
Article Not peer-reviewed version

Vector Map Encryption Method Based

on Secret Sharing

Fanshuo Liu , Baiyan Wu * , Xi Liu * , Zixuan Bu , Haodong Zhang

Posted Date: 20 January 2025

doi: 10.20944/preprints202501.1387.v1

Keywords: vector map; data encryption; secret sharing; map encryption; geographic information system

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/2712550
https://sciprofiles.com/profile/4173658

Article

Vector Map Encryption Method Based on Secret Sharing

Fanshuo Liu 1,2, Baiyan Wu 1,2,*, Xi Liu 3,*, Zixuan Bu 1,2 and Haodong Zhang 1,2

1 National-Local Joint Engineering Laboratory of Geo-Spatial Information Technology, Hunan University of Science and Technology,

Xiangtan 411201, China
2 School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
3 Hunan Engineering Research Center of Geographic Information Security and Application, Changsha 410000, China

* Correspondence: B. Wu: wby@hnust.edu.cn; Tel.: +86-18973260701; X. Liu: lx0050@qq.com

Abstract: Vector map data is of great value and widely used in different fields. The issues for its data security have

become increasingly urgent in the modern information age. Encryption technology converts the plaintext data into

ciphertexts, making the data unreadable to unauthorized users, thus, plays a vital role in safeguarding sensitive

information in various scenarios. Although several encryption algorithms for vector maps have been developed, most

of the existing methods lack some very important security related properties, such as the disaster tolerance property,

probabilistic property, diffusion property and the robustness to data RST (Rotation, Scaling and Translation)

transformations, which greatly affects the security of the encryption algorithms. In this paper, a novel vector map

encryption algorithm based on (𝑘, 𝑛)-threshold secret sharing is proposed, which encrypts one map into n map shares

and reconstructs the plaintext map by collecting at least k shares, thus improving the algorithm’s security and achieving

the disaster tolerance property. Moreover, random numbers and cipher-feedback mode are cooperated into the

encryption process in the proposed method to achieve probabilistic and diffusion properties. In addition, quantized

polar coordinate is defined and original map coordinates are transformed into quantized polar coordinates before

encryption and decryption process to achieve robustness to data RST transformations. Experiments on map data of

different types (including points, polylines, and polygons) demonstrate the effectiveness and superiority of the

proposed method.

Keywords: vector map; data encryption; secret sharing; map encryption; geographic information system

1. Introduction

In modern information age, Geographic Information Systems (GIS) have been widely applied in various fields such

as urban planning, environmental monitoring, traffic management, and the military industry [1–5]. Vector maps, as one

of the main GIS data, contain rich geographic coordinate information [6,7]. However, with the popularity of vector

maps, how to protect the security and privacy of this sensitive data has become an increasingly prominent challenge

[8–11]. Currently, there are two main issues for the security protection of vector maps: confidentiality protection and

copyright protection [12]. Copyright protection mainly includes technologies such as blockchain [13] and digital

watermarking [14,15] which can embed copyright information into vector maps while ensuring data integrity.

Confidentiality protection is mainly based on encryption technology, which converts the plaintext data into unreadable

ciphertexts to prevent unauthorized users to access data. At present, a few vector map encryption schemes have been

proposed and applied to the field of geographic information protection [16]. Existing encryption schemes can be roughly

divided into three categories: Classical cryptography-based encryption schemes [17], spatial domain-based encryption

schemes [23,24], and transform domain-based encryption schemes [18,19].

Classical cryptography-based encryption schemes treat the vector map as a binary file and encrypt and decrypt the

vector map as a whole. These encryption algorithms can be either symmetric encryption techniques or asymmetric

encryption techniques. Symmetric encryption schemes mainly employ Advanced Encryption Standard (AES) [20] and

Data Encryption Standard (DES) [21], etc. while asymmetric encryption schemes mainly employ the Rivest Shamir

Adleman algorithm (RSA) [22] and the ellipse curve cryptography algorithm (ECC) [23], etc. The algorithms of these

encryption types are simple to implement and consume few resources. However, these algorithms have limited

randomness and do not consider the structural characteristics of vector data, resulting in poor usability.

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 January 2025 doi:10.20944/preprints202501.1387.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202501.1387.v1
http://creativecommons.org/licenses/by/4.0/

Spatial domain-based encryption schemes directly shuffle the spatial distribution of map vertices through various

chaotic systems, scrambles, and obfuscations. In terms of chaotic systems, the local encryption method proposed in [24],

uses the SM3 algorithm and a four-dimensional hyperchaotic system to generate pseudo-random sequences, and

utilizes these sequences to perform confusion, scrambling, and encryption processing on vertex coordinates. Another

example is the encryption method based on the double random position permutation strategy [25], which uses the

double random position permutation strategy to encrypt all the coordinates of the vector map. This method can prevent

a one-to-one mapping relationship between the plaintext and the ciphertext vector maps. But the encryption effect of

this algorithm on points is relatively weak. The encryption algorithm based on image scrambling regards the vector

map as a special kind of image and encrypts it using image scrambling techniques. Common scrambling methods

include the Arnold transformation [26] and nonlinear scrambling [27], etc. These encryption algorithms have a fast

encryption speed and wide applicability. However, they have poor probabilistic property, not semantically secure.

Transform domain-based encryption schemes, converting data from the spatial domain to the transform domain

for encryption, belong to another classic type of encryption method. Commonly used transforms in these encryption

methods include the Discrete Cosine Transform (DCT), the Discrete Wavelet Transform (DWT), and the Discrete Fourier

Transform (DFT) [28]. Pham et al. [29] employed the Advanced Encryption Standard and keys to encrypt the feature

vertices of the backbone objects and randomized all the vertices of the backbone objects through the random Gaussian

distribution algorithm. Van et al. [30] proposed to classify the objects in each map layer, and all the coordinates of

important objects are encrypted by using Discrete Wavelet Transform (DWT) and Discrete Fourier Transform (DFT).

In summary, although some representative models and algorithms for vector map data encryption have been

proposed, there still exist the following deficiencies for these methods: (1) Plaintext map data is encrypted into only one

ciphertext map, and only one ciphertext map is required for data decryption. The security of such encryption models is

not very sufficient for the sensitive vector map data. (2) When the only encrypted map data is lost or damaged, it is

difficult to restore the encrypted map to its original version, which will lead to permanent data loss and leakage or

damage to the integrity of the data. (3) In most classical cryptography algorithms, when the same plaintext data is

encrypted twice, the results of each encryption are the same. This enables attackers to discover the patterns of the

encryption algorithm by analyzing a large number of plaintext and ciphertext pairs collected, and then crack the key or

the plaintext. Moreover, some asymmetric encryption algorithms have poor diffusion properties, which reduces the

security of the algorithms. (4) Many existing algorithms lack robustness to data RST (Rotation, Scaling and Translation)

transformations which are the very common operations for vector map data. Thus, decryption for the encrypted data

often fails after RST operations. (5) Some methods lack versatility. The encryption algorithms cannot support all 2D

vector data types (points, polylines, polygons), or the encryption effect varies depending on the data elements, which

will affect the overall security of the methods.

To address the issues above, this paper proposes a novel vector map encryption method based on (𝑘, 𝑛)-threshold

secret sharing, which encrypts one map into 𝑛 map shares and reconstructs the plaintext map by collecting at least 𝑘

shares, thus improving the algorithm’s security and achieving the disaster tolerance property. Moreover, random

numbers and cipher-feedback mode are cooperated into the encryption process in the proposed method to achieve

probabilistic and diffusion properties. In addition, quantized polar coordinate is defined and original map coordinates

are transformed into quantized polar coordinates before encryption and decryption process to achieve robustness to

data RST transformations.

The remainder of this paper is organized as follows. Section 2 introduces the Shamir’s secret sharing method.

Section 3 describes in detail the methodology of the proposed method. Experimental results and performance of the

proposed method are discussed and evaluated in Section 4. Finally, a conclusion is drawn in Section 5.

2. Shamir’s Secret Sharing Method

In 1979, Shamir and Blakley proposed a (𝑘, 𝑛)-threshold secret sharing scheme [31]. The method is to divide the

secret information 𝑠 into 𝑛 shares and distribute them to 𝑛 respective participants. Any set that contains at least

𝑘 participants is an authorized subset and can reconstruct 𝑠 correctly, while a set that contains 𝑘 − 1 or fewer

participants is an unauthorized subset and cannot get any information of 𝑠. Shamir’s secret sharing scheme is widely

used. The implementation process is as follows:

Select a finite field 𝐹𝑝, where 𝑝 ≥ 𝑛. Select 𝑘 − 1 random numbers 𝑎𝑖 (𝑖 = 1,2,⋯ , 𝑘 − 1) from 𝐹𝑝 and construct the

polynomial

 𝑓(𝑥) = s + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑘−1𝑥

𝑘−1 𝑚𝑜𝑑 𝑝 (1)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 January 2025 doi:10.20944/preprints202501.1387.v1

https://doi.org/10.20944/preprints202501.1387.v1

Select 𝑛 non-zero elements 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 from 𝐹𝑝 which are different from each other and publicly known. Then, the

𝑛 shares for 𝑠 are obtained as 𝑓(𝑥𝑞), 𝑞 = 1,2,⋯ , 𝑛.

When at least 𝑘 shares 𝑓(𝑥𝑡𝑗) (𝑗 = 1,2,⋯ , 𝑘 𝑎𝑛𝑑 𝑡𝑗 ∈ {1,2,⋯ , 𝑛}) are collected, the original data 𝑠 can be

reconstructed. The reconstruction of the original data is achieved through Lagrange interpolation, represented as:

 𝑓(𝑥) =∑

(

𝑓 (𝑥𝑡𝑗) ∏

𝑥 − 𝑥𝑡𝑙
𝑥𝑡𝑗 − 𝑥𝑡𝑙1≤𝑙≤𝑘

𝑙≠𝑗)

 𝑚𝑜𝑑 𝑝

𝑘

𝑗=1

(2)

Substituting 𝑥 = 0 into the above formula, the original data 𝑠 = 𝑓(0) can be obtained.

3. Methodology

Vector maps use the vector data model to represent geographical entities and describe geospatial phenomena

through geometric objects such as points, polylines, and polygons as well as their attributes. The geometric objects

consist of ordered 2D coordinates sequences. The encryption operation is performed on each coordinate to obtain

encrypted map data. In this paper, each coordinate is encrypted into 𝑛 cipher coordinates by using (𝑘, 𝑛) threshold

secret sharing. After all coordinates are encrypted, 𝑛 cipher map shares are obtained. Only by collecting at least 𝑘 cipher

shares can the plaintext map be reconstructed. As the secret sharing model processes data in the finite field, the map

coordinates represented by real data are converted into integers on finite field before secret sharing operations. The

conversion from real coordinates to integer coordinates is completed by using a data quantization process based on

predefined quantization steps. In addition, in order to make the map decryption robust to the RST (Rotation, Scaling

and Translation) operations which are the common operations for map data, the data quantization process and the

secret sharing based encryption are all performed under a constructed polar coordinate system.

Specifically, the encryption process for a vector map data includes four sub-processes: (1) The original map

coordinates are transformed into polar coordinates under a constructed polar coordinate system. (2) Quantization

processes are performed to the polar coordinates using predefined quantization steps to obtain quantized polar

coordinates. Each quantized polar coordinate is then divided into quantization index part and quantization fraction

part. (3) Secret sharing operation is performed to each quantization index part and 𝑛 ciphertexts for each index part are

obtained accordingly. Each ciphertext for index part is then combined with the fraction part to form 𝑛 ciphertexts for

each quantized polar coordinate. (4) The 𝑛 ciphertexts of each quantized polar coordinate are then processed using

inverse quantization and inverse polar coordinate transformation in sequence and 𝑛 encrypted map shares for the

original map are finally obtained. The flowchart of the encryption process is shown in Figure 1.

Figure 1. Encryption process of vector maps.

The decryption process consists of four sub-processes as follows. (1) For each encrypted map share, polar

coordinate transformation is performed to all the encrypted coordinates, producing encrypted polar coordinates. (2)

Quantization processes are performed to all the encrypted polar coordinates using the corresponding quantization steps

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 January 2025 doi:10.20944/preprints202501.1387.v1

https://doi.org/10.20944/preprints202501.1387.v1

to produce quantized cipher polar coordinates. And each quantized cipher polar coordinate is divided into quantization

index part and fraction part. (3) For each index part, collect at least 𝑘 corresponding shares to reconstruct the original

index part. The original index part is then combined with the corresponding fraction part to form the original quantized

polar coordinate. (4) The original quantized polar coordinates are performed inverse quantization operations and

inverse polar coordinate transformations sequentially to obtain the original vector map data. The flowchart of the

decryption process is shown in Figure 2.

Figure 2. Encryption process of vector maps.

3.1. Construction of Polar Coordinate System

RST transformations do not affect data usage and are common operations for vector map data. To ensure that the

decryption of cipher map is robust to the RST operations, map encryption and decryption are performed in a

constructed polar coordinate system. The construction of the polar coordinate system and the transformation from

Cartesian coordinates to polar coordinates are described as follows.

For a given 2D vector map, its vertex sequence{𝑉𝑖(𝑥𝑖 , 𝑦𝑖)| 𝑖 = 1,2,⋯ ,𝑁} is first obtained, where 𝑁 is the number of

vertices. Choose two vertices 𝑉𝑝1 and 𝑉𝑝2 in the sequence according to a predefined key 𝑘𝑒𝑦1 with 𝑉𝑝1 as the pole and the

ray 𝑉𝑝1𝑉𝑝2 as the initial ray to construct a polar coordinate system. Then, the vertex coordinates 𝑉𝑖(𝑥𝑖 , 𝑦𝑖)(𝑖 = 1,2,⋯ ,𝑁)

are transformed into coordinates under the constructed polar system to obtain the polar coordinates 𝑉𝑖(𝑟𝑖 , 𝜃𝑖). The

transformation from Cartesian coordinates to polar coordinates can be represented by

 𝑟𝑖 = ‖𝑉𝑝1𝑉𝑖‖ (3)

{

 𝜃𝑖 = 𝑠𝑖𝑔𝑛(𝑉𝑝1𝑉𝑝2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ × 𝑉𝑝1𝑉𝑖̇
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ • 𝑒𝑧⃗⃗ ⃗) × arc cos (

‖𝑉𝑝1𝑉𝑖‖
2
+ ‖𝑉𝑝1𝑉𝑝2‖

2
− ‖𝑉𝑝2𝑉𝑖‖

2

2‖𝑉𝑝1𝑉𝑖‖ × ‖𝑉𝑝1𝑉𝑝2‖
) 𝑖𝑓 ‖𝑉𝑝1𝑉𝑝2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ × 𝑉𝑝1𝑉𝑖̇
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗‖ ≠ 0

𝜃𝑖 = arc cos(
‖𝑉𝑝1𝑉𝑖‖

2
+ ‖𝑉𝑝1𝑉𝑝2‖

2
− ‖𝑉𝑝2𝑉𝑖‖

2

2‖𝑉𝑝1𝑉𝑖‖× ‖𝑉𝑝1𝑉𝑝2‖
) 𝑖𝑓 ‖𝑉𝑝1𝑉𝑝2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ × 𝑉𝑝1𝑉𝑖̇
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗‖ = 0

(4)

where 𝑒𝑧⃗⃗ ⃗ is the unit vector of 𝑍-axis. And the inverse polar coordinate transformation can be represented by

 𝑥𝑖 = 𝑟𝑖 𝑐𝑜𝑠(𝜃𝑖) + 𝑥𝑝1 (5)

 𝑦𝑖 = 𝑟𝑖 𝑠𝑖𝑛(𝜃𝑖) + 𝑦𝑝1 (6)

3.2. Quantization Process to Polar Coordinates

There are two necessities for performing quantization process to all the polar coordinates. (1) Although the polar

radii keep invariant under the map rotation and translation operations, their values will be changed under map scaling

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 January 2025 doi:10.20944/preprints202501.1387.v1

https://doi.org/10.20944/preprints202501.1387.v1

operation. Consequently, if encryption process is directly performed to the polar coordinates, the decryption of cipher

map will fail after map scaling transformation. Thus, to ensure that the decryption of cipher map is robust to map

scaling operation, before encryption and decryption processes, each polar radius is quantized by using a quantization

step which is defined as a fixed proportion of the length between the two chosen vertices 𝑉𝑝1 and 𝑉𝑝2 . The quantized

polar radii possess RST-invariant capability. (2) The polar coordinates are real numbers, while the secret sharing model

is defined on integers in finite field. Thus, the polar coordinates are transformed into integers on a finite field before

secret sharing operations. The polar coordinates’ transformation from real numbers to integer numbers is achieved by

quantization process.

For a given vertex 𝑉𝑖(𝑟𝑖 , 𝜃𝑖), the quantization formula is as follows:

 {
𝑟𝑖
𝑞
=
𝑟𝑖
𝑞𝑟⁄

𝜃𝑖
𝑞
=
𝜃𝑖
𝑞𝜃⁄

(7)

where 𝑞𝑟 is the quantization step for polar radii and 𝑞𝜃 is the quantization step for polar angles. 𝑞𝑟 is defined as a

fixed proportion of the length between vertices 𝑉𝑝1 and 𝑉𝑝2 and computed as formula (8).

 𝑞𝑟 = 𝜌√(𝑥𝑝1 − 𝑥𝑝2)
2
+ (𝑦𝑝1 − 𝑦𝑝2)

2
(8)

where 𝜌 is an adaptation factor for the quantization step, and the value of 𝑞𝑟 can be tuned by tuning the value of 𝜌.

The inverse quantization process is represented by

 {
𝑟𝑖 = 𝑞𝑟 × 𝑟𝑖

𝑞

𝜃𝑖 = 𝑞𝜃 × 𝜃𝑖
𝑞 (9)

 𝑉𝑖
𝑞
(𝑟𝑖

𝑞
, 𝜃𝑖

𝑞
) represents the quantized polar coordinates. A quantization index number is defined as the integer part

of the quantized polar coordinate and a quantization fraction number is defined as the decimal part of the quantized

polar coordinate. For polar radius, the quantization index number is denoted as 𝑟𝑖
𝑞_𝑖𝑛𝑡, and the quantization fraction

number is denoted as 𝑟𝑖
𝑞_𝑑𝑒𝑐 . For polar angle, the quantization index number is denoted as 𝜃𝑖

𝑞_𝑖𝑛𝑡, and the quantization

fraction number is denoted as 𝜃𝑖
𝑞_𝑑𝑒𝑐 . It is obvious that 𝑟𝑖

𝑞
= 𝑟𝑖

𝑞_𝑖𝑛𝑡
+ 𝑟𝑖

𝑞_𝑑𝑒𝑐
 and 𝜃𝑖

𝑞
= 𝜃𝑖

𝑞_𝑖𝑛𝑡
+ 𝜃𝑖

𝑞_𝑑𝑒𝑐 . The quantization

index number set {(𝑟𝑖
𝑞_𝑖𝑛𝑡

, 𝜃𝑖
𝑞_𝑖𝑛𝑡

)|𝑖 ≠ 𝑝1 𝑎𝑛𝑑 𝑖 ≠ 𝑝2} constitutes the encryption domain. Secret sharing operations will be

performed on the encryption domain.

3.3. Map Encryption Based on Secret Sharing

In the original Shamir’s secret sharing scheme [31], the constant item 𝑠 can be replaced by elements in the

encryption domain to produce the shares of the quantization index numbers, and the coefficients 𝑎1, ⋯ , 𝑎𝑘−1are all

randomly selected integers. The use of random numbers in the sharing process can promote the security level. However,

the scheme cannot achieve diffusion properties. One bit change in secret 𝑠 can only change the shares for itself and has

no impact to the shares of other elements in the encryption domain, which may lead to the failure of resisting differential

cryptanalysis, chosen-plaintext attack, and so on. Therefore, the cipher-feedback mode of AES is cooperated into the

original Shamir’s secret sharing scheme by using a random share of the previous sharing result as the last coefficient of

the polynomial in the current sharing operation [32].

Then, the proposed (𝑘, 𝑛)-threshold secret sharing scheme can be constructed as follows. (1) Generate 𝑛 different

integers {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} from a secret key denoted as 𝑘𝑒𝑦2; (2) for the 𝑖-th element in the encryption domain, two 𝑘 − 1

degree polynomials are constructed by

 {
𝑓𝑖
𝑟(𝑥) = (𝑟𝑖

𝑞_𝑖𝑛𝑡
+ ∑ 𝑎𝑐𝑥

𝑐𝑘−2
𝑐=1 + 𝑓𝑖−1

𝑟 (𝑥𝑡𝑟)𝑥
𝑘−1) mod 𝑝𝑟

𝑓𝑖
𝜃(𝑥) = (𝜃𝑖

𝑞_𝑖𝑛𝑡
+ ∑ 𝑏𝑐𝑥

𝑐𝑘−2
𝑐=1 + 𝑓𝑖−1

𝜃 (𝑥𝑡𝜃)𝑥
𝑘−1) mod 𝑝𝜃

 (10)

where 𝑎1, ⋯ , 𝑎𝑘−2 and 𝑏1, ⋯ , 𝑏𝑘−2 are all randomly selected integers. 𝑓𝑖−1
𝑟 (𝑥𝑡𝑟) and 𝑓𝑖−1

𝜃 (𝑥𝑡𝜃) are randomly selected

previous sharing results, in which 𝑡𝑟 and 𝑡𝜃 are random in each sharing and randomly selected from {1,2,⋯ , 𝑛}. For the

first element 𝑖 = 1, 𝑓0
𝑟(𝑥𝑡𝑟) and 𝑓0

𝜃(𝑥𝑡𝜃) can be any random integers satisfying 𝑓0
𝑟(𝑥𝑡𝑟) < 𝑝𝑟 and 𝑓0

𝜃(𝑥𝑡𝜃) < 𝑝𝜃 . When

𝑥 ∈ {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} , 𝑛 shares for polar radius and polar angle can be generated as {𝑓𝑖
𝑟(𝑥1), 𝑓𝑖

𝑟(𝑥2),⋯𝑓𝑖
𝑟(𝑥𝑛)} and

{𝑓𝑖
𝜃(𝑥1), 𝑓𝑖

𝜃(𝑥2),⋯ 𝑓𝑖
𝜃(𝑥𝑛)}, respectively. Then, 𝑉𝑖

𝑞_𝑖𝑛𝑡_𝑗
(𝑟𝑖

𝑞_𝑖𝑛𝑡_𝑗
= 𝑓𝑖

𝑟(𝑥𝑗), 𝜃𝑖
𝑞_𝑖𝑛𝑡_𝑗

= 𝑓𝑖
𝜃(𝑥𝑗)) represents the 𝑖-th encrypted

quantization index number of share 𝑗.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 January 2025 doi:10.20944/preprints202501.1387.v1

https://doi.org/10.20944/preprints202501.1387.v1

In the above secret sharing scheme, a change of one element only influences the shares of itself and the following

elements, and has no impact to the shares of preceding elements. In order to make the change of one element diffuse

across the shares of all elements in the encryption domain, the above secret sharing operations can be performed in two

rounds, and the sharing result of the second round is used as the final encryption result. In the second round, it is noted

that, for the first element, the last coefficient of the secret sharing polynomial is randomly selected from the 𝑛 shares of

the last element produced in the first round.

After secret sharing operations on encryption domain, the encrypted quantization index numbers represented as

𝑉𝑖
𝑞_𝑖𝑛𝑡_𝑗

(𝑟𝑖
𝑞_𝑖𝑛𝑡_𝑗

, 𝜃𝑖
𝑞_𝑖𝑛𝑡_𝑗

) (𝑖 = 1,2,⋯ ,𝑁 , 𝑖 ≠ 𝑝1, 𝑖 ≠ 𝑝2 and 𝑗 = 1,2,⋯ , 𝑛) are combined with the quantization fraction

numbers to form 𝑛 shares of the quantized polar coordinates. For the 𝑖-th vertex in share 𝑗, its encrypted quantized polar

coordinates denoted as 𝑉𝑖
𝑞_𝑗
(𝑟𝑖
𝑞_𝑗
, 𝜃𝑖

𝑞_𝑗
) are computed as formula (11).

 {
𝑟𝑖
q_j
= 𝑟𝑖

q_int_j
+ 𝑟𝑖

q_dec

𝜃𝑖
q_j
= 𝜃𝑖

q_int_j
+ 𝜃𝑖

q_dec
(11)

Finally, sequential operations of inverse quantization and inverse polar coordinate transformation are performed

to all encrypted quantized polar coordinates 𝑉𝑖
𝑞_𝑗
(𝑟𝑖
𝑞_𝑗
, 𝜃𝑖

𝑞_𝑗
)(𝑖 = 1,2,⋯ ,𝑁, 𝑖 ≠ 𝑝1, 𝑖 ≠ 𝑝2 and 𝑗 = 1,2,⋯ , 𝑛) to obtain the

final 𝑛 shares denoted as {(𝑗, 𝑠ℎ𝑎𝑟𝑒𝑗)|𝑗 ∈ {1,2,⋯ , 𝑛}} of encryption results for the original vector map. 𝐾𝐸𝑌 =

(𝑘𝑒𝑦1, 𝑘𝑒𝑦2) is saved for decryption process.

3.4. Decryption Process

The flowchart for decryption process is shown as Figure 2. When any 𝑘 shares with their identities (𝑡𝑠, 𝑠ℎ𝑎𝑟𝑒𝑡𝑠), 𝑠 ∈

{1,2,⋯ , 𝑘}, 𝑡𝑠 ∈ {1,2,⋯ , 𝑛} have been collected, polar coordinate transformation and quantization process are first

performed to all the coordinates of each share sequentially, obtaining the encrypted quantized polar coordinates

𝑉𝑖
𝑞_𝑡𝑠(𝑟𝑖

𝑞_𝑡𝑠 , 𝜃𝑖
𝑞_𝑡𝑠)(𝑖 = 1,2,⋯ ,𝑁, 𝑖 ≠ 𝑝1, 𝑖 ≠ 𝑝2, 𝑠 = 1,2,⋯ , 𝑘 𝑎𝑛𝑑 𝑡𝑠 ∈ {1,2,⋯ , 𝑛}). Then, the encrypted quantization index

numbers 𝑟𝑖
𝑞_𝑖𝑛𝑡_𝑡𝑠(𝑠 = 1,2,⋯ , 𝑘) for polar radius can be obtained as the integer part of 𝑟𝑖

𝑞_𝑡𝑠 and the quantization fraction

numbers 𝑟𝑖
𝑞_𝑑𝑒𝑐 for polar radius can be obtained as the decimal part of 𝑟𝑖

𝑞_𝑡𝑠. Similarly, the encrypted quantization index

numbers 𝜃𝑖
𝑞_𝑖𝑛𝑡_𝑡𝑠(𝑠 = 1,2,⋯ , 𝑘) for polar angle and the quantization fraction numbers𝜃𝑖

𝑞_𝑑𝑒𝑐 for polar angle can be

obtained as the integer part and decimal part of 𝜃𝑖
𝑞_𝑡𝑠, respectively. It is easy to see that 𝑟𝑖

𝑞_𝑖𝑛𝑡_𝑡𝑠 = 𝑓𝑖
𝑟(𝑥𝑡𝑠) and 𝜃𝑖

𝑞_𝑖𝑛𝑡_𝑡𝑠 =

𝑓𝑖
𝜃(𝑥𝑡𝑠). Finally, one can compute 𝑥𝑡𝑠 based on 𝑘𝑒𝑦2 , and reconstruct the polynomials 𝑓𝑖

𝑟 and 𝑓𝑖
𝜃 using the Lagrange

interpolation as formula (2), recovering the original quantization index numbers 𝑟𝑖
𝑞_𝑖𝑛𝑡 and 𝜃𝑖

𝑞_𝑖𝑛𝑡 as 𝑓𝑖
𝑟(0) and 𝑓𝑖

𝜃(0),

respectively.

The decrypted original quantization index numbers (𝑟𝑖
𝑞_𝑖𝑛𝑡

, 𝜃𝑖
𝑞_𝑖𝑛𝑡

) are combined with the quantization fraction

numbers (𝑟𝑖
𝑞_𝑑𝑒𝑐

, 𝜃𝑖
𝑞_𝑑𝑒𝑐

) to form the original quantized polar coordinates 𝑉𝑖
𝑞
(𝑟𝑖
𝑞
, 𝜃𝑖

𝑞
) by using 𝑟𝑖

𝑞
= 𝑟𝑖

𝑞_𝑖𝑛𝑡
+

𝑟𝑖
𝑞_𝑑𝑒𝑐

 and 𝜃𝑖
𝑞
= 𝜃𝑖

𝑞_𝑖𝑛𝑡
+ 𝜃𝑖

𝑞_𝑑𝑒𝑐 . Subsequently, inverse quantization process and inverse polar coordinate transformation

are performed to all the decrypted quantized polar coordinates 𝑉𝑖
𝑞
(𝑟𝑖
𝑞
, 𝜃𝑖

𝑞
) to obtain the final decrypted original vector

map.

4. Experiments

4.1. Testing Environment and Datasets

The proposed algorithm is implemented using the Java (JDK8) language and the open-source library for geospatial

data processing–GDAL. The experimental programs were run on 64-bit Windows 11 with AMD Ryzen™ 7 6800H CPU

@ 3.20 GHz and 16G of memory.

Experiments on point, polyline and polygon feature maps were designed to validate the effectiveness and

efficiency of the proposed method for vector map encryption. To better demonstrate the applicability of the proposed

method, as shown in Figure 3, vector map datasets from OpenStreetMap (OSM) were used in the experiments, covering

different volumes, feature types, and precisions. Specifically, Datasets A to C are the Points of Interest (POI), railways

network and administrative division of prefecture-level cities in Zhejiang Province, China, respectively. Datasets D to

F are the Points of Interest (POI), waterway network and water bodies of South Korea, respectively. The statistical

information of these datasets is listed in Table 1.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 January 2025 doi:10.20944/preprints202501.1387.v1

https://doi.org/10.20944/preprints202501.1387.v1

(a) (b) (c)

(d)

(e)

(f)

Figure 3. (a) Dataset A;(b) Dataset B;(c) Dataset C; (d) Dataset D; (e) Dataset E; (f) Dataset F.

Table 1. Detailed information of the vector map data.

Datasets Layer Feature type
Number of

features

Number of

vertices
Size

Dataset A POI point 15298 15298 419KB

Dataset B Railway polyline 12656 102165 2.29MB

Dataset C
Prefecture

boundaries
polygon 12 1803 29KB

Dataset D POI point 246950 246950 6.75MB

Dataset E Waterways polyline 31870 777420 13.9MB

Dataset F Water bodies polygon 24036 1023278 17MB

4.2. Encryption and Decryption Results

The encryption and decryption operations on the vector map data are performed utilizing the proposed method.

The threshold secret sharing schemes of (2,3), (3,5) and (5,9) are implemented in the experiments, and some results are

shown in Figures 4-8. Figures 4(a-c) display the three shares of Dataset A obtained by using the proposed (2,3)-

threshold secret sharing method, and Figures 4(d-f) display the decryption results obtained by collecting any two shares

to reconstruct the plaintext data. Figures 5(a-c) display the three shares of Dataset B obtained by using the proposed

(2,3)-threshold secret sharing method, and Figures 5(d-f) display the decryption results obtained by collecting any two

shares to reconstruct the plaintext data. Figures 6(a-c) display the three shares of Dataset C obtained by using the

proposed (2,3)-threshold secret sharing method, and Figures 6(d-f) display the decryption results obtained by collecting

any two shares to reconstruct the plaintext data. Figures 7(a-i) display the nine shares of Dataset F obtained by using

the proposed (5,9)-threshold secret sharing method. Figure 8(a) displays the decryption result of Dataset F by collecting

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 January 2025 doi:10.20944/preprints202501.1387.v1

https://doi.org/10.20944/preprints202501.1387.v1

4 of 9 shares to reconstruct the plaintext data, and Figures 8(b-f) display the decryption results of Dataset F by collecting

5, 6, 7, 8 and 9 shares to reconstruct the plaintext data, respectively.

From the results, it can be found that the vertex distribution of the shares produced by the proposed (𝑘, 𝑛)-

threshold secret sharing scheme is chaotic from the visual effect, and it is difficult to get a bit of valuable information

and patterns about the original maps, thus realizing the protection of the map information. The decryption results

shown in Figures 4(d-f), 5(d-f) and 6(d-f) validate that collecting any 𝑘 of 𝑛 shares produced by the proposed (𝑘, 𝑛)-

threshold secret sharing can reconstruct the plaintext data correctly. It means that if no more than 𝑛 − 𝑘 shares are

destroyed, the plaintext data still can be reconstructed correctly by the remaining shares. This verifies the disaster

tolerance property and promotes the security level of the proposed encryption scheme.

The decryption results shown in Figures 8(a-f) indicate that collecting less than 𝑘 shares can not obtain any

information of the original vector map, while collecting no less than 𝑘 shares can reconstruct the plaintext data correctly,

and this further proves the high security level of the proposed encryption scheme.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4. (a)-(c) The encrypted shares of Dataset A; (d) The decryption result with shares (a) and (b); (e) The decryption result with

shares (b) and (c); (f) The decryption result with shares (a) and (c).

(a)

(b)

(c)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 January 2025 doi:10.20944/preprints202501.1387.v1

https://doi.org/10.20944/preprints202501.1387.v1

(d)

(e)

(f)

Figure 5. (a)-(c) The encrypted shares of Dataset B; (d) The decryption result with shares (a) and (b); (e) The decryption result with

shares (b) and (c); (f) The decryption result with shares (a) and (c).

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6. (a)-(c) The encrypted shares of Dataset C; (d) The decryption result with shares (a) and (b); (e) The decryption result with

shares (b) and (c); (f) The decryption result with shares (a) and (c).

(a)

(b)

(c)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 January 2025 doi:10.20944/preprints202501.1387.v1

https://doi.org/10.20944/preprints202501.1387.v1

(d)

(e)

(f)

(g)

(h)

(i)

Figure 7. (a)-(i) The encrypted shares of Dataset F obtained by using the proposed (5,9)-threshold secret sharing method.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8. (a)-(f) The decryption results of Dataset F by collecting 4, 5, 6, 7, 8 and 9 shares, respectively.

4.3. Encryption Effects

In vector maps, the adjacent coordinates generally exhibit strong correlations. An effective encryption process

should disrupt such correlations between coordinates and scramble all the vertices in the vector map in a random way.

Thus, the RMSE (Root Mean Square Error) between the original map and the encrypted map will be high. In this section,

the correlation of adjacent coordinates and the RMSE between the original and encrypted maps are adopted to measure

the efficacy of the proposed encryption method.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 January 2025 doi:10.20944/preprints202501.1387.v1

https://doi.org/10.20944/preprints202501.1387.v1

4.3.1. Correlation of Adjacent Coordinates (CAC)

The correlation between adjacent coordinates in the vector map is calculated as:

 𝑥̅ =
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

(12)

 𝜎𝑥 = √
1

𝑁
∑(𝑥𝑖 − 𝑥̅)

2

𝑁

𝑖=1

(13)

 𝑐𝑜𝑣(𝑥, 𝑦) =
1

𝑁
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

𝑁

𝑖=1

(14)

 𝑟𝑥𝑦 =
𝑐𝑜𝑣(𝑥, 𝑦)

𝜎𝑥𝜎𝑦
(15)

Table 2 shows the results of the adjacency coordinate correlation in dataset B and C. It can be seen that the CAC of

the original map is quite high, while that of the encrypted map shares are close to zero. The CAC of the decrypted map

is the same as that of the original map, indicating that the decrypted map data is identical to the original map data. This

demonstrates that the proposed encryption algorithm in this paper can effectively break the correlation within the

original map data.

Table 2. The CACs of the original maps, the encrypted maps, and the decrypted maps.

Datasets X-Coordinates Y-Coordinates

Dataset B

(railway)

original map 0.963269 0.985731

share 1 0.006523 0.009533

share 2 0.001108 0.002775

share 3 0.001677 -0.004052

decrypted map 0.963269 0.985731

Dataset C

(prefecture

boundaries)

original map 0.984837 0.988346

share 1 -0.005180 0.007334

share 2 0.001434 -0.002722

share 3 0.004277 -0.001738

decrypted map 0.984837 0.988346

4.3.2. RMSE Between the Original and Encrypted Maps

RMSE is used to describe how big the offset distance between the two corresponding vertices in the original map

and encrypted map is. To eliminate the influence of dimensionality, normalized RMSE (𝑁-𝑅𝑀𝑆𝐸) is proposed in this

paper by normalizing the original RMSE using the maximum distance between two vertices in the original map. The

calculation of 𝑁-𝑅𝑀𝑆𝐸 is represented by formula (16), where 𝑑𝑖 is the offset distance between two corresponding

vertices in the original and encrypted maps, 𝑁 is the number of vertices, and 𝑚𝑎𝑥-𝑑𝑖𝑠 is the maximum distance between

two vertices in the original map. Obviously, the larger the 𝑁-𝑅𝑀𝑆𝐸, the greater the difference between the original and

encrypted maps. Table 3 shows the normalized minimum offset distance (N-Min offset distance), normalized maximum

offset distance (N-Max offset distance) and 𝑁-𝑅𝑀𝑆𝐸 between original and encrypted maps for Dataset A, B and C. The

results shown in Table 3 suggest that the encrypted maps are totally different from the original maps and the proposed

encryption method has very good encryption effects.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 January 2025 doi:10.20944/preprints202501.1387.v1

https://doi.org/10.20944/preprints202501.1387.v1

 𝑁-𝑅𝑀𝑆𝐸 =
1

𝑚𝑎𝑥-𝑑𝑖𝑠
√
∑ 𝑑𝑖

2𝑖=𝑁
𝑖=1

𝑁
 (16)

Table 3. Normalized offset distances between original and encrypted maps.

Datasets
N-Min offset

Distance

N-Max offset

distance
N-RMSE

Dataset A

share 1 0.683244 0.968387 0.828142

share 2 0.679105 0.972651 0.838721

share 3 0.681582 0.973746 0.827944

Dataset B

share 1 0.756818 0.890549 0.822524

share 2 0.757976 0.895330 0.826558

share 3 0.758600 0.899626 0.839536

Dataset C

share 1 0.689633 0.962224 0.820770

share 2 0.690028 0.960687 0.821879

share 3 0.690179 0.963291 0.823647

4.4. Encryption and Decryption Security

An encryption scheme which possesses probabilistic property encrypts the same plaintext data into two different

ciphertexts in two encryption processes, thus, achieving semantic security. Furthermore, if an encryption scheme

possesses diffusion property, a bit change in plaintext data will diffuse across the whole dataset in ciphertext version

after encryption process, resulting in totally different encrypted data, which enable the encryption scheme to resist

differential cryptanalysis, chosen-plaintext attack, and so on. Probabilistic property and diffusion property are very

important properties for promoting the security of the encryption algorithms. Many existing vector map encryption

schemes lack these properties, which greatly affects the security of the algorithms. Thus, the probabilistic and diffusion

properties of the proposed encryption method are evaluated in this section. In addition, the robustness of the proposed

decryption process to RST transformations is also evaluated in this section, since the RST transformations are very

common data operations for vector maps.

4.4.1. Probabilistic Property

Probabilistic property ensures that the encryption process results in different ciphertexts when a plaintext is

encrypted twice. In this section, plaintext maps are encrypted twice using the proposed encryption method. The

normalized minimum offset distance (N-Min offset distance), normalized maximum offset distance (N-Max offset

distance) and N-RMSE between two corresponding shares produced by encryption twice are computed and the results

are listed in Table 4. Table 4 demonstrates that the offset distances between corresponding shares obtained by

encrypting the same dataset twice are big, and the corresponding shares are completely different, which proves that the

proposed vector map encryption method possesses probabilistic property.

Table 4. Normalized offset distances between corresponding shares obtained by encryption twice.

Datasets
N-Min offset

distance

N-Max offset

distance
N-RMSE

Dataset A

share 1 0.117439 0.796279 0.633435

share 2 0.133791 0.784559 0.641268

share 3 0.165460 0.795543 0.632560

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 January 2025 doi:10.20944/preprints202501.1387.v1

https://doi.org/10.20944/preprints202501.1387.v1

Dataset B

share 1 0.156770 0.772710 0.623962

share 2 0.123437 0.763173 0.636590

share 3 0.107197 0.770605 0.628593

Dataset C

share 1 0.177662 0.786009 0.658562

share 2 0.124753 0.796304 0.644872

share 3 0.154923 0.806452 0.652654

4.4.2. Diffusion Property

Diffusion property ensures that one bit change in a vertex coordinate will diffuse across all the vertex coordinates

after encryption process, which promotes the encryption algorithm’s ability of resisting differential cryptanalysis,

chosen-plaintext attack, and so on. In this section, one bit of a vertex coordinate in a dataset is changed first. Then, the

proposed encryption algorithm is performed to the dataset before and after change, respectively. Finally, the N-Min

offset distance, N-Max offset distance and N-RMSE between two corresponding shares produced by encrypting the

dataset before and after change are computed, and the results are listed in Table 5. Table 5 shows that the offset distances

between corresponding shares are big, and that the corresponding shares obtained by encryption before and after one

bit change are totally different, which verifies that the proposed vector map encryption method possesses diffusion

property.

Table 5. Normalized offset distances between corresponding shares obtained by encryption before and after one bit change.

Datasets
N-Min offset

distance

N-Max offset

distance
N-RMSE

Dataset A

share 1 0.172385 0.842934 0.704336

share 2 0.103453 0.855600 0.719485

share 3 0.205342 0.869501 0.704567

Dataset B

share 1 0.153835 0.840998 0.719462

share 2 0.159384 0.875234 0.712842

share 3 0.129503 0.853555 0.723853

Dataset C

share 1 0.110485 0.893650 0.744845

share 2 0.190289 0.856047 0.748534

share 3 0.239604 0.867975 0.740185

4.4.3. Robustness of Decryption Process

RST transformations are very common data operations for vector maps. The corresponding decryption algorithm

for an encryption scheme should be robust to RST transformations so that the encrypted map can be correctly decrypted

even after the RST transformations are performed to it. In this section, Dataset C is encrypted using the proposed (2,3)-

threshold secret sharing scheme shown as Figures 6(a-c), and one of three shares is selected to perform RST

transformations. Share 1 is selected for example. The transformed share 1 after rotation, scaling and translation

operations is shown in Figures 9(a), 9(b) and 9(c), respectively. Then, the transformed share 1 and share 2 are selected

to reconstruct the plaintext map. As the coordinate system of the transformed share 1 is different from the original

coordinate system used by share 2, the reconstructed plaintext map can use either the transformed coordinate system

of share 1 or the original coordinate system of share 2. The decrypted maps using the transformed coordinate system

and the original coordinate system and the overlay of the two decrypted maps are shown in the sub figures of Figure

10, respectively. Figure 10 demonstrates that even the shares involved in decryption are transformed by RST operations,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 January 2025 doi:10.20944/preprints202501.1387.v1

https://doi.org/10.20944/preprints202501.1387.v1

the plaintext map can still be correctly decrypted, and the decrypted map can use any coordinate system used by the

shares involved in the decryption.

(a) share 1 after rotation

 (b) share 1 after scaling

(c) share 1 after translation

Figure 9. Transformed share 1 after RST operations.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 10. (a) decrypted map (with rotated share 1 and share 2) using coordinate system of rotated share 1; (b) decrypted map (with

rotated share 1 and share 2) using coordinate system of share 2; (c) the overlay of (a) and (b); (d) decrypted map (with scaled share 1

and share 2) using coordinate system of scaled share 1; (e) decrypted map (with scaled share 1 and share 2) using coordinate system

of share 2; (f) the overlay of (d) and (e); (g) decrypted map (with translated share 1 and share 2) using coordinate system of translated

share 1; (h) decrypted map (with translated share 1 and share 2) using coordinate system of share 2; (i) the overlay of (g) and (h).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 January 2025 doi:10.20944/preprints202501.1387.v1

https://doi.org/10.20944/preprints202501.1387.v1

4.5. Efficiency Analysis

Computational efficiency is an important metric for evaluating encryption algorithms. Experiments were

conducted using vector maps of three types (point, polyline, polygon) with different data volumes to demonstrate the

efficiency of the proposed method. Through theoretical analysis of the algorithm, it can be seen that the parameters 𝑛,

𝑘 used in the (𝑘, 𝑛)-threshold secret sharing process and the data volumes are key factors that affect the efficiency of the

proposed algorithm. The following experiments were conducted to demonstrate how these factors affect the encryption

and decryption efficiency.

4.5.1. Encryption Efficiency

In this section, Datasets A, D, E and F of different data types with different data volumes are selected for

experiments. Five encryption experiments are set to test the encryption time of the proposed method. The number 𝑛 of

the shares produced by encryption process is set to 1, 3, 5, 7 and 9 for each respective experiment. Encryption operations

are performed to all the selected datasets in each experiment, and each encryption operation is performed 30 times,

taking the average value as the result. The experimental results for the five experiments are displayed in Figure 11,

which shows the increase in encryption time with the increase of data volume and the number of shares. It can be found

in Figure 11 that compared to data volume, the number of shares has a greater impact on encryption time. When 𝑛

increases, the encryption time increases significantly. However, when the 𝑛 value is not too much big, it is found that

the encryption time of the proposed method is comparable to that of the Local Encryption algorithm [24] and DRPP

algorithm [25] which is not demonstrated here due to the limitation in paper length.

Figure 11. Running time of encryption for different datasets under different 𝑛 values.

4.5.2. Decryption Efficiency

In this section, the impact of the 𝑘 value used in the (𝑘, 𝑛)-threshold secret sharing process and the data volume on

the decryption time is evaluated. In the experiments, 𝑛 is set to 9, and 𝑘 is set to 5, 6, 7, 8 and 9, respectively. The selected

datasets in section 4.5.1 are used in the decryption experiments. Each decryption operation is performed 30 times, taking

the average value as the result. The decryption time for each selected dataset under different 𝑘 values is displayed in

Figure 12, which shows the increase in the decryption time with the increase of data volume and 𝑘 value. It is noted in

Figure 12 that compared to 𝑘 value, data volume has a much greater impact on decryption time. This is because

Lagrange interpolation for decrypting each vertex coordinate is time-consuming and as the number of vertices

increases, time consumption becomes more significant. For this reason, the time efficiency of decryption operations is

much lower than that of encryption operations for the proposed method.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 January 2025 doi:10.20944/preprints202501.1387.v1

https://doi.org/10.20944/preprints202501.1387.v1

Figure 12. Running time of decryption for different datasets under different 𝑘 values.

4.6. Comparison with Existing Methods

To evaluate the applicability and effectiveness of the proposed method, a comparison is made with other methods

from five aspects, namely, whether the encryption method has disaster tolerance property, probabilistic property,

diffusion property, the robustness to data RST transformations and whether it is applicable to points, polylines, and

polygons. The comparison results are listed in Table 6. As shown in Table 6, (1) Compared with references

[9,24,25,29,30], the proposed method has disaster tolerance property, which means that even some map shares are

unavailable, the plaintext map can still be correctly decrypted; (2) Compared with references [9,24,25], the proposed

method has probabilistic property. That is, different ciphertexts will be generated after encrypting the same plaintext

twice, thus achieving semantic security; (3) Compared with references [29,30], the proposed method has diffusion

property, which enhances the algorithm’s ability of resisting differential cryptanalysis, chosen-plaintext attack, and so

on; (4) Compared with references [24,29,30], the proposed method is robust to data RST transformations, which means

the plaintext map can still be decrypted after RST transformations are performed to the ciphertext map; (5) Compared

with references [25,29], the proposed method is applicable to different data types such as points , polylines and

polygons. Overall, the proposed method is superior compared with the existing methods.

Table 6. Comparison with existing methods.

Methods
Proposed

method
Ref [9] Ref [24] Ref [25] Ref [29] Ref [30]

Disaster tolerance √ × × × × ×

Probabilistic

property
√ × × × √ √

Diffusion property √ √ √ √ × ×

The robustness to

data RST

transformations

√ √ × √ × ×

Applicable to

points, polylines

and polygons

√ √ √ ● ● √

Note: "√" indicates that the method has this property, "×" indicates that the method does not have this property, and "●" indicates that

the method does not fully support this property.

5. Conclusions

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 January 2025 doi:10.20944/preprints202501.1387.v1

https://doi.org/10.20944/preprints202501.1387.v1

This research proposes a novel vector map encryption method based on (𝑘, 𝑛)-threshold secret sharing, which

encrypts one vector map into 𝑛 map shares, and only by collecting at least k shares can the plaintext map be

reconstructed. The encryption process consists of polar coordinate transformation and quantization, secret sharing

process to produce 𝑛 shares, and inverse quantization and inverse polar coordinate transformation. The corresponding

decryption process consists of polar coordinate transformation and quantization, plaintext reconstruction by collecting

at least 𝑘 shares, and inverse quantization and inverse polar coordinate transformation. To validate the effectiveness of

the proposed method, encryption results of different datasets using different secret sharing schemes are given, and

encryption effects, security and efficiency were analyzed on vector map data of different types with different data

volumes. Compared with available representative methods, the proposed encryption method has many very good

properties, such as disaster tolerance property, probabilistic property, diffusion property and the robustness to data

RST transformations, which greatly enhance the security and practicality of the method.

The proposed vector map encryption method encrypts a vector map into 𝑛 shares, and the 𝑛 shares can be

managed by 𝑛 respective data administrators. Decryption of data can only be carried out with the consent of at least 𝑘

data administrators, making it particularly suitable for protecting the security of sensitive vector map data. To our

knowledge, our work is the first to achieve vector map encryption using (𝑘, 𝑛)-threshold secret sharing.

However, the proposed method also has some limitations. The encryption method encrypts one vector map into 𝑛

map shares, expanding data volume by 𝑛 times and bringing challenges to data storage. In addition, for the proposed

method, as 𝑛 increases, the encryption efficiency rapidly decreases. Moreover, due to that the Lagrange interpolation

for decrypting each vertex coordinate is time-consuming, the decryption efficiency is not very high, too. Avenues for

future investigation include exploring more efficient ways to achieve (𝑘, 𝑛)-threshold secret sharing to improve the

efficiency of the method.

Author Contributions: Conceptualization, B. Wu; methodology, B. Wu and F. Liu; software, F. Liu; validation, X. Liu, Z. Bu and H.

Zhang; formal analysis, B. Wu and F. Liu; investigation, B. Wu and F. Liu; resources, X. Liu and B. Wu; data curation, F. Liu; writing—

original draft preparation, F. Liu; writing—review and editing, B. Wu; visualization, F. Liu; supervision, B. Wu; project

administration, B. Wu and X. Liu; funding acquisition, B. Wu and X. Liu. All authors have read and agreed to the published version

of the manuscript.

Funding: This research was funded by Open Project of Hunan Engineering Research Center of Geographic information security and

application, grant number HNGISA2024004 and Research Foundation of the Department of Natural Resources of Hunan Province,

grant number 20230126XX.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Acknowledgments: The authors gratefully acknowledge the comments from the editor and the reviewers.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Ngoc-Giao, P.; Lee, S.-H.; Kwon, K.-R. Perceptual Encryption Based on Features of Interpolating Curve for Vector Map. IEICE

Trans. Fundam. Electron. Commun. Comput. Sci. 2017, E100A, 1156–1164. https://doi.org/10.1587/transfun.E100.A.1156

2. Jang, B.-J.; Lee, S.-H.; Kwon, K.-R. Perceptual Encryption with Compression for Secure Vector Map Data Processing. Digit. Signal

Prog. 2014, 25, 224–243. https://doi.org/10.1016/j.dsp.2013.09.013

3. Duarte, L.; Teodoro, A.C.; Goncalves, J.A.; Ribeiro, J.; Flores, D.; Lopez-Gil, A.; Dominguez-Lopez, A.; Angulo-Vinuesa, X.;

Martin-Lopez, S.; Gonzalez-Herraez, M. Distributed Temperature Measurement in a Self-Burning Coal Waste Pile through a

GIS Open Source Desktop Application. ISPRS Int. J. Geo-Inf. 2017, 6, 87. https://doi.org/10.3390/ijgi6030087

4. Lee, S.-H.; Huo, X.-J.; Kwon, K.-R. Vector Watermarking Method for Digital Map Protection Using Arc Length Distribution.

IEICE Trans. Inf. Syst. 2014, E97D, 34–42. https://doi.org/10.1587/transinf.E97.D.34

5. Peng, Y.; Lan, H.; Yue, M.; Xue, Y. Multipurpose Watermarking for Vector Map Protection and Authentication. Multimed. Tools

Appl. 2018, 77, 7239–7259. https://doi.org/10.1007/s11042-017-4631-z

6. Qiu, Y.; Duan, H. A Novel Multi-Stage Watermarking Scheme of Vector Maps. Multimed. Tools Appl. 2021, 80, 877–897.
https://doi.org/10.1007/s11042-020-09776-8

7. Jiang, L.; Xu, Z.; Xu, Y. Commutative Encryption and Watermarking Based on Orthogonal Decomposition. Multimed. Tools Appl.

2014, 70, 1617–1635. https://doi.org/10.1007/s11042-012-1181-2

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 January 2025 doi:10.20944/preprints202501.1387.v1

https://doi.org/10.1587/transfun.E100.A.1156
https://doi.org/10.1016/j.dsp.2013.09.013
https://doi.org/10.3390/ijgi6030087
https://doi.org/10.1587/transinf.E97.D.34
https://doi.org/10.1007/s11042-017-4631-z
https://doi.org/10.1007/s11042-012-1181-2
https://doi.org/10.20944/preprints202501.1387.v1

8. Zhou, Q.; Xiong, Y.; Zhu, C.; Ren, N. Selective Encryption Algorithm for Vectoral Geographic Data under Feature Point

Grouping Strategy. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2024, X-4–2024, 507–514. https://doi.org/10.5194/isprs-

annals-X-4-2024-507-2024

9. Jang, B.-J.; Lee, S.-H.; Lim, S.; Kwon, K.-R. Progressive Vector Compression for High-Accuracy Vector Map Data. Int. J. Geogr.

Inf. Sci. 2014, 28, 763–779. https://doi.org/10.1080/13658816.2013.872249

10. Abubahia, A.; Cocea, M. Advancements in GIS Map Copyright Protection Schemes - a Critical Review. Multimed. Tools Appl.

2017, 76, 12205–12231. https://doi.org/10.1007/s11042-016-3441-z

11. Wang, Y.; Yang, C.; Ren, N.; Zhu, C.; Rui, T.; Wang, D. An Adaptive Watermark Detection Algorithm for Vector Geographic

Data. KSII Trans. Internet Inf. Syst. 2020, 14, 323–343. https://doi.org/10.3837/tiis.2020.01.018

12. Tang, Z.; Zhang, Y.; Huang, J.; He, H.; Ding, Y. A Novel Infringement Detection Method for GIS Vector Data. ISPRS Int. Geo-

Inf. 2020, 9, 12. https://doi.org/10.3390/ijgi9010012

13. Ren, N.; Zhao, Y.; Zhu, C.; Zhou, Q.; Xu, D. Copyright Protection Based on Zero Watermarking and Blockchain for Vector Maps.

ISPRS Int. J. Geo-Inf. 2021, 10, 294. https://doi.org/10.3390/ijgi10050294

14. Wang, Y.; Yang, C.; Ding, K. Multiple Watermarking Algorithms for Vector Geographic Data Based on Multiple Quantization

Index Modulation. Appl. Sci.-Basel. 2023, 13, 12390. https://doi.org/10.3390/app132212390

15. Li, Y.; Zhang, L.; Wang, X.; Zhang, X.; Zhang, Q. A Novel Invariant Based Commutative Encryption and Watermarking

Algorithm for Vector Maps. ISPRS Int. J. Geo-Inf. 2021, 10, 718. https://doi.org/10.3390/ijgi10110718

16. Ren, N.; Tong, D.; Cui, H.; Zhu, C.; Zhou, Q. Congruence and Geometric Feature-Based Commutative Encryption-

Watermarking Method for Vector Maps. Comput. Geosci. 2022, 159. https://doi.org/10.1016/j.cageo.2021.105009

17. Dakroury, Y.; El-Ghafar, I.A.; Tammam, A. Protecting GIS data using cryptography and digital watermarking. Int. J. Comput.

Sci. Netw. Secur. 2010, 10 (1), 75–84. https://doi.org/10.1109/ICCCE.2012.6271256

18. Ren, N.; Zhao, M.; Zhu, C.; Sun, X.; Zhao, Y. Commutative Encryption and Watermarking Based on SVD for Secure GIS Vector

Data. Earth Sci. Inform. 2021, 14, 2249–2263. https://doi.org/10.1007/s12145-021-00684-5

19. Zhu, C.; Ren, N.; Xu, D. Geo-Information Security Technology: Progress and Prospects. Acta Geodaetica et Cartographica Sinica.

2022, 51 (6), 1017-1028. https://doi.org/10.11947/j.AGCS.2022.20220172

20. Wright, M.A. The Advanced Encryption Standard. Network Security. 2001, 2001, 11–13. https://doi.org/10.1016/S1353-4858(01)01018-

2

21. Biryukov, A.; De Cannière, C. Data Encryption Standard (DES). In Encyclopedia of Cryptography and Security; van Tilborg, H.C.A.,

Ed.; Springer US: Boston, MA, 2005; pp. 129–135. https://doi.org/10.1007/978-1-4419-5906-5_568

22. Rivest, R.L.; Shamir, A.; Adleman, L. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Commun.

ACM. 1978, 21, 120–126. https://doi.org/10.1145/359340.359342

23. Koblitz, N. Elliptic Curve Cryptosystems. Math Comput. 1987, 48, 203–209. https://doi.org/10.2307/2007884

24. Ding, C.; Tang, J.; Deng, M.; Liu, H.; Mei, X. A Local Encryption Method for Large-Scale Vector Maps Based on Spatial Hierarchical

Index and 4D Hyperchaotic System. Int. J. Geogr. Inf. Sci. 2024, 38, 2272–2300. https://doi.org/10.1080/13658816.2024.2381225

25. Wang, X.; Yan, H.; Zhang, L. Vector Map Encryption Algorithm Based on Double Random Position Permutation Strategy. ISPRS

Int. J. Geo-Inf. 2021, 10, 311. https://doi.org/10.3390/ijgi10050311

26. Zhou, N.R.; Hua, T.X.; Gong, L.H.; Pei, D.J.; Liao, Q.H. Quantum Image Encryption Based on Generalized Arnold Transform

and Double Random-Phase Encoding. Quantum Inf. Process. 2015, 14, 1193–1213. https://doi.org/10.1007/s11128-015-0926-z

27. Cao, L.; Men, C.; Ji, R. Nonlinear Scrambling-Based Reversible Watermarking for 2D-Vector Maps. Vis. Comput. 2013, 29, 231–

237. https://doi.org/10.1007/s00371-012-0732-x

28. Qu, C.; Du, J.; Xi, X.; Tian, H.; Zhang, J. A Hybrid Domain-Based Watermarking for Vector Maps Utilizing a Complementary

Advantage of Discrete Fourier Transform and Singular Value Decomposition. Comput. Geosci. 2024, 183, 105515.

https://doi.org/10.1016/j.cageo.2023.105515

29. Pham, G.N.; Ngo, S.T.; Bui, A.N.; Tran, D.; Lee, S.-H.; Kwon, K.-R. Vector Map Random Encryption Algorithm Based on Multi-

Scale Simplification and Gaussian Distribution. Appl. Sci.-Basel. 2019, 9, 4889. https://doi.org/10.3390/app9224889

30. Van, B.N.; Lee, S.-H.; Kwon, K.-R. Selective Encryption Algorithm Using Hybrid Transform for GIS Vector Map. J. Inf. Process.

Syst. 2017, 13, 68–82. https://doi.org/10.3745/JIPS.03.0059

31. Shamir, A. How to Share a Secret. Commun. ACM. 1979, 22, 612–613. https://doi.org/10.1145/359168.359176

32. Hua, Z.; Wang, Y.; Yi, S.; Zhou, Y.; Jia, X. Reversible Data Hiding in Encrypted Images Using Cipher-Feedback Secret Sharing.

IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 4968–4982. https://doi.org/10.1109/TCSVT.2022.3140974

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 January 2025 doi:10.20944/preprints202501.1387.v1

https://doi.org/10.1080/13658816.2013.872249
https://doi.org/10.3390/ijgi9010012
https://doi.org/10.3390/ijgi10050294
https://doi.org/10.3390/app132212390
https://doi.org/10.3390/ijgi10110718
https://doi.org/10.1016/j.cageo.2021.105009
https://doi.org/10.11947/j.AGCS.2022.20220172
https://doi.org/10.1016/S1353-4858(01)01018-2
https://doi.org/10.1016/S1353-4858(01)01018-2
https://doi.org/10.1145/359340.359342
http://dx.doi.org/10.2307/2007884
https://doi.org/10.1080/13658816.2024.2381225
https://doi.org/10.3390/ijgi10050311
https://doi.org/10.1016/j.cageo.2023.105515
https://doi.org/10.3390/app9224889
https://doi.org/10.1145/359168.359176
https://doi.org/10.20944/preprints202501.1387.v1

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury

to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 January 2025 doi:10.20944/preprints202501.1387.v1

https://doi.org/10.20944/preprints202501.1387.v1

