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Abstract 

Droughts are complex and recurring natural hazards that occur throughout the ecosystems and 

impact many sectors of society. Droughts have complex spatiotemporal behaviors, therefore 

monitoring them is a challenging task. Drought monitoring has mostly depended on climate-based 

indices and indicators, thus deemed useful in many scenarios. The purpose of this review is to explore 

classical and holistic drought indicators/indices for unravelling their usefulness and associated 

limitations. Given that they offer a broadened spatial perspective of drought conditions and 

fluctuations over large areas, climate-based drought index maps may be of limited use. Precise 

evaluations of drought are necessary for efficient monitoring and assessment of the condition. Here, 

this review examined more than 50 indices/indicators for their sensitivity to input data requirements, 

spatiotemporal scales, strengths, and weaknesses. Also, an analysis was carried out based on the 

previous studies to identify hotspots and show the dissimilarity in the results yielded by different 

indices/indicators. Typically, none of these indices is inclusive enough to provide a broad-gauge 

assessment and determine appropriate actions. New and enhanced geospatial intelligence-based 

drought indices and earth observations are needed to identify, classify, and communicate real-time 

drought-related phenomena, as well as offer an in-depth breakdown of the constraints and 

requirements of novel indicators and data difficulties.  

Keywords: droughts; climatic water deficit; aridity index; precipitation; evapotranspiration; yield 

loss 

 

1. Introduction 

A global increase in temperature and severe changes in precipitation have been observed due to 

anthropogenic greenhouse gas emissions (Solomon et al., 2009; Tan et al., 2023). The United Nations 

Office for Disaster Risk Reduction (UNDRR) identified drought as one of the largest global risks that 

could impact the world over the next decades (Erian et al., 2021). In some regions of the planet, there 

will be severe drought and heatwaves (Tripathy and Mishra, 2023). Droughts are among the most 

complex environmental effects, devastating natural hazards, and affect many different socio-

ecological systems (e.g., air, forests, aquatic systems, soils, and humans) (Vicente-Serrano et al., 2020). 

Droughts can affect the quality, structure, diversity, and functioning of agroecosystems (Kundel et 

al., 2020). Due to changing climate, shifting ocean and atmospheric dynamic patterns, expanding 

human water usage, and human influence on the environment, novel forms of drought are emerging 

locally, regionally, and globally. Prolonged droughts are increasing the likelihood of ecological 

transitions that have expensive externalities and significant repercussions for anthropoid 

communities (Crausbay et al., 2020). The natural pattern of droughts has been exacerbated by climate 

change, becoming more prevalent, prolonged, and catastrophic. This situation can get worse, 

increasing water stress in already affected regions.  

The World Economic Forum (WEF) reported that, the frequency and duration of droughts have 

risen by 29% since 2000 and more than 75% of the world could face drought by 2025 (WEF, 2022). 

Over the past four decades, weather, climate, and water hazards represented 50% of disasters and 
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45% of disaster-related fatalities, especially in developing economies. Droughts contributed to 15% 

of natural catastrophes but took the highest humanitarian toll, with roughly 650,000 deaths. From 

1998 to 2017, droughts triggered global economic losses of approximately USD 124 Bn (Crossman, 

2018). In 2022, more than 2.3 Bn people face water stress; almost 160 million children are exposed to 

severe and prolonged droughts. Besides, by 2050, droughts may affect over three-quarters of the 

world’s population, and an estimated 4.8-5.7 Bn people will remain in areas that are water-scarce for 

at least one month per year, up from 3.6 Bn now (Funk et al., 2019).  De facto, up to 216 million 

people could be forced to migrate by 2050, largely due to drought in combination with other factors 

including water scarcity, declining crop productivity, sea-level rise, and overpopulation (King-

Okumu et al., 2020).  

In the current nature dynamics of multiple shocks, accurate measurement of drought events has 

become a central task and problematic in terms of the measurement system and effective way to 

forecast long-term drought. According to Wilhite and Glantz (1985), there are a whole range of types 

of droughts (often distinguished) (Figure 1), but new categories are being defined (Crausbay et al., 

2020), including the following: 

  agricultural drought (farming) refers to the adverse impacts on farmland by factors such as 

rainfall shortages, soil water deficits, reduced groundwater, or dwindled reservoir levels required for 

irrigation (Jiang and Zhou, 2023; Orimoloye, 2022; Zhang et al., 2023)  

 hydrological drought (surface water) is based on the impact of rainfall deficits on the water 

supply such as stream flow, reservoir and lake levels, and groundwater table decline (Brunner et al., 

2023; Satoh et al., 2022; Van Loon, 2015),  

 socio-economic drought (ones which affect humans) occurs when the demand for economic 

good exceeds supply as a result of a weather-related shortfall in water (Lee et al., 2022; Liu et al., 2020; 

Mehran et al., 2015),  

 meteorological drought (weather) is typically defined on the basis of the extent of dryness (in 

comparison to some “normal” or average amount and the span of the dry period (Monjo et al., 2020; 

Torelló-Sentelles and Franzke, 2022),  

 ecological drought defined as "a prolonged and widespread deficit in naturally available 

water supplies — including changes in natural and managed hydrology — that create multiple 

stresses across natural-human systems" (Crausbay et al., 2017; McEvoy et al., 2018; Park et al., 2020).  

Drought indices are a crucial way to assess the extent of the problem. A thorough understanding 

of drought events helps to formulate strategic policies aimed at the effective management of water, 

land, and atmospheric systems. Using drought indices, drought types, intensity, duration, location, 

timing, and frequency of droughts can be evaluated quantitatively and used to plan for probable risk 

assessments (Nagarajan, 2010).  

Owing to the challenges associated with the current descriptions of drought, their evolution 

depends on the metrics or indicators that help define this occurrence. Consequently, to study 

drought, basic information about the climate and weather around a particular area is necessary to 

ascertain whether a drought event has occurred or is likely to occur in the future (Wilhite, 2016). A 

consistent regional climatological pattern could indicate that a drought is about to start in another 

part of the region. Appropriate planning may be a prospect for mitigating the impacts of credible 

drought in this case if it is presumed that a exceptional dry pattern occurs in the region (Svoboda and 

Fuchs, 2016). Monitoring drought conditions may be conducted by early warning systems that might 

be supportive of adequate preparation for any drought event (Faiz et al., 2021; Heim and Brewer, 

2012). Until now, there has been no widely agreed drought index among scholars, practitioners, and 

policymakers. There is a necessity of developing integrated composite drought indices and 

indicators. Hence, they will serve as a bridge between research and policy and enable policymakers 

to make informed judgments.  

Up to now, investigations that focused on the 50+ drought indicators and indices based on 

various approaches (i.e., meteorology, soil moisture, hydrology, remote sensing, and modeled or 

composite), revealed that none encompasses all aspects of drought events. The Integrated Drought 
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Management Programme (IDMP) declared that any, all, or none of the indicators/indices may be 

suitable for a particular application, based on user knowledge, needs, data availability, and computer 

resources available to implement them (Svoboda and Fuchs, 2016). On one hand, most of the indices 

solely depend on meteorological conditions while ignoring the social, economic, and environmental 

factors. Drought indices may not fully account for these non-meteorological causes. On the other 

hand, many drought indices focus on surface-level indicators but do not incorporate interfaces of 

several data (e.g., surface water dynamics, topography, soil properties, soil moisture, etc.) which is 

crucial for agriculture, water resources, and socio-ecological systems (Dehghani et al., 2022). It should 

be noted that drought indices are retrospective and often developed based on historical data or past 

drought conditions, a climate patterns shift, the effectiveness of these indices in predicting future 

droughts may decline, as well as challenging to plan for long-term drought resilience. Some of the 

indices may yield different results for the same area or time. This lack of consistency can make it 

challenging to compare and combine findings from different indices (Savenije, 2000). The above 

issues can stem to contradictory results, confusion, and inconsistency in monitoring efforts and, at 

the same time, mislead public opinion and decision-making process by creating a false sense of 

security or insecurity.  

Developing a better understanding of the changing expression and influences of drought across 

diverse ecosystems is one of contemporary foremost challenges. Coupling novel methodologies (i.e., 

machine learning, deep learning, artificial intelligence, etc.) with high-resolution datasets of drought 

metrics is essential for monitoring and quantifying the duration, frequency, severity, and spatial 

extent of droughts at global, regional, and particularly local scales. Drought indices are practical 

techniques to convert enormous volumes of data into quantitative facts that can be used in 

applications such as drought forecasts and declaration, contingency planning, and impact 

assessment. Therefore, urgent actions are essential to better comprehend and more effectively achieve 

drought risk to reduce the devastating toll on human livelihoods and ecosystems.  

In this work previous studies published from 1985 to 2025 were analyzed using VOS Viewer, a 

software tool for constructing and visualizing bibliometric networks (Perianes-Rodriguez et al., 

2016). From the resulting 2691 published articles, 121 were clustered and reviewed. Based on the 

analysis, literature regarding drought indices and indicators can be divided into 7 categories:  

objectives of drought indices;  spatiotemporal coverage;  data availability and interpretability  

sectoral focus;  complementarity and scientific validity;  applicability for early warning; and  

adaptation to climate change. Here, we compared 50 drought indices/indicators against 21 input 

parameters of comparison, revealing how these indicators/indices miss certain areas and how they 

can be used collectively to supplement their strengths and weaknesses. Out of 12 indicators, 6 are 

widely used, and 6 are promising as holistic indicators. A few drought hotspots have also been 

located to demonstrate how various circumstances can have distinct effects.  
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Figure 1. Timeline of drought incidence and effects for the most widely recognized kinds of drought. Almost all 

droughts are accompanied by a lack of precipitation or meteorological drought, but other types of droughts 

result from this lack. Meteorological drought consists of normal precipitation below 25%. Hydrological drought 

is characterized by prolonged meteorological drought and drying of reservoirs, lakes, streams and rivers, 

cessation of spring flows and fall in groundwater levels. While the agricultural drought is characterized by 

depletion of soil moisture during the growing season. A dry situation with 20% probability and rainfall 

deficiency of more than 25% in drought-prone areas.  Source: Author. 

2. Drought Indices and Indicators 

2.1. Classical Drought Indices and Indicators 

Classical drought indices have been developed to assess and monitor drought conditions based 

on meteorological and hydrological data that is summarized using mathematical expressions. These 

indices have been in use for several decades. The most commonly used indices were first defined by  

Wayne Palmer in 1960s (Palmer, 1965), McKee and his team in the late 1990s (McKee et al., 1993), and 

Thornthwaite in the mid-20th century (Thornthwaite, 1948). Most of these indices have addressed one 

or more aspects of drought events and quantifiable ways to assess drought conditions and their 

impacts while providing valuable information for understanding drought severity. Classical drought 

indices vary in their complexity, data requirements, and temporal scales. The choice of index depends 

on the specific application and the data availability for a particular region. While they provide 

valuable insights into drought conditions, it is crucial to consider their limitations and supplement 

their findings with other information, especially for complex multifaceted drought assessments. 

2.1.1 Palmer Drought Severity Index (PDSI) 
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The PDSI is one of the most influential, widely used, and recognized indices within scientific 

and meteorological communities (Lehner et al., 2017). In a hydrological accounting system, moisture 

demand (PE) and supply (P) are integrated over time (Mika et al., 2005), to assess and monitor long-

term regional drought conditions (typically 6-24 months). Its strengths are due to its long historical 

use, incorporation of multiple climate factors, standardization, long-term perspective (especially over 

low and middle latitudes), historical data utilization, integration of climatology, impact on water 

resources and agriculture, and scientific credibility (Dai, 2013). By using surface air temperature and 

a physical water balance model, PDSI considers the basic effect of global warming through potential 

evapotranspiration. Nonetheless, it also has some limitations including sensitivity to parameter 

settings and the assumption of stationarity in climate data, which may be challenged in the face of 

changing climate patterns.  

Recently, the PDSI was questioned for its inadequacy to predict droughts on temporal scales less 

than 12 months when monthly PDSI values were applied. It is, therefore, not to associate it with 

specific water resources such as runoff, snowpack, reservoir storage, and more using multi-timescale 

indices like the Standardized Precipitation Index (SPI) (Alley, 1984; Dai, 2011). A novel standardized 

Palmer drought index (SPDI) was established (Ma et al., 2014). Despite its limitations, the PDSI is 

known to be useful as a means of monitoring drought in terms of soil moisture and deciding the 

timing of agricultural drought contingency planning and measures (Zargar et al., 2011). A PDSI < – 4 

represents an extreme drought, while a PDSI value >4 represents very wet conditions. 

2.1.2. Standardized Precipitation Indices (SPIs) 

SPIs such as the Standardized Precipitation Index (SPI) or Standardized Precipitation and 

Evapotranspiration Index (SPEI) are frequently used around the world to evaluate drought severity 

across a continent or a larger region covering different meteorological regimes (Laimighofer and 

Laaha, 2022; Vicente-Serrano et al., 2010). The SPI measures the deviation of observed P from the 

long-term average and quantifies it in terms of standard deviations. The SPI provides information 

about the probability of a certain level of precipitation deficit over different time scales. It is available 

at various time scales, from short-term (e.g., 1 to 6 months) to long-term (e.g., 24 months or more) 

(McKee et al., 1993). Several studies have demonstrated the SPI's value in identifying droughts, and 

its basic and straightforward procedure has made it well-liked across a range of sectors. The SPI is 

calculated by first summing up monthly precipitation data over i-monthly accumulation periods, 

with i typically taking values of 1 to 12. However, in order to estimate the probability of no 

precipitation, the probabilities of the Weibull plotting position are calculated as follows:  

 {

𝑝(𝑥) = 𝑝0  + (1 − 𝑝0)  𝐹(𝑝0 > 0, 𝛼, 𝛽),         𝑥 > 0

𝑝(𝑥) =  
𝑛0𝑝−0+1

2(𝑛+1)
,                                            𝑥 = 0

             (1) 

with F being 𝐹(𝑝0 > 0, 𝛼, 𝛽) the gamma distribution with 𝛼 as the shape parameter and 𝛽 as the 

scale parameter. 𝑝0 is the probability of zero precipitation by 𝑝0 = 
𝑛0𝑝−0

(𝑛∗1)
 and 𝑛𝑝 = 0 is the number 

of zero precipitation events in the observation period. The drought categories vary from mild drought 

(0-0.99) to extreme drought ≤ –2 (Figure 2).  

The SPI values are not exact as they depend on several choices made by the user. Drought indices 

are subject to five different uncertainties including sample size, choice of distribution, observation 

period, parameter estimation, and Goodness-of-fit (GOF).  
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Figure 2. 9-month SPI global drought map. The Global Precipitation Centre (GPCC) monthly precipitation 

dataset from 1901-present was calculated from global station data. Source: GPCC. 

2.1.3. Thornthwaite Moisture Index (TMI) 

The TMI was developed by C.W. Thornthwaite (Thornthwaite, 1948), to categorize the climate 

conditions of different regions. This index estimates potential evapotranspiration and compares it to 

actual evapotranspiration, which can indicate moisture deficits. The TMI model is widely used 

because it is easy to use and only needs monthly average temperature and latitude (Karunarathne et 

al., 2016; Li and Sun, 2015). However, this model ignores the effects of air humidity, wind speed, and 

other factors, thus the value of ET is frequently underestimated (Zhao et al., 2019).  It is a 

dimensional index spanning from +100 to –100 depicting weather conditions from humid to arid 

(Figure 3). TMI is calculated by combining two indices: aridity index and humidity index. Based on 

a water balance calculation, these indices are determined by run-off or surplus and water deficit. The 

calculation method of TMI is given by Equation 2:  

𝑇𝑀𝐼 =

{
 

 (
𝑃

𝑃𝐸𝑇
− 1) , 𝑃 < 𝑃𝐸𝑇

(1 − 
𝑃

𝑃𝐸𝑇
) , 𝑃 > 𝑃𝐸𝑇

 0,        𝑃 = 𝑃𝐸𝑇 = 0                                          

                     (2) 

where TMI is the Thornthwaite moisture index, P is precipitation (mm), and PET is potential 

evapotranspiration (mm). The TMI is multiplied by 100 to create whole numbers (Grundstein, 2009). 
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Figure 3. The global Thornthwaite moisture regions. Source: Feddema (2005). 

2.1.4. Aridity Index (AI) 

The AI - characterizes the metric measure of the degree of dryness of the climate at a specific 

location. It is calculated by the ratio between precipitation (P) and potential evapotranspiration (PET) 

(Prăvălie and Bandoc, 2015; Qu et al., 2019; Standler., 2005). Aridity is commonly defined as the result 

of the interaction of evaporation, rainfall, and temperature (Thornthwaite, 1948). PET is an 

estimation of the atmosphere's "drying power" to evaporate water from land surfaces (e.g., from the 

soil and plant canopy) and via plant transpiration. Obviously, the anomaly water deficits may also 

occur over shorter periods, e.g., seasonally or monthly, which are called droughts depending on their 

intensity and duration.  Therefore, the AI provides the key material to assess the trends of aridity or 

humidity and characterize the drought. When AI becomes larger than normal in an area, the climate 

tends to suffer from drought and water resource shortages which negatively affects the food security 

and the livelihoods of the community (Hirwa et al., 2022; Li et al., 2017). 

The ET0 indicates the maximum amount of water  that can be evaporated from the soil and 

transpired from the vegetation of a specific surface, as a function of wind speed, solar radiation, vapor 

pressure, and temperature (Zhang et al., 2007). The atmospheric evaporative demand, expressed as 

ET0, is especially relevant in drought evaluations as an important factor in AI computation (Vicente-

Serrano et al., 2015). The results of analyzing the aridity trends differ in the magnitude of the AI and 

their spatial patterns as consequences of the difference in the forcing precipitation datasets employed 

and the model used to estimate ET0 and meteorological datasets used to calculate ET0. However, the 

strong differences in the magnitude of ET0 changes may be obtained using different methods to 

estimate ET0 (Donohue et al., 2010; Vicente-Serrano et al., 2014). Further, to hasten the uncertainties 

in aridity estimates and in the analysis of the AI versus the hydro-ecological factors, the regions where 

the mainstream of models concur in sign should be considered. However, note that the ensemble of 

climate models is not weighted, even though several models are from the same modeling institutions 

(Greve et al., 2019). 

The AI map (Figure 4) is based on data computed using the 30-year average of P/PET, where 𝑖 

denotes the ith year. 

𝐴𝐼 =  
∑ (

𝑃𝑖
𝑃𝐸𝑇𝑖

)30
𝑖=1

30
               (3) 
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Figure 4. Distribution of global drylands. Drylands are delineated based on the AI, humid (AI > 0.65), dry sub-

humid (0.50 < AI ≤ 0.65), semi-arid (0.20 < AI ≤ 0.50), arid (0.05 < AI ≤ 0.20), hyper-arid (AI < 0.05). AI values and 

corresponding climate classes developed by UNEP (1992). Mean global-Aridity_ET0 and global_ET0 datasets 

(Trabucco and Zomer, 2018). 

2.1.5. Rainfall Anomaly Index (RAI) 

The RAI was proposed by Van Rooy (1965). It incorporates and evaluates a ranking mechanism 

to assign dimensions to two anomalies for precipitation (i.e., positive and negative anomalies) (Raziei, 

2021). First, the precipitation information is presented in descending order. The ten greatest numbers 

are averaged to generate a positive anomaly limit, while the ten lowest values are averaged to form 

a negative anomaly limit. Therefore, RAI is a simpler index that measures the deviation of monthly 

or seasonal rainfall from the long-term average. RAI is relatively easy to compute, with one input 

(i.e., precipitation) that can be examined on monthly, seasonal, and annual intervals. One of its flaws 

is that it requires a sequentially complete dataset with missing value estimates. Changes throughout 

the year must be minor in comparison to temporal variations. Moreover, the RAI classification is 

similar to that used by Gibbs (1967) to partition precipitation values between ten deciles and is 

equally applicable to various lengths of drought, including flash droughts, meteorological droughts, 

deep soil moisture droughts, and hydrological droughts defined with RAI computed at different time 

scales.  

The study of Olukayode Oladipo (1985) revealed that the differences between RAI and the more 

complicated indices of Palmer and Bhakme-Mooley were negligible. It is useful for monitoring short-

term drought conditions. The standardization follows the unity-based feature scaling (Khansalari et 

al., 2018) to asymmetrically distribute the original anomalies between the predefined limits (−3 and 

+ 3). For positive anomalies (i.e., 𝑃𝑖 − 𝑃̅ greater than 0), the prefix is positive (i.e., 3) and 𝑀̅ is the 

mean of the 10 highest precipitation values on track; for negative anomalies (i.e., 𝑃𝑖 − 𝑃̅ < 0), the 

prefix is negative (i.e., −3) and the mean of 10 lowest measurements can be utilized (Keyantash and 

Dracup, 2002). In contrast, a plethora  studies revealed that the RAI (Equation 4) can perform well 

in humid to moderate climates of the world where monthly precipitation distributed relatively 

regularly throughout the year, and the associated distribution is less skewed (Hänsel et al., 2016; 

Loukas et al., 2003).  

However, determining 𝑀̅ from the ten largest (smallest) precipitation values appear arbitrary. 

The thresholds are computed using Equation 4, as described by  Salehnia et al. (2017). 
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𝑅𝐴𝐼 =  ±3 [
𝑃𝑖−𝑃̅

𝑀̅−𝑃̅
]                 (4) 

where 𝑃𝑖  is the sequence of measured precipitation at the time 𝑖 , 𝑃̅  is the long-term average 

precipitation (mm), 𝑀̅ is average of ten highest (extrema) values of 𝑃𝑖 for the positive anomaly and 

the mean of the 10 lowest values of  𝑃𝑖 for the negative anomaly. The prefix ±3  is used to limit 

the deviations' lower and upper boundaries. The RAI ranging from extremely dry (RAI ≤ −3) to 

extremely wet (RAI ≥ 3).  

2.1.6. Crop Moisture Index (CMI) 

CMI is designed expressly for assessing the impact of drought on crop conditions. It takes into 

account both precipitation and temperature data to evaluate soil moisture levels (Isard et al., 1995).  

The CMI, which varies quickly from week to week, might provide the short-term or current condition 

of primarily agricultural drought or moisture surplus. The CMI was developed based on PDSI 

(Juhasz and Kornfield, 1978). It is calculated by subtracting the difference between potential 

evaporation and moisture, to determine any deficit. Input parameters (i.e., weekly mean temperature, 

weekly mean precipitation, and the previous week’s CMI value. The CMI values vary from 

excessively wet (+3 and above) to severely dry (-3 or less) (Zarafshani et al., 2016). Nonetheless, the 

CMI is limited to use only in the growing season; it cannot determine the long-term period of drought.    

2.2. Holistic Indices and Indicators 

Holistic drought indices are more comprehensive tools that attempt to provide a more complete 

picture of drought conditions by considering multiple factors and impacts beyond just 

meteorological and hydrological data. These indices take into account the broader socioeconomic and 

environmental consequences of drought. Due to their complexity, they may require a variety of data 

inputs. Besides, comprehensive indicators offer a more integrated view of the overall drought 

situation. The holistic drought indicators are particularly valuable for decision-makers, actors, and 

stakeholders who need a more complete understanding of the impacts of drought on society, the 

environment, and the economy. They can help guide policy decisions, resource allocation, and 

drought management strategies by providing a more comprehensive view of the complex nature of 

drought events. However, they often require extensive data and resources for their implementation 

and may be more challenging to use in regions with limited data availability or monitoring 

infrastructure. 

2.2.1. U.S. Drought Monitor (USDM) 

The USDM was conceived in 1999, and is produced through a joint effort of the National 

Drought Mitigation Center, U.S. Department of Agriculture (USDA), National Oceanic and 

Atmospheric Administration (NOAA), and local experts. It combines data from various sources 

across the hydrological cycle (i.e., meteorological, hydrological, and agricultural information), to 

provide a holistic view of drought conditions in the United States (Svoboda et al., 2002). The USDM 

also considers water supply, ecosystems, and society (Leeper et al., 2022). The USDM categories are 

classified based on drought indicator percentiles from “no drought or abnormal dryness” to 

“exceptional drought” corresponding to 31-100 and 0-2, respectively. For instance, abnormally dry 

corresponds to 20-30% chance for a drought to occur in ranges from 20 to 30 while for exceptional 

drought it is less than 2% (Pendergrass et al., 2020). Most of the maps drawn using USDM refer to 

NOAA/NCEI (2023).  

Additionally, USDM's uniqueness includes: (i) being the first nationwide unifying drought 

monitoring of multiple entities; (ii) receiving local bystanders’ observation, for instance, more than 

425 local observers such as state climatologists, and National Weather Staff, (iii) simple and effective, 

the classification system for droughts is easy to understand for public; (iv) timely, it is a weekly 

product which illustrates drought conditions and impacts promptly (Hatami Bahman Beiglou et al., 
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2021). The precipitation-deficit-driven (PDD) and heat-wave-driven (HWD definitions have no 

positive correlation with the USDM definition (Osman et al., 2021). While the USDM offers real-time 

maps of drought spatial extent, unlike several other drought indices, it lacks a straightforward 

method for analyzing drought over time. Since 2000, as the USDM has only been in circulation, its 

value is constrained when a lengthy historical backdrop is required. 

2.2.2. Drought Severity and Coverage Index (DSCI)  

An index known as the DSCI was created to improve the quantitative capabilities of the USDM 

in order to better assess spatial coverage and intensity combined and enable better comparisons 

between drought occurrences for places or between locations. In order to transform categorical 

USDM drought levels into single continuous aggregated number for a particular area, the DSCI was 

created as an experimental technique. The five USDM drought classes are added simultaneously to 

generate the DSCI (Akyuz, 2017; Smith et al., 2020). Month-to-month changes in the DSCI are used 

to inform the rate at which drought can improve or worsen in different months of the year. To 

calculate, there are two ways: 1) use cumulative drought monitor data, and 2) add the percentages 

for D0 through D4 for a given week. To compute the DSCI using a weighted average, a weight 

between 1 and 5 is assigned to each USDM category (D0–D4), and this weight is subsequently 

multiplied by the categorical percent area for the drought category, and these totals are summed 

together (Equation 5). Possible cumulative values of the DSCI are from 0 (i.e., none of the areas is 

abnormally dry or in drought) to 500 (i.e., area in exceptional drought). This results in a DSCI value 

that has a continuous scale of 0–500.  

𝐷𝑆𝐶𝐼 = 1(𝐷0) + 2(𝐷1) + 3(𝐷2) + 4(𝐷3) + 5(𝐷4)          (5) 

where the continuous DSCI (USDM) values are 0–99 (None), 100–199 (D0), 200–299 (D1):  Moderate 

Drought, 300–399 (D2): Severe Drought, 400–499 (D3), and 500 (D4). 

Two advantages can result from converting the percent of an area in each USDM drought 

category into the DSCI: (1) it provides a single numerical value describing current drought extent and 

intensity and (2) it allows for drought to be quantified over time. DSCI is a new tool that increases 

the capacity of the USDM for further drought monitoring and analysis (Johnson et al., 2020). 

2.2.3. Agricultural Drought Risk Index (ADRI) 

ADRI is designed to assess the risk and vulnerability of agriculture to drought by combining 

meteorological information on soil moisture, crop types, and irrigation. It uses indicators such as 

Hazard, Exposure, Sensitivity, and Adaptive capacity (Equation 6). Vulnerability indicates the 

function of exposure, sensitivity, and adaptive capacity (Equation 7). In this case, high drought 

vulnerability when the exposure to drought risks is high, the sensitivity of the environment is high 

and adaptive capacity is low. All the three parameters are highly interconnected (Carrão et al., 2016). 

The ADRI was developed using a conceptual framework that was applied to Kazakhstan and South 

Korea (Kim et al., 2021).  

𝐷𝑅 = 𝐻 ∗ 𝐸 ∗ 𝑉                                 (6) 

𝑉 = 𝑆/𝐴                (7) 

where 𝐷𝑅 is the disaster risk, 𝐻 is the hazard, 𝐸 is exposure, 𝑉 is vulnerability, 𝑆 is sensitivity, 

and 𝐴 is adaptive capacity. After all, the indicators are then normalized in terms of a common 

baseline using the min-max normalization method. The indicators then can be combined in each risk 

category by assessing equal weights (Moss et al., 2000). The final index can be computed with the 

equally weighted hazard, exposure, and vulnerability components. This enables the evaluation of 

each category independently, increasing understanding of the strengths and weaknesses of each 

component of the risk index in each region (Iglesias et al., 2009).  
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Figure 5. Distribution of global drylands Global ADRI map. Source: Meza et al. (2020). 

Practically, there are limitations related to the frequency of updates and the unavailability of 

data at the required resolution (data quality). Even if the datasets are available, the accuracy thereof 

does not always meet the requirements (Aubrecht et al., 2013).  The quality of available input data 

in terms of spatial resolution and reliability is an important factor in disaster risk assessments. While 

most environmental indicators rely on quantitative measures and spatial statistics, socio-economic 

indicators introduce a certain amount of uncertainty and subjectivity (Ozceylan and Coskun, 2012). 

The ADRI can contribute to addressing risk, and prioritizing risk areas at reasonable scale leading to 

effective decisions and policymaking for risk reduction related to drought events. 

2.2.4. Hydrological Drought Index (HDI) 

HDI evaluates drought conditions from a hydrological perspective, incorporating streamflow, 

soil moisture, and groundwater data to assess the impact on water resources and ecosystems 

(Tokarczyk, 2013). This index is often used in broader assessments of drought conditions, especially 

in areas where water resources are critical for purposes, such as agriculture, industry, and ecosystem 

health (Tareke and Awoke, 2022). The HDI relies on accurate and up-to-date hydrological data, which 

can be a limitation in areas with sparse monitoring networks or data gaps. Its calculations can be 

complex, involving various hydrological components and statistical methods, which may require 

expertise to use effectively. Like many drought indices, HDI may not provide significant lead time 

for drought prediction, making it challenging for proactive drought management.  

Therefore, calculations for this index involve a combination of different hydrological 

parameters, and the methodology can be more complex. It often involves the use of drought indices 

like SPI or PDSI. For instance, the HDI is grounded on discharge data (HDI1), and simulation (HDI2) 

(Hadiani et al., 2022). The drought index is a comparison of the deficit to the watershed area as 

indicated in the following Equation 8. 

𝐻𝐷𝐼 =  
𝐷𝑒𝑓𝑖𝑐𝑖𝑡 (𝑚3/𝑠𝑒𝑐)

𝐴𝑟𝑒𝑎𝑙 (𝑘𝑚2)
               (8) 

HDI is the hydrological drought index, the deficit is the difference between X0 and Xt (ith daily), X0 I 

the dry threshold, and Xt is the ith daily periods of discharge. Drought severity involves the analysis 

of the duration and deficit in dry conditions. 
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2.2.5. Socioeconomic Drought Index (SEDI) 

The SEDI is defined as a measure of the drought conditions-related impacts on the supply and 

demand of economic goods. SEDI combines meteorological and economic data to gauge the economic 

impacts of drought. It considers factors like agricultural losses, employment, and food prices. Four 

categories are distinguished: water deficit, water security and support, economic damage and impact, 

and environmental and sanitation effects (Lee et al., 2022). SEDI also has four values, that is, 1, 2, 3, 

and 4, corresponding to the four levels of socioeconomic drought, that is, SEDI = 1 for low level, SEDI 

= 2 for moderate level, SEDI = 3 for severe level, and SEDI = 4 for extreme level (Liu et al., 2020). As 

for the SEDI, it ignores the influence of reservoir water storage on future socioeconomic drought (Guo 

et al., 2019). It can provide early warnings about the potential economic and social consequences of 

drought, enabling proactive measures to mitigate the impact.  

 

Figure 6. Trends in drought event magnitude between 1980 and 2020, based on SEDI. Source: Vicente-Serrano 

et al. (2022). 

2.2.6. Composite Drought Index (CDI) 

The CDI is a comprehensive drought monitoring tool that combines multiple drought indicators 

or indices to provide a more holistic view of drought conditions (Beccari, 2016). The CDI is designed 

to capture various aspects of drought, such as agricultural, hydrological, meteorological, and 

socioeconomic components on a seasonal time scale, and thus blend them into a single, integrated 

index in a more robust picture. When developing the CDI, water balance conditions are considered 

along with actual evapotranspiration and meteorological data (Sepulcre-Canto et al., 2012). It 

generally uses remote sensing and modeled data inputs to reflect anomalies in precipitation, 

vegetation greenness, soil moisture, and evapotranspiration (Faiz et al., 2022). Using CDI, agricultural 

drought-prone areas are detected by the CDI, as well as areas where drought-affected vegetation 

already exists; and regions that are returning to normal following a drought spell. The CDI is 

conceptualized by a cause-effect theory  - taking drought as cascading process, where a precipitation 

shortage (i.e., watch stage) turns into a soil water deficit (i.e., warning stage), then causes stress on 

vegetation growth and production (i.e., alert stage) (Cammalleri et al., 2021). 

A new CDI was established using the integration of potential and actual evapotranspiration, 

climatic water balance, and precipitation. The CDI provides a concise overview of agricultural 

drought evolution that can be used to communicate with both specialized actors and policymakers 
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(Vogt et al., 2018). This index is presented as below (Equation 9), but may have multiple forms 

depending on the types of input parameters considered:  

  𝐶𝐷𝐼 =  𝑥 ∗ 𝑅𝐴𝐼𝑚  + 𝑦 ∗ 𝑊𝐵𝐴𝐼 + 𝑧 ∗  
𝑃−𝐴𝐸𝑇

𝑃̅−𝐴𝐸𝑇̅̅ ̅̅ ̅̅
           (9) 

where 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 are coefficients for mod rainfall anomaly index (𝑅𝐴𝐼𝑚), water balance anomaly 

index (WBAI), actual evapotranspiration (AET), and moisture index (MI) =
𝑃−𝐴𝐸𝑇

𝑃̅−𝐴𝐸𝑇̅̅ ̅̅ ̅̅
 . The CDI 

classification index varies from no drought (CDI < −0.60) to extreme drought (extreme drought).  

The selection of indices and the weighting assigned to each component in the CDI calculation 

can be subjective, potentially leading to different results based on the choices made.  Likewise, when 

it comes to identifying mild to extreme drought conditions, the CDI outperforms the PDSI in terms 

of false alarm ratio. In practice, CDI calculation requires a significant amount of computing power, 

especially when analyzing large volumes of data and long-time series from multiple sources (Ali et 

al., 2022). Also, it may have limitations in predicting future drought events.  

3. Drought Indices and Indicators Comparisons 

3.1. Comparison Criteria 

50+ indices/indicators were reviewed during this study based. The criteria for evaluating 

drought indices and indicators can vary depending on the specific application and context such as 

accuracy, relevance, sensitivity, consistency, lead time, spatiotemporal resolution, data requirements, 

data quality, user-friendliness, transparency, validation, flexibility, intersectoral applicability, and 

stakeholder engagement. Despite the fact that no leading index or indicator is always better than the 

others, some indices are more appropriate than others for specific uses. 

Table 1. Comparison of different drought indicators. 

Index/indicator P T PE AWC CD SF GW SM Multiple Spatial scale Temporal scale 
Data 

requirement 

Classical              

PDSI ✓ ✓  ✓      Global Monthly High 

SPI/SPEI ✓ ✓        Global 
Daily, weekly, 

monthly 
High 

TMI  ✓        Global Monthly  Low 

AI ✓ ✓        Global Monthly Low 

RAI ✓         Regional Monthly Medium 

CMI ✓ ✓        Regional Weekly Medium 

Holistic             

USDM         ✓ Country Weekly Medium 

DSCI         ✓ Global Monthly, annually  High 

ADRI         ✓ Regional Monthly, annually High 

HDI         ✓ Regional Annually High 

SEDI         ✓ Global Annually High 

CDI         ✓ Global Annually High 

Source: Author. 

3.2. Drought Event Hotspots 

Drought indices and indicators are used worldwide to monitor, assess, and manage drought 

conditions. Hotspots, in this context, refer to regions or countries where drought indices and 

indicators are commonly used due to the prevalence or severity of drought conditions. These 

hotspots may vary based on the type of drought and regional characteristics. The maps used in this 

study were used to identify 12 drought event hotspots, i.e., United States, Australia, China, India, 

Africa, Brazil, Europe, Mediterranean regions, Southern Africa (South Africa, Zimbabwe, Namibia, 

and Mozambique), Latin America, and the Middle East. For this purpose, the thresholds of PDSI, SPI, 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 July 2025 doi:10.20944/preprints202507.2170.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.2170.v1
http://creativecommons.org/licenses/by/4.0/


 14 of 24 

 

TMI, AI, RAI, CMI, USDM, DSCI, ADRI, HDI, SEDI, and CDI were reduced to three categories (low, 

medium, and high severity).  

4. Drought Indices and Indicators Discussion 

Drought can have significant implications for achieving the Sustainable Development Goals 

(SDGs) of 2030 Agenda (Tabari and Willems, 2023). Mainly, it strikes at the heart of SDG1 (No Poverty) 

by leading to crop failures and reduced productivity causing income loss and pushing people deeper 

into poverty; SDG2 (Zero Hunger) by posing a major threat to food security (i.e., crop failures, reduced 

livestock productivity, and water scarcity resulting in food shortages and malnutrition;  SDG6 (Clean 

Water and Sanitation) by reducing water availability for personal, agricultural, and industrial use; 

SDG15 (Life on Land) by exacerbating land degradation, deforestation, desertification, impacting 

ecosystems and biodiversity (Lindoso et al., 2018; Zhang et al., 2019). As drought affects various 

aspects of society and the environment, addressing the interconnected challenges of drought and 

SDGs requires a comprehensive and multisectoral approach. 

Ever since the soil and water management challenges surfaced during the Mid to late 20th 

century, scholars have attempted the development of drought indices/indicators for disaggregating 

the complex and simple indications of drought conditions. Classical and holistic indicators provided 

the foundations for drought measurement. Researchers developed indicators sensitive to 

agricultural, socioeconomic, and environmental aspects of droughts, since these indicators cover only 

limited aspects of drought episode. For example, the SEDI, HDI, CMI, ADRI, and PSIs are founded 

on broader sets of drought aspects. Further research studies pointed out more missing areas 

including the new authenticities like climate change and adaptation strategies. 

4.1. Limitations of the Indices and Indicators 

Understanding the limitations of drought indices and indicators is crucial for using the holistic 

and classical indices effectively and making informed decisions.  

• Sensitivity to data inputs: The accuracy of indices is highly dependent on the quality and 

availability of data inputs (i.e., meteorological data, socioecological data, agricultural data, 

etc.). The quality and quantity of input data are important for accurate drought assessment. 

For example, precipitation data is used to derive the SPI-based drought index. By comparing 

the spatiotemporal differences and drought area capture capabilities over 23 sub-datasets 

spanning 30 years, the study of Liu et al. (2016) concluded that SPDI is less sensitive to data 

selection than sc-PDSI. Moreover, the SPDI series derived from different datasets are highly 

correlated and consistent in drought area characterization. SPDI is most sensitive to changes 

in the scale parameter, followed by location and shape parameters. It was looked into how 

sensitive each of the seven precipitation-based drought indices was to varying record lengths 

at monthly, seasonal, and annual time scales. The findings showed that better time steadiness 

was observed in Z-score Index (ZSI) and Effective Drought Index (EDI) compared to other 

indices such as the Deciles Index (DI), Standardized Precipitation Index (SPI), Percent of 

Normal Precipitation Index (PNPI), China Z Index (CZI), and the Modified China Z Index 
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(MCZI) (Mahmoudi et al., 2019). Due to sensitivity to a relatively wider range of factors, 

holistic indices/indicators have the advantage over classical indices/indicators. 

• Lack of consistency: Different drought indices may yield different results for the same area or 

time period. There is no universal drought indicator and previous studies identified 

significant discrepancies between the state drought indices (Feng et al., 2017). The most exact 

and accurate techniques to track agricultural conditions are drought indices estimated from 

ground observations of soil moisture, precipitation, and temperature. The accuracy of 

drought indices also depends on accurate estimates of soil parameters based on in-situ 

measurements; calculation methods and missing data (Pan et al., 2023). Coupled climatic and 

socioeconomic aspects are interlinked to drought conditions in one region and distinct in 

another location. Many of these features are meticulously interrelated with each other and 

any decision-making ability regarding their inclusion has certain consequences in terms of 

accuracy and effective outcomes. The problem of inconsistency is prominent in the case of 

both holistic and classical indicators that consider multiple parameters. 

• Artificial Intelligence-based drought assessment: Droughts can be modeled, observed, and 

predicted using high-resolution spatiotemporal resolution data. Drought-causing factors and 

mechanisms operate on a wide range of spatial scales, from the movement of soil water to 

global atmospheric circulation. There is huge lack of multiscale drought monitoring and 

early warning systems (Mardian, 2022). Further, the Centre for Environmental Data Analysis 

(CEDA) developed new high-resolution datasets providing more detailed local information 

that can be used to evaluate drought severity for specific periods and regions and determine 

global, regional, and local trends, thereby supporting the development of site-specific 

adaptation measures (Gebrechorkos et al., 2023). There is an emerging need to develop novel 

datasets that can serve fundamental data support for future studies. The integration of 

machine learning (ML) models – usually superior to traditional techniques – has a promising 

answer since they are good at addressing non-stationarities and non-linearities in drought 

assessment. For instance, DroughtCast ML was utilized to forecast a very extreme drought 

event up to 12 weeks before its onsets. It offers promising findings for decision-makers, land 

managers, and public institutions in preparing for and mitigating the impacts of drought. 
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• Complex interpretation: Some drought indices are based on complex mathematical algorithms, 

making them difficult for non-experts (i.e., smallholder farmers) to interpret and need more 

attention. This can limit their utility for decision-making. The work of reported that Fluixá-

Sanmartín et al. (2018) due to the general complexity of droughts, the comparison of the 

index-identified events with droughts at different levels of the complete system, including 

soil humidity or river discharges, relies typically on model simulations of the latter, entailing 

potentially significant uncertainties and decidedly biased outcomes. The short-term 

anomalies are overlooked – regarding the interactions of soil moisture and 

evapotranspiration – hiding the influence of long-term anomalies of rainfall, soil moisture, 

and evapotranspiration that cause recurrent droughts and heatwaves (Gaona et al., 2022). To 

solve these challenges, there is a need for collaborative efforts (e.g., expert consultation, 

access documentation, multi-indices understanding, access to historical data and stakeholder 

engagement, etc.) and requiring interdisciplinary expertise from various fields (e.g., 

agriculturalists, climatologists, socio-economists, and ecologists, etc.).  

• Data Infrastructure and Maintenance: Remote sensing infrastructural development and their 

maintenance outlays can be costly, thus hindering accessibility to accurate and precise data 

in developing countries.   

4.2. Necessity for Multidisciplinary Indices and Indicators 

Drought impacts are not limited to a single sector or dimension. Sectors affected by drought are 

interconnected. For example, drought conditions can lead to reduced agricultural productivity, 

which in turn can impact food security. By incorporating various indicators, these systems can 

provide timely alerts for different sectors, which is essential for effective planning, response, and 

resilience-building in the face of a changing climate. Literature reveals that all indicators have certain 

limitations, either conceptual, operational, or both (Hayes et al., 2007; Hayes et al., 1999; Heim Jr, 

2002; Keetch and Byram, 1968; Palmer, 1965; Vicente-Serrano et al., 2010). None of the indices cover 

simultaneously all the necessary areas, duration, intensity, frequency, impacts, etc. However, the 

major shortcoming occurs when some vital parameters are not included in the account (Yang et al., 

2015). For example, while many parameters are essential for a robust assessment, some may be 

considered  “leftover” when designing or using a particular index, including solar radiation, relative 

humidity, wind speed, cloud cover, barometric pressure, snowpack data, turbidity (Dikici, 2020). In 

any region experiencing drought events, any evaluation or monitoring practice without considering 

coupled climatic features will yield defective outcomes and wrong decisions. This is not limited to 

weather parameters only. Each region has a unique scenario of drought experience, spatial and 

temporal distribution, socioeconomic development, water scarcity concerns, and adaptive capacity. 

Some countries (e.g., the United States of America, Australia, and European Union countries) have 

developed their specific indicators/indices for monitoring drought (Heim et al., 2020). However, 

many indices, particularly classical, are unable to reflect the cause-effect relationship of drought. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 July 2025 doi:10.20944/preprints202507.2170.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.2170.v1
http://creativecommons.org/licenses/by/4.0/


 17 of 24 

 

Thus, in planning, it would be wise not to use a single indicator because it will not lead to consistent 

results or delusion of security. Artificial Intelligence methods (e.g., machine learning, deep learning 

and among other) have a high potential for prediction of extremes due to the ability of machine 

learning methods to learn from past data, to handle large numbers of input variables, to integrate 

physical understanding into the models and to discover additional knowledge from the data. 

4.3. Data, Methodological and Technological Challenges 

One of the major issues influencing the adoption of indices, causing shortcomings and restricting 

research and development, is data challenge, leading to complications in the development and use 

of indices. Many holistic indices have not been extensively employed because the requisite data is 

not readily available. Assessment of drought conditions requires a reasonably long time series at the 

desired time phase. Different indices/indicators consider different parameters. Hence, the data 

required for holistic indices is huge and diverse. Many regions, especially in developing countries, 

lack sufficient data collection and monitoring infrastructure (e.g., Long-term Ecological Research) 

(Vanderbilt and Gaiser, 2017), leading to data gaps and inaccuracies. Data collected at a regional or 

national scale may not provide the necessary detail for local-level drought assessments.  

Moreover, remote sensing technologies, while valuable for monitoring drought conditions, have 

limitations, including cloud cover, instrument errors, and sensor calibration issues, lack of integration 

tools and standardized data formats for main parameters such as satellite-based precipitation, soil 

moisture, groundwater levels, and among others (Hao et al., 2014). While climate models offer 

projections of future climate conditions, uncertainties in these projections can limit their utility for 

long-term drought planning and adaptation. Conspicuously, integrating socio-economic data, such 

as agricultural statistics, demographic data, greenhouse gas emission, and land use/land cover 

information is crucial for a holistic understanding of drought impacts, but to such data may be 

restricted or limited in many regions. In some regions, access to advanced technology and computing 

resources can be limited, leading to the inability to develop and implement sophisticated drought 

monitoring and assessment tools. Data privacy, security, and sovereignty concerns can hinder data 

sharing and collaborative drought assessment across transboundary regions. There is an urgent need 

to invest in data infrastructure, develop standardized data-sharing protocols, and enhance 

technological capabilities. Lastly, international cooperation is crucial for sharing data, 

methodological, and technological advancement.  

5. Conclusions  

Drought is a creeping natural phenomenon with highly destructive power, which unfolds their 

impacts on different temporal and spatial scales. After reviewing 50+ drought indices/indicators, this 

study presented descriptions of 12 indices/indicators in terms of drought characterization, 

spatiotemporal scale suitability, calculation methods, data requirements, level of complexity, 

strengths, and weaknesses. Therefore, based on previous literature on drought assessment and 

monitoring using different indices/indicators, we compiled a global comparison. Based on this 

review, the following conclusions can be drawn:  

i) There is no single drought indicator, whether classical or holistic, for all drought types in all 

specific regions and climates, because all available drought indicators have their limitation 

during development and application. Therefore, drought indicator selection requires a thorough 

investigation related to the type of drought and the respective drought indicator based on the 

availability of data, ease of communication, result implication, strength and limitations of the 

indices, and the objective of the investigation. Drought indices/indicators assimilate thousands 
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of bits of data on meteorological, agricultural, socioeconomic, and ecological data into a 

comprehensive big picture. Due to a lack of large-scale application, experts must make their own 

judgments regarding holistic indicators' pros and cons. 

ii) Holistic indices require huge amounts of data. The lack of sufficient infrastructure for collecting 

and monitoring data in many regions, particularly in developing countries, produces gaps and 

inaccuracies in data. A regional or national drought assessment may not be able to provide the 

necessary detail based on data collected at the local level. There is a need for affordable 

geospatial infrastructures and technologies. The development of new composite methods 

should be used as building blocks and integrating remote sensing to support multinational 

and disciplinary approaches with local participation to attain sustainable drought monitoring.  

iii) Various indices/indicators produce contradictory findings regarding drought hotspots. For 

instance, the PDSI also tends to underestimate runoff conditions whereas CMI is limited to use 

only in the growing season; it cannot determine the long-term period of drought. The 

meteorological drought indices may not solely be appropriate and adequate to assess 

agricultural drought due to the lag between agricultural and meteorological drought. The main 

reason for these controversial results can be the choice of drought indices/indicators and the 

accuracy of satellite products used to derive drought indices/indicators. Ultimately, the 

evaluation criteria should align with the objectives of the drought monitoring and management 

efforts, and the chosen index should meet the specific needs of the stakeholders and decision-

makers. 

iv) Future research studies should focus on novel geospatial intelligence (Geo-AI) based drought 

indices that could facilitate in assessing, categorizing, and disclosing deep drought conditions; 

utilization of earth observations that include satellite, climate, oceanic, and biophysical data for 

efficient drought analysis and improved seasonal prediction; combine or integrate drought 

indices based on improved modelling techniques; apply the data mining and GIS applications 

to build Drought Early Warning Systems (DEWSs); and explore the impact of drought on 

sustainable food systems.   

In summary, both holistic and classical drought indices/indicators play roles in monitoring and 

assessing drought conditions. In practice, both types of indices/indicators are often used in 

combination to provide a more comprehensive and well-rounded understanding of drought events. 
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Combining these tools with advancements in technology, early warning systems, and international 

cooperation is crucial for addressing the complex challenges posed by drought.  
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