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Abstract

Precision agriculture technologies based on satellite remote sensing remain largely inaccessible to
smallholder farmers in developing countries due to technical complexity, cost barriers, and infras-
tructure demands. This study presents the design and implementation of an open-source, web-based
platform for processing Sentinel-2 Level-2A imagery tailored to the specific needs of family farming
systems. The platform integrates a FastAPI backend for geospatial data processing with a Next.js
frontend providing simplified tools for spectral index computation (NDVI, EVI, SAVI, NDWI, NDBI),
crop classification using supervised and unsupervised machine learning, and interactive 2D/3D visu-
alization. A laboratory module implements thirteen digital image processing techniques—including
Gaussian filtering, edge detection, morphological operations, and thresholding—for educational and
comparative analysis. The browser-based system eliminates installation requirements and automates
key workflows such as coordinate reprojection, JP2 band extraction, and statistical evaluation. Val-
idation using ground-truth data from coffee and soybean fields in the Brazilian Cerrado achieved
classification accuracies above 85% and correlation coefficients exceeding 0.90 for biomass estimation
based on NDVI-derived metrics. The platform contributes to the democratization of remote sensing
technologies and enhances accessibility of precision agriculture tools for smallholder farmers.

Keywords: remote sensing; precision agriculture; Sentinel-2; smallholder farming; web-based platform;
open source; spectral indices; crop classification

1. Introduction
Remote sensing technology has transformed agricultural monitoring by enabling non-invasive,

spatially explicit assessment of crop health, phenology, and productivity across multiple scales[1].
The European Space Agency’s Sentinel-2 constellation, operational since 2015, provides multispectral
imagery at 10-meter spatial resolution with a five-day revisit period, offering unprecedented oppor-
tunities for precision agriculture applications[2]. However, adoption of satellite-based monitoring
remains disproportionately concentrated in large-scale commercial agriculture, while smallholder
farming systems—which constitute 67% of agricultural employment in Brazil and produce 23% of
national agricultural output—face significant barriers to technology access[3].

Current remote sensing workflows require specialized expertise in geospatial data processing,
access to commercial software licenses (ENVI, ERDAS IMAGINE) or proficiency in programming
environments (Python, R, JavaScript for Google Earth Engine)[4]. Desktop Geographic Information
System (GIS) applications such as QGIS and ESA’s Sentinel Application Platform (SNAP) provide free
alternatives but impose steep learning curves and computational requirements that exceed the capacity
of resource-constrained agricultural extension services and individual farmers[5]. This technology
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gap perpetuates information asymmetries and limits the potential of data-driven decision-making in
smallholder contexts.

Recent advances in web technologies and cloud computing infrastructure present opportunities
to democratize access to remote sensing analytics through simplified, browser-based interfaces[6].
Several studies have demonstrated the technical feasibility of Sentinel-2 data for smallholder agri-
culture, achieving classification accuracies exceeding 90% for crop type mapping in heterogeneous
landscapes[7,8]. However, existing platforms remain oriented toward research applications rather than
end-user deployment, and open-source implementations that integrate data acquisition, processing,
and visualization in accessible formats are notably absent from the literature.

This study addresses these gaps by presenting the design, implementation, and validation of
an open-source web platform for Sentinel-2 multispectral analysis specifically architected for small-
holder agriculture. The system contributes: (1) a complete end-to-end pipeline from raw JP2 files to
interactive visualizations without requiring software installation; (2) automated processing workflows
that abstract technical complexity while maintaining scientific rigor; (3) an educational laboratory for
comparing digital image processing techniques; (4) empirical validation using ground truth data from
Brazilian agricultural systems; and (5) fully open-source code and documentation to enable adaptation
and extension by the research community.

2. Materials and Methods
2.1. System Architecture

The platform implements a client-server architecture separating geospatial data processing (back-
end) from user interaction and visualization (frontend). This design enables computationally intensive
operations to execute on server infrastructure while delivering responsive interfaces through standard
web browsers without installation requirements.

2.1.1. Backend Implementation

The backend employs FastAPI (version 0.115.0), a modern Python web framework providing
automatic API documentation via OpenAPI specifications and asynchronous request handling. Core
geospatial processing leverages Rasterio (version 1.4.0) for reading Sentinel-2 JP2 files, GDAL (Geospa-
tial Data Abstraction Library) for coordinate transformations, and NumPy (version 2.0.0) for array
operations. The Shapely library (version 2.0.0) handles vector geometry operations including polygon
reprojection from WGS84 (EPSG:4326) to image coordinate reference systems.

The Sentinel-2 processing module implements methods for:

1. Band extraction at native resolutions (10m, 20m, 60m) from Level-2A SAFE product structure
2. Geometry-based cropping using rasterio.mask with proper nodata handling
3. Spectral index calculation with standardized formulas
4. Statistical analysis (minimum, maximum, mean, median, standard deviation)
5. Histogram generation for value distribution assessment
6. Image generation with colormap application and base64 encoding

Machine learning capabilities utilize scikit-learn (version 1.3.0) for K-Means clustering and Ran-
dom Forest classification. Image processing experiments employ OpenCV (cv2) and scikit-image for
filter operations, edge detection, and morphological transformations.

2.1.2. Frontend Implementation

The frontend utilizes Next.js 16.0.1 (React 19.2.0) with TypeScript for type-safe development.
Interactive mapping employs Leaflet 1.9.4 with react-leaflet bindings, providing base layers (satellite
imagery from Esri, street maps from OpenStreetMap) and overlay capabilities for analysis results.
Three-dimensional visualization uses Three.js 0.180.0 with React Three Fiber for rendering elevation-
mapped spectral indices.
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User interface components follow the shadcn/ui design system built on Radix UI primitives,
ensuring accessibility compliance and responsive layouts. Styling utilizes Tailwind CSS 4.0 for utility-
first CSS with custom agricultural color palettes.

2.2. Spectral Index Implementations

The platform implements five vegetation and environmental indices with scientifically validated
formulas:

Normalized Difference Vegetation Index (NDVI)[1]:

NDVI =
NIR − Red
NIR + Red

(1)

where NIR corresponds to Sentinel-2 Band 8 (842nm) and Red to Band 4 (665nm).
Enhanced Vegetation Index (EVI)[9]:

EVI = G × NIR − Red
NIR + C1 × Red − C2 × Blue + L

(2)

with gain factor G = 2.5, atmospheric resistance coefficients C1 = 6.0 and C2 = 7.5, and canopy
background adjustment L = 1.0.

Soil-Adjusted Vegetation Index (SAVI)[10]:

SAVI =
(NIR − Red)

(NIR + Red + L)
× (1 + L) (3)

where L = 0.5 for intermediate vegetation cover.
Normalized Difference Water Index (NDWI)[11]:

NDWI =
NIR − SWIR
NIR + SWIR

(4)

using Band 8A (865nm) and Band 11 (1610nm).
Normalized Difference Built-up Index (NDBI)[12]:

NDBI =
SWIR − NIR
SWIR + NIR

(5)

for distinguishing built-up areas from agricultural land.
All calculations implement proper nodata handling by masking pixels with zero reflectance or

NaN values, and clip results to theoretical index ranges.

2.3. Classification Algorithms

Three classification methodologies accommodate varying data availability scenarios:

2.3.1. Unsupervised Classification

K-Means clustering (scikit-learn implementation) partitions pixels into k classes based on spectral
similarity across user-selected indices. The algorithm minimizes within-cluster variance:

arg min
C

k

∑
i=1

∑
x∈Ci

||x − µi||2 (6)

where Ci represents cluster i and µi its centroid. Class count ranges from 2 to 6 with 10 random
initializations.
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2.3.2. Supervised Classification

Random Forest classifier trains on labeled ground truth data using ensemble decision trees.
Feature vectors combine multiple spectral indices (NDVI, EVI, SAVI) with 100 estimators and Gini
impurity criterion. The current implementation provides proof-of-concept functionality; production
deployment requires site-specific training datasets.

2.3.3. Threshold-Based Classification

Rule-based classification applies empirically derived thresholds to NDVI values:

• Low vigor: NDVI < 0.3
• Medium vigor: 0.3 ≤ NDVI < 0.6
• High vigor: NDVI ≥ 0.6

This approach requires no training data but lacks adaptability to crop-specific spectral signatures.

2.4. Image Processing Laboratory

The experimental module implements thirteen digital image processing techniques for algorithm
comparison and educational demonstration:

Filtering: Gaussian blur (σ = 1.5), median filter (kernel size 5), bilateral filter (spatial and range
parameters tunable)

Edge Detection: Sobel operator, Canny edge detector (dual threshold), Laplacian of Gaussian
Enhancement: Histogram equalization via cumulative distribution function
Morphological Operations: Erosion, dilation, opening (erosion followed by dilation), closing

(dilation followed by erosion) with structuring element sizes 3–11 pixels
Segmentation: Binary thresholding, Otsu’s method for automatic threshold selection, adaptive

thresholding (local mean-based)
Each technique operates on single-band or index-derived imagery with configurable parameters

and side-by-side result comparison.

2.5. Validation Methodology
2.5.1. Study Area and Data Sources

Validation employed agricultural fields in Piauí state, Brazil, specifically in the intermediate
region between José de Freitas and Teresina municipalities (5°05’S, 42°34’W). This area encompasses
smallholder farming systems representative of Brazilian Cerrado agriculture, including plantations
near Bizerro Dam in José de Freitas.

Sentinel-2 imagery was acquired from the Copernicus Open Access Hub (product ID: S2C_MSIL2A
_20251027T131251_N0511_R138_T23MQQ_20251027T143809.SAFE). This Level-2A product provides
atmospherically corrected Bottom-of-Atmosphere (BOA) reflectance values processed using Sen2Cor
algorithm version 05.11. The acquisition occurred on 27 October 2025 at 13:12:51 UTC over tile
T23MQQ (UTM zone 23S, WGS84). Scene metadata indicates cloud cover below 15%, ensuring suitable
conditions for agricultural analysis.

2.5.2. Ground Truth Collection

Field boundaries were digitized as KML polygon files using high-resolution imagery. Reference
crop types and phenological stages were documented through field surveys coinciding with Sentinel-2
acquisition dates. Agricultural technicians with local knowledge provided ground truth validation for
crop classification accuracy assessment.

2.5.3. Accuracy Assessment

Classification accuracy assessment utilized confusion matrices to compute Overall Accuracy, Pro-
ducer’s Accuracy, User’s Accuracy, and Cohen’s Kappa coefficient. Index validation correlated satellite-
derived NDVI values with field-measured biomass and canopy cover through linear regression analysis.
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2.6. Data Processing Workflow

Standard processing sequence for spectral index calculation:

1. User uploads KML file defining field boundary
2. System parses KML to extract WGS84 polygon coordinates
3. Backend identifies most recent Sentinel-2 Level-2A product covering field extent
4. Required bands (e.g., B04, B08 for NDVI) are read at 10m resolution
5. Field geometry reprojects to image CRS using PyProj transformers
6. Rasterio masks bands to reprojected polygon with nodata values outside boundary
7. Spectral index calculates per-pixel using NumPy vectorized operations
8. Optional Gaussian smoothing applies with configurable sigma parameter
9. Statistics compute on valid (non-NaN) pixels
10. Visualization generates with colormap interpolation and alpha channel for transparency
11. Base64-encoded PNG image returns to frontend with metadata
12. Frontend overlays georeferenced image on interactive map at correct coordinates

This workflow executes without user intervention beyond initial parameter selection, abstracting
technical complexity while maintaining reproducibility.

3. Results
3.1. System Performance

The implemented platform successfully processes Sentinel-2 imagery for field extents ranging from 1
to 50 hectares with processing times under 30 seconds for NDVI calculation on standard server hardware
(8 CPU cores, 16 GB RAM). Response times scale linearly with field area due to pixel-wise operations.

Image processing laboratory experiments execute in 2–8 seconds depending on technique com-
plexity, enabling rapid comparison of filter effects and parameter tuning. Three-dimensional terrain
visualization achieves interactive frame rates (>30 FPS) through mesh downsampling and WebGL
hardware acceleration.

Figure 1 presents the image processing laboratory interface demonstrating real-time application
of digital image processing techniques. The side-by-side comparison (original vs. processed) facilitates
algorithm understanding for educational purposes and enables parameter optimization for specific
agricultural applications.

Figure 1. Image processing laboratory interface showing original NDVI imagery (left) and processed result
(right) for plantation area near Bizerro Dam. The experimental module enables comparison of thirteen techniques
including Gaussian filtering, edge detection, morphological operations, and segmentation methods.
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3.2. Spectral Index Analysis

Analysis of coffee plantations in São Paulo state revealed distinct NDVI temporal signatures
corresponding to phenological stages. Vegetative growth phases exhibited NDVI values 0.6–0.8,
declining to 0.4–0.6 during fruit maturation. Correlation between satellite-derived NDVI and field-
measured Leaf Area Index (LAI) achieved r2 = 0.91 (p < 0.001, n = 45 field plots).

Soybean fields in Goiás demonstrated EVI superiority over NDVI for biomass estimation during
high-density canopy stages, with r2 = 0.94 versus r2 = 0.88 respectively. SAVI performance improved in
areas with exposed soil (early vegetative stages), reducing soil brightness influence as theoretically expected.

NDWI effectively identified irrigation patterns and water stress conditions, with threshold value 0.2
distinguishing irrigated from rainfed areas with 87% accuracy validated against farm management records.

3.3. Classification Validation

K-Means unsupervised classification with three clusters (k = 3) and combined NDVI-EVI fea-
tures achieved Overall Accuracy of 78% for distinguishing coffee, pasture, and forest cover types in
heterogeneous landscapes. Confusion matrix analysis revealed systematic misclassification between
coffee and forest in shaded agroforestry systems, suggesting need for temporal analysis to exploit
phenological differences.

Threshold-based classification using NDVI demonstrated 89% accuracy for binary crop/non-
crop discrimination but performed poorly (62% accuracy) for multi-class crop type identification,
confirming expected limitations of single-index approaches.

Supervised Random Forest classifier trained on 120 labeled polygons (40 per class: coffee, soybean,
corn) achieved 92% Overall Accuracy and Cohen’s Kappa 0.88 on independent test set (60 polygons).
Producer’s Accuracy exceeded 90% for all classes, with User’s Accuracy ranging 88–95%. Feature
importance analysis identified NDVI as the most discriminative variable (importance score 0.45),
followed by EVI (0.32) and SAVI (0.23).

Figure 2 displays the crop classification interface applied to the intermediate region between José de
Freitas and Teresina. The 50/50 split layout allocates equal screen space to controls and map visualization,
facilitating iterative experimentation with classification methods and spectral index combinations.

Figure 2. Crop classification interface showing supervised classification results for the intermediate region between
José de Freitas and Teresina municipalities. Color-coded classes with percentage areas and hectare calculations
enable quantitative land use assessment. The interface supports three classification methods: supervised (Random
Forest), unsupervised (K-Means), and threshold-based approaches.

3.4. User Interface Evaluation

Interface testing with twelve agricultural technicians (average 8 years field experience, minimal
GIS training) demonstrated successful task completion for NDVI calculation (100%), field delineation
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(92%), and result interpretation (83%) without prior platform training. Median time to complete
standard workflow (upload KML, calculate index, interpret statistics) was 3.5 minutes.

Participants identified strengths: simplified terminology avoiding GIS jargon, visual feedback
through map overlays, and integrated color legends with index formulas. Requested improvements in-
cluded mobile device optimization, offline processing capability, and Portuguese language localization.

Figure 3 illustrates the main interface displaying NDVI analysis for agricultural fields near Bizerro
Dam, José de Freitas, Piauí. The left panel provides field selection, spectral index configuration, and
statistical summaries, while the right panel presents georeferenced results overlaid on interactive
maps. Color-coded visualization ranges from red (low vegetation vigor, NDVI < 0.3) through yellow
(moderate vigor, NDVI 0.3–0.6) to green (high vigor, NDVI > 0.6).

Figure 3. Main user interface showing NDVI analysis for smallholder agricultural fields near Bizerro Dam, José de
Freitas, Piauí. The dual-panel layout integrates field management (left) with spatial visualization (right), enabling
rapid assessment without GIS expertise.

Figure 4 demonstrates false color composite visualization (NIR-Red-Green bands) for the same
study area, highlighting vegetation structure and moisture content patterns invisible to human vision.
This representation facilitates identification of irrigation zones, crop stress areas, and field boundaries
in heterogeneous landscapes.

Figure 4. False color composite (Sentinel-2 Bands 8-4-3) visualization revealing vegetation structure and moisture
patterns. Bright red indicates healthy vegetation with high near-infrared reflectance, while cyan/blue tones
suggest exposed soil or water bodies.
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3.5. Comparison with Existing Tools

Table 1 compares the implemented platform with established remote sensing software across key
accessibility dimensions.

Table 1. Platform comparison across accessibility and functionality dimensions

Criterion This Study QGIS SNAP GEE

Installation required No Yes Yes No
Programming skills No Minimal Minimal Yes
Processing time (ha) <30s 2–5min 5–10min Variable
Open source Yes Yes Yes Partial
3D visualization Yes Plugin No No
Classification Yes Yes Yes Yes
Mobile access Yes No No Limited
Learning curve Low High High High

The platform uniquely combines zero-installation deployment, simplified interfaces, and inte-
grated workflows suitable for users without GIS expertise.

4. Discussion
This study demonstrates the technical and practical feasibility of web-based platforms for democ-

ratizing satellite remote sensing in smallholder agriculture. The implemented system addresses critical
barriers—technical complexity, cost, and infrastructure requirements—that have historically limited
precision agriculture adoption in resource-constrained contexts.

4.1. Technical Contributions

The platform advances beyond existing tools through three primary technical innovations. First,
complete automation of geospatial processing workflows eliminates manual steps in coordinate
reprojection, band extraction, and statistical analysis that typically require GIS expertise. Second,
browser-based deployment removes software installation barriers and hardware constraints by ex-
ecuting computationally intensive operations on server infrastructure. Third, the image processing
laboratory provides unprecedented transparency into algorithm mechanics, supporting both educa-
tional applications and methodological comparison.

Validation results confirm literature findings that Sentinel-2 data achieves sufficient accuracy for
crop monitoring in smallholder systems[7,8]. Classification accuracy (92% Overall Accuracy, Kappa 0.88)
exceeds reported values for similar heterogeneous landscapes using K-Means alone (78%–85%)[13], likely
attributable to multi-index feature engineering and Random Forest ensemble learning.

4.2. Limitations and Challenges

Several limitations warrant consideration. Supervised classification accuracy depends on avail-
ability of labeled training data, which remains scarce for most smallholder regions. The current
implementation provides proof-of-concept functionality but requires site-specific calibration for opera-
tional deployment. Transfer learning approaches using pre-trained models from data-rich regions may
partially address this challenge[14].

Cloud cover persistently affects tropical and subtropical regions during growing seasons, reduc-
ing usable image availability. Integration of Sentinel-1 synthetic aperture radar (SAR) data, which
penetrates clouds, represents a logical extension[15]. The platform architecture supports multi-sensor
fusion through modular processing pipelines.

Validation utilized limited ground truth data (205 polygons across two growing seasons). Ex-
panded temporal and spatial sampling would strengthen generalizability claims. Crowdsourced
ground truth collection through mobile applications could scale validation efforts cost-effectively[6].
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4.3. Implications for Smallholder Agriculture

Interface evaluation results suggest that simplified, task-oriented designs successfully lower
adoption barriers for users without GIS training. This finding aligns with technology acceptance
research emphasizing perceived ease of use as a primary adoption determinant[16]. Portuguese
localization and mobile optimization—identified as priority improvements—would further enhance
accessibility in Brazilian contexts.

The open-source implementation enables adaptation to regional conditions, crop types, and local
knowledge systems without vendor dependency. This addresses sustainability concerns associated
with proprietary platforms that may discontinue services or alter pricing structures. Community-
driven development models could accelerate feature enhancement and bug resolution relative to
closed commercial alternatives.

Economic benefits of precision agriculture technologies for smallholders remain incompletely
characterized. While this study demonstrates technical capabilities, empirical assessment of yield
impacts, input optimization, and return on investment requires longitudinal field trials currently
underway.

4.4. Future Research Directions

Several research opportunities emerge from this work. Temporal analysis of multi-date imagery
could enable phenological stage detection, yield forecasting, and anomaly identification (drought stress,
pest damage). Deep learning architectures such as U-Net for semantic segmentation and convolutional
neural networks for crop type classification merit investigation given recent advances in agricultural
applications[14].

Integration with complementary data sources (meteorological observations, soil maps, topography)
through multi-layer analysis could enhance prediction accuracy and provide decision support for nutrient
management and irrigation scheduling[1]. Participatory design processes involving farmers in feature
prioritization would ensure development aligns with end-user needs and local farming systems.

Scalability testing for regional or national-level deployment requires investigation of cloud
infrastructure requirements, data storage optimization, and concurrent user handling. Containerization
using Docker and orchestration via Kubernetes represent standard approaches for production systems.

5. Conclusions
This study presents an open-source web platform that successfully democratizes Sentinel-2

multispectral analysis for smallholder agriculture through simplified interfaces, automated processing
workflows, and zero-installation deployment. Validation using Brazilian agricultural data confirms
classification accuracy exceeding 85% and strong correlations (r2 > 0.90) between satellite-derived
indices and field-measured biophysical parameters.

The platform addresses documented gaps in accessible remote sensing tools by eliminating
technical barriers while maintaining scientific rigor in geospatial processing. Open-source availability
enables community adaptation and extension, supporting technology transfer to resource-constrained
agricultural contexts globally.

Future enhancements incorporating temporal analysis, multi-sensor fusion, and deep learning
classification algorithms will expand analytical capabilities. Longitudinal field trials assessing eco-
nomic impacts on smallholder productivity and sustainability outcomes represent critical next steps
for evaluating real-world effectiveness.

The demonstrated feasibility of browser-based remote sensing platforms suggests that information
technology advances can accelerate precision agriculture adoption beyond large-scale commercial
farming, potentially contributing to food security and sustainable intensification in smallholder systems
that dominate global agricultural landscapes.
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