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Abstract: In this paper, we defined as an extension, the Mébius transformations in the space F,(C), the
second symmetric product of the complex plane C with its natural topology induced by the Hausdorff
metric. That is, consider T a Mébius transformation of C and define the map T({z,w}) = {T(z), T(w)}
in F,(C). We prove general properties for these maps in F,(C), with focus in the structure of the
generators, the properties of transitivity, and the geometry of the conjugacy classes.
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1. Introduction

In this paper, we translate the properties of the Mobius transformations of the Riemann sphere to
the second symmetric product of the complex plane C. That is, let T be a Mobius map, consider two
complex numbers z, w, and consider the sets of the form {T(z), T(w)}, in the space F,(C) = {A C
C: |A| <2,A # @}, called the second symmetric product of the complex plane C, which we will
topologize through the Hausdorff metric, see [2] and [6].

To study the geometry of these transformations in this space, we introduced a model for F,(C), that
is, there is a homeomorphism from F,(C) to a more suitable space in which we can have a better
understanding of the geometry induced by {z, w} — {T(z), T(w)}, for any Mobius transformation T.
The homeomorphic model of F,(C) is the space

M, = (R% x S) /s,

where Ri ={(x,y,z) € R3 : z >0} and s is a relation on elements of the form (x,y,0,t) € R3 x S!,
see [9].

Given T(z) = (az+b)/(cz + d) a Mobius transformation in the Riemann sphere, we will define in
the second symmetric space F>(C) = {s = {z,w} : z,w € C}, the function T : /,(C) — F(C) given
by T(s) = T({z,w}) = {T(z), T(w)}, whenever T is defined in z and w. Recall that for z = —d/c,
T(—d/c) = o0, 50 we need to change the definition of T when z or w are equal to —d /c; this change
will produce discontinuities at some points, but on the other hand the change will be compatible to
have some results similar to properties inherent in the set of Mébius transformations.

In Section 3, we define the set M(F,(C)) = {T : T € Aut(C)}, where each T is taken with its
corresponding domain and image. We look closely how the domains of these maps change depending
on T and we describe the action of these maps via the usual generators of the group of Mobius
transformations, describing in Propositions 2-5 the action of the generators in the space M.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Some transitivity properties of the usual Mobius transformations can be translated on transitivity
features of the set M(F,(C)) in F,(C). In Proposition 8, we prove that M(F,(C)) is 2-transitive in F,(C)
if the corresponding points have the same cross ratio.

Now, if we consider the set of Euclidean circles and the family of lines in C, the corresponding objects
in M, are Mobius strips and semi-planes, respectively. Proving first that M (F,(C)) preserves these
sets of Mobius strips and semi-planes, we show in Theorem 8, that M (F,(C)) acts transitively in those
sets. We also define maps that preserve the Mobius strips generated by Euclidean circles in C and
prove some properties of these maps.

As any Mobius transformation T, different to the identity, is conjugated to a map of the form U (z) = Az
with A € C\ {0,1} or to the map U; (z) = z + 1, in Section 5, we extend this result for maps in the set
M(F,(C)) in Theorems 10, 11, and 12, depending if T is parabolic, hyperbolic or elliptic, respectively.
Finally, we show how the corresponding maps to U, in M act.

2. Preliminaries

In this section, we will briefly present the definitions and results about Mobius transformations
and the second symmetric product of C, that we will need in the rest of the paper.

2.1. Mobius Transformations

First, let us describe some basic facts about Mobius transformations, for more details, see [1] and [4].
Let C = C U {co} be the Riemann sphere. We will denote by Aut(C) the set of all automorphisms of C,
that is, functions of the form )
az +
T(z) = i d

with a,b, ¢, d complex numbers such that ad — bc # 0. The transformations w = T(z) are known as
linear fractional or Mobius transformations. These transformations form a group under composition,
where the inverse map of T is given by

dz—Db

T_l(z) T “zta

Moreover, as T does not determine the coefficients 4, b, ¢, d uniquely, since Aa, Ab, Ac, Ad correspond to
the same transformation T, for A € C \ {0}, the group Aut(C) is isomorphic to the projective general
linear group and to the projective special linear group, that is, Aut(C) 2 PGL(2,C) = PSL(2,C), thus
from now on we can assume that ad — bc = 1.

~

There are four special type of Mdbius transformations that generate Aut(C):

i) The map Ry(z) = ¢z (0 € R) is a rotation of the Riemann sphere C by an angle 6.

ii) The transformation J(z) = 1/z, that interchange 0 and co.

iii) The map S,(z) = rz (r € R,r > 0) fixes 0 and oo, and acts in the plane C as a similarity transforma-
tion.

iv) The transformation T¢(z) = z + t (t € C) fixes co and acts as a translation in the complex plane.

One of the important properties of the group Aut(@) is that maps circles in C to circles in C. In order
to be more precise, the circles in C are the usual Euclidean circles and the straight lines in C (which
can be thought as circles through infinity).

Theorem 1. If C is a circle in C and if T € Aut(C), then T(C) is a circle in C.

The group Aut((@) also has several properties about transitivity, the following are the ones we will use
in this paper.
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Theorem 2. If (zq,2p,23) and (wy, wy, w3) are triples of distinct points in C, then there is a unique T €

-~

Aut(C) such that T(zj) = wj, forj = 1,2,3.
Corollary 1. If T € Aut(C) and T fixes three distinct points of C, then T is the identity map.

Theorem 3. If C and C’ are circles in C, then there exists some T € Aut(C) such that T(C) = C'.
In general Aut(C) is not 4-transitive, but if two 4-tuple of distinct points have the same cross ratio,

there is some Mobius transformation that send one 4-tuple into the other. Recall that the cross ratio of
— (20=71)(22—2)

four complex numbers is defined as A = (zg, z1;22,23) = (21=2) (e —20)

with the convention of taking
limits if some z; = oo.

Theorem 4. Let (zg,21,22,23) and (wp, wq, wo, w3) be 4-tuples of distinct elements of C. Then there

exists some T € Aut(C) with T(z;) = wj, j = 0,1,2,3 if and only if the two 4-tuples have the same
cross ratio.

Consider a circle C in C given by the equation azz + bz + bz+c=0,witha,ccR,bec C.Ifa #0,
then C is a Euclidean circle in the complex plane, and then there exists a transformation in the complex
plane that fixes C. This transformation is given by

fayl
N

+c
+b

Ic(z) = —

N
IN]

and it is called the inversion in C. Moreover, if T € Aut(C), then T(C) = C’ is another circle, then we
have that I = TIcT~ 1.

To study the geometry of the Mobius transformations, there is a classification in conjugacy classes
according to the number of fixed points and to the corresponding trace of the matrix associated in

~

PSL(2,C) to every map in Aut(C). The next results summarize this classification.

Theorem 5. Let T(z) = (az + b)/(cz +d), with ad — bc = 1. If (a +d)? # 4, then T has two fixed
points in C;if (a4 d)? = 4 and T is not the identity map, then T has one fixed point in C.

For A € C\ {0}, consider the maps U, (z) = Azif A # 1 and U;(z) = z + 1. We will say that two maps
T and S are conjugated if there exists another transformation V such that T= V1o So V.

Theorem 6. Let T be a non-identity element in Aut(C), then there exists some A € C \ {0} such that T

-~

is conjugate to U, in Aut(C).

Remark 1. When A = 1, the map T has only one fixed point zy and it is conjugated to U; (z) by a
Mbébius transformation S that sends zg to co. Since lim;; o0 U7 (z) = oo, then any z € C is moved by T"
towards z( as n goes to infinity. In this case T is called parabolic.

Remark 2. If T in not parabolic, then it has two fixed points z; and z; and is conjugated to U, with
A € C\ {0,1}, that fixes 0 and oo, by means of a Mobius transformation S such that S(z;) = 0 and
S(z2) = o0. If |A] < 1,1limy, 00 U (z) = O for all z # o0 and hence lim;, ;o T"(z) = 21 forall z # z;. In
the same way if |A| > 1, then lim, o T"(z) = 2 for all z # z; (the two cases for A are basically the
same since we just replace A by 1/A). We conclude that if |A| 1, all points z # z1,zp are moved by T
away from one of these fixed points towards the other. If A > 0, T is called hyperbolic, and loxodromic
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otherwise. If |A| = 1, with A # 1, then U, is a rotation Ry, so U} (z) has not limit for z # 0, oo, hence
neither T"(z) for z # z1,z,. In this case T is called elliptic.

2.2. Second Symmetric Product of C
The second symmetric product of C, denoted by F,(C), is the set

F,(C) ={A Cc C : Ahasatmost?2 elements and A is not empty};
The space F,(C) has the topology induced by the following metric
H(A,B) =inf{e >0 : A CVe(B)and B C Vs(A)},

where V;(A) = {x € C :d(x,A) <e},d(, )is the usual metric in C, and A and B are subsets of C.
Given X a compact subset of C, the space F,(X) can also be topologized through the Vietoris topology:
if Uy, ..., Uy are nonempty subsets of C and m € N, then define

m
<u1,...,llm>:{ACX L A#£ @, |Al<2, Ac U
j=1

and ANU; # @, forall j € {1,...,m}};

a base for the Vietoris topology is given by the family of the sets (Uj, ..., Uy), where m € N and
Uy, ..., Uy are open subsets of C. The Vietoris topology and the topology induced by the Hausdorff
metric coincide in F,(C).

Let X be a connected and compact subspace of C. It is known that F,(X) is a continuum itself [7,
Corollary 1.8.8]. In [2] it is proven that, for I = [0,1], F2(I) is homeomorphic to a 2-cell. In [6], it is
proven that for the 1-sphere S!, F,(S!) is homeomorphic to a Mabius strip.

2.3. A Model for F,(C)

To have a better understanding of the space F,(C), sometimes we will work in a model of F,(C), that is,
a continuous and bijective copy of F>(C). Let M be the space (R3. x S!)/s, where R3 = {(x,y,z) €
R3 : z > 0}, S! the unit circle and such that s is a relation defined by (x,v,0,t) ~ (x,y,0,t), for all
t,t' e Sh

Definition 1. Let ® be the function ® : F,(C) — M), given by

(uzib lla — bHIEZi(arg(afb)(modﬂ))), ifa #b;
(class [a,0,1]), ifa=>.

®({a,b}) = {

We observe that @ is a well defined, bijective and bicontinuous function, with the corresponding
topologies. We will call M, the model of F,(C).

Remark 3. Observe that given a point (u,a,t) € My, with u € RZ, 4 > 0and t € S!, we can obtain
its preimage under @ as follows: u must be the midpoint of two points z, and w, in the complex
plane such that ||z, — wy|| = a and e%? — t where 6§ = arg (z, — wy), then z, and w, are points in
the circle with center u and radius a/2, such that the segment z,,w,, is a diameter of the circle. Hence,
zy = u+ (a/2)e™ and w, = u — (a/2)e™.
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In Figure 1, we can observe a representation of the model M}, for instance over any point t = ”TH’, the
midpoint of 4, b € C, there is a cone V with vertex at f, so any two points z, w € C with midpoint ¢ has

a representation in V at height ||z — w|| and angle ¢2i(ar8 (z—w)(modr))

|

o
T

M, = (Rﬁzo x SY)/r

Figure 1. The model M, for F,(C) .

Let {x,y} € F(C), observe that there exists a closed disk D, that contains x and vy in its interior,
then (D) N F,(C) is a neighborhood of {x,y} in F,(C). Given that F,(D) is a compact set, it follows
that F,(C) is a Hausdorff and a locally compact topological space, then it is possible to consider the
Alexandroff’s compactification, denoted by F,(C)*. The point added is denoted by oo (observe that
this point will correspond to the pair of points {z, 00} in F,(C), for each z € C)). Note that in F,(C)
the sets {x,y} such that (x + y) /2 = constant are mapped by ® to a open topological disk, hence the
Alexandroff’s compactification of such a set will be homeomorphic to S2. Moreover, observe that the
singletons together with the point co in F,(C)* is homeomorphic to S2.

3. Extension of the Mobius Transformations to the Space F,(C)

Let T(z) = (az + b)/(cz + d) be a Mdbius transformation in the Riemann sphere, let us define in the
second symmetric space F>(C) = {a = {z,w} : z,w € C}, the function T given by

T(a) = T({z,w}) = {T(2), T(w)}, z,w # —d/e. M

In particular, observe that if z = w, then T(a) = T({z}) = {T(z)}, hence the geometry of T in C will
be reflected in F>(C). As T has an inverse map T~ '(z) = (dz — b)/(—cz + a), it is easy to see that in
some appropriate domains T~' o T and T o T~! are the identity maps.

Observe that we can use the map ® : F,(C) — M), to translate the definition of T all the way to M),
that is, we can conjugate the map T in some appropriate domain, via ®, to obtain a map T in Mp. So,
from now on by convention, for any object X in C, we will use X for the object in F,(C) generated by
X, and X for the corresponding object in the model M.

Recall that a Mobius transformation T has at most two fixed points, and let us assume that T does not
fix the point at infinity in the Riemann sphere. First, suppose that T has only one fixed point zg, then
the map T has also zj as the only fixed point; meanwhile, if T fixes two distinct points zg and z1, then
T has three fixed points: {29}, {z1}, {z0,21}.

As the map T is defined in C, we need to consider the image and pre-image of the point at infinity,
thatis, T(o0) = a/cand T(—d/c) = oo. Let us define the sets Dy = F,(C) \ {{z, —d/c} : z € C} and
Ry = F(C)\ {{z,a/c} : z € C}, then we have our first result for the map T.
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Lemmal. Forany T € Aut(@), the map T : Dy — Ry is an homeomorphism.

Proof. Assume that T(z) = (az +b)/(cz +d). First, let us prove that T is a bijection. Let
{z1,1} and {zp, w;} be two points in Dr, such that T({zy,w1}) = T({z2, w,}), then it follows
that {T(z1), T(w1)} = {T(z2), T(w2)}. If 21 = wy, then {T(z1), T(w1)} = {T(z1)} = {T(2z2), T(wy)}
for which T(z1) = T(zp) = T(w,), therefore z; = zp = wy; if now z; # wy, then z; # wy, and
then T(z1) = T(zp) or T(z1) = T(wy); in the former case, T(w;) = T(w;), and in the latter case,
T(z2) = T(wq). In any case, we have that {zq, w1 } = {zp, wy}, since T is a one-to-one map, for which
it follows the injectivity of T.

It is clear that for any pair of point z,w € C, neither equal to a/c, there are points u,v € C such
that T(u) = z and T(v) = w, by the surjectivity of T, and therefore T is onto. Now, observe that
T-1: Ry — Dris the inverse map of T.

Finally, to establish the continuity of the map T observe that T({z}) = {T(z)} and T({z,w}) =
{T(z), T(w)}, so by the continuity of T and the characterization of the open sets in the Hausdorff
topology on F,(C) we have the result. []

Observe that if ¢ = 0, then the map T can be defined in all F,(C) as in relation (1), and it is an
homeomorphism there. For a general map T(z) = (az+b)/(cz + d), we can think of the action of
T in F,(C) as follows. For any w € C, we define the cone of vertex at w as the set V;, = {{z,w} :
z € C} C K(C). Let VI = Vi \ {—d/c,w} and V.I* = V;, \ {a/c,w}. Then T acts sending the cone
V.I with vertex at w # —d/c one-to-one to the cone VTT(*w) with vertex at T(w), since T({z,w}) =
({T(z), T(w)}) € Vry), forany {z,w} € V.I. In fact, using the same arguments in the proof of Lemma
1, we have the following.

Lemma 2. Let T(z) = (az+b)/(cz + d) be an element in Aut(C), then the map T : VI — VTT* ) isan

(w
homeomorphism, for any w # —d/c.

There are some special cones that need to be considered in the definition of T. Suppose that zg is a
fixed point of T, then the cone VZ€ is invariant under T, that is, Tisa homeomorphism from Vz€ to VZTO* ;
when T has two fixed points z; and z, the two cones V;, and V;, intersect each other in the other fixed

point {z;,2,} of T.

So far, we have defined T only in Dt (and then T only in ®(Dr)), so we need to extend the definition
of T. Observe that the set where we have not defined T yet is precisely the cone Vy := V_g,, =
{{z,—d/c} : z € C}, which will be called the singular cone for T, and the other cone V}. = {{z,a/c} :
z € C}, will be called the singular value cone for T. For {z, —d/c} € Vr, define the function T as follows

T({z,—d/c}) = {T(z),a/c} € V. 2)

Remark 4. Since T is bijective map in C, we have that T is a bijection from V7 \ {—d/c} to Vi \ {a/c}.
Also, observe that in the cone ®(Vr), the map T sends continuously circles at some particular height
to topological circles in ® (V7). Moreover T send points in the cone ®(V7) close to the vertex —d/c to
points in the cone ®(V7) close to infinity, and points in Vr close to infinity to points in V. close to the
vertex a/c.

In this way, we have defined T in Vr \ {—d/c}, and therefore in all F,(C) \ {—d/c} since T was already
defined in Dr. Moreover T(Vr \ {—d/c}) = Vi.\ {a/c}. Thus, we have extended the definition of T
to F>(C) \ {—d/c} with image F>(C) \ {a/c}, so in a natural way we can extend the definition of T to
F,(C)*, sending {—d/c} — co and co — a/c. Using the notation that we have been using so far, we
have the following result.
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Theorem 7. Let T(z) = (az +b)/(cz + d) be a Mobius transformation in the Riemann sphere. Then
the map T : F,(C)* — F,(C)* is a bijective map, continuous in Dt and continuous in V7.

Proof. By Lemma 1, the map T is an homeomorphism in Dy. As T(Vr \ {—d/c}) = V4 \ {a/c} ina
bijective way by Equation (2), and {—d/c} — oo and co — a/c, we conclude that T is a bijection. By
Remark 4, we see that T is continuous within Ve, O

Remark 5. Since by Lemma 1, the map T : Dy — Ry is an homeomorphism, any extension of
the map in V7 must has image V7. If we consider a sequence of points s, = {z,,w,} € Dr that
converges to a point {z, —d/c} in Vr and consider the open set V;({z, —d/c}) in F,(C) that contains
the point {z, —d/c}, for some € > 0, then there exists N € N such that if n > N, it follows that
sn = {zn, wn} € Ve({z, —d/c}). This means that foralln > N, |z, — z| < e and |w, — (—d/c)| < €
or |w, —z| < eand |z, — (—d/c)| < €, hence, there are sequences of complex points {a, }, {b, } such
thata, — z,b, — —d/c,asn — co and {a,, by} = {zy, w,} forn > N. As T is a continuous map, it
follows that T(b,) — T(—d/c) = o, therefore we can not have continuity for the map T when we
approach Vr from Dr.

Remark 6. It seems that we can use another compactification of F,(C), different from Alexandroff’s
compactification, in such a way the map T is an homeomorphism in this new space, we just add a cone
with vertex at infinity compatible with the topology of F,(C); however we will lost the advantages to
have the model for F,(C) such as to be able to have a geometric description of the maps T. Another
possible direction is to work in the second symmetric product of the Riemann sphere F, (C), but we
again lost the possible model to describe the geometry of the maps T.

Nevertheless, the map T : F(C)* — F,(C)* is a bijective map, so we can define the set of trans-
formations M(F,(C)) = {T : K(C)* — F(C)* : T € Aut(C)}, where T is defined as before,
hence the set M(F,(C)) is a group with the composition of maps as its group operation. In fact, if
T(z) = (az+b)/(cz+d) and S(z) = (a’z+b")/(c'z + d') are two Mobius transformations, then we
have that So T({z,w}) = {S(T(z)),S(T(w))} is well defined in all F,(C). We will explore more about
the structure of this group in a future manuscript.

3.1. Generators of M(F,(C))

We will show now that all the maps in M(F,(C)) are compositions of the following four maps:
i) Rg({z,w}) = {ez,e%w}, 6 € R;
it) J({z,w}) = {1/2,1/w}, for zw # 0;
iii) S,({z,w}) = {rz,rw},r e R,r > 0;
iv) Ti({z,w}) = {z+t,w+t},t € C.

Observe that ﬁg, S, and T; are homeomorphisms defined in all F,(C), meanwhile Tis defined in
all points {z,w} € F,(C), with zw # 0, but we can extend the definition of | in its singular cone
Vi = {{z,0} : z € C} asin relation (2), that is, ] ({z,0}) = {J(z),0}, for z # 0, and observe that for |
its singular cone coincide with its singular value cone.

Proposition 1. Let S be a map in M(F,(C)), then S can be expressed as a composition in some order of
the maps ﬁg, S,, T; and T

Proposition Let T € Aut(C) such that T = S, and assume that T(z) = (az+b)/(cz +d). If c = 0,
we know that T = T; 0 S, o Ry, where b/d = t y a/d = re', hence it is straightforward to see that
S=Tio §, o ﬁg.

Now, when ¢ # 0, T(z) = (T;o J)(—c*z — cd), where t = a/c. By the first part of the proof, —?z—cd =
V(z) = Ty oS, 0 Ry, forsome t' € C,r > 0and 6 € R. Therefore S = T; o J o V. Note that the
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previous decomposition of S = T even works for the singular cone V7, take {z, —d/c} € Vr, then
TroJoV({z,—d/c}) = Ti(J({V(2), V(~d/c)})) = T(J({V(2),0})) = T:({J(V(2)),0}) = {J(V(2)) +
a/c,a/cy ={T(z),a/c}.

Let us analyze the geometry of these generators maps in the space F,(C). In order to do that, let us
work in the model M} of F,(C). Since @ : F,(C) — M; is an homeomorphism we can conjugate any
map F : F,(C) — F(C) toamap F : My — My, thatis, ® o F = F o @, extending the definition to
infinity in a natural way. In particular, the elements of M(F,(C)) can be thought acting in M5, so in
some cases we will not make distinction if the context is clear.

Let us start with the map Ry ({z,w}) = {¢?z,¢’w}, 0 € R, and the analysis for the other maps will be
similar. In this case, the conjugation gives a map Ry such that ® o Ry = Ry o ®; the left side composition
satisfies that

®(Ry({z,w}) = @({e?z,ew}) = (¢P(z+w)/2, |1z = w]], g’ wltmodm))
and the right side composition is equal to
Ro(@({z,w})) = Ro((z+w)/2, ||z — w]), e2ere zmw)modm)),
then the following result follows directly.

Proposition 2. The map ﬁg : M — M) acts in the following way ﬁe(u, Lt) = (eieu, l, ezjet), for u € R?,
I>0andt e S

As a result we can determine the geometry of the map Ry in F(C), stated as follows.

Corollary 2. The map Ry acts conjugated as a double rotation with the same angle, in fact, this double
rotation moves a point around a topological torus.

Proof. Just observe that since Ry is conjugated to Ry, and by Proposition 22, Rg(u,1,t) = (e?u,l,e?t),
the orbit of the point (u,,t) stays at the same height and the first and third coordinates are rotated by
the same angle, so the result follows. [

In the same way, we can determine the action of corresponding maps S, and T; in the space M.

Proposition 3. The map S, : My — M), acts as follows, §r(u, I,t) = (ru,rl,t), foru € R?,1 > 0and
te st

Proof. From the conjugation ® o S, = §, o ®, we obtain that

o(S,({z,w})) = @{rz,rw}) = (r(z+w)/2, ||rz — rwl|, s (rzfrw)(m(’d")))
(T’(Z + ZU)/2,1’||Z _ wH’eZi(argH—arg (z—w))(modn)))
= 5(@({z,w}) = §((z+w)/2, ||z — || Hre zmw)modm)),

from where it follows the claim, observing that argr = 0. O
Using the definition in [8] of a topological attractor, we have the following.

Corollary 3. The point O € M, with coordinates (0,0,0,1) is a fixed point of §r, which is a global
topological attractor for the dynamics of S,, when r < 1.
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Proof. Remember that s is the relation defined by (x,y,0,t) ~ (x,y,0,t') for all t,, so all points
(0,0,0,t) can be identified to the point (0,0,0,1). Now it is clear that O € Mj is a fixed point of S,. By
Proposition 3, the map S, is defined as §,(u, I,t) = (ru,rl,t), hence iterating this map, we obtain that
SA?(u, I,t) = (r"u,r"l,t), and since r < 1, we obtain that §f(u, I,t) = (0,0,0,1),asn — co. O

Proposition 4. The map T; : My — M, acts in the following way Tt(u, 1,60) = (u+t1,0) foruc R?,
I>0and 6 e SL

Proof. From the conjugation ® o T; = T; o ®, we obtain that

(T ({zw))) = d{z+tw+1t}) = (((z+w)/2) +1, ||z — wl||, s E—w)(modm))
= Tz w}) = T((z +w)/2, ||z — w||, @5 E-w)modm))

from where it follows the claim. O

The next result follows directly from Proposition ??.
Corollary 4. The orbit of every point in M, under the map T; goes to infinity.

Finally, let us analyze the action of the map J in M. Using the conjugation ® o | = J o ®, we get, first
of all for zw # 0, that

PoJ({z,w}) = ®({1/z,1/w})
_ (1/2(1/Z+ 1/‘60), ||1/Z . 1/w||,eZi(arg(l/z—l/w)(mOdn)))
= ((z+w)/2)- (1/(zw)), |1z — w|| /|| zw]| (@8 ((v=2)/zw)(modm)) )
On the other hand, J o ®({z,w}) = J(((z + w)/2), ||z — w||, e¥(218 (Z_w)(mOd”))), hence J(u,1,t) =

(u/ (zywy), 1/ (|| zuwy||), e~ 228 (Wi t), where u € R%, 1 > 0, t € S' and z,, w, are the complex
numbers that depends of u as in Remark 3.

In the cone V; = {{z,0} : z € C} we get that

®oJ({z,0}) = ©({1/2,0}

(1/(2z), ||1/ZH,€2i arg (1/2)(modn))
= Jo ®({z,0}) = T(z/z, ||Z||’e2i(arg(z)(modn))>‘

Thatis, J(u,2||u, t) = (1/4u,1/(2||u||), —t), for u € R? and t = ¢%(28(24)) In this way we can prove
the following.

Proposition 5. The map ] : M — M) satisfy that ] o | = Idyy,, the identity map in the model of F(C).

Proof. Forzw # 0, we have that J o J({z,w}) = ({J?(z), J2(w)}) = ({z,w}), thenas JoJo® = ®oJo
], the result follows. In the cone V}, just notice that J o J({z,0}) = J({J(z),0}) = J({1/2,0}) = {z,0},
conjugating with the map ® we have the result. [

4. Transitivity of M(F(C))

In this section we will prove several results about transitivity in the space M(F,(C)). Let us start
with two triples of distinct points in C, that is, (z1, z2,z3) and (w1, wy, w3), then we can consider the
triples of distinct points in F>(C): ({z1,22}, {22,253}, {23,21}) and ({wy, wa}, {wo, w3}, {ws, w1 }). The
first instance of transitivity is the following.
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Proposition 6. If ({z1,22},{22,23},{z3,21}) and ({w1, wy }, {wa, w3}, {ws, w1 }) are triples of distinct
points in F,(C), then there is a unique T € M(F;(C)) such that T({zi,zj}) = {w;, w;}, foralli,j €
{1,2,3}, with i # .

Proof. By Proposition 2, there is T € Aut(C) such that T(z;) = w;, for i = 1,2,3, then T({zi,zj}) =
{w;,w;}, foralli,j € {1,2,3}, withi # j.

Suppose there is another element S in M(F,(C)) such that S({z;,z;}) = {w;, w;}. Consider the image
of the first point, S({z1,22}) = {S(z1), S(z2)} = {wy, wy}, then there are two cases. If S(z1) = wy, then
5(z2) = ws, and taking one of the other two points in F,(C), we see that S(z3) = ws3. By Proposition
2, we have that S = T and then S = T. In case that S(z1) = w, then S(z;) = wy, but we have that
S({z2,23}) = {S(22),5(23)} = {ws, w3} which is a contradiction since S(zp) = wy, this finish the
proof of the uniqueness of the map T. [J

Using the same argument as in the proof of the uniqueness in the previous result, we obtain the next
Corollary.

Corollary 5. If T € M(F,(C)) fixes three distinct point of the form {z1,25}, {22,23}, {z3,21}, then T is
the identity map.

We can use again the 3-transitivity of Aut(C) and the arguments of the proof of Proposition 6 to prove
the following result.

Proposition 7. Consider two pairs of points {z}, {z1,z2} and {wp}, {w1, w,} in F,(C) with z; # z;
and w; # wy, then there is a unique T € M(F>(C)) such that T({z}) = {wo} and T({z1,22}) =
{w1,w,}.

As a corollary we obtain that the Mobius transformations in F,(C) act transitively in the set of cones

V=AV,: V,={{z,a} : z€ C}}.

Corollary 6. Let {29} and {wp} be two singletons in F>(C). Then there exists T € M(F,(C)) such that
T(Vzy) = Vi, thatis, M(F,(C)) is transitive in V.

Proof. Consider different points {zg,z1}, {z0,22} € V, and {wo, w1}, {wo, w2} € Vy,, by the 3-
transitivity of Aut(C) there exists a transformation T(z) = (az + b)/(cz + d) such that T(z;) = w;
fori =0,1,2. Hence T({z0}) = {wo}, T({z0,21}) = {wo, w1} and T({zg,22}) = {wo, w>}. Let {zo,z}
be a point in Vy,, with z # —d/c, then T({zo,z}) = {T(z), T(z)} = {wo, T(z)} € Vu,; for points

{20, —d/c}, we get T({z, —d/c}) = {T(z),a/c} = {wy,a/c} € Vi,. O

For general points in F,(C), we can prove 2-transitivity of the set M(F,(C)) if these points combined
have the same cross ratio.

Proposition 8. If ({z1,22},{z3,24}) and ({wy, wa}, {wa, w3}) are pairs of distinct points in F,(C),
such that the cross ratio of (z1,2p,23,2z4) is equal to the cross ratio of (wq, wy, wy, w3), then there is
T € M(F,(C)) such that T({z1,z2}) = {w1, w2} and T({z3,24}) = {w3, w4 }.

Proof. By Proposition 2, there exists T &€ Aut(@) such that T(z;) = w;, for i = 1,2,3,4, then
T({z1,2z2}) = {w1, w2} and T({z3,24}) = {w3, ws}. O
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4.1. Transitivity of Mobius Bands

Let us consider C the family of Euclidean circles in C and £ the family of lines in C, remember

~

that Aut(C) sends C U L in itself, in fact, the action is transitive there.

We have observed that F,(S!) is homeomorphic to a Mdbius strip, then F(C) is a M6bius band C,
for any C € C. Moreover, passing to the model M, we can see that &(C) = C is a Mobius band that
intersects the subset {(x,y,0,0) : (x,y,0,0) € My} of M exactly in C.

It is not difficult to see that F,(L) is homeomorphic to a semi-plane L in the model My, for any L € £,
in fact, LN {(x,v,0,0) : (x,,0,0) € My} = L.

Lemma 3. Let K be an element in C U £, then for any map S in M(F,(C)), the set S(K) is homeomorphic
to a Mobius strip or homeomorphic to a semi-plane in the model M.

Proof. Let S be an element of M(F,(C)), then the corresponding map T €Aut(C) (thatis, T = S)
satisfies that T(K) is an Euclidean circle or a line in C. Assume first that K = C is an element of C, the
proof for the other case is similar. Passing to the model M, consider the set T(C).

First, if T(C) is an Euclidean circle, then T/(C\) is a Mobius band. Since ® o T = T o ® and T({z,w}) =
{T(z), T(w) /E\T(é) = ".F(\C/), for any z,w € C, it follows that T(C) = T(®(C)) = ®(T(C)) =
P(T(C)) =T(C).

Now assume that T(C) is a line in C, this happens if T(z) = (az+ b)/(cz + d) and the point —d/c is
a point on C. Remember that in this case T : Dy — Ry, and T(Vr \ {~d/c}) = V4 \ {a/c}; then we
only consider the image of C' = C\ {—d/c}, thatis, T(C') is a complete line since T(—d/c) = oo. It

follows that T/(C\’) still is a whole semi-plane and once again, using that T(C') = T(C’), we get that

—

T(C') = T(C'), which conclude the proof. [

Now we will prove transitivity for a family of Mobius strips in M. Consider the set Mgy, =
{®(F(K)) : K € CUL}, thatis, Mg consists of Mobius bands and semi-planes generated by
Euclidean circles and lines in C, respectively.

Theorem 8. The set M(F,(C)) acts transitively on M¢y, that is, if K1, K» € Meyz, then there exists
S € M(F(C)) such that 5(K;) = K.

Proof. Let K; and K, be two elements in Mc .. Let {z1,w1}, {22, w2} be two different points in K
and let {uq,v1}, {up, v2} be two different points in Ky, then z1,wq, 2y, wy are in the same Euclidean
circle or in the same line K; in C, that generates the Mobius strip or the semi-plane K}, and the same
holds for uj,v1, up, v2, they are in the same Euclidean circle or in the same line K; in C, that generates
the Mdbius strip or the semi-plane K.

Notice that since {z1, w1 }, {z2, wy } are different, then there are at least three different complex numbers
in the set A = {z1, w1, 2, wp}, and the same happens in the set B = {u1,v1,up, v }. By Proposition
2 there is a unique Mobius transformation S that sends the three different points in A into the three
different points in B. Since three points suffice to determine a circle or a line, then S(K;) = K, thus
S(K;) = K; and the result follows. [

The next result characterize the sets in M¢ . using cross ratio.

Corollary 7. Let K be an element in Mc_,> and let {zg,wy} be a point in K. Then K = {{z,w} :
(z0,wo; 2, w) € RU {eo}}.

Proof. First, observe that R is a line in C. The set K is generated by an Euclidean circle or a line K in
C. Let T be the Mobius transformation such that T(K) = R U {co}, then if {z,w} € K it follows that
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T(zp), T(wyp), T(z), T(w) € RU{co}. By Theorem 2, (zo, wo;z,w) = (T(z0), T(wo); T(z), T(w)) and
the result follows. [

4.2. Inversion in Mobius strips

Let C be a circle in C given by the equation azz + bz + bz + ¢ = 0, witha,c € R, b € C. If a # 0, then C
is a Euclidean circle in the complex plane, and then there exists a transformation in the complex plane
that fixes C, such transformation is given by

bz +c
I == 3
C (Z ) az+b ( )
and it is called the inversion in C. This transformation fixes point-wise the set C, sends the center of C
to infinity and vice versa, and I¢ o I¢ is the identity map. Moreover, if T € Aut(C), then T(C) = C' is

another circle and we have that I = TI-T~ L.

Given an Euclidean circle C in C, we have that F,(C) is homeomorphic to a Mdbius strip, for which
we can define its inversion as follows. Let C be the corresponding Mobius band in the model M,
and let Ic : M — M), given by ® o I = I o ®, where I¢ : F,(C) — F(C) is given by Ic({z,w}) =
{Ic(2),Ic(w)}, for z,w # —b/a, and I ({z, —b/a}) = {Ic(z), —b/a}, where —b/a is the center of C.
We call the map I the inversion in the Mébius band C. Then we have the following properties for the
map TC, taking I¢ as in (3) from now on.

Proposition 9. The map I fixes point-wise the Mobius strip Cand I¢ o I¢ is the identity map in M.

Proof. As I¢ fixes the set C point-wise, it follows that I ({z, w}) = {Ic(z), Ic(w)} = {z,w} if z,w € C.
Thus ®({z, w}) = ® o Ic({z,w}) = Ic o ®({z,w}), we conclude that I fixes C point-wise.

The second statement follows from the fact that Ic o Ic({z,w}) = {Ic o Ic(2), Ic o Ic(w)} = {z,w},
for any z,w € C\ {—b/a}; and Ic o Ic({z,~b/a}) = Ic({Ic(z), —b/a}) = {Ic(Ic(z)),~b/a} =
{z,-b/a}. O

Remark 7. For any complex number z we know that I o Ic(z) = z, then it follows that {z, Io(z)} is
a fixed point for I¢, that is, I not only fixes the Mdbius strip C, but has infinitely many other fixed
points. Observe that these points correspond to infinite rays coming out from the manifold boundary
of the fixed Mobius strip; and these rays do not intersect. Therefore, the fixed set is homeomorphic to a
real projective plane minus a point. Moreover, every point {z, w} in F,(C) is a fixed point or a periodic
point of period 2 under Ic.

Now let us consider two Mabius bands C, C’ in Mz, so we know that there is a Mobius transforma-
tion T such that T(C) = C’, then the next result follows.

Proposition 10. The inversions I¢ and Ir of two Mébius bands C and C’ in Mc, respectively, are
conjugated in the subset M, \ ®(Vr U V) of My.

Proof. Just observe that there is a Mobius transformation T(z) = (az + b)/(cz + d) such that T(C) =
C'. Since I = TIcTY, it follows that I = Tolco T ! in F(C)\ (Vr U V4), and then after
conjugating with ® we obtain I = ToTco -1, in My \ @(Vr U VL), O

Note that we can extend the conjugation to V., since we must have that To Ic o T~'({z,a/c}) =
T(Ic({T1(2),~d/c}) = THI(T 1)), le(~d/0)}) = {T(Ic(T7(2)), Te(~d/e))} = (e (z), Te(~d/c))},
and then use the map ®. Notice that when C’ is a line we have that —d/c € C', then To Ic o
T'({za/c}) = {Ic(z),a/c}.
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In particular, consider the real line R, then for any Euclidean circle C, we can send C to RU {oo} by
a Mobius transformation T(z) = (az +b)/(cz + d), then the point —d/c € C since T(—d/c) = oo.
Thus Iz = TIcT~!, where Ig(z) = z. In F,(C) \ V/, we get that TolcoT =TIz, and TolcoT 1:
Vi = Vi, since Tolc o T-1({z,a/c}) = T(IcUT 1 (2),~d/c})) = T({Ic(T1(2)), Ie(~d/e)}) =
T({Ic(T(2)),—d/c}) = {T(Ic(T~Y(2))),a/c} = {2,a/c}, where Ic(—d/c) = —d/cas —d/c € C.
In this way, we have defined the conjugation in all F,(C) and then we can pass to M.

Theorem 9. For any C element in Mc, the inversion in C is conjugated to the map I : M — M),
given by TR(u, r,0) = (ii,r,—0),foru € R?,r > 0and § € S'.

Proof. Let T be the Mobius transformation such that T(C) = R, and we assume that C is an Euclidean
circle, the case when C is a line is similar. Since Iy = TI-T !, it follows that the map Ip=TolcoT!
is defined in F»(C) \ V4 as I ({z,w}) = {Ig(z), g (w)} = {Z,@}. Thus Iy = T o Ic o T~ ! is defined in

~

M, \ ®(V7), using the conjugation @ o Iy = I o ®, we obtain that

IN]

volp({z,w}) = @({z@}) = ((Z+@)/2, |z |, ¥ Ewmodn),

_ ((Z + ZT))/Z, HZ _ wH,eZi(farg (sz)(modn))),
is equal to Iy o ®({z,w}) = Ix((z + w)/2, ||z — wl|, 28 (z=w)M0dm)) 3ng the result follows in
M, \ @(Vr).
To complete the proof, observe that for points {z,a/c} € V], we get that

TR((Z + a/c)/Z, ||Z _ a/c||,e2i(arg (z—a/c)(modn)))

= ((z+a/c)/2,||z —a/c|, e¥(@rg (z=a/c)modm))

but since a,¢ € R, then ||z —a/c|| = ||z—a/c||, (z+a/c)/2 = (24 a/c)/2 and arg(z —a/c) =
—arg (Z —a/c), so we can conclude that for (u,7,0) € ® (V) it follows that Iy (u,7,60) = (1,7, —6), as
well. O

5. Conjugacy Classes in M(F,(C))
For A € C\ {0}, consider the maps U, (z) = Azif A # 1 and U;(z) = z + 1, otherwise; all these maps

are elements in Aut(C). Then, if T'is a non-identity element in Aut(C), then T is conjugate to U, for
some A € C\ {0}. In this section we will extend this result for maps in M(F,(C)), starting with the

case A = 1.

5.1. Parabolic Maps

Let T(z) = (az + b)/(cz + d) be a Mobius transformation with only one fixed point at zg, then T
is called a parabolic transformation and it is conjugated to the map U;(z) = z+ 1 = T;(z). Let S be
the Mobius transformation that conjugates T and Tj, remember that S(zg) = 0, s0 5(z) = t/(z — 20)
for some t € C\ 0. In order to see the conjugation in F,(C), we need to consider the singular cones of
T and S.

First, consider the singular cone of S, that is, Vs that coincide with the cone V;,, then S : Vs —
Vo is given by S({z,20}) = {S(2),0}. So the conjugation So T = Tj 0§ in V,, is given by S o
T({z,20}) = S({T(2),20}) = {8(T(z)),0} = T1({S(z),0}), then we defined T; in V; as T; ({z,0}) =
{z+1,0}. Similarly, in the singular cone V7 of T, we have that, S o T({z, —d/c}) = S({T(z),a/c}) =
{S(T(z)),S(a/c)}, and the last quantity we would like to be equal to T;({S(z), S(—d/c)}), then we
define Ty ({z,S(—d/c)}) = {z+1,5(a/c)} in Vs(—dse)-
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In any other cone V. C F(C), with z # zp,—d/c, we have that SoT = T;08S, in V2 \
{{z,20},{z,—d/c}}, thatis, T;({z,w}) = {z+1,w+1}. Using the relation ® o T} = T; o ®, we
can conjugate the action of T in F,(C) to the action of T in M.

Remark 8. In V|;, we obtain that

®oTi({z,0}) =d(({z+1,0}) = (z+1)/2, ||z + 1|, e?i(ars (z+1)(modn)))
Tio®({z,0}) = T1((z/2, ||z|, ¥ (ars (z)(modr[)))'

Remark 9. Meanwhile in Vg(_;,.), we get, setting w = S(—d/c) and v = S(a/c)

O(({z+1,0}) = ((z+1+0)/2, ||z +1— ||, @8 (z+1-0)(modm))y
= Tiod({zw}) = Ti((z +w)/2, ||z — wl|, (@ Ew)modm))

CDoTl({z,w})

Setting Mb = Mp \ @(Vp U Vs(—a/c)) we get the following result.

Theorem 10. Let W € M(F,(C)) be a map with only one fixed point, then W is conjugated to the map
Ty : M} — M, given by Ty (u,7,0) = (u+1,7,0), foru € R?, 7 > 0and 6 € S".

Proof. As W has only one fixed point in F,(C), then W = T for T(z) = (az +b)/(cz + d) a parabolic
map. Since T is conjugated to the map U;(z) = z + 1 = Ty(z), then the result follows by Proposition 4,
taking t = 1, since for any {z,w} ¢ Vo U V5_y/.), the map Ti({z,w}) = {z+1,w+1}. O

Corollary 8. The orbit of every point in F,(C) under a parabolic map in M(F,(C)) tends to the fixed
point of the map.

Proof. Let us start in Vp, since ® o T{’ ({z,0}) = Tf o ®({z,0}) by 8, it follows that

Thod({z,0}) = TI(z/2 |z, (@ms (@) modm)y
((z+n)/2, |z + n|), e (e (z+m) (modm)))

— 00, as n — oo,

then T'({z,0}) — oo, as n goes to infinity. Since SoT = Tj oS, then lim,_e T"({2,0}) =
limy e S~ (T(S({2,0}))) = S !(c0) = z. The argument for points in Vs(—a/c) and in F(C) \
Vo U Vs(_a/c) is the same, by Remark 9 and Theorem 10. [

5.2. Hyperbolic, Loxodromic and Elliptic Maps

Now, let T(z) = (az+b)/(cz + d) be a Mdbius transformation with two fixed points z; and z, then it
is conjugated to the map U, (z) = Az with A # 1, by means of a Mobius transformation S such that
S(z1) = 0 and S(zy) = oo, that is, we can take S(z) = (z —z1)/(z — z2). If |[A| # 1 and A > 0, then
T is called hyperbolic; otherwise T is called loxodromic; If |A| = 1, the map T is called elliptic. As
in the parabolic case, in order to find the map U, that is conjugated to T, we need to consider some
special subsets of F,(C) and some generalities about the conjugation in this setting before to analyze
the different cases.

Let us consider three special cones: the singular cone of T, Vr, and the cones V;,, V;,, where the
singular cone of S coincide with V;,. Observe that T: Vr — Vf, T: Voyy =V, fori=1,2,5: 'V, =V
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and S: V;, — V¢ = Vj. For points in V;, we would like to have that SoT({z,z1}) = S{T(2),z1}) =
{8(T(2)),0}) =UyoS({z,z1}) = l~l,\(;{5(z),0}),so~we define U, ({z,0}) = {Az,0}) in Vp. In the same
way, in V2, we need to happen that 5 o T({z,z2}) = S({T(2),2z2}) = {S(T(2)),1}) = UpoS({z,22}) =
U, ({S(z),1}), so we define U, ({z,1}) = {Az,1}) in V;. Finally, if we set w = S(—d/c) and v =
S(a/c), we have that in V; we must have that S o T({z, —d/c}) = S({T(z),a/c}) = {S(T(z)),v}) =
Uy o S({z,—d/c}) = Uy({S(z), w}), so we define U, ({z, w}) = {Az,0}) in Vg_g/q).-

For z # z1,2p,—d/c, we have that SoT = U, o S, that is, lfIA({z,w}) = {Az, Aw} in any cone
Vo\ {{z,21},{z, 22}, {z,—d/c}} C F,(C). Using the relation ® o U, = U, o ®, we can conjugate the
action of T in F,(C) to the action of U, in M.

Proceeding as in Remarks 8 and 9, we obtain the conjugation in the corresponding domains. In Vj, we

obtain that
ol ({z,0}) =(({Az,0}) = (Az/2, ||Az||, il (A2)(modn)) @
= U, 0 ®({2,0}) = Uy (2/2, |z, e¥(ar8 (2)(modm))),
Now in V; we get that
®olly({z,1}) =@(({Az,1}) = (Az+1)/2, ||Az - 1|, (g A== 1)(mod))) )
= Uy o@({z1}) = Ua((z +1)/2, |}z ~ 1 s z-D(medm)),
Meanwhile in Vg(_ /), we get, setting w = S(—d/c) and v = S(a/c)
Dol,({z,w}) =®(({Az,0}) = ((Az+0)/2,||Az — v||,ezj(arg()‘Z’z’)(m(’d”))) ©)

= Uy o ®d({z,w}) = Ta((z +w)/2, ||z — w]||, e¥(arg G—w)(modn))).

5.2.1. Hyperbolic and Loxodromic Maps

Let T(z) = (az+b)/(cz + d) be a Mgbius transformation conjugated to U (z) = Az with [A| # 1.
Let Mi = Mp \ @(VpU VU Vs(—d/c)), then we get the following result.

Theorem 11. Let T € M(F,(C)) be a map such that T is a hyperbolic map. Then T is conjugated to
the map U, : M — M given by Uy (z,a,t) = (Az,|A|a,e2@87t), forz € RZ,a > 0and t € SL.

Proof. From the conjugation ® o u, = lAI,\ o &, we obtain that

(U({zw)) = B({AzA0}) = (\z+ w)/2, |4z — A om0 romodm))
(A(Z + w)/2, ‘/\| HZ _ wH’eZi(arg/\Jrarg (sz))(modn)))
= Uy(@({zw}) = Ur((z+w)/2, |z — ]| Hms e modm)),

from where it follows the claim. O

By the action of ljl)\ in My, that is, by Equations (4)—(6) and by Theorem 11, as well as Remark 2, we
conclude the following result.

Corollary 9. The orbit of every point in F,(C) under a hyperbolic or loxodromic map in M(F,(C))
tends to one of the fixed point of the map and away from the other fixed point.

As in the classical theory of Mobius transformation, we can make a geometric distinction between
hyperbolic and loxodromic elements in M(F,(C)). Remember that T, a hyperbolic Mobius transforma-
tion, always has an invariant disc in the complex plane, that is, it leaves its boundary invariant, so the
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corresponding map T must leave a Mobius strip invariant; meanwhile a loxodromic element can not
leave any Mobius band invariant.

5.2.2. Elliptic Maps

Let T(z) = (az+b)/(cz + d) be a Mobius transformation with two fixed points z; and z,
conjugated to the map U, (z) = Az with A # 1 but [A[ = 1. Let M§ = Mp \ @(Vo U V1 U Vg(_4/()) we
get the following result.

Theorem 12. Let T € M(F,(C)) be a map such that T is an elliptic map. Then T is conjugated to the
map ﬁ,\ : M§ — M, given by UA(Z, a,t) = (Az,a,e*?8 M), forz € R?,a > 0and t € S’

Proof. The proof follows the same lines as before, from the relation ® o u, = lAl;\ o @, we obtain that

o(U({zw})) = ®({Az,Aw}) = (A(z +w)/2, | Az — Aw|), e2(@ars (Az—rw)(modm))y
()\(Z + w)/Z’ HZ _ w||’e2i(arg/\+arg (z—w))(modn)))
= W@z w}) = Un((z+w)/2, ||z - w|, @B E-wmodm))

from where it follows the claim. [

By the final part of the Remark 4 and the previous Theorem, for an elliptic map T, the set T" ({z,w})
has no limit, for any point {z, w} € F,(C), withz,w ¢ {z1,22}.

The period or order of a Mobius transformation T is the least positive integer m such that T = [ is
the identity map, if such an integer exists. So we have the next consequence of Theorem 12.

Corollary 10. If T is a non-identity Mébius map with finite period #, then the map U, : Mg — M,
conjugated to T satisfies that ﬁj\‘ is the identity map in M.

Proof. Since T has finite period, then it is an elliptic map conjugated to the map U, (z) = Az, with
A #1,|A| = 1and A" = 1. By Theorem 12, T is conjugated to the map U, : M§ — M, given by
lAI/\(z,a, t) = (Az,a,e*¥8 ), forz € R?,a > 0and t € S!. Then

~

Ui (z,a,t) = (A"z,a, e2i”arg/\t) = (z,a,t),

which proves the claim. O

We can say a little more about elliptic maps T(z) = (az + b)/(cz + d) with finite period. Since
T" is the identity map, we have that T({z,w}) = {T"(z), T"(w)} = {zw}, for {z,w} ¢ Vr.
Recall that T(—d/c) = oo, T(e0) = a/c and then T"’z(a/c) = —d/c since T" is the identity.
Hence, for {z, —d/c} € Vr, we have that T({z, —d/c}) = {T(z),a/c}, and then T""1({z, —d/c}) =
{T"1(z), —d/c}, therefore T"({z, —d/c}) = {z,a/c}. In order to get the identity we need to iterate
the map n(n — 1) times to get the identity, that is, T"("~V)({z, —~d/c}) = {2z, —d/c}. Thus, for any
elliptic Mobius map with finite period, we get a map in F,(C) that also has finite period, which gives
us an example of a finite subgroup in M(F,(C)).

6. Conclusions and Future Work

For any Mobius transformation T(z) = (az + b)/(cz + d), we have defined a map T : F,(C)* —
F>(C)* in two steps. For the singular cone of T, Vi = {z, —d/c}, we have defined T : Vr — V7. as
T({z,—d/c}) = {T(z),a/c} and for F,(C) \ V1, T({z,w}) = {T(z), T(w)}, and then we extended to
oo sending oo — a/c and —d/c — co. In this way, T is a bijection, and it is a homeomorphism if we
restrict the map to F,(C) \ Vr and to Vy. The lack of continuity in between is not an impediment
to extend several classical result of the set of Mobius transformations in the complex plane to the
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~

set of maps M(F(C)) = {T : F(C)* — FK(C)* : T € Aut(C)} such as properties of transitivity,
decomposition in generators and conjugation to a simple maps.

As a future work we would like to explore the group properties of the set M(F,(C)) and to extend the
action of PSL(2, R) in H to F, (H).
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