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Abstract: In this paper, we defined as an extension, the Möbius transformations in the space F2(C), the
second symmetric product of the complex plane C with its natural topology induced by the Hausdorff
metric. That is, consider T a Möbius transformation of C and define the map T̃({z, w}) = {T(z), T(w)}
in F2(C). We prove general properties for these maps in F2(C), with focus in the structure of the
generators, the properties of transitivity, and the geometry of the conjugacy classes.
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1. Introduction
In this paper, we translate the properties of the Möbius transformations of the Riemann sphere to
the second symmetric product of the complex plane C. That is, let T be a Möbius map, consider two
complex numbers z, w, and consider the sets of the form {T(z), T(w)}, in the space F2(C) = {A ⊂
C : |A| ≤ 2, A ̸= ∅}, called the second symmetric product of the complex plane C, which we will
topologize through the Hausdorff metric, see [2] and [6].

To study the geometry of these transformations in this space, we introduced a model for F2(C), that
is, there is a homeomorphism from F2(C) to a more suitable space in which we can have a better
understanding of the geometry induced by {z, w} 7→ {T(z), T(w)}, for any Möbius transformation T.
The homeomorphic model of F2(C) is the space

M2 = (R3
+ × S1)/s,

where R3
+ = {(x, y, z) ∈ R3 : z ≥ 0} and s is a relation on elements of the form (x, y, 0, t) ∈ R3 × S1,

see [9].

Given T(z) = (az + b)/(cz + d) a Möbius transformation in the Riemann sphere, we will define in
the second symmetric space F2(C) = {s = {z, w} : z, w ∈ C}, the function T̃ : F2(C) → F2(C) given
by T̃(s) = T̃({z, w}) = {T(z), T(w)}, whenever T is defined in z and w. Recall that for z = −d/c,
T(−d/c) = ∞, so we need to change the definition of T̃ when z or w are equal to −d/c; this change
will produce discontinuities at some points, but on the other hand the change will be compatible to
have some results similar to properties inherent in the set of Möbius transformations.

In Section 3, we define the set M(F2(C)) = {T̃ : T ∈ Aut(Ĉ)}, where each T̃ is taken with its
corresponding domain and image. We look closely how the domains of these maps change depending
on T and we describe the action of these maps via the usual generators of the group of Möbius
transformations, describing in Propositions 2–5 the action of the generators in the space M2.
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Some transitivity properties of the usual Möbius transformations can be translated on transitivity
features of the set M(F2(C)) in F2(C). In Proposition 8, we prove that M(F2(C)) is 2-transitive in F2(C)
if the corresponding points have the same cross ratio.

Now, if we consider the set of Euclidean circles and the family of lines in C, the corresponding objects
in M2 are Möbius strips and semi-planes, respectively. Proving first that M(F2(C)) preserves these
sets of Möbius strips and semi-planes, we show in Theorem 8, that M(F2(C)) acts transitively in those
sets. We also define maps that preserve the Möbius strips generated by Euclidean circles in C and
prove some properties of these maps.

As any Möbius transformation T, different to the identity, is conjugated to a map of the form Uλ(z) = λz
with λ ∈ C \ {0, 1} or to the map U1(z) = z + 1, in Section 5, we extend this result for maps in the set
M(F2(C)) in Theorems 10, 11, and 12, depending if T is parabolic, hyperbolic or elliptic, respectively.
Finally, we show how the corresponding maps to Uλ in M2 act.

2. Preliminaries
In this section, we will briefly present the definitions and results about Möbius transformations

and the second symmetric product of C, that we will need in the rest of the paper.

2.1. Möbius Transformations

First, let us describe some basic facts about Möbius transformations, for more details, see [1] and [4].
Let Ĉ = C∪ {∞} be the Riemann sphere. We will denote by Aut(Ĉ) the set of all automorphisms of Ĉ,
that is, functions of the form

T(z) =
az + b
cz + d

,

with a, b, c, d complex numbers such that ad − bc ̸= 0. The transformations w = T(z) are known as
linear fractional or Möbius transformations. These transformations form a group under composition,
where the inverse map of T is given by

T−1(z) =
dz − b
−cz + a

.

Moreover, as T does not determine the coefficients a, b, c, d uniquely, since λa, λb, λc, λd correspond to
the same transformation T, for λ ∈ C \ {0}, the group Aut(Ĉ) is isomorphic to the projective general
linear group and to the projective special linear group, that is, Aut(Ĉ) ∼= PGL(2,C) = PSL(2,C), thus
from now on we can assume that ad − bc = 1.

There are four special type of Möbius transformations that generate Aut(Ĉ):
i) The map Rθ(z) = eiθz (θ ∈ R) is a rotation of the Riemann sphere Ĉ by an angle θ.
ii) The transformation J(z) = 1/z, that interchange 0 and ∞.
iii) The map Sr(z) = rz (r ∈ R, r > 0) fixes 0 and ∞, and acts in the plane C as a similarity transforma-
tion.
iv) The transformation Tt(z) = z + t (t ∈ C) fixes ∞ and acts as a translation in the complex plane.

One of the important properties of the group Aut(Ĉ) is that maps circles in Ĉ to circles in Ĉ. In order
to be more precise, the circles in Ĉ are the usual Euclidean circles and the straight lines in C (which
can be thought as circles through infinity).

Theorem 1. If C is a circle in Ĉ and if T ∈ Aut(Ĉ), then T(C) is a circle in Ĉ.

The group Aut(Ĉ) also has several properties about transitivity, the following are the ones we will use
in this paper.
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Theorem 2. If (z1, z2, z3) and (w1, w2, w3) are triples of distinct points in Ĉ, then there is a unique T ∈
Aut(Ĉ) such that T(zj) = wj, for j = 1, 2, 3.

Corollary 1. If T ∈ Aut(Ĉ) and T fixes three distinct points of Ĉ, then T is the identity map.

Theorem 3. If C and C′ are circles in Ĉ, then there exists some T ∈ Aut(Ĉ) such that T(C) = C′.

In general Aut(Ĉ) is not 4-transitive, but if two 4-tuple of distinct points have the same cross ratio,
there is some Möbius transformation that send one 4-tuple into the other. Recall that the cross ratio of
four complex numbers is defined as λ = (z0, z1; z2, z3) =

(z0−z1)(z2−z3)
(z1−z3)(z3−z0)

with the convention of taking
limits if some zj = ∞.

Theorem 4. Let (z0, z1, z2, z3) and (w0, w1, w2, w3) be 4-tuples of distinct elements of Ĉ. Then there
exists some T ∈ Aut(Ĉ) with T(zj) = wj, j = 0, 1, 2, 3 if and only if the two 4-tuples have the same
cross ratio.

Consider a circle C in Ĉ given by the equation azz̄ + bz + b̄z̄ + c = 0, with a, c ∈ R, b ∈ C. If a ̸= 0,
then C is a Euclidean circle in the complex plane, and then there exists a transformation in the complex
plane that fixes C. This transformation is given by

IC(z) = − b̄z̄ + c
az̄ + b

and it is called the inversion in C. Moreover, if T ∈ Aut(Ĉ), then T(C) = C′ is another circle, then we
have that IC′ = TICT−1.

To study the geometry of the Möbius transformations, there is a classification in conjugacy classes
according to the number of fixed points and to the corresponding trace of the matrix associated in
PSL(2,C) to every map in Aut(Ĉ). The next results summarize this classification.

Theorem 5. Let T(z) = (az + b)/(cz + d), with ad − bc = 1. If (a + d)2 ̸= 4, then T has two fixed
points in Ĉ; if (a + d)2 = 4 and T is not the identity map, then T has one fixed point in Ĉ.

For λ ∈ C \ {0}, consider the maps Uλ(z) = λz if λ ̸= 1 and U1(z) = z + 1. We will say that two maps
T and S are conjugated if there exists another transformation V such that T = V−1 ◦ S ◦ V.

Theorem 6. Let T be a non-identity element in Aut(Ĉ), then there exists some λ ∈ C \ {0} such that T
is conjugate to Uλ in Aut(Ĉ).

Remark 1. When λ = 1, the map T has only one fixed point z0 and it is conjugated to U1(z) by a
Möbius transformation S that sends z0 to ∞. Since limn→∞ Un

1 (z) = ∞, then any z ∈ C is moved by Tn

towards z0 as n goes to infinity. In this case T is called parabolic.

Remark 2. If T in not parabolic, then it has two fixed points z1 and z2 and is conjugated to Uλ with
λ ∈ C \ {0, 1}, that fixes 0 and ∞, by means of a Möbius transformation S such that S(z1) = 0 and
S(z2) = ∞. If |λ| < 1, limn→∞ Un

λ(z) = 0 for all z ̸= ∞ and hence limn→∞ Tn(z) = z1 for all z ̸= z2. In
the same way if |λ| > 1, then limn→∞ Tn(z) = z2 for all z ̸= z1 (the two cases for λ are basically the
same since we just replace λ by 1/λ). We conclude that if |λ| ̸= 1, all points z ̸= z1, z2 are moved by T
away from one of these fixed points towards the other. If λ > 0, T is called hyperbolic, and loxodromic

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 January 2025 doi:10.20944/preprints202501.2019.v1

https://doi.org/10.20944/preprints202501.2019.v1


4 of 17

otherwise. If |λ| = 1, with λ ̸= 1, then Uλ is a rotation Rθ , so Un
λ(z) has not limit for z ̸= 0, ∞, hence

neither Tn(z) for z ̸= z1, z2. In this case T is called elliptic.

2.2. Second Symmetric Product of C
The second symmetric product of C, denoted by F2(C), is the set

F2(C) = {A ⊂ C : A has at most 2 elements and A is not empty};

The space F2(C) has the topology induced by the following metric

H(A, B) = inf{ε > 0 : A ⊂ Vε(B) and B ⊂ Vε(A)},

where Vε(A) = {x ∈ C : d(x, A) < ε}, d( , ) is the usual metric in C, and A and B are subsets of C.
Given X a compact subset of C, the space F2(X) can also be topologized through the Vietoris topology:
if U1, . . . , Um are nonempty subsets of C and m ∈ N, then define

⟨U1, . . . , Um⟩ =
{

A ⊂ X : A ̸= ∅, |A| ≤ 2, A ⊂
m⋃

j=1

Uj

and A ∩ Uj ̸= ∅, for all j ∈ {1, . . . , m}
}

;

a base for the Vietoris topology is given by the family of the sets ⟨U1, . . . , Um⟩, where m ∈ N and
U1, . . . , Um are open subsets of C. The Vietoris topology and the topology induced by the Hausdorff
metric coincide in F2(C).

Let X be a connected and compact subspace of C. It is known that F2(X) is a continuum itself [7,
Corollary 1.8.8]. In [2] it is proven that, for I = [0, 1], F2(I) is homeomorphic to a 2-cell. In [6], it is
proven that for the 1-sphere S1, F2(S1) is homeomorphic to a Möbius strip.

2.3. A Model for F2(C)
To have a better understanding of the space F2(C), sometimes we will work in a model of F2(C), that is,
a continuous and bijective copy of F2(C). Let M2 be the space (R3

+ × S1)/s, where R3
+ = {(x, y, z) ∈

R3 : z ≥ 0}, S1 the unit circle and such that s is a relation defined by (x, y, 0, t) ∼ (x, y, 0, t′), for all
t, t′ ∈ S1.

Definition 1. Let Φ be the function Φ : F2(C) → M2 given by

Φ({a, b}) =


(

a+b
2 , ∥a − b∥, e2i(arg (a−b)(modπ))

)
, if a ̸= b;

(class [a, 0, t]), if a = b.

We observe that Φ is a well defined, bijective and bicontinuous function, with the corresponding
topologies. We will call M2 the model of F2(C).

Remark 3. Observe that given a point (u, a, t) ∈ M2, with u ∈ R2, a ≥ 0 and t ∈ S1, we can obtain
its preimage under Φ as follows: u must be the midpoint of two points zu and wu in the complex
plane such that ∥zu − wu∥ = a and e2iθ = t, where θ = arg (zu − wu), then zu and wu are points in
the circle with center u and radius a/2, such that the segment zuwu is a diameter of the circle. Hence,
zu = u + (a/2)eiπθ and wu = u − (a/2)eiπθ .
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In Figure 1, we can observe a representation of the model M2, for instance over any point t = a+b
2 , the

midpoint of a, b ∈ C, there is a cone V with vertex at t, so any two points z, w ∈ C with midpoint t has
a representation in V at height ∥z − w∥ and angle e2i(arg (z−w)(modπ)).

Figure 1. The model M2 for F2(C) .

Let {x, y} ∈ F2(C), observe that there exists a closed disk D, that contains x and y in its interior,
then ⟨D⟩ ∩ F2(C) is a neighborhood of {x, y} in F2(C). Given that F2(D) is a compact set, it follows
that F2(C) is a Hausdorff and a locally compact topological space, then it is possible to consider the
Alexandroff’s compactification, denoted by F2(C)∗. The point added is denoted by ∞ (observe that
this point will correspond to the pair of points {z, ∞} in F2(C), for each z ∈ C)). Note that in F2(C)
the sets {x, y} such that (x + y)/2 = constant are mapped by Φ to a open topological disk, hence the
Alexandroff’s compactification of such a set will be homeomorphic to S2. Moreover, observe that the
singletons together with the point ∞ in F2(C)∗ is homeomorphic to S2.

3. Extension of the Möbius Transformations to the Space F2(C)
Let T(z) = (az + b)/(cz + d) be a Möbius transformation in the Riemann sphere, let us define in the
second symmetric space F2(C) = {a = {z, w} : z, w ∈ C}, the function T̃ given by

T̃(a) = T̃({z, w}) = {T(z), T(w)}, z, w ̸= −d/c. (1)

In particular, observe that if z = w, then T̃(a) = T̃({z}) = {T(z)}, hence the geometry of T in C will
be reflected in F2(C). As T has an inverse map T−1(z) = (dz − b)/(−cz + a), it is easy to see that in
some appropriate domains T̃−1 ◦ T̃ and T̃ ◦ T̃−1 are the identity maps.

Observe that we can use the map Φ : F2(C) → M2, to translate the definition of T all the way to M2,
that is, we can conjugate the map T̃ in some appropriate domain, via Φ, to obtain a map T̂ in M2. So,
from now on by convention, for any object X in C, we will use X̃ for the object in F2(C) generated by
X, and X̂ for the corresponding object in the model M2.

Recall that a Möbius transformation T has at most two fixed points, and let us assume that T does not
fix the point at infinity in the Riemann sphere. First, suppose that T has only one fixed point z0, then
the map T̃ has also z0 as the only fixed point; meanwhile, if T fixes two distinct points z0 and z1, then
T̃ has three fixed points: {z0}, {z1}, {z0, z1}.

As the map T is defined in Ĉ, we need to consider the image and pre-image of the point at infinity,
that is, T(∞) = a/c and T(−d/c) = ∞. Let us define the sets DT = F2(C) \ {{z,−d/c} : z ∈ C} and
RT = F2(C) \ {{z, a/c} : z ∈ C}, then we have our first result for the map T̃.
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Lemma 1. For any T ∈ Aut(Ĉ), the map T̃ : DT → RT is an homeomorphism.

Proof. Assume that T(z) = (az + b)/(cz + d). First, let us prove that T̃ is a bijection. Let
{z1, w1} and {z2, w2} be two points in DT , such that T̃({z1, w1}) = T̃({z2, w2}), then it follows
that {T(z1), T(w1)} = {T(z2), T(w2)}. If z1 = w1, then {T(z1), T(w1)} = {T(z1)} = {T(z2), T(w2)}
for which T(z1) = T(z2) = T(w2), therefore z1 = z2 = w2; if now z1 ̸= w1, then z2 ̸= w2, and
then T(z1) = T(z2) or T(z1) = T(w2); in the former case, T(w1) = T(w2), and in the latter case,
T(z2) = T(w1). In any case, we have that {z1, w1} = {z2, w2}, since T is a one-to-one map, for which
it follows the injectivity of T̃.
It is clear that for any pair of point z, w ∈ C, neither equal to a/c, there are points u, v ∈ Ĉ such
that T(u) = z and T(v) = w, by the surjectivity of T, and therefore T̃ is onto. Now, observe that
T̃−1 : RT → DT is the inverse map of T̃.
Finally, to establish the continuity of the map T̃ observe that T̃({z}) = {T(z)} and T̃({z, w}) =

{T(z), T(w)}, so by the continuity of T and the characterization of the open sets in the Hausdorff
topology on F2(C) we have the result.

Observe that if c = 0, then the map T̃ can be defined in all F2(C) as in relation (1), and it is an
homeomorphism there. For a general map T(z) = (az + b)/(cz + d), we can think of the action of
T̃ in F2(C) as follows. For any w ∈ C, we define the cone of vertex at w as the set Vw = {{z, w} :
z ∈ C} ⊂ F2(C). Let VT

w = Vw \ {−d/c, w} and VT∗
w = Vw \ {a/c, w}. Then T̃ acts sending the cone

VT
w with vertex at w ̸= −d/c one-to-one to the cone VT∗

T(w) with vertex at T(w), since T̃({z, w}) =

({T(z), T(w)}) ∈ VT(w), for any {z, w} ∈ VT
w . In fact, using the same arguments in the proof of Lemma

1, we have the following.

Lemma 2. Let T(z) = (az + b)/(cz + d) be an element in Aut(Ĉ), then the map T̃ : VT
w → VT∗

T(w) is an
homeomorphism, for any w ̸= −d/c.

There are some special cones that need to be considered in the definition of T̃. Suppose that z0 is a
fixed point of T, then the cone VT

z0
is invariant under T̃, that is, T̃ is a homeomorphism from VT

z0
to VT∗

z0
;

when T has two fixed points z1 and z2, the two cones Vz1 and Vz2 intersect each other in the other fixed
point {z1, z2} of T̃.

So far, we have defined T̃ only in DT (and then T̂ only in Φ(DT)), so we need to extend the definition
of T̃. Observe that the set where we have not defined T̃ yet is precisely the cone VT := V−d/c =

{{z,−d/c} : z ∈ C}, which will be called the singular cone for T, and the other cone V′
T = {{z, a/c} :

z ∈ C}, will be called the singular value cone for T. For {z,−d/c} ∈ VT , define the function T̃ as follows

T̃({z,−d/c}) = {T(z), a/c} ∈ V′
T . (2)

Remark 4. Since T is bijective map in C, we have that T̃ is a bijection from VT \ {−d/c} to V′
T \ {a/c}.

Also, observe that in the cone Φ(VT), the map T̂ sends continuously circles at some particular height
to topological circles in Φ(V′

T). Moreover T̂ send points in the cone Φ(VT) close to the vertex −d/c to
points in the cone Φ(V′

T) close to infinity, and points in VT close to infinity to points in V′
T close to the

vertex a/c.

In this way, we have defined T̃ in VT \ {−d/c}, and therefore in all F2(C) \ {−d/c} since T̃ was already
defined in DT . Moreover T̃(VT \ {−d/c}) = V′

T \ {a/c}. Thus, we have extended the definition of T̃
to F2(C) \ {−d/c} with image F2(C) \ {a/c}, so in a natural way we can extend the definition of T̃ to
F2(C)∗, sending {−d/c} → ∞ and ∞ → a/c. Using the notation that we have been using so far, we
have the following result.
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Theorem 7. Let T(z) = (az + b)/(cz + d) be a Möbius transformation in the Riemann sphere. Then
the map T̃ : F2(C)∗ → F2(C)∗ is a bijective map, continuous in DT and continuous in VT .

Proof. By Lemma 1, the map T̃ is an homeomorphism in DT . As T̃(VT \ {−d/c}) = V′
T \ {a/c} in a

bijective way by Equation (2), and {−d/c} → ∞ and ∞ → a/c, we conclude that T̃ is a bijection. By
Remark 4, we see that T̃ is continuous within VT .

Remark 5. Since by Lemma 1, the map T̃ : DT → RT is an homeomorphism, any extension of
the map in VT must has image V′

T . If we consider a sequence of points sn = {zn, wn} ∈ DT that
converges to a point {z,−d/c} in VT and consider the open set Vε({z,−d/c}) in F2(C) that contains
the point {z,−d/c}, for some ϵ > 0, then there exists N ∈ N such that if n ≥ N, it follows that
sn = {zn, wn} ∈ Vε({z,−d/c}). This means that for all n ≥ N, |zn − z| < ϵ and |wn − (−d/c)| < ϵ

or |wn − z| < ϵ and |zn − (−d/c)| < ϵ, hence, there are sequences of complex points {an}, {bn} such
that an → z, bn → −d/c, as n → ∞ and {an, bn} = {zn, wn} for n ≥ N. As T is a continuous map, it
follows that T(bn) → T(−d/c) = ∞, therefore we can not have continuity for the map T̃ when we
approach VT from DT .

Remark 6. It seems that we can use another compactification of F2(C), different from Alexandroff’s
compactification, in such a way the map T̃ is an homeomorphism in this new space, we just add a cone
with vertex at infinity compatible with the topology of F2(C); however we will lost the advantages to
have the model for F2(C) such as to be able to have a geometric description of the maps T̂. Another
possible direction is to work in the second symmetric product of the Riemann sphere F2(Ĉ), but we
again lost the possible model to describe the geometry of the maps T̃.

Nevertheless, the map T̃ : F2(C)∗ → F2(C)∗ is a bijective map, so we can define the set of trans-
formations M(F2(C)) = {T̃ : F2(C)∗ → F2(C)∗ : T ∈ Aut(Ĉ)}, where T̃ is defined as before,
hence the set M(F2(C)) is a group with the composition of maps as its group operation. In fact, if
T(z) = (az + b)/(cz + d) and S(z) = (a′z + b′)/(c′z + d′) are two Möbius transformations, then we
have that S̃ ◦ T̃({z, w}) = {S(T(z)), S(T(w))} is well defined in all F2(C). We will explore more about
the structure of this group in a future manuscript.

3.1. Generators of M(F2(C))
We will show now that all the maps in M(F2(C)) are compositions of the following four maps:

i) R̃θ({z, w}) = {eiθz, eiθw}, θ ∈ R;
ii) J̃({z, w}) = {1/z, 1/w}, for zw ̸= 0;
iii) S̃r({z, w}) = {rz, rw}, r ∈ R, r > 0;
iv) T̃t({z, w}) = {z + t, w + t}, t ∈ C.

Observe that R̃θ , S̃r and T̃t are homeomorphisms defined in all F2(C), meanwhile J̃ is defined in
all points {z, w} ∈ F2(C), with zw ̸= 0, but we can extend the definition of J̃ in its singular cone
VJ = {{z, 0} : z ∈ C} as in relation (2), that is, J̃({z, 0}) = {J(z), 0}, for z ̸= 0, and observe that for J
its singular cone coincide with its singular value cone.

Proposition 1. Let S be a map in M(F2(C)), then S can be expressed as a composition in some order of
the maps R̃θ , S̃r, T̃t and J̃.

Proposition Let T ∈ Aut(Ĉ) such that T̃ = S, and assume that T(z) = (az + b)/(cz + d). If c = 0,
we know that T = Tt ◦ Sr ◦ Rθ , where b/d = t y a/d = reiθ , hence it is straightforward to see that
S = T̃t ◦ S̃r ◦ R̃θ .
Now, when c ̸= 0, T(z) = (Tt ◦ J)(−c2z− cd), where t = a/c. By the first part of the proof, −c2z− cd =

V(z) = Tt′ ◦ Sr ◦ Rθ , for some t′ ∈ C, r > 0 and θ ∈ R. Therefore S = T̃t ◦ J̃ ◦ Ṽ. Note that the
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previous decomposition of S = T̃ even works for the singular cone VT , take {z,−d/c} ∈ VT , then
T̃t ◦ J̃ ◦ Ṽ({z,−d/c}) = T̃t( J̃({V(z), V(−d/c)})) = T̃t( J̃({V(z), 0})) = T̃t({J(V(z)), 0}) = {J(V(z))+
a/c, a/c} = {T(z), a/c}.
Let us analyze the geometry of these generators maps in the space F2(C). In order to do that, let us
work in the model M2 of F2(C). Since Φ : F2(C) → M2 is an homeomorphism we can conjugate any
map F̃ : F2(C) → F2(C) to a map F̂ : M2 → M2, that is, Φ ◦ F̃ = F̂ ◦ Φ, extending the definition to
infinity in a natural way. In particular, the elements of M(F2(C)) can be thought acting in M2, so in
some cases we will not make distinction if the context is clear.

Let us start with the map R̃θ({z, w}) = {eiθz, eiθw}, θ ∈ R, and the analysis for the other maps will be
similar. In this case, the conjugation gives a map R̂θ such that Φ ◦ R̃θ = R̂θ ◦Φ; the left side composition
satisfies that

Φ(R̃θ({z, w}) = Φ({eiθz, eiθw}) =
(

eiθ(z + w)/2, ∥z − w∥, e2i(arg eiθ(z−w)(modπ))
)

,

and the right side composition is equal to

R̂θ(Φ({z, w})) = R̂θ

(
(z + w)/2, ∥z − w∥, e2i(arg (z−w)(modπ))

)
,

then the following result follows directly.

Proposition 2. The map R̂θ : M2 → M2 acts in the following way R̂θ(u, l, t) = (eiθu, l, e2iθt), for u ∈ R2,
l ≥ 0 and t ∈ S1.

As a result we can determine the geometry of the map R̃θ in F2(C), stated as follows.

Corollary 2. The map R̃θ acts conjugated as a double rotation with the same angle, in fact, this double
rotation moves a point around a topological torus.

Proof. Just observe that since R̃θ is conjugated to R̂θ , and by Proposition ??, R̂θ(u, l, t) = (eiθu, l, e2iθt),
the orbit of the point (u, r, t) stays at the same height and the first and third coordinates are rotated by
the same angle, so the result follows.

In the same way, we can determine the action of corresponding maps S̃r and T̃t in the space M2.

Proposition 3. The map Ŝr : M2 → M2 acts as follows, Ŝr(u, l, t) = (ru, rl, t), for u ∈ R2, l ≥ 0 and
t ∈ S1.

Proof. From the conjugation Φ ◦ S̃r = Ŝr ◦ Φ, we obtain that

Φ(S̃r({z, w})) = Φ({rz, rw}) = (r(z + w)/2, ∥rz − rw∥, e2i(arg (rz−rw)(modπ)))

= (r(z + w)/2, r∥z − w∥, e2i(arg r+arg (z−w))(modπ)))

= Ŝr(Φ({z, w}) = Ŝr((z + w)/2, ∥z − w∥, e2i(arg (z−w)(modπ))),

from where it follows the claim, observing that arg r = 0.

Using the definition in [8] of a topological attractor, we have the following.

Corollary 3. The point O ∈ M2 with coordinates (0, 0, 0, 1) is a fixed point of Ŝr, which is a global
topological attractor for the dynamics of Ŝr, when r < 1.
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Proof. Remember that s is the relation defined by (x, y, 0, t) ∼ (x, y, 0, t′) for all t, t′, so all points
(0, 0, 0, t) can be identified to the point (0, 0, 0, 1). Now it is clear that O ∈ M2 is a fixed point of Ŝr. By
Proposition 3, the map Ŝr is defined as Ŝr(u, l, t) = (ru, rl, t), hence iterating this map, we obtain that
Ŝn

r (u, l, t) = (rnu, rnl, t), and since r < 1, we obtain that Ŝn
r (u, l, t) → (0, 0, 0, 1), as n → ∞.

Proposition 4. The map T̂t : M2 → M2 acts in the following way T̂t(u, l, θ) = (u + t, l, θ), for u ∈ R2,
l ≥ 0 and θ ∈ S1.

Proof. From the conjugation Φ ◦ T̂t = T̂t ◦ Φ, we obtain that

Φ(T̂t({z, w})) = Φ({z + t, w + t}) = (((z + w)/2) + t, ∥z − w∥, e2i(arg (z−w)(modπ)))

= T̂t(Φ({z, w}) = T̂t((z + w)/2, ∥z − w∥, e2i(arg (z−w)(modπ))),

from where it follows the claim.

The next result follows directly from Proposition ??.

Corollary 4. The orbit of every point in M2 under the map T̂t goes to infinity.

Finally, let us analyze the action of the map Ĵ in M2. Using the conjugation Φ ◦ J̃ = Ĵ ◦ Φ, we get, first
of all for zw ̸= 0, that

Φ ◦ J̃({z, w}) = Φ({1/z, 1/w})
= (1/2(1/z + 1/w), ∥1/z − 1/w∥, e2i(arg (1/z−1/w)(modπ)))

= ((z + w)/2) · (1/(zw)), ∥z − w∥/∥zw∥, e2i(arg ((w−z)/zw)(modπ))).

On the other hand, Ĵ ◦ Φ({z, w}) = Ĵ(((z + w)/2), ∥z − w∥, e2i(arg (z−w)(modπ))), hence Ĵ(u, l, t) =

(u/(zuwu), l/(∥zuwu∥), e−2i arg (zuwu)t), where u ∈ R2, l ≥ 0, t ∈ S1 and zu, wu are the complex
numbers that depends of u as in Remark 3.

In the cone VJ = {{z, 0} : z ∈ C} we get that

Φ ◦ J̃({z, 0}) = Φ({1/z, 0} = (1/(2z), ∥1/z∥, e2i arg (1/z)(modπ))

= Ĵ ◦ Φ({z, 0}) = Ĵ(z/2, ∥z∥, e2i(arg (z)(modπ))).

That is, Ĵ(u, 2∥u∥, t) = (1/4u, 1/(2∥u∥),−t), for u ∈ R2 and t = e2i(arg (2u)). In this way we can prove
the following.

Proposition 5. The map Ĵ : M2 → M2 satisfy that Ĵ ◦ Ĵ = IdM2 , the identity map in the model of F2(C).

Proof. For zw ̸= 0, we have that J̃ ◦ J̃({z, w}) = ({J2(z), J2(w)}) = ({z, w}), then as Ĵ ◦ Ĵ ◦Φ = Φ ◦ J̃ ◦
J̃, the result follows. In the cone VJ , just notice that J̃ ◦ J̃({z, 0}) = J̃({J(z), 0}) = J̃({1/z, 0}) = {z, 0},
conjugating with the map Φ we have the result.

4. Transitivity of M(F2(C))
In this section we will prove several results about transitivity in the space M(F2(C)). Let us start

with two triples of distinct points in C, that is, (z1, z2, z3) and (w1, w2, w3), then we can consider the
triples of distinct points in F2(C): ({z1, z2}, {z2, z3}, {z3, z1}) and ({w1, w2}, {w2, w3}, {w3, w1}). The
first instance of transitivity is the following.
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Proposition 6. If ({z1, z2}, {z2, z3}, {z3, z1}) and ({w1, w2}, {w2, w3}, {w3, w1}) are triples of distinct
points in F2(C), then there is a unique T̃ ∈ M(F2(C)) such that T̃({zi, zj}) = {wi, wj}, for all i, j ∈
{1, 2, 3}, with i ̸= j.

Proof. By Proposition 2, there is T ∈ Aut(Ĉ) such that T(zi) = wi, for i = 1, 2, 3, then T̃({zi, zj}) =
{wi, wj}, for all i, j ∈ {1, 2, 3}, with i ̸= j.
Suppose there is another element S̃ in M(F2(C)) such that S̃({zi, zj}) = {wi, wj}. Consider the image
of the first point, S̃({z1, z2}) = {S(z1), S(z2)} = {w1, w2}, then there are two cases. If S(z1) = w1, then
S(z2) = w2, and taking one of the other two points in F2(C), we see that S(z3) = w3. By Proposition
2, we have that S = T and then S̃ = T̃. In case that S(z1) = w2, then S(z2) = w1, but we have that
S̃({z2, z3}) = {S(z2), S(z3)} = {w2, w3} which is a contradiction since S(z2) = w1, this finish the
proof of the uniqueness of the map T̃.

Using the same argument as in the proof of the uniqueness in the previous result, we obtain the next
Corollary.

Corollary 5. If T̃ ∈ M(F2(C)) fixes three distinct point of the form {z1, z2}, {z2, z3}, {z3, z1}, then T̃ is
the identity map.

We can use again the 3-transitivity of Aut(Ĉ) and the arguments of the proof of Proposition 6 to prove
the following result.

Proposition 7. Consider two pairs of points {z0}, {z1, z2} and {w0}, {w1, w2} in F2(C) with z1 ̸= z2

and w1 ̸= w2, then there is a unique T̃ ∈ M(F2(C)) such that T̃({z0}) = {w0} and T̃({z1, z2}) =

{w1, w2}.

As a corollary we obtain that the Möbius transformations in F2(C) act transitively in the set of cones
V = {Va : Va = {{z, a} : z ∈ C}}.

Corollary 6. Let {z0} and {w0} be two singletons in F2(C). Then there exists T̃ ∈ M(F2(C)) such that
T̃(Vz0) = Vw0 , that is, M(F2(C)) is transitive in V .

Proof. Consider different points {z0, z1}, {z0, z2} ∈ Vz0 and {w0, w1}, {w0, w2} ∈ Vw0 , by the 3-
transitivity of Aut(Ĉ) there exists a transformation T(z) = (az + b)/(cz + d) such that T(zi) = wi

for i = 0, 1, 2. Hence T̃({z0}) = {w0}, T̃({z0, z1}) = {w0, w1} and T̃({z0, z2}) = {w0, w2}. Let {z0, z}
be a point in Vz0 , with z ̸= −d/c, then T̃({z0, z}) = {T(z0), T(z)} = {w0, T(z)} ∈ Vw0 ; for points
{z0,−d/c}, we get T̃({z0,−d/c}) = {T(z0), a/c} = {w0, a/c} ∈ Vw0 .

For general points in F2(C), we can prove 2-transitivity of the set M(F2(C)) if these points combined
have the same cross ratio.

Proposition 8. If ({z1, z2}, {z3, z4}) and ({w1, w2}, {w2, w3}) are pairs of distinct points in F2(C),
such that the cross ratio of (z1, z2, z3, z4) is equal to the cross ratio of (w1, w2, w2, w3), then there is
T̃ ∈ M(F2(C)) such that T̃({z1, z2}) = {w1, w2} and T̃({z3, z4}) = {w3, w4}.

Proof. By Proposition 2, there exists T ∈ Aut(Ĉ) such that T(zi) = wi, for i = 1, 2, 3, 4, then
T̃({z1, z2}) = {w1, w2} and T̃({z3, z4}) = {w3, w4}.
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4.1. Transitivity of Möbius Bands

Let us consider C the family of Euclidean circles in C and L the family of lines in C, remember
that Aut(Ĉ) sends C ∪ L in itself, in fact, the action is transitive there.

We have observed that F2(S1) is homeomorphic to a Möbius strip, then F2(C) is a Möbius band C̃,
for any C ∈ C. Moreover, passing to the model M2, we can see that Φ(C̃) = Ĉ is a Möbius band that
intersects the subset {(x, y, 0, 0) : (x, y, 0, 0) ∈ M2} of M2 exactly in C.

It is not difficult to see that F2(L) is homeomorphic to a semi-plane L̂ in the model M2, for any L ∈ L,
in fact, L̂ ∩ {(x, y, 0, 0) : (x, y, 0, 0) ∈ M2} = L.

Lemma 3. Let K be an element in C ∪L, then for any map S in M(F2(C)), the set S(K̃) is homeomorphic
to a Möbius strip or homeomorphic to a semi-plane in the model M2.

Proof. Let S be an element of M(F2(C)), then the corresponding map T ∈Aut(Ĉ) (that is, T̃ = S)
satisfies that T(K) is an Euclidean circle or a line in C. Assume first that K = C is an element of C, the
proof for the other case is similar. Passing to the model M2, consider the set T̂(Ĉ).
First, if T(C) is an Euclidean circle, then T̂(C) is a Möbius band. Since Φ ◦ T̃ = T̂ ◦ Φ and T̃({z, w}) =
{T(z), T(w)} ∈ T̃(C̃) = T̃(C), for any z, w ∈ C, it follows that T̂(Ĉ) = T̂(Φ(C̃)) = Φ(T̃(C̃)) =

Φ(T̃(C)) = T̂(C).
Now assume that T(C) is a line in C, this happens if T(z) = (az + b)/(cz + d) and the point −d/c is
a point on C. Remember that in this case T̃ : DT → RT , and T̃(VT \ {−d/c}) = V′

T \ {a/c}; then we
only consider the image of C′ = C \ {−d/c}, that is, T(C′) is a complete line since T(−d/c) = ∞. It

follows that T̂(C′) still is a whole semi-plane and once again, using that T̃(C̃′) = T̃(C′), we get that

T̂(Ĉ′) = T̂(C′), which conclude the proof.

Now we will prove transitivity for a family of Möbius strips in M2. Consider the set MC∪L =

{Φ(F2(K)) : K ∈ C ∪ L}, that is, MC∪L consists of Möbius bands and semi-planes generated by
Euclidean circles and lines in C, respectively.

Theorem 8. The set M(F2(C)) acts transitively on MC∪L, that is, if K̂1, K̂2 ∈ MC∪L, then there exists
S̃ ∈ M(F2(C)) such that Ŝ(K̂1) = K̂2.

Proof. Let K̂1 and K̂2 be two elements in MC∪L. Let {z1, w1}, {z2, w2} be two different points in K̃1

and let {u1, v1}, {u2, v2} be two different points in K̃2, then z1, w1, z2, w2 are in the same Euclidean
circle or in the same line K1 in C, that generates the Möbius strip or the semi-plane K̂1, and the same
holds for u1, v1, u2, v2, they are in the same Euclidean circle or in the same line K2 in C, that generates
the Möbius strip or the semi-plane K̂2.
Notice that since {z1, w1}, {z2, w2} are different, then there are at least three different complex numbers
in the set A = {z1, w1, z2, w2}, and the same happens in the set B = {u1, v1, u2, v2}. By Proposition
2 there is a unique Möbius transformation S that sends the three different points in A into the three
different points in B. Since three points suffice to determine a circle or a line, then S(K1) = K2, thus
S̃(K̃1) = K̃2 and the result follows.

The next result characterize the sets in MC∪L using cross ratio.

Corollary 7. Let K̂ be an element in MC∪L and let {z0, w0} be a point in K̃. Then K̃ = {{z, w} :
(z0, w0; z, w) ∈ R∪ {∞}}.

Proof. First, observe that R is a line in C. The set K̃ is generated by an Euclidean circle or a line K in
C. Let T be the Möbius transformation such that T(K) = R ∪ {∞}, then if {z, w} ∈ K̃ it follows that
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T(z0), T(w0), T(z), T(w) ∈ R ∪ {∞}. By Theorem 2, (z0, w0; z, w) = (T(z0), T(w0); T(z), T(w)) and
the result follows.

4.2. Inversion in Möbius strips

Let C be a circle in Ĉ given by the equation azz̄ + bz + b̄z̄ + c = 0, with a, c ∈ R, b ∈ C. If a ̸= 0, then C
is a Euclidean circle in the complex plane, and then there exists a transformation in the complex plane
that fixes C, such transformation is given by

IC(z) = − b̄z̄ + c
az̄ + b

, (3)

and it is called the inversion in C. This transformation fixes point-wise the set C, sends the center of C
to infinity and vice versa, and IC ◦ IC is the identity map. Moreover, if T ∈ Aut(Ĉ), then T(C) = C′ is
another circle and we have that IC′ = TICT−1.

Given an Euclidean circle C in C, we have that F2(C) is homeomorphic to a Möbius strip, for which
we can define its inversion as follows. Let Ĉ be the corresponding Möbius band in the model M2,
and let ÎC : M2 → M2 given by Φ ◦ ĨC = ÎC ◦ Φ, where ĨC : F2(C) → F2(C) is given by ĨC({z, w}) =
{IC(z), IC(w)}, for z, w ̸= −b̄/a, and ĨC({z,−b̄/a}) = {IC(z),−b̄/a}, where −b̄/a is the center of C.
We call the map ÎC the inversion in the Möbius band Ĉ. Then we have the following properties for the
map ÎC, taking IC as in (3) from now on.

Proposition 9. The map ÎC fixes point-wise the Möbius strip Ĉ and ÎC ◦ ÎC is the identity map in M2.

Proof. As IC fixes the set C point-wise, it follows that ĨC({z, w}) = {IC(z), IC(w)} = {z, w} if z, w ∈ C.
Thus Φ({z, w}) = Φ ◦ ĨC({z, w}) = ÎC ◦ Φ({z, w}), we conclude that ÎC fixes Ĉ point-wise.
The second statement follows from the fact that ĨC ◦ ĨC({z, w}) = {IC ◦ IC(z), IC ◦ IC(w)} = {z, w},
for any z, w ∈ C \ {−b̄/a}; and ĨC ◦ ĨC({z,−b̄/a}) = ĨC({IC(z),−b̄/a}) = {IC(IC(z)),−b̄/a} =

{z,−b̄/a}.

Remark 7. For any complex number z we know that IC ◦ IC(z) = z, then it follows that {z, IC(z)} is
a fixed point for ĨC, that is, ĨC not only fixes the Möbius strip C̃, but has infinitely many other fixed
points. Observe that these points correspond to infinite rays coming out from the manifold boundary
of the fixed Möbius strip; and these rays do not intersect. Therefore, the fixed set is homeomorphic to a
real projective plane minus a point. Moreover, every point {z, w} in F2(C) is a fixed point or a periodic
point of period 2 under ĨC.

Now let us consider two Möbius bands Ĉ, Ĉ′ in MC∪L, so we know that there is a Möbius transforma-
tion T such that T(C) = C′, then the next result follows.

Proposition 10. The inversions ÎC and ÎC′ of two Möbius bands Ĉ and Ĉ′ in MC∪L, respectively, are
conjugated in the subset M2 \ Φ(VT ∪ V′

T) of M2.

Proof. Just observe that there is a Möbius transformation T(z) = (az + b)/(cz + d) such that T(C) =
C′. Since IC′ = TICT−1, it follows that ĨC′ = T̃ ◦ ĨC ◦ T̃−1 in F2(C) \ (VT ∪ V′

T), and then after
conjugating with Φ we obtain ÎC′ = T̂ ◦ ÎC ◦ T̂−1, in M2 \ Φ(VT ∪ V′

T).

Note that we can extend the conjugation to V′
T , since we must have that T̃ ◦ ĨC ◦ T̃−1({z, a/c}) =

T̃( ĨC({T−1(z),−d/c})) = T̃({IC(T−1(z)), IC(−d/c)}) = {T(IC(T−1(z))), T(IC(−d/c))} = {IC′(z), T(IC(−d/c))},
and then use the map Φ. Notice that when C′ is a line we have that −d/c ∈ C′, then T̃ ◦ ĨC ◦
T̃−1({z, a/c}) = {IC′(z), a/c}.
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In particular, consider the real line R, then for any Euclidean circle C, we can send C to R ∪ {∞} by
a Möbius transformation T(z) = (az + b)/(cz + d), then the point −d/c ∈ C since T(−d/c) = ∞.
Thus IR = TICT−1, where IR(z) = z̄. In F2(C) \ V′

T , we get that T̃ ◦ ĨC ◦ T̃−1 = ĨR, and T̃ ◦ ĨC ◦ T̃−1 :
V′

T → V′
T , since T̃ ◦ ĨC ◦ T̃−1({z, a/c}) = T̃( ĨC({T−1(z),−d/c})) = T̃({IC(T−1(z)), IC(−d/c)}) =

T̃({IC(T−1(z)),−d/c}) = {T(IC(T−1(z))), a/c} = {z̄, a/c}, where IC(−d/c) = −d/c as −d/c ∈ C.
In this way, we have defined the conjugation in all F2(C) and then we can pass to M2.

Theorem 9. For any Ĉ element in MC∪L, the inversion in Ĉ is conjugated to the map ÎR : M2 → M2,
given by ÎR(u, r, θ) = (ū, r,−θ), for u ∈ R2, r ≥ 0 and θ ∈ S1.

Proof. Let T be the Möbius transformation such that T(C) = R, and we assume that C is an Euclidean
circle, the case when C is a line is similar. Since IR = TICT−1, it follows that the map ĨR = T̃ ◦ ĨC ◦ T̃−1

is defined in F2(C) \ V′
T as ĨR({z, w}) = {IR(z), IR(w)} = {z̄, w̄}. Thus ÎR = T̂ ◦ ÎC ◦ T̂−1 is defined in

M2 \ Φ(V′
T), using the conjugation Φ ◦ ĨR = ÎR ◦ Φ, we obtain that

Φ ◦ ĨR({z, w}) = Φ({z̄, w̄}) = ((z̄ + w̄)/2, ∥z̄ − w̄∥, e2i(arg (z̄−w̄)(modπ)))

= ((z̄ + w̄)/2, ∥z − w∥, e2i(− arg (z−w)(modπ))),

is equal to ÎR ◦ Φ({z, w}) = ÎR((z + w)/2, ∥z − w∥, e2i(arg (z−w)(modπ))), and the result follows in
M2 \ Φ(V′

T).
To complete the proof, observe that for points {z, a/c} ∈ V′

T , we get that

ÎR((z + a/c)/2, ∥z − a/c∥, e2i(arg (z−a/c)(modπ)))

= ((z̄ + a/c)/2, ∥z̄ − a/c∥, e2i(arg (z̄−a/c)(modπ))),

but since a, c ∈ R, then ∥z − a/c∥ = ∥z̄ − a/c∥, (z + a/c)/2 = (z̄ + a/c)/2 and arg (z − a/c) =

− arg (z̄ − a/c), so we can conclude that for (u, r, θ) ∈ Φ(V′
T) it follows that ÎR(u, r, θ) = (ū, r,−θ), as

well.

5. Conjugacy Classes in M(F2(C))
For λ ∈ C \ {0}, consider the maps Uλ(z) = λz if λ ̸= 1 and U1(z) = z + 1, otherwise; all these maps
are elements in Aut(Ĉ). Then, if T is a non-identity element in Aut(Ĉ), then T is conjugate to Uλ for
some λ ∈ C \ {0}. In this section we will extend this result for maps in M(F2(C)), starting with the
case λ = 1.

5.1. Parabolic Maps

Let T(z) = (az + b)/(cz + d) be a Möbius transformation with only one fixed point at z0, then T
is called a parabolic transformation and it is conjugated to the map U1(z) = z + 1 = T1(z). Let S be
the Möbius transformation that conjugates T and T1, remember that S(z0) = ∞, so S(z) = t/(z − z0)

for some t ∈ C \ 0. In order to see the conjugation in F2(C), we need to consider the singular cones of
T and S.

First, consider the singular cone of S, that is, VS that coincide with the cone Vz0 , then S̃ : VS →
V0 is given by S̃({z, z0}) = {S(z), 0}. So the conjugation S̃ ◦ T̃ = T̃1 ◦ S̃ in Vz0 is given by S̃ ◦
T̃({z, z0}) = S̃({T(z), z0}) = {S(T(z)), 0} = T̃1({S(z), 0}), then we defined T̃1 in V0 as T̃1({z, 0}) =
{z + 1, 0}. Similarly, in the singular cone VT of T, we have that, S̃ ◦ T̃({z,−d/c}) = S̃({T(z), a/c}) =
{S(T(z)), S(a/c)}, and the last quantity we would like to be equal to T̃1({S(z), S(−d/c)}), then we
define T̃1({z, S(−d/c)}) = {z + 1, S(a/c)} in VS(−d/c).
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In any other cone Vz ⊂ F2(C), with z ̸= z0,−d/c, we have that S̃ ◦ T̃ = T̃1 ◦ S̃, in Vz \
{{z, z0}, {z,−d/c}}, that is, T̃1({z, w}) = {z + 1, w + 1}. Using the relation Φ ◦ T̃1 = T̂1 ◦ Φ, we
can conjugate the action of T̃ in F2(C) to the action of T̂1 in M2.

Remark 8. In V0, we obtain that

Φ ◦ T̃1({z, 0}) = Φ(({z + 1, 0}) = ((z + 1)/2, ∥z + 1∥, e2i(arg (z+1)(modπ)))

= T̂1 ◦ Φ({z, 0}) = T̂1((z/2, ∥z∥, e2i(arg (z)(modπ))).

Remark 9. Meanwhile in VS(−d/c), we get, setting w = S(−d/c) and v = S(a/c)

Φ ◦ T̃1({z, w}) = Φ(({z + 1, v}) = ((z + 1 + v)/2, ∥z + 1 − v∥, e2i(arg (z+1−v)(modπ)))

= T̂1 ◦ Φ({z, w}) = T̂1((z + w)/2, ∥z − w∥, e2i(arg (z−w)(modπ))).

Setting Mp
2 = M2 \ Φ(V0 ∪ VS(−d/c)) we get the following result.

Theorem 10. Let W ∈ M(F2(C)) be a map with only one fixed point, then W is conjugated to the map
T̂1 : Mp

2 → M2 given by T̂1(u, r, θ) = (u + 1, r, θ), for u ∈ R2, r ≥ 0 and θ ∈ S1.

Proof. As W has only one fixed point in F2(C), then W = T̃ for T(z) = (az + b)/(cz + d) a parabolic
map. Since T is conjugated to the map U1(z) = z + 1 = T1(z), then the result follows by Proposition 4,
taking t = 1, since for any {z, w} /∈ V0 ∪ VS(−d/c), the map T̃1({z, w}) = {z + 1, w + 1}.

Corollary 8. The orbit of every point in F2(C) under a parabolic map in M(F2(C)) tends to the fixed
point of the map.

Proof. Let us start in V0, since Φ ◦ T̃n
1 ({z, 0}) = T̂n

1 ◦ Φ({z, 0}) by 8, it follows that

T̂n
1 ◦ Φ({z, 0}) = T̂n

1 ((z/2, ∥z∥, e2i(arg (z)(modπ)))

= ((z + n)/2, ∥z + n∥, e2i(arg (z+n)(modπ)))

→ ∞, as n → ∞,

then T̃n
1 ({z, 0}) → ∞, as n goes to infinity. Since S̃ ◦ T̃ = T̃1 ◦ S̃, then limn→∞ T̃n({z, 0}) =

limn→∞ S̃−1(T̃n
1 (S̃({z, 0}))) = S̃−1(∞) = z0. The argument for points in VS(−d/c) and in F2(C) \

V0 ∪ VS(−d/c) is the same, by Remark 9 and Theorem 10.

5.2. Hyperbolic, Loxodromic and Elliptic Maps

Now, let T(z) = (az + b)/(cz + d) be a Möbius transformation with two fixed points z1 and z2, then it
is conjugated to the map Uλ(z) = λz with λ ̸= 1, by means of a Möbius transformation S such that
S(z1) = 0 and S(z2) = ∞, that is, we can take S(z) = (z − z1)/(z − z2). If |λ| ̸= 1 and λ > 0, then
T is called hyperbolic; otherwise T is called loxodromic; If |λ| = 1, the map T is called elliptic. As
in the parabolic case, in order to find the map Ũλ that is conjugated to T̃, we need to consider some
special subsets of F2(C) and some generalities about the conjugation in this setting before to analyze
the different cases.

Let us consider three special cones: the singular cone of T, VT , and the cones Vz1 , Vz2 , where the
singular cone of S coincide with Vz2 . Observe that T̃ : VT → V′

T , T̃ : Vzi → Vzi , for i = 1, 2, S̃ : Vz1 → V0
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and S̃ : Vz2 → V′
S = V1. For points in Vz1 we would like to have that S̃ ◦ T̃({z, z1}) = S̃({T(z), z1}) =

{S(T(z)), 0}) = Ũλ ◦ S̃({z, z1}) = Ũλ({S(z), 0}), so we define Ũλ({z, 0}) = {λz, 0}) in V0. In the same
way, in Vz2 we need to happen that S̃ ◦ T̃({z, z2}) = S̃({T(z), z2}) = {S(T(z)), 1}) = Ũλ ◦ S̃({z, z2}) =
Ũλ({S(z), 1}), so we define Ũλ({z, 1}) = {λz, 1}) in V1. Finally, if we set w = S(−d/c) and v =

S(a/c), we have that in VT we must have that S̃ ◦ T̃({z,−d/c}) = S̃({T(z), a/c}) = {S(T(z)), v}) =
Ũλ ◦ S̃({z,−d/c}) = Ũλ({S(z), w}), so we define Ũλ({z, w}) = {λz, v}) in VS(−d/c).

For z ̸= z1, z2,−d/c, we have that S̃ ◦ T̃ = Ũλ ◦ S̃, that is, Ũλ({z, w}) = {λz, λw} in any cone
Vz \ {{z, z1}, {z, z2}, {z,−d/c}} ⊂ F2(C). Using the relation Φ ◦ Ũλ = Ûλ ◦ Φ, we can conjugate the
action of T̃ in F2(C) to the action of Ûλ in M2.

Proceeding as in Remarks 8 and 9, we obtain the conjugation in the corresponding domains. In V0, we
obtain that

Φ ◦ Ũλ({z, 0}) = Φ(({λz, 0}) = (λz/2, ∥λz∥, e2i(arg (λz)(modπ)))

= Ûλ ◦ Φ({z, 0}) = Ûλ(z/2, ∥z∥, e2i(arg (z)(modπ))).
(4)

Now in V1 we get that

Φ ◦ Ũλ({z, 1}) = Φ(({λz, 1}) = ((λz + 1)/2, ∥λz − 1∥, e2i(arg (λz−1)(modπ)))

= Ûλ ◦ Φ({z, 1}) = Ûλ((z + 1)/2, ∥z − 1∥, e2i(arg (z−1)(modπ))).
(5)

Meanwhile in VS(−d/c), we get, setting w = S(−d/c) and v = S(a/c)

Φ ◦ Ũλ({z, w}) = Φ(({λz, v}) = ((λz + v)/2, ∥λz − v∥, e2i(arg (λz−v)(modπ)))

= Ûλ ◦ Φ({z, w}) = T̂1((z + w)/2, ∥z − w∥, e2i(arg (z−w)(modπ))).
(6)

5.2.1. Hyperbolic and Loxodromic Maps

Let T(z) = (az + b)/(cz + d) be a Möbius transformation conjugated to Uλ(z) = λz with |λ| ̸= 1.
Let Mh

2 = M2 \ Φ(V0 ∪ V1 ∪ VS(−d/c)), then we get the following result.

Theorem 11. Let T̃ ∈ M(F2(C)) be a map such that T is a hyperbolic map. Then T̃ is conjugated to
the map Ûλ : Mh

2 → M2 given by Ûλ(z, a, t) = (λz, |λ|a, e2i arg λt), for z ∈ R2, a ≥ 0 and t ∈ S1.

Proof. From the conjugation Φ ◦ Ũλ = Ûλ ◦ Φ, we obtain that

Φ(Ũλ({z, w})) = Φ({λz, λw}) = (λ(z + w)/2, ∥λz − λw∥, e2i(arg (λz−λw)(modπ)))

= (λ(z + w)/2, |λ|∥z − w∥, e2i(arg λ+arg (z−w))(modπ)))

= Ûλ(Φ({z, w}) = Ûλ((z + w)/2, ∥z − w∥, e2i(arg (z−w)(modπ))),

from where it follows the claim.

By the action of Ûλ in M2, that is, by Equations (4)–(6) and by Theorem 11, as well as Remark 2, we
conclude the following result.

Corollary 9. The orbit of every point in F2(C) under a hyperbolic or loxodromic map in M(F2(C))
tends to one of the fixed point of the map and away from the other fixed point.

As in the classical theory of Möbius transformation, we can make a geometric distinction between
hyperbolic and loxodromic elements in M(F2(C)). Remember that T, a hyperbolic Möbius transforma-
tion, always has an invariant disc in the complex plane, that is, it leaves its boundary invariant, so the
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corresponding map T̃ must leave a Möbius strip invariant; meanwhile a loxodromic element can not
leave any Möbius band invariant.

5.2.2. Elliptic Maps

Let T(z) = (az + b)/(cz + d) be a Möbius transformation with two fixed points z1 and z2

conjugated to the map Uλ(z) = λz with λ ̸= 1 but |λ| = 1. Let Me
2 = M2 \ Φ(V0 ∪ V1 ∪ VS(−d/c)) we

get the following result.

Theorem 12. Let T̃ ∈ M(F2(C)) be a map such that T is an elliptic map. Then T̃ is conjugated to the
map Ûλ : Me

2 → M2 given by Ûλ(z, a, t) = (λz, a, e2i arg λt), for z ∈ R2, a ≥ 0 and t ∈ S1.

Proof. The proof follows the same lines as before, from the relation Φ ◦ Ũλ = Ûλ ◦ Φ, we obtain that

Φ(Ũλ({z, w})) = Φ({λz, λw}) = (λ(z + w)/2, ∥λz − λw∥, e2i(arg (λz−λw)(modπ)))

= (λ(z + w)/2, ∥z − w∥, e2i(arg λ+arg (z−w))(modπ)))

= Ûλ(Φ({z, w}) = Ûλ((z + w)/2, ∥z − w∥, e2i(arg (z−w)(modπ))),

from where it follows the claim.

By the final part of the Remark 4 and the previous Theorem, for an elliptic map T, the set T̃n({z, w})
has no limit, for any point {z, w} ∈ F2(C), with z, w /∈ {z1, z2}.

The period or order of a Möbius transformation T is the least positive integer m such that Tm = I is
the identity map, if such an integer exists. So we have the next consequence of Theorem 12.

Corollary 10. If T is a non-identity Möbius map with finite period n, then the map Ûλ : Me
2 → M2

conjugated to T̃ satisfies that Ûn
λ is the identity map in Me

2.

Proof. Since T has finite period, then it is an elliptic map conjugated to the map Uλ(z) = λz, with
λ ̸= 1, |λ| = 1 and λn = 1. By Theorem 12, T̃ is conjugated to the map Ûλ : Me

2 → M2 given by
Ûλ(z, a, t) = (λz, a, e2i arg λt), for z ∈ R2, a ≥ 0 and t ∈ S1. Then

Ûn
λ(z, a, t) = (λnz, a, e2in arg λt) = (z, a, t),

which proves the claim.

We can say a little more about elliptic maps T(z) = (az + b)/(cz + d) with finite period. Since
Tn is the identity map, we have that T̃({z, w}) = {Tn(z), Tn(w)} = {z, w}, for {z, w} /∈ VT .
Recall that T(−d/c) = ∞, T(∞) = a/c and then Tn−2(a/c) = −d/c since Tn is the identity.
Hence, for {z,−d/c} ∈ VT , we have that T̃({z,−d/c}) = {T(z), a/c}, and then T̃n−1({z,−d/c}) =
{Tn−1(z),−d/c}, therefore T̃n({z,−d/c}) = {z, a/c}. In order to get the identity we need to iterate
the map n(n − 1) times to get the identity, that is, T̃n(n−1)({z,−d/c}) = {z,−d/c}. Thus, for any
elliptic Möbius map with finite period, we get a map in F2(C) that also has finite period, which gives
us an example of a finite subgroup in M(F2(C)).

6. Conclusions and Future Work
For any Möbius transformation T(z) = (az + b)/(cz + d), we have defined a map T̃ : F2(C)∗ →

F2(C)∗ in two steps. For the singular cone of T, VT = {z,−d/c}, we have defined T̃ : VT → V′
T as

T̃({z,−d/c}) = {T(z), a/c} and for F2(C) \ VT , T̃({z, w}) = {T(z), T(w)}, and then we extended to
∞ sending ∞ → a/c and −d/c → ∞. In this way, T̃ is a bijection, and it is a homeomorphism if we
restrict the map to F2(C) \ VT and to VT . The lack of continuity in between is not an impediment
to extend several classical result of the set of Möbius transformations in the complex plane to the
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set of maps M(F2(C)) = {T̃ : F2(C)∗ → F2(C)∗ : T ∈ Aut(Ĉ)} such as properties of transitivity,
decomposition in generators and conjugation to a simple maps.

As a future work we would like to explore the group properties of the set M(F2(C)) and to extend the
action of PSL(2,R) in H to F2(H).
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