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Abstract

Droughts are complex and recurring natural hazards that occur throughout the ecosystems and
impact many sectors of society. Droughts have complex spatiotemporal behaviors, therefore
monitoring them is a challenging task. Drought monitoring has mostly depended on climate-based
indices and indicators, thus deemed useful in many scenarios. The purpose of this review is to explore
classical and holistic drought indicators/indices for unravelling their usefulness and associated
limitations. Given that they offer a broadened spatial perspective of drought conditions and
fluctuations over large areas, climate-based drought index maps may be of limited use. Precise
evaluations of drought are necessary for efficient monitoring and assessment of the condition. Here,
this review examined more than 50 indices/indicators for their sensitivity to input data requirements,
spatiotemporal scales, strengths, and weaknesses. Also, an analysis was carried out based on the
previous studies to identify hotspots and show the dissimilarity in the results yielded by different
indices/indicators. Typically, none of these indices is inclusive enough to provide a broad-gauge
assessment and determine appropriate actions. New and enhanced geospatial intelligence-based
drought indices and earth observations are needed to identify, classify, and communicate real-time
drought-related phenomena, as well as offer an in-depth breakdown of the constraints and
requirements of novel indicators and data difficulties.

Keywords: droughts; climatic water deficit; aridity index; precipitation; evapotranspiration; yield
loss

1. Introduction

A global increase in temperature and severe changes in precipitation have been observed due to
anthropogenic greenhouse gas emissions (Solomon et al., 2009; Tan et al., 2023). The United Nations
Office for Disaster Risk Reduction (UNDRR) identified drought as one of the largest global risks that
could impact the world over the next decades (Erian et al., 2021). In some regions of the planet, there
will be severe drought and heatwaves (Tripathy and Mishra, 2023). Droughts are among the most
complex environmental effects, devastating natural hazards, and affect many different socio-
ecological systems (e.g., air, forests, aquatic systems, soils, and humans) (Vicente-Serrano et al., 2020).
Droughts can affect the quality, structure, diversity, and functioning of agroecosystems (Kundel et
al., 2020). Due to changing climate, shifting ocean and atmospheric dynamic patterns, expanding
human water usage, and human influence on the environment, novel forms of drought are emerging
locally, regionally, and globally. Prolonged droughts are increasing the likelihood of ecological
transitions that have expensive externalities and significant repercussions for anthropoid
communities (Crausbay et al., 2020). The natural pattern of droughts has been exacerbated by climate
change, becoming more prevalent, prolonged, and catastrophic. This situation can get worse,
increasing water stress in already affected regions.

The World Economic Forum (WEF) reported that, the frequency and duration of droughts have
risen by 29% since 2000 and more than 75% of the world could face drought by 2025 (WEF, 2022).
Over the past four decades, weather, climate, and water hazards represented 50% of disasters and

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2170.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2025 d0i:10.20944/preprints202507.2170.v1

2 of 24

45% of disaster-related fatalities, especially in developing economies. Droughts contributed to 15%
of natural catastrophes but took the highest humanitarian toll, with roughly 650,000 deaths. From
1998 to 2017, droughts triggered global economic losses of approximately USD 124 Bn (Crossman,
2018). In 2022, more than 2.3 Bn people face water stress; almost 160 million children are exposed to
severe and prolonged droughts. Besides, by 2050, droughts may affect over three-quarters of the
world’s population, and an estimated 4.8-5.7 Bn people will remain in areas that are water-scarce for
at least one month per year, up from 3.6 Bn now (Funk et al,, 2019). De facto, up to 216 million
people could be forced to migrate by 2050, largely due to drought in combination with other factors
including water scarcity, declining crop productivity, sea-level rise, and overpopulation (King-
Okumu et al., 2020).

In the current nature dynamics of multiple shocks, accurate measurement of drought events has
become a central task and problematic in terms of the measurement system and effective way to
forecast long-term drought. According to Wilhite and Glantz (1985), there are a whole range of types
of droughts (often distinguished) (Figure 1), but new categories are being defined (Crausbay et al.,
2020), including the following:

@ agricultural drought (farming) refers to the adverse impacts on farmland by factors such as
rainfall shortages, soil water deficits, reduced groundwater, or dwindled reservoir levels required for
irrigation (Jiang and Zhou, 2023; Orimoloye, 2022; Zhang et al., 2023)

@ hydrological drought (surface water) is based on the impact of rainfall deficits on the water
supply such as stream flow, reservoir and lake levels, and groundwater table decline (Brunner et al.,
2023; Satoh et al., 2022; Van Loon, 2015),

® socio-economic drought (ones which affect humans) occurs when the demand for economic
good exceeds supply as a result of a weather-related shortfall in water (Lee et al., 2022; Liu et al., 2020;
Mehran et al., 2015),

@ meteorological drought (weather) is typically defined on the basis of the extent of dryness (in
comparison to some “normal” or average amount and the span of the dry period (Monjo et al., 2020;
Torell6-Sentelles and Franzke, 2022),

® ecological drought defined as "a prolonged and widespread deficit in naturally available
water supplies — including changes in natural and managed hydrology — that create multiple
stresses across natural-human systems" (Crausbay et al., 2017; McEvoy et al., 2018; Park et al., 2020).

Drought indices are a crucial way to assess the extent of the problem. A thorough understanding
of drought events helps to formulate strategic policies aimed at the effective management of water,
land, and atmospheric systems. Using drought indices, drought types, intensity, duration, location,
timing, and frequency of droughts can be evaluated quantitatively and used to plan for probable risk
assessments (Nagarajan, 2010).

Owing to the challenges associated with the current descriptions of drought, their evolution
depends on the metrics or indicators that help define this occurrence. Consequently, to study
drought, basic information about the climate and weather around a particular area is necessary to
ascertain whether a drought event has occurred or is likely to occur in the future (Wilhite, 2016). A
consistent regional climatological pattern could indicate that a drought is about to start in another
part of the region. Appropriate planning may be a prospect for mitigating the impacts of credible
drought in this case if it is presumed that a exceptional dry pattern occurs in the region (Svoboda and
Fuchs, 2016). Monitoring drought conditions may be conducted by early warning systems that might
be supportive of adequate preparation for any drought event (Faiz et al., 2021; Heim and Brewer,
2012). Until now, there has been no widely agreed drought index among scholars, practitioners, and
policymakers. There is a necessity of developing integrated composite drought indices and
indicators. Hence, they will serve as a bridge between research and policy and enable policymakers
to make informed judgments.

Up to now, investigations that focused on the 50+ drought indicators and indices based on
various approaches (i.e.,, meteorology, soil moisture, hydrology, remote sensing, and modeled or
composite), revealed that none encompasses all aspects of drought events. The Integrated Drought
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Management Programme (IDMP) declared that any, all, or none of the indicators/indices may be
suitable for a particular application, based on user knowledge, needs, data availability, and computer
resources available to implement them (Svoboda and Fuchs, 2016). On one hand, most of the indices
solely depend on meteorological conditions while ignoring the social, economic, and environmental
factors. Drought indices may not fully account for these non-meteorological causes. On the other
hand, many drought indices focus on surface-level indicators but do not incorporate interfaces of
several data (e.g., surface water dynamics, topography, soil properties, soil moisture, etc.) which is
crucial for agriculture, water resources, and socio-ecological systems (Dehghani et al., 2022). It should
be noted that drought indices are retrospective and often developed based on historical data or past
drought conditions, a climate patterns shift, the effectiveness of these indices in predicting future
droughts may decline, as well as challenging to plan for long-term drought resilience. Some of the
indices may yield different results for the same area or time. This lack of consistency can make it
challenging to compare and combine findings from different indices (Savenije, 2000). The above
issues can stem to contradictory results, confusion, and inconsistency in monitoring efforts and, at
the same time, mislead public opinion and decision-making process by creating a false sense of
security or insecurity.

Developing a better understanding of the changing expression and influences of drought across
diverse ecosystems is one of contemporary foremost challenges. Coupling novel methodologies (i.e.,
machine learning, deep learning, artificial intelligence, etc.) with high-resolution datasets of drought
metrics is essential for monitoring and quantifying the duration, frequency, severity, and spatial
extent of droughts at global, regional, and particularly local scales. Drought indices are practical
techniques to convert enormous volumes of data into quantitative facts that can be used in
applications such as drought forecasts and declaration, contingency planning, and impact
assessment. Therefore, urgent actions are essential to better comprehend and more effectively achieve
drought risk to reduce the devastating toll on human livelihoods and ecosystems.

In this work previous studies published from 1985 to 2025 were analyzed using VOS Viewer, a
software tool for constructing and visualizing bibliometric networks (Perianes-Rodriguez et al,,
2016). From the resulting 2691 published articles, 121 were clustered and reviewed. Based on the
analysis, literature regarding drought indices and indicators can be divided into 7 categories: @
objectives of drought indices; @ spatiotemporal coverage; ® data availability and interpretability @
sectoral focus; ® complementarity and scientific validity; ® applicability for early warning; and @
adaptation to climate change. Here, we compared 50 drought indices/indicators against 21 input
parameters of comparison, revealing how these indicators/indices miss certain areas and how they
can be used collectively to supplement their strengths and weaknesses. Out of 12 indicators, 6 are
widely used, and 6 are promising as holistic indicators. A few drought hotspots have also been
located to demonstrate how various circumstances can have distinct effects.
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Figure 1. Timeline of drought incidence and effects for the most widely recognized kinds of drought. Almost all
droughts are accompanied by a lack of precipitation or meteorological drought, but other types of droughts
result from this lack. Meteorological drought consists of normal precipitation below 25%. Hydrological drought
is characterized by prolonged meteorological drought and drying of reservoirs, lakes, streams and rivers,
cessation of spring flows and fall in groundwater levels. While the agricultural drought is characterized by
depletion of soil moisture during the growing season. A dry situation with 20% probability and rainfall

deficiency of more than 25% in drought-prone areas. Source: Author.

2. Drought Indices and Indicators
2.1. Classical Drought Indices and Indicators

Classical drought indices have been developed to assess and monitor drought conditions based
on meteorological and hydrological data that is summarized using mathematical expressions. These
indices have been in use for several decades. The most commonly used indices were first defined by
Wayne Palmer in 1960s (Palmer, 1965), McKee and his team in the late 1990s (McKee et al., 1993), and
Thornthwaite in the mid-20t century (Thornthwaite, 1948). Most of these indices have addressed one
or more aspects of drought events and quantifiable ways to assess drought conditions and their
impacts while providing valuable information for understanding drought severity. Classical drought
indices vary in their complexity, data requirements, and temporal scales. The choice of index depends
on the specific application and the data availability for a particular region. While they provide
valuable insights into drought conditions, it is crucial to consider their limitations and supplement
their findings with other information, especially for complex multifaceted drought assessments.

2.1.1 Palmer Drought Severity Index (PDSI)
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The PDSI is one of the most influential, widely used, and recognized indices within scientific
and meteorological communities (Lehner et al., 2017). In a hydrological accounting system, moisture
demand (PE) and supply (P) are integrated over time (Mika et al., 2005), to assess and monitor long-
term regional drought conditions (typically 6-24 months). Its strengths are due to its long historical
use, incorporation of multiple climate factors, standardization, long-term perspective (especially over
low and middle latitudes), historical data utilization, integration of climatology, impact on water
resources and agriculture, and scientific credibility (Dai, 2013). By using surface air temperature and
a physical water balance model, PDSI considers the basic effect of global warming through potential
evapotranspiration. Nonetheless, it also has some limitations including sensitivity to parameter
settings and the assumption of stationarity in climate data, which may be challenged in the face of
changing climate patterns.

Recently, the PDSI was questioned for its inadequacy to predict droughts on temporal scales less
than 12 months when monthly PDSI values were applied. It is, therefore, not to associate it with
specific water resources such as runoff, snowpack, reservoir storage, and more using multi-timescale
indices like the Standardized Precipitation Index (SPI) (Alley, 1984; Dai, 2011). A novel standardized
Palmer drought index (SPDI) was established (Ma et al., 2014). Despite its limitations, the PDSI is
known to be useful as a means of monitoring drought in terms of soil moisture and deciding the
timing of agricultural drought contingency planning and measures (Zargar et al., 2011). APDSI <-4
represents an extreme drought, while a PDSI value >4 represents very wet conditions.

2.1.2. Standardized Precipitation Indices (SPIs)

SPIs such as the Standardized Precipitation Index (SPI) or Standardized Precipitation and
Evapotranspiration Index (SPEI) are frequently used around the world to evaluate drought severity
across a continent or a larger region covering different meteorological regimes (Laimighofer and
Laaha, 2022; Vicente-Serrano et al., 2010). The SPI measures the deviation of observed P from the
long-term average and quantifies it in terms of standard deviations. The SPI provides information
about the probability of a certain level of precipitation deficit over different time scales. It is available
at various time scales, from short-term (e.g., 1 to 6 months) to long-term (e.g., 24 months or more)
(McKee et al., 1993). Several studies have demonstrated the SPI's value in identifying droughts, and
its basic and straightforward procedure has made it well-liked across a range of sectors. The SPI is
calculated by first summing up monthly precipitation data over i-monthly accumulation periods,
with i typically taking values of 1 to 12. However, in order to estimate the probability of no
precipitation, the probabilities of the Weibull plotting position are calculated as follows:

p(x) =py + (1 —po) Flpo >0,a,8), x>0
(1)

p(o) = P x=0

2(n+1) '

with F being F(py > 0,a, 8) the gamma distribution with a as the shape parameter and f§ as the
Nop-0
(n*1)
of zero precipitation events in the observation period. The drought categories vary from mild drought
(0-0.99) to extreme drought < -2 (Figure 2).

The SPI values are not exact as they depend on several choices made by the user. Drought indices

scale parameter. p, is the probability of zero precipitation by p, = and n, = 0 is the number

are subject to five different uncertainties including sample size, choice of distribution, observation
period, parameter estimation, and Goodness-of-fit (GOF).
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Figure 2. 9-month SPI global drought map. The Global Precipitation Centre (GPCC) monthly precipitation
dataset from 1901-present was calculated from global station data. Source: GPCC.

2.1.3. Thornthwaite Moisture Index (TMI)

The TMI was developed by C.W. Thornthwaite (Thornthwaite, 1948), to categorize the climate
conditions of different regions. This index estimates potential evapotranspiration and compares it to
actual evapotranspiration, which can indicate moisture deficits. The TMI model is widely used
because it is easy to use and only needs monthly average temperature and latitude (Karunarathne et
al., 2016; Li and Sun, 2015). However, this model ignores the effects of air humidity, wind speed, and
other factors, thus the value of ET is frequently underestimated (Zhao et al, 2019). It is a
dimensional index spanning from +100 to —100 depicting weather conditions from humid to arid
(Figure 3). TMI is calculated by combining two indices: aridity index and humidity index. Based on
a water balance calculation, these indices are determined by run-off or surplus and water deficit. The
calculation method of TMl is given by Equation 2:

( (&-1), P<PET
™I = (1- =), P> PET 2)

0, P=PET =0
where TMI is the Thornthwaite moisture index, P is precipitation (mm), and PET is potential
evapotranspiration (mm). The TMI is multiplied by 100 to create whole numbers (Grundstein, 2009).
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Figure 3. The global Thornthwaite moisture regions. Source: Feddema (2005).

2.1.4. Aridity Index (AI)

The Al - characterizes the metric measure of the degree of dryness of the climate at a specific
location. It is calculated by the ratio between precipitation (P) and potential evapotranspiration (PET)
(Pravalie and Bandoc, 2015; Qu et al., 2019; Standler., 2005). Aridity is commonly defined as the result
of the interaction of evaporation, rainfall, and temperature (Thornthwaite, 1948). PET is an
estimation of the atmosphere's "drying power" to evaporate water from land surfaces (e.g., from the
soil and plant canopy) and via plant transpiration. Obviously, the anomaly water deficits may also
occur over shorter periods, e.g., seasonally or monthly, which are called droughts depending on their
intensity and duration. Therefore, the Al provides the key material to assess the trends of aridity or
humidity and characterize the drought. When Al becomes larger than normal in an area, the climate
tends to suffer from drought and water resource shortages which negatively affects the food security
and the livelihoods of the community (Hirwa et al., 2022; Li et al., 2017).

The ETo indicates the maximum amount of water that can be evaporated from the soil and
transpired from the vegetation of a specific surface, as a function of wind speed, solar radiation, vapor
pressure, and temperature (Zhang et al., 2007). The atmospheric evaporative demand, expressed as
ETy, is especially relevant in drought evaluations as an important factor in AI computation (Vicente-
Serrano et al., 2015). The results of analyzing the aridity trends differ in the magnitude of the Al and
their spatial patterns as consequences of the difference in the forcing precipitation datasets employed
and the model used to estimate ETo and meteorological datasets used to calculate ETo. However, the
strong differences in the magnitude of ETo changes may be obtained using different methods to
estimate ETo (Donohue et al., 2010; Vicente-Serrano et al., 2014). Further, to hasten the uncertainties
in aridity estimates and in the analysis of the Al versus the hydro-ecological factors, the regions where
the mainstream of models concur in sign should be considered. However, note that the ensemble of
climate models is not weighted, even though several models are from the same modeling institutions
(Greve et al., 2019).

The Al map (Figure 4) is based on data computed using the 30-year average of P/PET, where i

denotes the ith year.
30 (i
Al = 1—1(PETi> 3)
30
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Figure 4. Distribution of global drylands. Drylands are delineated based on the Al, humid (AI > 0.65), dry sub-
humid (0.50 < AI < 0.65), semi-arid (0.20 < AI <0.50), arid (0.05 < AI <0.20), hyper-arid (AI < 0.05). Al values and
corresponding climate classes developed by UNEP (1992). Mean global-Aridity_ET0 and global_ETO datasets
(Trabucco and Zomer, 2018).

2.1.5. Rainfall Anomaly Index (RAI)

The RAI was proposed by Van Rooy (1965). It incorporates and evaluates a ranking mechanism
to assign dimensions to two anomalies for precipitation (i.e., positive and negative anomalies) (Raziei,
2021). First, the precipitation information is presented in descending order. The ten greatest numbers
are averaged to generate a positive anomaly limit, while the ten lowest values are averaged to form
a negative anomaly limit. Therefore, RAI is a simpler index that measures the deviation of monthly
or seasonal rainfall from the long-term average. RAI is relatively easy to compute, with one input
(i.e., precipitation) that can be examined on monthly, seasonal, and annual intervals. One of its flaws
is that it requires a sequentially complete dataset with missing value estimates. Changes throughout
the year must be minor in comparison to temporal variations. Moreover, the RAI classification is
similar to that used by Gibbs (1967) to partition precipitation values between ten deciles and is
equally applicable to various lengths of drought, including flash droughts, meteorological droughts,
deep soil moisture droughts, and hydrological droughts defined with RAI computed at different time
scales.

The study of Olukayode Oladipo (1985) revealed that the differences between RAI and the more
complicated indices of Palmer and Bhakme-Mooley were negligible. It is useful for monitoring short-
term drought conditions. The standardization follows the unity-based feature scaling (Khansalari et
al., 2018) to asymmetrically distribute the original anomalies between the predefined limits (-3 and
+ 3). For positive anomalies (i.e., P; — P greater than 0), the prefix is positive (i.e.,, 3) and M is the
mean of the 10 highest precipitation values on track; for negative anomalies (i.e,, P; — P < 0), the
prefix is negative (i.e., =3) and the mean of 10 lowest measurements can be utilized (Keyantash and
Dracup, 2002). In contrast, a plethora studies revealed that the RAI (Equation 4) can perform well
in humid to moderate climates of the world where monthly precipitation distributed relatively
regularly throughout the year, and the associated distribution is less skewed (Hansel et al., 2016;
Loukas et al., 2003).

However, determining M from the ten largest (smallest) precipitation values appear arbitrary.
The thresholds are computed using Equation 4, as described by Salehnia et al. (2017).
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RAI = +3 [P_i‘f’] (4)
M-P

where P; is the sequence of measured precipitation at the time i, P is the long-term average

precipitation (mm), M is average of ten highest (extrema) values of P; for the positive anomaly and

the mean of the 10 lowest values of P; for the negative anomaly. The prefix £3 is used to limit

the deviations' lower and upper boundaries. The RAI ranging from extremely dry (RAI<-3) to

extremely wet (RAI > 3).

2.1.6. Crop Moisture Index (CMI)

CMI is designed expressly for assessing the impact of drought on crop conditions. It takes into
account both precipitation and temperature data to evaluate soil moisture levels (Isard et al., 1995).
The CMI, which varies quickly from week to week, might provide the short-term or current condition
of primarily agricultural drought or moisture surplus. The CMI was developed based on PDSI
(Juhasz and Kornfield, 1978). It is calculated by subtracting the difference between potential
evaporation and moisture, to determine any deficit. Input parameters (i.e., weekly mean temperature,
weekly mean precipitation, and the previous week’s CMI value. The CMI values vary from
excessively wet (+3 and above) to severely dry (-3 or less) (Zarafshani et al., 2016). Nonetheless, the
CMIl s limited to use only in the growing season; it cannot determine the long-term period of drought.

2.2. Holistic Indices and Indicators

Holistic drought indices are more comprehensive tools that attempt to provide a more complete
picture of drought conditions by considering multiple factors and impacts beyond just
meteorological and hydrological data. These indices take into account the broader socioeconomic and
environmental consequences of drought. Due to their complexity, they may require a variety of data
inputs. Besides, comprehensive indicators offer a more integrated view of the overall drought
situation. The holistic drought indicators are particularly valuable for decision-makers, actors, and
stakeholders who need a more complete understanding of the impacts of drought on society, the
environment, and the economy. They can help guide policy decisions, resource allocation, and
drought management strategies by providing a more comprehensive view of the complex nature of
drought events. However, they often require extensive data and resources for their implementation
and may be more challenging to use in regions with limited data availability or monitoring
infrastructure.

2.2.1. U.S. Drought Monitor (USDM)

The USDM was conceived in 1999, and is produced through a joint effort of the National
Drought Mitigation Center, U.S. Department of Agriculture (USDA), National Oceanic and
Atmospheric Administration (NOAA), and local experts. It combines data from various sources
across the hydrological cycle (i.e.,, meteorological, hydrological, and agricultural information), to
provide a holistic view of drought conditions in the United States (Svoboda et al., 2002). The USDM
also considers water supply, ecosystems, and society (Leeper et al., 2022). The USDM categories are
classified based on drought indicator percentiles from “no drought or abnormal dryness” to
“exceptional drought” corresponding to 31-100 and 0-2, respectively. For instance, abnormally dry
corresponds to 20-30% chance for a drought to occur in ranges from 20 to 30 while for exceptional
drought it is less than 2% (Pendergrass et al., 2020). Most of the maps drawn using USDM refer to
NOAA/NCEI (2023).

Additionally, USDM's uniqueness includes: (i) being the first nationwide unifying drought
monitoring of multiple entities; (ii) receiving local bystanders’ observation, for instance, more than
425 local observers such as state climatologists, and National Weather Staff, (iii) simple and effective,
the classification system for droughts is easy to understand for public; (iv) timely, it is a weekly
product which illustrates drought conditions and impacts promptly (Hatami Bahman Beiglou et al.,
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2021). The precipitation-deficit-driven (PDD) and heat-wave-driven (HWD definitions have no
positive correlation with the USDM definition (Osman et al., 2021). While the USDM offers real-time
maps of drought spatial extent, unlike several other drought indices, it lacks a straightforward
method for analyzing drought over time. Since 2000, as the USDM has only been in circulation, its
value is constrained when a lengthy historical backdrop is required.

2.2.2. Drought Severity and Coverage Index (DSCI)

An index known as the DSCI was created to improve the quantitative capabilities of the USDM
in order to better assess spatial coverage and intensity combined and enable better comparisons
between drought occurrences for places or between locations. In order to transform categorical
USDM drought levels into single continuous aggregated number for a particular area, the DSCI was
created as an experimental technique. The five USDM drought classes are added simultaneously to
generate the DSCI (Akyuz, 2017; Smith et al., 2020). Month-to-month changes in the DSCI are used
to inform the rate at which drought can improve or worsen in different months of the year. To
calculate, there are two ways: 1) use cumulative drought monitor data, and 2) add the percentages
for DO through D4 for a given week. To compute the DSCI using a weighted average, a weight
between 1 and 5 is assigned to each USDM category (D0-D4), and this weight is subsequently
multiplied by the categorical percent area for the drought category, and these totals are summed
together (Equation 5). Possible cumulative values of the DSCI are from 0 (i.e., none of the areas is
abnormally dry or in drought) to 500 (i.e., area in exceptional drought). This results in a DSCI value
that has a continuous scale of 0-500.

DSCI = 1(D0) + 2(D1) + 3(D2) + 4(D3) + 5(D4) (5)

where the continuous DSCI (USDM) values are 0-99 (None), 100-199 (D0), 200299 (D1): Moderate
Drought, 300-399 (D2): Severe Drought, 400-499 (D3), and 500 (D4).

Two advantages can result from converting the percent of an area in each USDM drought
category into the DSCI: (1) it provides a single numerical value describing current drought extent and
intensity and (2) it allows for drought to be quantified over time. DSCI is a new tool that increases
the capacity of the USDM for further drought monitoring and analysis (Johnson et al., 2020).

2.2.3. Agricultural Drought Risk Index (ADRI)

ADRI is designed to assess the risk and vulnerability of agriculture to drought by combining
meteorological information on soil moisture, crop types, and irrigation. It uses indicators such as
Hazard, Exposure, Sensitivity, and Adaptive capacity (Equation 6). Vulnerability indicates the
function of exposure, sensitivity, and adaptive capacity (Equation 7). In this case, high drought
vulnerability when the exposure to drought risks is high, the sensitivity of the environment is high
and adaptive capacity is low. All the three parameters are highly interconnected (Carrao et al., 2016).
The ADRI was developed using a conceptual framework that was applied to Kazakhstan and South
Korea (Kim et al., 2021).

DR=H=+ExV (6)
V=5/A (7)

where DR is the disaster risk, H is the hazard, E is exposure, V is vulnerability, S is sensitivity,
and A is adaptive capacity. After all, the indicators are then normalized in terms of a common
baseline using the min-max normalization method. The indicators then can be combined in each risk
category by assessing equal weights (Moss et al., 2000). The final index can be computed with the
equally weighted hazard, exposure, and vulnerability components. This enables the evaluation of
each category independently, increasing understanding of the strengths and weaknesses of each
component of the risk index in each region (Iglesias et al., 2009).
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Figure 5. Distribution of global drylands Global ADRI map. Source: Meza et al. (2020).

Practically, there are limitations related to the frequency of updates and the unavailability of
data at the required resolution (data quality). Even if the datasets are available, the accuracy thereof
does not always meet the requirements (Aubrecht et al., 2013). The quality of available input data
in terms of spatial resolution and reliability is an important factor in disaster risk assessments. While
most environmental indicators rely on quantitative measures and spatial statistics, socio-economic
indicators introduce a certain amount of uncertainty and subjectivity (Ozceylan and Coskun, 2012).
The ADRI can contribute to addressing risk, and prioritizing risk areas at reasonable scale leading to
effective decisions and policymaking for risk reduction related to drought events.

2.2.4. Hydrological Drought Index (HDI)

HDI evaluates drought conditions from a hydrological perspective, incorporating streamflow,
soil moisture, and groundwater data to assess the impact on water resources and ecosystems
(Tokarczyk, 2013). This index is often used in broader assessments of drought conditions, especially
in areas where water resources are critical for purposes, such as agriculture, industry, and ecosystem
health (Tareke and Awoke, 2022). The HDI relies on accurate and up-to-date hydrological data, which
can be a limitation in areas with sparse monitoring networks or data gaps. Its calculations can be
complex, involving various hydrological components and statistical methods, which may require
expertise to use effectively. Like many drought indices, HDI may not provide significant lead time
for drought prediction, making it challenging for proactive drought management.

Therefore, calculations for this index involve a combination of different hydrological
parameters, and the methodology can be more complex. It often involves the use of drought indices
like SPI or PDSI. For instance, the HDI is grounded on discharge data (HDI1), and simulation (HDI2)
(Hadiani et al., 2022). The drought index is a comparison of the deficit to the watershed area as
indicated in the following Equation 8.

Deficit (m3/sec) ®)

Areal (km?2)
HDI is the hydrological drought index, the deficit is the difference between Xo and X: (ith daily), Xo I
the dry threshold, and X: is the ith daily periods of discharge. Drought severity involves the analysis

HDI =

of the duration and deficit in dry conditions.
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2.2.5. Socioeconomic Drought Index (SEDI)

The SEDI is defined as a measure of the drought conditions-related impacts on the supply and
demand of economic goods. SEDI combines meteorological and economic data to gauge the economic
impacts of drought. It considers factors like agricultural losses, employment, and food prices. Four
categories are distinguished: water deficit, water security and support, economic damage and impact,
and environmental and sanitation effects (Lee et al., 2022). SEDI also has four values, that is, 1, 2, 3,
and 4, corresponding to the four levels of socioeconomic drought, that is, SEDI =1 for low level, SEDI
= 2 for moderate level, SEDI = 3 for severe level, and SEDI = 4 for extreme level (Liu et al., 2020). As
for the SED], it ignores the influence of reservoir water storage on future socioeconomic drought (Guo
et al.,, 2019). It can provide early warnings about the potential economic and social consequences of
drought, enabling proactive measures to mitigate the impact.

—2 o | 0 | 2 z-units/decade
[ ]

Figure 6. Trends in drought event magnitude between 1980 and 2020, based on SEDI. Source: Vicente-Serrano
et al. (2022).

2.2.6. Composite Drought Index (CDI)

The CDI is a comprehensive drought monitoring tool that combines multiple drought indicators
or indices to provide a more holistic view of drought conditions (Beccari, 2016). The CDI is designed
to capture various aspects of drought, such as agricultural, hydrological, meteorological, and
socioeconomic components on a seasonal time scale, and thus blend them into a single, integrated
index in a more robust picture. When developing the CDI, water balance conditions are considered
along with actual evapotranspiration and meteorological data (Sepulcre-Canto et al,, 2012). It
generally uses remote sensing and modeled data inputs to reflect anomalies in precipitation,
vegetation greenness, soil moisture, and evapotranspiration (Faiz et al., 2022). Using CD], agricultural
drought-prone areas are detected by the CDI, as well as areas where drought-affected vegetation
already exists; and regions that are returning to normal following a drought spell. The CDI is
conceptualized by a cause-effect theory - taking drought as cascading process, where a precipitation
shortage (i.e., watch stage) turns into a soil water deficit (i.e.,, warning stage), then causes stress on
vegetation growth and production (i.e., alert stage) (Cammalleri et al., 2021).

A new CDI was established using the integration of potential and actual evapotranspiration,
climatic water balance, and precipitation. The CDI provides a concise overview of agricultural
drought evolution that can be used to communicate with both specialized actors and policymakers
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(Vogt et al.,, 2018). This index is presented as below (Equation 9), but may have multiple forms
depending on the types of input parameters considered:

P—-AET
P-AET

CDI = x *RAL, +y*WBAI + z 9)

where x,y,and z are coefficients for mod rainfall anomaly index (RAl,), water balance anomaly
index (WBAI), actual evapotranspiration (AE7), and moisture index (MI) = I;:% . The CDI
classification index varies from no drought (CDI < -0.60) to extreme drought (extreme drought).

The selection of indices and the weighting assigned to each component in the CDI calculation
can be subjective, potentially leading to different results based on the choices made. Likewise, when
it comes to identifying mild to extreme drought conditions, the CDI outperforms the PDSI in terms
of false alarm ratio. In practice, CDI calculation requires a significant amount of computing power,
especially when analyzing large volumes of data and long-time series from multiple sources (Ali et
al., 2022). Also, it may have limitations in predicting future drought events.

3. Drought Indices and Indicators Comparisons
3.1. Comparison Criteria

50+ indices/indicators were reviewed during this study based. The criteria for evaluating
drought indices and indicators can vary depending on the specific application and context such as
accuracy, relevance, sensitivity, consistency, lead time, spatiotemporal resolution, data requirements,
data quality, user-friendliness, transparency, validation, flexibility, intersectoral applicability, and
stakeholder engagement. Despite the fact that no leading index or indicator is always better than the
others, some indices are more appropriate than others for specific uses.

Table 1. Comparison of different drought indicators.

Data

Index/indicator P T PE AWC CD SF GW SM Multiple Spatial scale  Temporal scale .
requirement

PDSI v v v Global Monthly High
SPUSPEI v v Global Daily, weekly, High
monthly
TMI v Global Monthly Low
Al v v Global Monthly Low
RAI v Regional Monthly Medium
CMI v v Regional Weekly Medium
Holistic
USDM v Country Weekly Medium
DSCI v Global Monthly, annually High
ADRI v Regional =~ Monthly, annually High
HDI v Regional Annually High
SEDI v Global Annually High
CDI v Global Annually High

Source: Author.

3.2. Drought Event Hotspots

Drought indices and indicators are used worldwide to monitor, assess, and manage drought
conditions. Hotspots, in this context, refer to regions or countries where drought indices and
indicators are commonly used due to the prevalence or severity of drought conditions. These
hotspots may vary based on the type of drought and regional characteristics. The maps used in this
study were used to identify 12 drought event hotspots, i.e., United States, Australia, China, India,
Africa, Brazil, Europe, Mediterranean regions, Southern Africa (South Africa, Zimbabwe, Namibia,
and Mozambique), Latin America, and the Middle East. For this purpose, the thresholds of PDSI, SPI,
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TMI, Al RAI, CMI, USDM, DSCI, ADRI, HDI, SEDI, and CDI were reduced to three categories (low,
medium, and high severity).

4. Drought Indices and Indicators Discussion

Drought can have significant implications for achieving the Sustainable Development Goals
(SDGs) of 2030 Agenda (Tabari and Willems, 2023). Mainly, it strikes at the heart of SDG1 (No Poverty)
by leading to crop failures and reduced productivity causing income loss and pushing people deeper
into poverty; SDG2 (Zero Hunger) by posing a major threat to food security (i.e., crop failures, reduced
livestock productivity, and water scarcity resulting in food shortages and malnutrition; SDG6 (Clean
Water and Sanitation) by reducing water availability for personal, agricultural, and industrial use;
SDG15 (Life on Land) by exacerbating land degradation, deforestation, desertification, impacting
ecosystems and biodiversity (Lindoso et al., 2018; Zhang et al., 2019). As drought affects various
aspects of society and the environment, addressing the interconnected challenges of drought and
SDGs requires a comprehensive and multisectoral approach.

Ever since the soil and water management challenges surfaced during the Mid to late 20t
century, scholars have attempted the development of drought indices/indicators for disaggregating
the complex and simple indications of drought conditions. Classical and holistic indicators provided
the foundations for drought measurement. Researchers developed indicators sensitive to
agricultural, socioeconomic, and environmental aspects of droughts, since these indicators cover only
limited aspects of drought episode. For example, the SEDI, HDI, CMI, ADRI, and PSIs are founded
on broader sets of drought aspects. Further research studies pointed out more missing areas
including the new authenticities like climate change and adaptation strategies.

4.1. Limitations of the Indices and Indicators

Understanding the limitations of drought indices and indicators is crucial for using the holistic
and classical indices effectively and making informed decisions.

o Sensitivity to data inputs: The accuracy of indices is highly dependent on the quality and
availability of data inputs (i.e., meteorological data, socioecological data, agricultural data,
etc.). The quality and quantity of input data are important for accurate drought assessment.
For example, precipitation data is used to derive the SPI-based drought index. By comparing
the spatiotemporal differences and drought area capture capabilities over 23 sub-datasets
spanning 30 years, the study of Liu et al. (2016) concluded that SPDI is less sensitive to data
selection than sc-PDSI. Moreover, the SPDI series derived from different datasets are highly
correlated and consistent in drought area characterization. SPDI is most sensitive to changes
in the scale parameter, followed by location and shape parameters. It was looked into how
sensitive each of the seven precipitation-based drought indices was to varying record lengths
at monthly, seasonal, and annual time scales. The findings showed that better time steadiness
was observed in Z-score Index (ZSI) and Effective Drought Index (EDI) compared to other
indices such as the Deciles Index (DI), Standardized Precipitation Index (SPI), Percent of

Normal Precipitation Index (PNPI), China Z Index (CZI), and the Modified China Z Index
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(MCZI) (Mahmoudi et al., 2019). Due to sensitivity to a relatively wider range of factors,
holistic indices/indicators have the advantage over classical indices/indicators.

o Lack of consistency: Different drought indices may yield different results for the same area or
time period. There is no universal drought indicator and previous studies identified
significant discrepancies between the state drought indices (Feng et al., 2017). The most exact
and accurate techniques to track agricultural conditions are drought indices estimated from
ground observations of soil moisture, precipitation, and temperature. The accuracy of
drought indices also depends on accurate estimates of soil parameters based on in-situ
measurements; calculation methods and missing data (Pan et al., 2023). Coupled climatic and
socioeconomic aspects are interlinked to drought conditions in one region and distinct in
another location. Many of these features are meticulously interrelated with each other and
any decision-making ability regarding their inclusion has certain consequences in terms of
accuracy and effective outcomes. The problem of inconsistency is prominent in the case of
both holistic and classical indicators that consider multiple parameters.

o Artificial Intelligence-based drought assessment: Droughts can be modeled, observed, and
predicted using high-resolution spatiotemporal resolution data. Drought-causing factors and
mechanisms operate on a wide range of spatial scales, from the movement of soil water to
global atmospheric circulation. There is huge lack of multiscale drought monitoring and
early warning systems (Mardian, 2022). Further, the Centre for Environmental Data Analysis
(CEDA) developed new high-resolution datasets providing more detailed local information
that can be used to evaluate drought severity for specific periods and regions and determine
global, regional, and local trends, thereby supporting the development of site-specific
adaptation measures (Gebrechorkos et al., 2023). There is an emerging need to develop novel
datasets that can serve fundamental data support for future studies. The integration of
machine learning (ML) models — usually superior to traditional techniques — has a promising
answer since they are good at addressing non-stationarities and non-linearities in drought
assessment. For instance, DroughtCast ML was utilized to forecast a very extreme drought
event up to 12 weeks before its onsets. It offers promising findings for decision-makers, land

managers, and public institutions in preparing for and mitigating the impacts of drought.
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o Complex interpretation: Some drought indices are based on complex mathematical algorithms,
making them difficult for non-experts (i.e., smallholder farmers) to interpret and need more
attention. This can limit their utility for decision-making. The work of reported that Fluixa-
Sanmartin et al. (2018) due to the general complexity of droughts, the comparison of the
index-identified events with droughts at different levels of the complete system, including
soil humidity or river discharges, relies typically on model simulations of the latter, entailing
potentially significant uncertainties and decidedly biased outcomes. The short-term
anomalies are overlooked - regarding the interactions of soil moisture and
evapotranspiration — hiding the influence of long-term anomalies of rainfall, soil moisture,
and evapotranspiration that cause recurrent droughts and heatwaves (Gaona et al., 2022). To
solve these challenges, there is a need for collaborative efforts (e.g., expert consultation,
access documentation, multi-indices understanding, access to historical data and stakeholder
engagement, etc.) and requiring interdisciplinary expertise from various fields (e.g.,
agriculturalists, climatologists, socio-economists, and ecologists, etc.).

e Data Infrastructure and Maintenance: Remote sensing infrastructural development and their
maintenance outlays can be costly, thus hindering accessibility to accurate and precise data

in developing countries.

4.2. Necessity for Multidisciplinary Indices and Indicators

Drought impacts are not limited to a single sector or dimension. Sectors affected by drought are
interconnected. For example, drought conditions can lead to reduced agricultural productivity,
which in turn can impact food security. By incorporating various indicators, these systems can
provide timely alerts for different sectors, which is essential for effective planning, response, and
resilience-building in the face of a changing climate. Literature reveals that all indicators have certain
limitations, either conceptual, operational, or both (Hayes et al., 2007; Hayes et al., 1999; Heim ]Jr,
2002; Keetch and Byram, 1968; Palmer, 1965; Vicente-Serrano et al., 2010). None of the indices cover
simultaneously all the necessary areas, duration, intensity, frequency, impacts, etc. However, the
major shortcoming occurs when some vital parameters are not included in the account (Yang et al.,
2015). For example, while many parameters are essential for a robust assessment, some may be
considered “leftover” when designing or using a particular index, including solar radiation, relative
humidity, wind speed, cloud cover, barometric pressure, snowpack data, turbidity (Dikici, 2020). In
any region experiencing drought events, any evaluation or monitoring practice without considering
coupled climatic features will yield defective outcomes and wrong decisions. This is not limited to
weather parameters only. Each region has a unique scenario of drought experience, spatial and
temporal distribution, socioeconomic development, water scarcity concerns, and adaptive capacity.
Some countries (e.g., the United States of America, Australia, and European Union countries) have
developed their specific indicators/indices for monitoring drought (Heim et al., 2020). However,
many indices, particularly classical, are unable to reflect the cause-effect relationship of drought.
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Thus, in planning, it would be wise not to use a single indicator because it will not lead to consistent
results or delusion of security. Artificial Intelligence methods (e.g., machine learning, deep learning
and among other) have a high potential for prediction of extremes due to the ability of machine
learning methods to learn from past data, to handle large numbers of input variables, to integrate
physical understanding into the models and to discover additional knowledge from the data.

4.3. Data, Methodological and Technological Challenges

One of the major issues influencing the adoption of indices, causing shortcomings and restricting
research and development, is data challenge, leading to complications in the development and use
of indices. Many holistic indices have not been extensively employed because the requisite data is
not readily available. Assessment of drought conditions requires a reasonably long time series at the
desired time phase. Different indices/indicators consider different parameters. Hence, the data
required for holistic indices is huge and diverse. Many regions, especially in developing countries,
lack sufficient data collection and monitoring infrastructure (e.g., Long-term Ecological Research)
(Vanderbilt and Gaiser, 2017), leading to data gaps and inaccuracies. Data collected at a regional or
national scale may not provide the necessary detail for local-level drought assessments.

Moreover, remote sensing technologies, while valuable for monitoring drought conditions, have
limitations, including cloud cover, instrument errors, and sensor calibration issues, lack of integration
tools and standardized data formats for main parameters such as satellite-based precipitation, soil
moisture, groundwater levels, and among others (Hao et al., 2014). While climate models offer
projections of future climate conditions, uncertainties in these projections can limit their utility for
long-term drought planning and adaptation. Conspicuously, integrating socio-economic data, such
as agricultural statistics, demographic data, greenhouse gas emission, and land use/land cover
information is crucial for a holistic understanding of drought impacts, but to such data may be
restricted or limited in many regions. In some regions, access to advanced technology and computing
resources can be limited, leading to the inability to develop and implement sophisticated drought
monitoring and assessment tools. Data privacy, security, and sovereignty concerns can hinder data
sharing and collaborative drought assessment across transboundary regions. There is an urgent need
to invest in data infrastructure, develop standardized data-sharing protocols, and enhance
technological capabilities. Lastly, international cooperation is crucial for sharing data,
methodological, and technological advancement.

5. Conclusions

Drought is a creeping natural phenomenon with highly destructive power, which unfolds their
impacts on different temporal and spatial scales. After reviewing 50+ drought indices/indicators, this
study presented descriptions of 12 indices/indicators in terms of drought characterization,
spatiotemporal scale suitability, calculation methods, data requirements, level of complexity,
strengths, and weaknesses. Therefore, based on previous literature on drought assessment and
monitoring using different indices/indicators, we compiled a global comparison. Based on this
review, the following conclusions can be drawn:

i)  There is no single drought indicator, whether classical or holistic, for all drought types in all
specific regions and climates, because all available drought indicators have their limitation
during development and application. Therefore, drought indicator selection requires a thorough
investigation related to the type of drought and the respective drought indicator based on the
availability of data, ease of communication, result implication, strength and limitations of the

indices, and the objective of the investigation. Drought indices/indicators assimilate thousands
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of bits of data on meteorological, agricultural, socioeconomic, and ecological data into a
comprehensive big picture. Due to a lack of large-scale application, experts must make their own
judgments regarding holistic indicators' pros and cons.

ii) Holistic indices require huge amounts of data. The lack of sufficient infrastructure for collecting
and monitoring data in many regions, particularly in developing countries, produces gaps and
inaccuracies in data. A regional or national drought assessment may not be able to provide the
necessary detail based on data collected at the local level. There is a need for affordable
geospatial infrastructures and technologies. The development of new composite methods
should be used as building blocks and integrating remote sensing to support multinational
and disciplinary approaches with local participation to attain sustainable drought monitoring.

iii) Various indices/indicators produce contradictory findings regarding drought hotspots. For
instance, the PDSI also tends to underestimate runoff conditions whereas CMI is limited to use
only in the growing season; it cannot determine the long-term period of drought. The
meteorological drought indices may not solely be appropriate and adequate to assess
agricultural drought due to the lag between agricultural and meteorological drought. The main
reason for these controversial results can be the choice of drought indices/indicators and the
accuracy of satellite products used to derive drought indices/indicators. Ultimately, the
evaluation criteria should align with the objectives of the drought monitoring and management
efforts, and the chosen index should meet the specific needs of the stakeholders and decision-
makers.

iv) Future research studies should focus on novel geospatial intelligence (Geo-Al) based drought
indices that could facilitate in assessing, categorizing, and disclosing deep drought conditions;
utilization of earth observations that include satellite, climate, oceanic, and biophysical data for
efficient drought analysis and improved seasonal prediction; combine or integrate drought
indices based on improved modelling techniques; apply the data mining and GIS applications
to build Drought Early Warning Systems (DEWSs); and explore the impact of drought on

sustainable food systems.

In summary, both holistic and classical drought indices/indicators play roles in monitoring and
assessing drought conditions. In practice, both types of indices/indicators are often used in
combination to provide a more comprehensive and well-rounded understanding of drought events.
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Combining these tools with advancements in technology, early warning systems, and international
cooperation is crucial for addressing the complex challenges posed by drought.
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