 

 

Figure 5. Monthly average groundwater heads under actual conditions (blue) and irrigation expansion (red). 

The amount of water used largely depends on moisture conditions, with dry periods requiring 

more supplementary irrigation. Figure 6 shows the monthly water volume used under wet (Figure 

6a), normal (Figure 6c), and dry moisture conditions (Figure 6e). During wet moisture conditions, 

water demand is similar between the actual scenario and the irrigation expansion. Under normal 

moisture conditions, an increase in water demand is observed from January to April. In dry moisture 

conditions, water demand is significantly higher, extending from December to April (in this work, 

regarding boxplots, a significant difference refers to a clear change in the order of magnitude of the 

mean values and the width of the boxes). This variable water demand, driven by precipitation, also 

has a fluctuating effect on baseflow. Figure 6f shows that baseflow decreases under irrigation 

expansion for the location shown in Figure 7, with the effect lagging by four months after the 

irrigation season. However, under wet conditions (Figure 6b), no significant changes were detected, 

and under normal moisture conditions (Figure 6d), only a slight decrease in baseflow was observed 

from June to August. 
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Figure 6. (a, c, e) Monthly water allocation at the catchment scale, and (b, d, f) baseflow response for the San 

Antonio at Col. Garibaldi (shown in Figure 7), under (a, b) wet, (c, d) normal, and (e, f) dry conditions, for both 

actual and future irrigation expansion over a 30-year period (1992–2021). 

At the local scale (gwflow grid), annual groundwater depletion of up to -1.2 meters is predicted 

(Figure 6b), with depletion zones closely matching areas of irrigation expansion (Figure 1b) and 

increasing mean annual pumping rates (Figure 6a). This groundwater depletion directly impacts 

GW-SW, with the predominant trend being a reduction in baseflows (Figure 6c). However, the spatial 

pattern of GW-SW indicates that baseflow could also increase in certain areas which are prone to 

greater contributions from the aquifer.  
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Figure 7. Irrigation expansion effect on (a) mean annual pumping rates, (b) groundwater head, and (c) mean 

annual groundwater-surface water exchanges (positive values indicate more transfer of water from the stream 

to the aquifer). The yellow diamond marks the location of the San Antonio at Col. Garibaldi for the analysis 

presented in Figure 6. 

4. Discussion 

4.1. Model Performance 

The calibration and validation routines indicate that the model had a good performance for 

simulating streamflow. Streamflow performs similarly in terms of KGE and BIAS to the simulations 
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obtained with the distributed HBV model, presented in a previous study in the same area [41]. The 

HBV model does not explicitly account for groundwater irrigation; thus, similarities in performance 

could be due to parameter compensation for the unaccounted irrigation [58]. In addition, over a 

relatively short period, with the goodness of fit statistic in the good to satisfactory range [59], 

indicating that the selected time frame may be sufficient for calibration and validation. This is 

relevant, as studies in other regions suggest that the optimal length for calibrating the SWAT model 

is five to seven years [60]. Factors such as climate variability, land use changes, model structure, 

length of the calibration/validation windows, and the uncertainty of forcing data are key 

considerations in defining model uncertainties [61–64]. Despite the limited length of the simulation 

period, the model successfully captures key hydrological processes. The two-phase calibration 

procedure focuses step by step on surface water and groundwater. This approach enables simplified 

calibration, reduces computational costs, and minimizes overfitting [65]. The use of logarithmic 

transformations in the streamflow hydrograph enables a more detailed assessment of model 

performance in estimating baseflow, particularly in identifying potential stream-aquifer interactions 

[66]. Additionally, flow duration curves, probability density functions, and box-and-whisker plots 

provide complementary insights, allowing for a comprehensive evaluation of how well the model 

matches the observations. These tools address limitations observed in studies that rely solely on time-

series plots or aggregated metrics [67].  

The streamflow error model indicates an underestimation of low flows and an overestimation 

of high flows. Lres follows a power-law relationship for low flows, meaning that the lower the 

streamflow, the lower the ratio of simulated to observed streamflow. In contrast, Lres associated with 

high flows are normally distributed around a mean of 0.47, indicating that the ratio of simulated to 

observed streamflow remains approximately constant. These opposing errors tend to compensate for 

each other in the overall streamflow prediction, contributing to results with relatively small biases 

over the simulation period. In addition, the error model shows a good fit and could be used to adjust 

the simulated streamflow accordingly. 

The modelling approach produces groundwater head simulations with a level of uncertainty 

comparable to that reported in previous studies of the same area, which used the MODFLOW model 

in a fully 3D configuration, yielding a mean error of 0.67 and a correlation coefficient of 0.94 [44]. 

These results are consistent with those obtained with SWAT+gwflow, which yielded a mean error of 

0.97 and a correlation coefficient of 0.93. This indicates only a slight increase in uncertainty. Given 

that SWAT+gwflow operates with a 100 m groundwater grid size and a global groundwater dataset, 

the accuracy remains reasonably [68,69]. As with streamflow, some parameter compensation may 

also occur in the groundwater simulations, particularly since MODFLOW represents steady-state 

conditions using a different spatial resolution and set of assumptions. 

4.2. Assessing Irrigation Expansion  

The model results indicate groundwater depletion, particularly in regions experiencing 

irrigation expansion and increasing groundwater extraction. These findings align with previous 

studies documented in other regions where groundwater declines in heavily irrigated agricultural 

areas [11,70]. The observed reductions in baseflows due to irrigation expansion further support 

established hydrological principles linking groundwater depletion to surface water reductions, 

where depletion can occur in two ways: an increased flux from streams to the aquifer and a reduced 

flux from the aquifer to streams. Numerous studies have emphasized that persistent groundwater 

withdrawals lead to diminished baseflows, reducing streamflow availability during dry periods 

[71,72]. However, the model also identifies regions where baseflows exhibit an increasing trend. This 

result suggests localized groundwater contributions influenced by irrigation return flows [73,74] or 

higher boundary inflow rates due to inconsistent model boundaries [75].  

In regions with highly variable climates, such as Uruguay [43], seasonal fluctuations in 

precipitation significantly influence irrigation practices since the water requirements are filled with 

a combination of infiltrated water from precipitation and groundwater extractions for irrigation [18]. 
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This characteristic leads to variability in pumping rates, resulting in differential impacts on baseflows 

that may affect both water quantity and quality on a seasonal basis. [76]. In wet years, when 

precipitation is abundant, aquifers experience natural recharge, leading to an overall increase in 

groundwater storage. As a result, the reliance on irrigation water decreases, which in turn reduces 

the stress on both groundwater reserves and surface water systems. This dynamic also minimizes 

potential negative impacts on baseflow, as less groundwater extraction translates to more stable 

streamflow. This characteristic is not considered in current Uruguayan regulations, which assume a 

constant monthly water supply for irrigation [77]. Conversely, during dry years, aquifers serve as a 

crucial water source for irrigation, often leading to localized depletion. The extent of this depletion 

depends on both the intensity of irrigation demands and the precipitation deficit, with the expanding 

use of groundwater pumping being the primary driver of groundwater depletion worldwide [78]. In 

some areas, prolonged dry periods can cause significant drawdowns in groundwater levels, 

potentially leading to hydrological shifts in nearby water bodies.  

The lag between groundwater irrigation and its impact on baseflows arises from the 

fundamental differences in hydrological processes, velocities, and response times to external forcings 

such as precipitation variability and/or irrigation timings. Surface water typically responds within 

hours to days to such inputs, particularly in catchments dependent on surface water irrigation [73]. 

In contrast, groundwater moves through subsurface pathways at significantly lower velocities 

(ranging from centimeters to meters per day, depending on the aquifer properties), leading to a 

delayed response [79]. The impact of groundwater withdrawals on surface water can manifest over 

timescales from weeks to decades, depending on aquifer properties such as transmissivity, storage 

capacity, and connection to the stream network [80]. As a result, short-term increases in groundwater 

pumping may not immediately reduce streamflow, but prolonged pumping can lead to persistent 

baseflow declines, altering watershed hydrology [81]. A particularly concerning effect is the 

transition of some stream from perennial to ephemeral flow regimes due to an increase pressure on 

water resources [82], which can have significant ecological and hydrological consequences [83]. 

4.3. Model Limitations 

Modelling GW-SW dynamics presents several challenges. First, the complex structure of 

fractured aquifers within the catchment often requires 3D modelling approaches to capture intricate 

flow patterns [84]. This was simplified with a 2D approach. Second, a major challenge arises from the 

limited knowledge of water extractions from the aquifer. This challenge was addressed through 

model calibration, validation and error estimation which helps to evaluate and adjust for these 

unknowns. Some authors have tackled this issue in larger catchments using satellite data to better 

estimate irrigation applications and/or soft-calibration techniques [85,86]. The main advantage of 

satellite data is that large areas can be easily estimated, avoiding the extensive time required for field 

surveys. However, these solutions are based upon further estimations that introduce uncertainty. 

Third, interactions with surrounding areas further complicate the modelling process. At this stage, 

transient boundary conditions governing how water enters, moves through, and exits the 

groundwater flow domain can introduce uncertainty [87,88]. Fourth, plain-dominated landscape can 

result in low hydraulic gradients, influencing groundwater movement in unexpected ways. Fifth, the 

small size of the catchment and the reliability of global datasets at such scales may require additional 

work to achieve the best fit with local datasets [89]. This could be particularly relevant for the aquifer 

thickness parameter, as partial audiomagnetotelluric scans have revealed that the bedrock of the 

aquifer follows a pattern, with the aquifer being thinner in the east than in the west of the catchment 

[42]. Sixth, the relatively short period for model calibration and validation. Usually, long periods are 

preferred because they may include a wide range of weather conditions, such as droughts or floods. 

The occurrence of severe droughts could lead to increased pressure on groundwater resources, which 

could impact the identification of model parameters [90,91], especially aquifer properties, and the 

quantification of irrigation. Thus, the model should be used with caution in climate change analyses 

or long memory studies [92,93]. Seventh, the scenario uncertainty itself. The assumed irrigation 
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expansion is expected to occur in the future, but the potential adoption of new irrigation technologies 

that improve efficiency and reduce water use was neglected. This omission could impact 

groundwater extractions and return flows. Additionally, climate change was not considered [94], 

primarily due to the strong assumption that climate variability is the main driver of irrigation 

scheduling, having a more significant effect on groundwater depletion and baseflow changes than 

climate change itself. This is particularly relevant in regions with highly variable climates, where 

identifying the contribution of each component driving these changes remains both a challenge and 

an opportunity for future research [61]. 

4.4. Model Benefits 

The model is a practical tool for simulating groundwater-surface water (GW-SW) interactions in 

the San Antonio catchment with a relatively low computation cost. This study demonstrates that the 

modelling approach produces comparable performance to that observed in previous studies [44], 

while providing additional benefits in terms of model flexibility and applicability. A key advantage 

of the model is its ability to incorporate a wide range of hydrological and management scenarios, 

making it particularly valuable for assessing climate variability and human-induced changes in water 

resources. Unlike traditional groundwater models, SWAT+gwflow seamlessly integrates surface 

water and groundwater dynamics while allowing for the inclusion of irrigation pumping schedules, 

nutrient transport processes in both surface and subsurface flows [31]. Furthermore, the model 

supports the evaluation of best management practices (BMPs) for environmental impact assessment, 

such as buffer zones, changes in land use, and optimized irrigation strategies. By linking hydrological 

and economic analyses, the model facilitates a joint assessment of irrigation expansion and its 

environmental and economic impacts [95]. This holistic approach enables stakeholders to evaluate 

trade-offs between agricultural productivity, water resource sustainability, and economic returns, 

aiding in the development of policies that promote sustainable water use. 

5. Conclusion 

This study examined the impact of irrigation expansion on baseflow and groundwater levels, 

with particular attention to seasonal dynamics. Results confirm that the aquifer and the stream are 

hydraulically connected, although the strength of this connection varies across different zones of the 

watershed. Increased groundwater extraction in the summer months led to a delayed effect, reducing 

baseflow in winter. 

These developments have important implications for national water regulations in a country 

with a highly variable climate, such as Uruguay. It provides valuable information such as 

spatiotemporal dynamics and the hydraulic connectivity between the aquifer and the stream. Current 

regulations overlook these interactions due to the lack of integrated modeling approaches and fail to 

account for seasonal variability in irrigation water demand. Recognizing these dynamics is essential 

for developing more adaptative and science-based water allocation policies. Doing so would promote 

irrigation practices, optimize water use without depleting aquifers and remove key barriers for 

sustainable agriculture intensification. 
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Abbreviations 

The following abbreviations are used in this manuscript: 
AGRL Summer crops 

BIAS Percentage bias 

BMP Best management practices 

CEC Cation exchange capacity 

CENUR Centro Universitario Regional Universidad de la República 

Egw Groundwater absolute error 

EUCA Forestry plantations 

FRSE Native forest 

GHCP Greenhouse horticulture 

GLHYMPS Global hydrogeology maps 

GRAS Grassland 

gw groundwater stations 

GW-SW Groundwater – surface water exchanges 

HRU Hydrologic response units 

KGE Kling-Gupta Efficiency 

Lres Streamflow logarithmic residuals 

nRMSE Normalized root mean square error 

NSE Nash-Sutcliffe Efficiency 

OFCP Open field horticulture 

ORAN Citriculture land use 

PAST Pastures land use 

Qobs Observed streamflow 

Qsim Simulated streamflow 

sw Surface water stations 

SWAT Soil water assessment tool 

URBN Urban land use 

References 

1. World Meteorological Organization; Unesco International Glossary of Hydrology = Glossaire International 

d’hydrologie = Mezhdunarodnyĭ Gidrologicheskiĭ Slovarʹ = Glosario Hidrológico Internacional; 2013; ISBN 

978-92-3-001154-3. 

2. Ketchum, D.; Hoylman, Z.H.; Huntington, J.; Brinkerhoff, D.; Jencso, K.G. Irrigation Intensification Impacts 

Sustainability of Streamflow in the Western United States. Commun. Earth Environ. 2023, 4, 1–8, 

doi:10.1038/s43247-023-01152-2. 

3. Giordano, M.; Mark, F.; Namara, R.; Bassini, E. World Bank Group. 2023,. 

4. Jasechko, S.; Seybold, H.; Perrone, D.; Fan, Y.; Shamsudduha, M.; Taylor, R.G.; Fallatah, O.; Kirchner, J.W. 

Rapid Groundwater Decline and Some Cases of Recovery in Aquifers Globally. Nature 2024, 625, 715–721, 

doi:10.1038/s41586-023-06879-8. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 May 2025 doi:10.20944/preprints202502.0559.v3

https://doi.org/10.20944/preprints202502.0559.v3


 17 of 21 

 

5. Haile, G.G.; Tang, Q.; Reda, K.W.; Baniya, B.; He, L.; Wang, Y.; Gebrechorkos, S.H. Projected Impacts of 

Climate Change on Global Irrigation Water Withdrawals. Agric. Water Manag. 2024, 305, 109144, 

doi:10.1016/j.agwat.2024.109144. 

6. Pérez-Blanco, C.D.; Hrast-Essenfelder, A.; Perry, C. Irrigation Technology and Water Conservation: A 

Review of the                         Theory and Evidence. Rev. Environ. Econ. Policy 2020, 14, 216–

239, doi:10.1093/reep/reaa004. 

7. Bekele, R.D.; Mekonnen, D.; Ringler, C.; Jeuland, M. Irrigation Technologies and Management and Their 

Environmental Consequences: Empirical Evidence from Ethiopia. Agric. Water Manag. 2024, 302, 109003, 

doi:10.1016/j.agwat.2024.109003. 

8. Pfeiffer, L.; Lin, C.-Y.C. Does Efficient Irrigation Technology Lead to Reduced Groundwater Extraction? 

Empirical Evidence. J. Environ. Econ. Manag. 2014, 67, 189–208, doi:10.1016/j.jeem.2013.12.002. 

9. Morrisett, C.N.; Van Kirk, R.W.; Bernier, L.O.; Holt, A.L.; Perel, C.B.; Null, S.E. The Irrigation Efficiency 

Trap: Rational Farm-Scale Decisions Can Lead to Poor Hydrologic Outcomes at the Basin Scale. Front. 

Environ. Sci. 2023, 11, doi:10.3389/fenvs.2023.1188139. 

10. Habets, F.; Philippe, E.; Martin, E.; David, C.H.; Leseur, F. Small Farm Dams: Impact on River Flows and 

Sustainability in a Context of Climate Change. Hydrol. Earth Syst. Sci. 2014, 18, 4207–4222, 

doi:10.5194/hess-18-4207-2014. 

11. Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; Reedy, R.C.; Alley, W.M.; McGuire, V.L.; McMahon, P.B. 

Groundwater Depletion and Sustainability of Irrigation in the US High Plains and Central Valley. Proc. 

Natl. Acad. Sci. 2012, 109, 9320–9325, doi:10.1073/pnas.1200311109. 

12. Aderemi, B.A.; Olwal, T.O.; Ndambuki, J.M.; Rwanga, S.S. A Review of Groundwater Management Models 

with a Focus on IoT-Based Systems. Sustainability 2022, 14, 148, doi:10.3390/su14010148. 

13. Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate Variation Explains a Third of Global Crop 

Yield Variability. Nat. Commun. 2015, 6, 5989, doi:10.1038/ncomms6989. 

14. Knapp, T.; Huang, Q. Do Climate Factors Matter for Producers’ Irrigation Practices Decisions? J. Hydrol. 

2017, 552, 81–91, doi:10.1016/j.jhydrol.2017.06.037. 

15. Xue, J.; Huo, Z.; Kisekka, I. Assessing Impacts of Climate Variability and Changing Cropping Patterns on 

Regional Evapotranspiration, Yield and Water Productivity in California’s San Joaquin Watershed. Agric. 

Water Manag. 2021, 250, 106852, doi:10.1016/j.agwat.2021.106852. 

16. Flores Cayuela, C.M.; González Perea, R.; Camacho Poyato, E.; Montesinos, P. An ICT-Based Decision 

Support System for Precision Irrigation Management in Outdoor Orange and Greenhouse Tomato Crops. 

Agric. Water Manag. 2022, 269, 107686, doi:10.1016/j.agwat.2022.107686. 

17. Saggi, M.K.; Jain, S. A Survey Towards Decision Support System on Smart Irrigation Scheduling Using 

Machine Learning Approaches. Arch. Comput. Methods Eng. 2022, 29, 4455–4478, doi:10.1007/s11831-022-

09746-3. 

18. Nie, W.; Zaitchik, B.F.; Rodell, M.; Kumar, S.V.; Arsenault, K.R.; Badr, H.S. Irrigation Water Demand 

Sensitivity to Climate Variability Across the Contiguous United States. Water Resour. Res. 2021, 57, 

2020WR027738, doi:10.1029/2020WR027738. 

19. Bosch, H.J.; Gupta, J.; Verrest, H. A Water Property Right Inventory of 60 Countries. Rev. Eur. Comp. Int. 

Environ. Law 2021, 30, 263–274, doi:10.1111/reel.12397. 

20. Lapides, D.A.; Maitland, B.M.; Zipper, S.C.; Latzka, A.W.; Pruitt, A.; Greve, R. Advancing Environmental 

Flows Approaches to Streamflow Depletion Management. J. Hydrol. 2022, 607, 127447, 

doi:10.1016/j.jhydrol.2022.127447. 

21. Sun, Y.; Chen, X.; Yang, L. Modeling Groundwater-Fed Irrigation and Its Impact on Streamflow and 

Groundwater Depth in an Agricultural Area of Huaihe River Basin, China. Water 2021, 13, 2220, 

doi:10.3390/w13162220. 

22. Sharma, R.; Kumar, R.; Agrawal, P.R.; Ittishree; Chankit; Gupta, G. Chapter 2 - Groundwater Extractions 

and Climate Change. In Water Conservation in the Era of Global Climate Change; Thokchom, B., Qiu, P., 

Singh, P., Iyer, P.K., Eds.; Elsevier, 2021; pp. 23–45 ISBN 978-0-12-820200-5. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 May 2025 doi:10.20944/preprints202502.0559.v3

https://doi.org/10.20944/preprints202502.0559.v3


 18 of 21 

 

23. Ntona, M.M.; Busico, G.; Mastrocicco, M.; Kazakis, N. Modeling Groundwater and Surface Water 

Interaction: An Overview of Current Status and Future Challenges. Sci. Total Environ. 2022, 846, 157355, 

doi:10.1016/j.scitotenv.2022.157355. 

24. Norouzi Khatiri, K.; Nematollahi, B.; Hafeziyeh, S.; Niksokhan, M.H.; Nikoo, M.R.; Al-Rawas, G. 

Groundwater Management and Allocation Models: A Review. Water 2023, 15, 253, doi:10.3390/w15020253. 

25. Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment 

Part I: Model Development1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89, 

doi:https://doi.org/10.1111/j.1752-1688.1998.tb05961.x. 

26. Akoko, G.; Le, T.H.; Gomi, T.; Kato, T. A Review of SWAT Model Application in Africa. Water 2021, 13, 

1313, doi:10.3390/w13091313. 

27. Aloui, S.; Mazzoni, A.; Elomri, A.; Aouissi, J.; Boufekane, A.; Zghibi, A. A Review of Soil and Water 

Assessment Tool (SWAT) Studies of Mediterranean Catchments: Applications, Feasibility, and Future 

Directions. J. Environ. Manage. 2023, 326, 116799, doi:10.1016/j.jenvman.2022.116799. 

28. Janjić, J.; Tadić, L. Fields of Application of SWAT Hydrological Model—A Review. Earth 2023, 4, 331–344, 

doi:10.3390/earth4020018. 

29. Rocha, A.K.P.; De Souza, L.S.B.; De Assunção Montenegro, A.A.; De Souza, W.M.; Da Silva, T.G.F. 

Revisiting the Application of the SWAT Model in Arid and Semi-Arid Regions: A Selection from 2009 to 

2022. Theor. Appl. Climatol. 2023, 154, 7–27, doi:10.1007/s00704-023-04546-6. 

30. Tan, M.L.; Gassman, P.W.; Srinivasan, R.; Arnold, J.G.; Yang, X. A Review of SWAT Studies in Southeast 

Asia: Applications, Challenges and Future Directions. Water 2019, 11, 914, doi:10.3390/w11050914. 

31. Bailey, R.T.; Bieger, K.; Arnold, J.G.; Bosch, D.D. A New Physically-Based Spatially-Distributed 

Groundwater Flow Module for SWAT+. Hydrology 2020, 7, 75, doi:10.3390/hydrology7040075. 

32. Abbas, S.A.; Bailey, R.T.; White, J.T.; Arnold, J.G.; White, M.J.; Čerkasova, N.; Gao, J. A Framework for 

Parameter Estimation, Sensitivity Analysis, and Uncertainty Analysis for Holistic Hydrologic Modeling 

Using SWAT+. Hydrol. Earth Syst. Sci. 2024, 28, 21–48, doi:10.5194/hess-28-21-2024. 

33. Yimer, E.A.; Bailey, R.T.; Piepers, L.L.; Nossent, J.; Van Griensven, A. Improved Representation of 

Groundwater–Surface Water Interactions Using SWAT+gwflow and Modifications to the Gwflow Module. 

Water 2023, 15, 3249, doi:10.3390/w15183249. 

34. Yimer, E.A.; Riakhi, F.-E.; Bailey, R.T.; Nossent, J.; van Griensven, A. The Impact of Extensive Agricultural 

Water Drainage on the Hydrology of the Kleine Nete Watershed, Belgium. Sci. Total Environ. 2023, 885, 

163903, doi:10.1016/j.scitotenv.2023.163903. 

35. Yimer, E.A.; T. Bailey, R.; Van Schaeybroeck, B.; Van De Vyver, H.; Villani, L.; Nossent, J.; van Griensven, 

A. Regional Evaluation of Groundwater-Surface Water Interactions Using a Coupled Geohydrological 

Model (SWAT+Gwflow). J. Hydrol. Reg. Stud. 2023, 50, 101532, doi:10.1016/j.ejrh.2023.101532. 

36. Abbas, S.A.; Bailey, R.T.; White, J.T.; Arnold, J.G.; White, M.J. Estimation of Groundwater Storage Loss 

Using Surface–Subsurface Hydrologic Modeling in an Irrigated Agricultural Region. Sci. Rep. 2025, 15, 

8350, doi:10.1038/s41598-025-92987-6. 

37. Bieger, K.; Arnold, J.G.; Rathjens, H.; White, M.J.; Bosch, D.D.; Allen, P.M.; Volk, M.; Srinivasan, R. 

Introduction to SWAT +, A Completely Restructured Version of the Soil and Water Assessment Tool. 

JAWRA J. Am. Water Resour. Assoc. 2017, 53, 115–130, doi:10.1111/1752-1688.12482. 

38. Kim, N.W.; Chung, I.M.; Won, Y.S.; Arnold, J.G. Development and Application of the Integrated SWAT–

MODFLOW Model. J. Hydrol. 2008, 356, 1–16, doi:10.1016/j.jhydrol.2008.02.024. 

39. Gao, F.; Feng, G.; Han, M.; Dash, P.; Jenkins, J.; Liu, C. Assessment of Surface Water Resources in the Big 

Sunflower River Watershed Using Coupled SWAT–MODFLOW Model. Water 2019, 11, 528, 

doi:10.3390/w11030528. 

40. Bailey, R.T.; Wible, T.C.; Arabi, M.; Records, R.M.; Ditty, J. Assessing Regional-Scale Spatio-Temporal 

Patterns of Groundwater–Surface Water Interactions Using a Coupled SWAT-MODFLOW Model. Hydrol. 

Process. 2016, 30, 4420–4433, doi:10.1002/hyp.10933. 

41. Navas, R.; Erasun, V.; Banega, R.; Sapriza, G.; Saracho, A.; Gamazo, P. SanAntonioApp: Interactive 

Visualization and Repository of Spatially Distributed Flow Duration Curves of the San Antonio Creek - 

Uruguay. Agrociencia Urug. 2022, 26, e979–e979, doi:10.31285/AGRO.26.979. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 May 2025 doi:10.20944/preprints202502.0559.v3

https://doi.org/10.20944/preprints202502.0559.v3


 19 of 21 

 

42. Ramos, J.; Blanco, G.; Carráz-Hernández, O.; Corbo-Camargo, F.; Rodríguez-Miranda, W.; Saracho, A.; 

Borrero, A.; Bessone, L.; Alvareda, E.; Gamazo, P. Geophysical Study of the Salto–Arapey Aquifer System 

in Salto, Uruguay. J. South Am. Earth Sci. 2024, 146, 105071, doi:10.1016/j.jsames.2024.105071. 

43. Hu, X.; Eichner, J.; Gong, D.; Barreiro, M.; Kantz, H. Combined Impact of ENSO and Antarctic Oscillation 

on Austral Spring Precipitation in Southeastern South America (SESA). Clim. Dyn. 2023, 61, 399–412, 

doi:10.1007/s00382-022-06592-8. 

44. Erasun, V.; Campet, H.; Vives, L.; Blanco, G.; Banega, R.; Sapriza, G.; Gaye, M.; Ramos, J.; Alvareda, E.; 

Gamazo, P.; et al. Modelación Del Sistema Acuífero Salto Arapey (Uruguay). Rev. Lat.-Am. Hidrogeol. 

2020, 11, 68–75. 

45. Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate 

Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644, doi:10.5194/hess-11-1633-2007. 

46. MGAP Mapa integrado de cobertura/uso del suelo del Uruguay año 2018 Available online: 

https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/comunicacion/publicaciones/mapa-

integrado-coberturauso-del-suelo-del-uruguay-ano-2018 (accessed on 25 January 2025). 

47. RENARE Mapa General de Suelos Del Uruguay, Según Soil Taxonomy USDA Available online: 

https://visualizador.ide.uy/geonetwork/srv/api/records/1335f1c8-65eb-46df-8fba-9310a338e692 (accessed 

on 10 August 2021). 

48. Blanco, G.; Abre, P.; Ferrizo, H.; Gaye, M.; Gamazo, P.; Ramos, J.; Alvareda, E.; Saracho, A. Revealing 

Weathering, Diagenetic and Provenance Evolution Using Petrography and Geochemistry: A Case of Study 

from the Cretaceous to Cenozoic Sedimentary Record of the SE Chaco-Paraná Basin in Uruguay. J. South 

Am. Earth Sci. 2021, 105, 102974, doi:10.1016/j.jsames.2020.102974. 

49. Huscroft, J.; Gleeson, T.; Hartmann, J.; Börker, J. Compiling and Mapping Global Permeability of the 

Unconsolidated and Consolidated Earth: GLobal HYdrogeology MaPS 2.0 (GLHYMPS 2.0). Geophys. Res. 

Lett. 2018, 45, 1897–1904, doi:10.1002/2017GL075860. 

50. Hengl, T.; Mendes De Jesus, J.; Heuvelink, G.B.M.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; 

Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global Gridded 

Soil Information Based on Machine Learning. PLOS ONE 2017, 12, e0169748, 

doi:10.1371/journal.pone.0169748. 

51. SWAT+ Development Team Gwflow Module for SWAT+ Available online: 

https://swat.tamu.edu/software/plus/gwflow/. 

52. Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the Mean Squared Error and NSE 

Performance Criteria: Implications for Improving Hydrological Modelling. J. Hydrol. 2009, 377, 80–91, 

doi:10.1016/j.jhydrol.2009.08.003. 

53. Althoff, D.; Rodrigues, L.N. Goodness-of-Fit Criteria for Hydrological Models: Model Calibration and 

Performance Assessment. J. Hydrol. 2021, 600, 126674, doi:10.1016/j.jhydrol.2021.126674. 

54. SWAT+ Development Team Introduction to SWAT+ | SWAT+ Documentation Available online: 

https://swatplus.gitbook.io/io-docs (accessed on 28 April 2025). 

55. Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I — A Discussion of 

Principles. J. Hydrol. 1970, 10, 282–290, doi:10.1016/0022-1694(70)90255-6. 

56. Kang, T.; Lee, S.; Lee, N.; Jin, Y. Baseflow Separation Using the Digital Filter Method: Review and 

Sensitivity Analysis. Water 2022, 14, 485, doi:10.3390/w14030485. 

57. Samsonov, T. Grwat: River Hydrograph Separation and Analysis 2022, 0.0.4. 

58. Lan, T.; Lin, K.; Xu, C.-Y.; Tan, X.; Chen, X. Dynamics of Hydrological-Model Parameters: Mechanisms, 

Problems and Solutions. Hydrol. Earth Syst. Sci. 2020, 24, 1347–1366, doi:10.5194/hess-24-1347-2020. 

59. D. N. Moriasi; J. G. Arnold; M. W. Van Liew; R. L. Bingner; R. D. Harmel; T. L. Veith Model Evaluation 

Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 

885–900, doi:10.13031/2013.23153. 

60. Ziarh, G.F.; Kim, J.H.; Song, J.Y.; Chung, E.-S. Quantifying Uncertainty in Runoff Simulation According to 

Multiple Evaluation Metrics and Varying Calibration Data Length. Water 2024, 16, 517, 

doi:10.3390/w16040517. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 May 2025 doi:10.20944/preprints202502.0559.v3

https://doi.org/10.20944/preprints202502.0559.v3


 20 of 21 

 

61. Navas, R.; Alonso, J.; Gorgoglione, A.; Vervoort, R.W. Identifying Climate and Human Impact Trends in 

Streamflow: A Case Study in Uruguay. Water 2019, 11, 1433, doi:10.3390/w11071433. 

62. Mockler, E.M.; Chun, K.P.; Sapriza-Azuri, G.; Bruen, M.; Wheater, H.S. Assessing the Relative Importance 

of Parameter and Forcing Uncertainty and Their Interactions in Conceptual Hydrological Model 

Simulations. Adv. Water Resour. 2016, 97, 299–313, doi:10.1016/j.advwatres.2016.10.008. 

63. Navas, R.; Delrieu, G. Distributed Hydrological Modeling of Floods in the Cévennes-Vivarais Region, 

France: Impact of Uncertainties Related to Precipitation Estimation and Model Parameterization. J. Hydrol. 

2018, 565, 276–288, doi:10.1016/j.jhydrol.2018.08.032. 

64. Shen, H.; Tolson, B.A.; Mai, J. Time to Update the Split-Sample Approach in Hydrological Model 

Calibration. Water Resour. Res. 2022, 58, e2021WR031523, doi:10.1029/2021WR031523. 

65. Wi, S.; Yang, Y.C.E.; Steinschneider, S.; Khalil, A.; Brown, C.M. Calibration Approaches for Distributed 

Hydrologic Models Using High Performance Computing: Implication for Streamflow Projections under 

Climate Change 2014. 

66. Thomas, B.F.; Vogel, R.M.; Famiglietti, J.S. Objective Hydrograph Baseflow Recession Analysis. J. Hydrol. 

2015, 525, 102–112, doi:10.1016/j.jhydrol.2015.03.028. 

67. Westerberg, I.K.; Guerrero, J.-L.; Younger, P.M.; Beven, K.J.; Seibert, J.; Halldin, S.; Freer, J.E.; Xu, C.-Y. 

Calibration of Hydrological Models Using Flow-Duration Curves. Hydrol. Earth Syst. Sci. 2011, 15, 2205–

2227, doi:10.5194/hess-15-2205-2011. 

68. Vermeulen, P.T.M.; te Stroet, C.B.M.; Heemink, A.W. Limitations to Upscaling of Groundwater Flow 

Models Dominated by Surface Water Interaction. Water Resour. Res. 2006, 42, doi:10.1029/2005WR004620. 

69. Wan, W.; Döll, P.; Müller Schmied, H. Global-Scale Groundwater Recharge Modeling Is Improved by 

Tuning Against Ground-Based Estimates for Karst and Non-Karst Areas. Water Resour. Res. 2024, 60, 

e2023WR036182, doi:10.1029/2023WR036182. 

70. Kazakis, N.; Karakatsanis, D.; Ntona, M.M.; Polydoropoulos, K.; Zavridou, E.; Voudouri, K.A.; Busico, G.; 

Kalaitzidou, K.; Patsialis, T.; Perdikaki, M.; et al. Groundwater Depletion. Are Environmentally Friendly 

Energy Recharge Dams a Solution? Water 2024, 16, 1541, doi:10.3390/w16111541. 

71. Brutsaert, W. Long-Term Groundwater Storage Trends Estimated from Streamflow Records: Climatic 

Perspective. Water Resour. Res. 2008, 44, doi:10.1029/2007WR006518. 

72. Sophocleous, M. Interactions between Groundwater and Surface Water: The State of the Science. 

Hydrogeol. J. 2002, 10, 52–67, doi:10.1007/s10040-001-0170-8. 

73. Saracho, A.; Navas, R.; Gamazo, P.; Alvareda, E. Assessing Impacts of Irrigation on Flows Frequency 

Downstream of an Irrigated Agricultural System by the SWAT Model. In Proceedings of the Proceedings 

of IAHS; Copernicus GmbH, April 19 2024; Vol. 385, pp. 423–427. 

74. Tulip, S.S.; Siddik, M.S.; Islam, Md.N.; Rahman, A.; Torabi Haghighi, A.; Mustafa, S.M.T. The Impact of 

Irrigation Return Flow on Seasonal Groundwater Recharge in Northwestern Bangladesh. Agric. Water 

Manag. 2022, 266, 107593, doi:10.1016/j.agwat.2022.107593. 

75. Li, W.; Wang, L.; Zhang, Y.; Wu, L.; Zeng, L.; Tuo, Z. Determining the Groundwater Basin and Surface 

Watershed Boundary of Dalinuoer Lake in the Middle of Inner Mongolian Plateau, China and Its Impacts 

on the Ecological Environment. China Geol. 2021, 4, 498–508, doi:10.31035/cg2021066. 

76. Pinardi, M.; Soana, E.; Severini, E.; Racchetti, E.; Celico, F.; Bartoli, M. Agricultural Practices Regulate the 

Seasonality of Groundwater-River Nitrogen Exchanges. Agric. Water Manag. 2022, 273, 107904, 

doi:10.1016/j.agwat.2022.107904. 

77. DINAGUA Solicitud de Derechos de Uso de Agua | Trámites Available online: 

https://www.gub.uy/tramites/solicitud-derechos-uso-agua (accessed on 27 April 2025). 

78. Monir, Md.M.; Sarker, S.C.; Islam, A.R.Md.T. A Critical Review on Groundwater Level Depletion 

Monitoring Based on GIS and Data-Driven Models: Global Perspectives and Future Challenges. 

HydroResearch 2024, 7, 285–300, doi:10.1016/j.hydres.2024.05.001. 

79. Schreiner-McGraw, A.P.; Ajami, H. Delayed Response of Groundwater to Multi-Year Meteorological 

Droughts in the Absence of Anthropogenic Management. J. Hydrol. 2021, 603, 126917, 

doi:10.1016/j.jhydrol.2021.126917. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 May 2025 doi:10.20944/preprints202502.0559.v3

https://doi.org/10.20944/preprints202502.0559.v3


 21 of 21 

 

80. Mukherjee, A.; Bhanja, S.N.; Wada, Y. Groundwater Depletion Causing Reduction of Baseflow Triggering 

Ganges River Summer Drying. Sci. Rep. 2018, 8, 12049, doi:10.1038/s41598-018-30246-7. 

81. Scanlon, B.R.; Pool, D.R.; Rateb, A.; Conway, B.; Sorensen, K.; Udall, B.; Reedy, R.C. Multidecadal Drought 

Impacts on the Lower Colorado Basin with Implications for Future Management. Commun. Earth Environ. 

2025, 6, 1–13, doi:10.1038/s43247-025-02149-9. 

82. Gutiérrez‐Jurado, K.Y.; Partington, D.; Batelaan, O.; Cook, P.; Shanafield, M. What Triggers Streamflow for 

Intermittent Rivers and Ephemeral Streams in Low‐Gradient Catchments in Mediterranean Climates. 

Water Resour. Res. 2019, 55, 9926–9946, doi:10.1029/2019WR025041. 

83. Nabih, S.; Tzoraki, O.; Zanis, P.; Tsikerdekis, T.; Akritidis, D.; Kontogeorgos, I.; Benaabidate, L. Alteration 

of the Ecohydrological Status of the Intermittent Flow Rivers and Ephemeral Streams Due to the Climate 

Change Impact (Case Study: Tsiknias River). Hydrology 2021, 8, 43, doi:10.3390/hydrology8010043. 

84. Cai, J.; Su, Y.; Shen, H.; Huang, Y. Simulation of Groundwater Flow in Fractured-Karst Aquifer with a 

Coupled Model in Maling Reservoir, China. Appl. Sci. 2021, 11, 1888, doi:10.3390/app11041888. 

85. Arnold, J.G.; Youssef, M.A.; Yen, H.; White, M.J.; Sheshukov, A.Y.; Sadeghi, A.M.; Moriasi, D.N.; Steiner, 

J.L.; Amatya, D.; Skaggs, R.W.; et al. Hydrological Processes and Model Representation: Impact of Soft Data 

on Calibration. Am. Soc. Agric. Biololgical Eng. 2015, 58, 1637–1660, doi:10.13031/trans.58.10726. 

86. Brochet, E.; Grusson, Y.; Sauvage, S.; Lhuissier, L.; Demarez, V. How to Account for Irrigation Withdrawals 

in a Watershed Model. Hydrol. Earth Syst. Sci. 2024, 28, 49–64, doi:10.5194/hess-28-49-2024. 

87. Meyer, R.; Greskowiak, J.; Seibert, S.L.; Post, V.E.; Massmann, G. Effects of Boundary Conditions and 

Aquifer Parameters on Salinity Distribution and Mixing-Controlled Reactions in High-Energy Beach 

Aquifers. Hydrol. Earth Syst. Sci. 2025, 29, 1469–1482, doi:10.5194/hess-29-1469-2025. 

88. Gaiolini, M.; Colombani, N.; Busico, G.; Rama, F.; Mastrocicco, M. Impact of Boundary Conditions 

Dynamics on Groundwater Budget in the Campania Region (Italy). Water 2022, 14, 2462, 

doi:10.3390/w14162462. 

89. Condon, L.E.; Kollet, S.; Bierkens, M.F.P.; Fogg, G.E.; Maxwell, R.M.; Hill, M.C.; Fransen, H.H.; Verhoef, A.; 

Van Loon, A.F.; Sulis, M.; et al. Global Groundwater Modeling and Monitoring: Opportunities and 

Challenges. Water Resour. Res. 2021, 57, e2020WR029500, doi:10.1029/2020WR029500. 

90. Zhao, B.; Mao, J.; Dai, Q.; Han, D.; Dai, H.; Rong, G. Exploration on Hydrological Model Calibration by 

Considering the Hydro-Meteorological Variability. Hydrol. Res. 2019, 51, 30–46, doi:10.2166/nh.2019.047. 

91. Yang, W.; Xia, R.; Chen, H.; Wang, M.; Xu, C.-Y. The Impact of Calibration Conditions on the Transferability 

of Conceptual Hydrological Models under Stationary and Nonstationary Climatic Conditions. J. Hydrol. 

2022, 613, 128310, doi:10.1016/j.jhydrol.2022.128310. 

92. de Lavenne, A.; Andréassian, V.; Crochemore, L.; Lindström, G.; Arheimer, B. Quantifying Multi-Year 

Hydrological Memory with Catchment Forgetting Curves. Hydrol. Earth Syst. Sci. 2022, 26, 2715–2732, 

doi:10.5194/hess-26-2715-2022. 

93. Chaves, H.M.L.; Lorena, D.R. Assessing Reservoir Reliability Using Classical and Long-Memory Statistics. 

J. Hydrol. Reg. Stud. 2019, 26, 100641, doi:10.1016/j.ejrh.2019.100641. 

94. Ahmed, W.; Ahmed, S.; Punthakey, J.F.; Dars, G.H.; Ejaz, M.S.; Qureshi, A.L.; Mitchell, M. Statistical 

Analysis of Climate Trends and Impacts on Groundwater Sustainability in the Lower Indus Basin. 

Sustainability 2024, 16, 441, doi:10.3390/su16010441. 

95. Souto, A.; Carriquiry, M.; Rosas, F. AN Integrated Assessment Model of the Impacts of Agricultural 

Intensification: Trade‐offs between Economic Benefits and Water Quality under Uncertainty. Aust. J. Agric. 

Resour. Econ. 2024, 1467-8489.12555, doi:10.1111/1467-8489.12555. 

 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 May 2025 doi:10.20944/preprints202502.0559.v3

https://doi.org/10.20944/preprints202502.0559.v3

