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Abstract
Interactions between mobile robots and human operators in common areas require a high safety especially in terms
of trajectory planning, obstacle avoidance and mutual cooperation. In this connection the crossings of planned trajec-
tories, their uncertainty based on model fluctuations, system noise and sensor noise, play an outstanding role. This
paper discusses the calculation of expected areas of interactions during human-robot navigation with respect to fuzzy
and noisy information. Expected crossing points of possible trajectories are nonlinearily associated with positions and
orientations of robot and human. The nonlinear transformation of a noisy system input, such as directions of motion
of human and robot, to a system output, the expected area of intersection of their trajectories, is done by two methods:
statistical linearization and the sigma-point-transformation. For both approaches fuzzy approximations are presented
and the inverse problem is discussed where the input distribution parameters are computed from given output distribu-
tion parameters.
Keywords: Human-Robot interaction, Gaussian noise, sigma-point transformation, Unscented Kalman Filter
———————————————————————————————————————————————

1 Introduction

Planning and performing of mobile robot tasks in the presence of human operators while sharing the same workspace
requires a high level of stability and safety. Research activities regarding navigation, obstacle avoidance, adaptation
and collaboration between robots and human agents have been widely reported [1, 2, 3]. Multiple target tracking for
robots using higher control levels in a control hierarchy are discussed in [4, 5]. A human-friendly interaction between
robots and humans can be obtained by human-like sensor systems [6, 7, 8]. A prominent role in robot navigation is
the trajectory-crossing problem of robots and humans [9, 10] and corresponding fuzzy solutions [11]. Motivations for
a fuzzy solution of the intersection problem are manifold. One point is an uncertain measurement of the position and
orientation of the human agent, because of which the use of a fuzzy signal and an adequate fuzzy processing seems
natural [12, 13]. Another aspect is the need for decreasing the computing effort in the case of complex calculations
during a very small time interval. System uncertainties and observation noise lead to uncertainties of the intersection
estimations. This paper deals with the one-robot one-human trajectory crossing problem whereas small uncertainties
in position and orientation may lead to high uncertainties at the intersection points. Position and orientation of human
and robot are nonlinearly coupled but can be linearized. In the following the linear part of the nonlinear system is
considered in the analysis reported for small variations at the input [14, 15]. In the following the ”direct task” is
described, meaning that the parameters of the input distribution are transformed to the output distribution parameters.
The ”inverse task” is also solved, meaning that for defined output distribution parameters the input parameters are
calculated. In this paper two methods are outlined:
1. The statistical linearization, that linearizes the nonlinearity around the operating area ate the intersection. Means and
standard deviations on the input parameters positions, orientations) are transformed through the linearized nonlinear
system to obtain means and standard deviations of the output parameters position of intersection).
2. The Sigma-Point Transformation, that calculates the so-called sigma-points of the input distribution including mean
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and covariance of the input. The sigma-points are directly propagated through the nonlinear system [16, 17, 18, 19] to
obtain means and covariance of the output and, with this, the standard deviations of the output (position of intersection).
The advantage of sigma-point transformation is that it captures the 1st and 2nd order statistics of a random variable,
whereas the statistical linearization approximates a random variable only by its 1st order.

The paper is organized as follows. In section 2 the general intersection problem and its analytical approach is
described. Section 3 deals with the transformation/conversion of Gaussian distributions for a 2-input - 2-output system
and for 6-input - 2-output system plus corresponding inverse and fuzzy solutions. In section 4 the sigma-point approach
plus inverse and fuzzy solutions is addressed. Section 5 presents simulations of the statistical sinearization and the
sigma-point Transformation, to show the quality of the input-output conversion of the distributions, and the impact of
different resolutions of fuzzy approximations on the accuracy of the random variable intersection. Finally, Section 6
concludes the paper with a discussion of the two different approaches and a comparison of the methods.

2 Computation of intersections

The problem can be stated as follows:
Robot and human agent move in a common area according to their tasks or intentions. To avoid collisions, possible
intersections of the paths of the agents should be predicted for both trajectory planning and on-line interactions. To
accomplish this, positions, orientations and intended movements of robot and human should be estimated as accurately
as needed.

Figure 1: Intersection principle

In this connection, uncertainties and noise on the random variables position/orientation xR, xH , φR and φH of
robot and human have a great impact on the calculation of the expected intersection position xc. The random variable
xc is calculated as the crossing point of the extension of the orientation or velocity vectors of robot and human which
may change during motion depending on the task and current interaction. The task is to calculate the intersection and
its uncertainty in the presence of known uncertainties of the acting agents robot and human.
System noise wR and wH for robot and human can be obtained from experiments. The noise wc of the ’virtual’
intersection is composed by the nonlinear transformed noise wR and wH and some additional noise vc that may
come from uncertainties of the nonlinear computation of the intersection position xc (see Fig. 1). In the following,
the geometrical relations are described as well as fuzzy approximations and nonlinear transformations of the random
variables xR, xH , φR and φH .

2



2.1 Geometrical relations

Let the intersection (xc, yc) of two linear trajectories xR(t) and xH(t) in a plane be described by the following relations
(see Fig.2)

xH = xR + dRH cos(φR + δR)

yH = yR + dRH sin(φR + δR) (1)

xR = xH + dRH cos(φH + δH)

yR = yH + dRH sin(φH + δH)

,
where xH = (xH , yH) and xR = (xR, yR) are the positions of human and robot and φH and φR are their orientation

angles, δH and δR are positive angles measured from the y coordinates counterclockwise. The angle at the intersection
is β̃ = π−δR−δH . The variables xH , xR, φR,φH δH , φH δR, distance dRH and angle γ are assumed to be measurable.
If φH is not directly measurable then it can be computed by

φH = arcsin((yH − yR)/dRH)− δH + π (2)

Figure 2: Human-robot scenario: geometry

The coordinates xc and yc of the intersection are computed straight forward by [11]

xc =
A−B

tanφR − tanφH

yc =
A tanφH −B tanφR

tanφR − tanφH
(3)

A = xR tanφR − yR
B = xH tanφH − yH

3



Rewriting (3) leads to

xc =

(
xR

tanφR
G

− yR
1

G

)
−
(
xH

tanφH
G

− yH
1

G

)
yc =

(
xR

tanφR tanφH
G

− yR
tanφH
G

)
−

(
xH

tanφH tanφR
G

− yH
tanφR
G

)
(4)

G = tanφR − tanφH

After rearranging (4) we observe that xc = (xc, yc)
T is linear in xRH = (xR, yR, xH , yH)T

xc = ARH · xRH (5)

where

ARH = f(φR, φH) =

1

G

(
tanφR −1 − tanφH 1

tanφR tanφH − tanφH − tanφR tanφH tanφR

)

This notation is of advantage for further computations such as fuzzification of the intersection problem and the
transformation of error distributions.

2.2 Computation of intersections - fuzzy approach

The fuzzy solution presented in the following is a combination of classical analytical (crisp) methods and rule based
methods in the sense of a Takagi-Sugeno fuzzy rule base.

In the following we introduce a fuzzy rule-based approximation of (5) with n× n fuzzy rules Ri,j

Ri,j : IF φR = ΦRi AND φH = ΦHj (6)

THEN xc = ARHi,j · xRH

n - number of fuzzy terms ΦRi , and ΦHj for φR and φH
with the result

xc =
∑
i,j

wi(φR)wj(φH) ·ARHi,j · xRH (7)

i, j = 1...n,wi(φR), wj(φH) ∈ [0, 1] are normalized membership functions with
∑
iwi(φR) = 1 and

∑
j wj(φH) = 1.

Figure 3: Membership functions for ∆φR,∆φH = 0− 360◦
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Let the universes of discourse for φR and φH be φR, φH ∈ [0, 360]. Furthermore, let these universes of discourse be
divided into n partitions (for example 6) of 60 which leads to 6× 6 fuzzy rules. Corresponding membership functions
are shown in fig. 3. It turns out that this resolution leads to a poor fuzzy approximation. The approximation quality
can be improved by increasing the number of fuzzy sets which however results in a quadratic increase of the number
of fuzzy rules. To avoid an ”explosion” of the number of fuzzy rules being computed in one time step a set of sub-
areas covering a small number of rules for each sub-area is defined. Based on the measurements of φR and φH , the
appropriate sub-area is selected together with a corresponding set of rules (see Fig. 4, sub-area AR, AH ). With this, the
number of rules to be activated at one time step of calculation is low, although the total number of rules can be high.
At the borderlines between sub-areas abrupt changes may occur which can be avoided by overlapping of sub-areas.

Figure 4: Fuzzy sectors

2.3 Differential approach

Robots and human agents usually change their positions, orientations, and velocities which requires a differential
approach apart from the exact solution (4). In addition, the analysis of uncertainty and noise at xc and the existence of
noise at φR, φH , and xRH = (xR, yR, xH , yH)T requires a differential strategy.

Differentiating (4) with xRH = const. yields

ẋc = J̃ · φ̇

φ̇ = (φ̇R φ̇H)T ; J̃ =

(
J̃11 J̃12
J̃21 J̃22

)
(8)

where

J̃11 =
(
− tanφH 1 tanφH −1

) xRH
G2 · cos2 φR

J̃12 =
(

tanφR −1 − tanφR 1
) xRH
G2 · cos2 φH

J̃21 = J̃11 · tanφH

J̃22 = J̃12 · tanφR

The following sections deal with the accuracy of the computed intersection in the case of noisy orientation information
(see Fig. 5).
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3 Transformation of Gaussian distributions

3.1 General assumptions

Consider a nonlinear system

z = F (x) (9)

where the random variables x = (x1, x2)
T denote the input, z = (z1, z2)

T the output and F denotes a nonlinear
transformation. The distribution of the uncorrelated Gaussian distributed components x1 and x2 is described by

fx1,x2 =
1

2πσx1σx2
exp(−1

2
(
e2x1
σ2x1

+
e2x2
σ2x2

)) (10)

where ex1 = x1− x̄1, x̄1 - mean(x1), σx1 - standard deviation x1 and ex2 = x2− x̄2, x̄2 - mean(x2), σx2 - standard
deviation x2.

The goal is: Given the nonlinear transformation (9) and the distribution (9). Compute the output signals z1 and z2
and their distributions together with their standard deviations and the correlation coefficient. Linear systems transform
Gaussian distributions linearly such that the output signals are also Gaussian distributed. This does not apply for
nonlinear systems, but if the input standard deviation is small enough then a local linear transfer function can be built
for which the outputs are Gaussian distributed. Suppose the the input standard devivations are small with respect to the
nonlinear function then the output distribution can be written as follows

fz1,z2 =
1

2πσz1σz2
√

1− ρ2z12
· (11)

exp(− 1

2(1− ρ2z12)
(
e2z1
σ2
z1

+
e2z2
σ2
z2

− 2ρz12ez1ez2
σz1σz2

))

ρz12 - correlation coefficient.

Figure 5: Intersection with noisy orientations

3.2 Statistical linearization, two inputs-two outputs
Let the nonlinear transformation F be described by two smooth transfer functions (see block scheme 6)

z1 = f1(x1, x2)

z2 = f2(x1, x2) (12)
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where (x1, x2) = (φR, φH) and (z1, z2) = (xc, yc)
Linearization of (12) yields

dz = J̃ · dx or ez = J̃ · ex (13)

with

ez = (ez1 , ez2)T and ex = (ex1 , ex2)T (14)
dz = (dz1, dz2)T and dx = (dx1, dx2)T

Figure 6: Differential transformation

J̃ =

(
∂f1/∂x1, ∂f1/∂x2
∂f2/∂x1, ∂f2/∂x2

)
(15)

Output distribution To obtain the density fz1,z2 (11) of the output signal, we invert (14) and substitute the entries of
ex into (10)

ex = J · ez (16)

with J = J̃−1 and

J =

(
J11 J12
J21 J22

)
=

(
jxz
jyz

)
(17)

where jxz = (J11, J12) and jyz = (J21, J22). Entries Jij are the result of the inversion of J̃ . From this substitution
which we get

fx1,x2
= Kx1,x2

·

exp(−1

2
· ezT · (jx1,z

T , jx2,z
T ) · S−1

x ·
(

jx1,z

jx2,z

)
· ez) (18)

where Kx1,x2 = 1
2πσx1σx2

and

S−1
x =

(
1
σ2
x1

, 0

0, 1
σ2
x2

)
(19)

The exponent of (18) is rewritten into

7



xpo = −1

2
· ( 1

σ2x1
(ez1J11 + ez2J12)

2

+
1

σ2x2
(ez1J21 + ez2J22)

2) (20)

and furthermore

xpo = −1

2
· [e2z1(

J2
11

σ2
x1

+
J2
21

σ2
x2

) + e2z2(
J2
12

σ2
x1

+
J2
22

σ2
x2

) +

2 · ez1ez2(
J11J12
σ2
x1

+
J21J22
σ2
x2

)] (21)

Let

A = (
J2
11

σ2
x1

+
J2
21

σ2
x2

); B = (
J2
12

σ2
x1

+
J2
22

σ2
x2

)

C = (
J11J12
σ2
x1

+
J21J22
σ2
x2

) (22)

then a comparison of xpo in (21) and the exponent in (11) yields

1

(1− ρ2z12)

1

σ2
z1

= A;
1

(1− ρ2z12)

1

σ2
z2

= B

−2ρz12
(1− ρ2z12)

1

σz1σz2
= 2C (23)

Standard deviations σz1 , σz2 and correlation coefficient ρz12 yield

ρz12 = − C√
AB

1

σ2
z1

= A− C2

B
;

1

σ2
z2

= B − C2

A
(24)

The result is: if the parameter of the input distribution and the transfer function F (x, y) are known,then the output
distribution parameters can be computed straight forward.

Fuzzy solution To save computing costs in real time we create a TS fuzzy model that is represented by the rules Rij

Rij : (25)

IF x1 = X1i AND x2 = X2i

THEN ρz12 = − Cij√
AijBij

AND

1

σ2z1
= Aij −

C2
ij

Bij
;

AND

1

σ2z2
= Bij −

C2
ij

Aij

where X1i, X2i are fuzzy terms for x1, x2, Aij , Bij , Cij are functions of predefined variables x1 = x1i and x2 = x2i
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From (25) we derive

ρz12 = −
∑
ij

wi(x1)wj(x2)
Cij√
AijBij

1

σ2z1
=
∑
ij

wi(x1)wj(x2)(Aij −
C2
ij

Bij
) (26)

1

σ2z2
=
∑
ij

wi(x1)wj(x2)(Bij −
C2
ij

Aij
)

wi(x1) ∈ [0, 1] and wj(x2) ∈ [0, 1] are weighting functions with
∑
iwi(x1) = 1,

∑
j wj(x2) = 1

Inverse Solution The previous paragraph discussed the direct transformation task: Let the distribution parameters
of the input variable be defined, find the corresponding output parameters. However it might also be useful to solve
the inverse task: Given the output parameters (standard deviation, correlation coefficient), find the corresponding input
parameters. This solution of inverse task is similar to those discussed in section 3.2. The starting point are equations
(10) and (11) which describe the distributions of the inputs and outputs, respectively. Then we substitute (13) into (10)
and rename the resulting exponent xpoz into xpox and discuss the exponent xpox

xpox =
−1

2(1− ρ2z12)
(ex

T J̃TS−1
z J̃ex −

2ρz12ez1ez2
σz1σz2

) (27)

with

S−1
x =

(
1
σ2
z1

, 0

0, 1
σ2
z2

)

Now, comparing (27) with the exponent of (10) of the input density we find that the mixed term in (27) must be
zero from which we obtain the correlation coefficient ρz12 and with this the standard deviations of the inputs

ρz12 = (
J̃11J̃12
σ2z1

+
J̃21J̃22
σ2z2

)
σz1σz2

(J̃11J̃22 + J̃12J̃21)

1

σ2x
= (

J̃2
11

σ2z1
+
J̃2
21

σ2z2
− 2ρz12
σz1σz2

J̃11J̃21)/(1− ρ2z12) (28)

1

σ2y
= (

J̃2
12

σ2z1
+
J̃2
22

σ2z2
− 2ρz12
σz1σz2

J̃12J̃22)/(1− ρ2z12)

The detailed development can be found in [20].

3.3 Six inputs - two outputs

Consider again the nonlinear system

xc = F (x) (29)

In the previous subsections we assumed the positions xR and xH not to be currupted with noise. However taking
into account the positions to be random variables, the number of inputs are 6 so that the input vector yields x =
(x1, x2, x3, x4, x5, x6)

T or x = (φR, φH , xR, yR, xH , yH) with the output vector xc = (xc, yc)
T .

Furthermore let the uncorrelated Gaussian distributed inputs x1 ... x6 be described by the 6-dim density

9



fxi =
1

(2π)6/2|Sx|1/2
exp(−1

2
(ex

TSx
−1ex)) (30)

where ex = (ex1, ex2, ..., ex6)
T ; ex = x− x̄, x̄ - mean(x), Sx - covariance matrix.

Sx =


σ2x1 0 ... 0
0 σ2x2 ... 0
... ... ... ...
0 ... 0 σ2x6


According to (11) the output density is described by

fxc,yc =
1

2πσxcσyc
√

1− ρ2
· (31)

exp(− 1

2(1− ρ2)
(eTxc

Sc
−1exc −

2ρexceyc
σxcσyc

))

ρ - correlation coefficient, exc = (exc , eyc)
T .

After some calculations [21] we find for ρ, 1
σ2
xc

and 1
σ2
yc

ρ = − C√
AD

1

σ2xc
= A− C2

D
;

1

σ2yc
= D − C2

A
(32)

with

A =
6∑
i=1

1

σ2xi
J2
i1; B =

6∑
i=1

1

σ2xi
Ji1Ji2 (33)

C =
6∑
i=1

1

σ2xi
Ji1Ji2; D =

6∑
i=1

1

σ2xi
J2
i2

which is the counterpart to the 2-dim input case (24).

Inverse solution An inverse solution cannot be uniquely computed due to the underdetermined character of the
6-input – 2-output system. Therefore, from required variances at the intersection position (output) corresponding
variances for positions and orientations of robot-human or robot-robot (input) cannot be concluded.

Fuzzy approach The steps to the fuzzy approach is very similar to those of the 2-input case:
- define operation points xi = (x1, x2, x3, x4, x5, x6)

T
i

- compute Ai, Bi, Ci at xi = (x1, x2, x3, x4, x5, x6)
T
i from (33)

- formulate fuzzy rules Ri according to (25) and (26), i = 1...n

The number n of rules is computed as follows:
With l = 6 - number of fuzzy terms, k = 6 - number of inputs, we obtain n = lk = 66 - number of rules.
This number of rules is unacceptable high. To limit n to an adequate number, one has to limit the number of inputs
and/or fuzzy terms to look for the most influential variables either on heuristic or systematic way [22]. This however is
not the issue to be discussed in this paper.
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4 Sigma-Point-Transformation

In the following the estimation/identification of the standard deviations of possible intersection coordinates of trajec-
tories for both robot/robot and human/robot - combinations by means of the sigma-point technique is discussed. The
following method is based on the Unscented Kalman Filter technique where the intersections cannot be directly mea-
sured but predicted/computed only. Nevertheless it is possible to compute the variance of the predicted events, such as
possible collisions or planned rendezvous situations, by a direct propagation of statistical parameters - the sigma-points
- through the nonlinear geometrical relation which is a result of the crossing of two trajectories. Let
x = (x1, x2)

T - input vector, xc = (xc1, xc2)
T - output vector where for the special case (x1, x2)

T = (φR, φH)T and
(xc1, xc2)

T = (xc, yc)
T The nonlinear relation between x and xc is given by (34)

xc = F(x) (34)

For the discrete case we obtain for the state xc

xc(k) = F(x(k − 1) + w(k − 1)) (35)

and for the measured output zc(k)
zc(k) = h(xc)(k) + v(k)) (36)

where w and v are the system noise and measurement noise, respectively. h(xc) is the output nonlinearity. Let
furthermore
x̄(k) - mean at time tk
P(k) - covariance matrix
x0 - initial state with known mean µ0 = E(x0)
P0(k) = E[(x0 − µ0)(x0 − µ0)T ]

Figure 7: Sigma-points for a 2-dim Gaussian random variable

Selection of sigma-points Sigma-points are selected parameters of a given error distribution of a random variable.
Sigma-points lie along the major eigen-axes of the covariance matrix of the random variable. The height of each
sigma-point (see Fig. 7) represents its relative weight W j used in the following selection procedure.

Let X(k − 1) be a set of 2n+ 1 sigma-points where n is the dimension of the state space (in our example n = 2).

X(k − 1) = {(xj(k − 1),W j)|j = 0...2n} (37)

Consider the following selection of sigma-points

x0(k − 1) = x̄(k − 1)

−1 < W 0 < 1 (38)

W 0 =
λ

n+ λ
; λ = α2(n+ κ)− n
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xi(k − 1) = x̄(k − 1) +

√
(

n

1−W 0
P(k − 1)); i = 1...n

xi(k − 1) = x̄(k − 1)−
√

(
n

1−W 0
P(k − 1)); i = (n+ 1)...2n

W j =
1−W 0

2n
(39)

under the following condition
2n∑
j=0

W j = 1 (40)

α and κ are scaling factors. A usual choice is α = 10−2 and κ = 0.√
n

1−W 0P(k − 1) is the row/column of the matrix square root of n
1−W 0P. The square root of a matrix P is the solution

S for P = S · S which is obtained by Cholesky factorization.

Model forecast step To go on with the UKF, the following step is devoted to the model forecast. In this way the
sigma-points xj(k) are propagated through the nonlinear process model

xf,jc (k) = F(xj(k − 1)) (41)

where the superscript f means ”forecast”. From these transformed and forecasted sigma-points the mean and
covariance for the forecast value of xc(k)

xfc (k) =
2n∑
j=0

W jxf,jc (k)

Pf (k) =
2n∑
j=0

W j(xf,jc (k)− xfc (k))(xf,jc (k)− xfc (k))T (42)

Measurement update step In this step the sigma-points are propagated through the nonlinear observation model

zf,jc (k) = h(xjc(k − 1)) (43)

from which we obtain mean and covariance (innovation covariance)

zfc (k − 1) =
2n∑
j=0

W jzf,jc (k − 1)

Cov(z̃fc (k − 1)) = (44)
2n∑
j=0

W j(zf,jc (k − 1)− zfc (k − 1))×

(zf,jc (k − 1)− zfc (k − 1))T + R(k)

and the cross-covariance

Cov(x̃fc (k), z̃fc (k − 1)) =
2n∑
j=0

W j(xf,jc (k)− xfc (k))(zf,jc (k − 1)− zfc (k − 1))T (45)
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Data assimilation step In this step, called the forecast information is combined with the new information from the
output z(k) from which we obtain with the Kalman filter gain K

x̂c(k) = xfc (k) + K(k)(zc(k)− zfc (k − 1)) (46)

The gain K is given by

K(k) = Cov(x̃fc (k), z̃fc (k − 1)) · Cov−1(z̃fc (k − 1)) (47)

and the posterior covariance is updated by

P(k) = Pf (k)−K(k) · Cov(z̃fc (k − 1))KT (k) (48)

Usually it is sufficient to compute mean and variance for the output/state xc of the nonlinear static system F(x).
In this case it is possible to stop a further computing at eq. (42) meaning rather to calculate the transformed sigma-
points xf,jc and develop the regarding output means and variances from (41) and (42). In this connection it is enough to
substitute the covariance matrix Q into (38) instead of P. One advantage of the sigma-point approach prior to statistical
linearization is the easy scalability to multi-dimensional random variables.

For the intersection problem there are 2 cases:
1. 2 inputs, 2 outputs (2 orientation angles, 2 crossing coordinates)
2. 6 inputs, 2 outputs (2 orientation angles and 4 position coordinates, 2 crossing coordinates)
For the statistical linearization (method 1) the step from the 2 inputs - 2 outputs case to the (6,2)-case is computationally
more costly than that for the sigma-point approach (method 2), (see eqs. (20) ... (24) versus eqs. (37), (40)... (42).

Sigma-points - Fuzzy solutions In order to lower the computing effort the application of TS-fuzzy interpolation
may be a solution which will be shown in the following. Having a look at the 2-dimensional problem we can see a
nonlinear propagation of the input sigma-points through a nonlinear function F. Let xj be the 2-dimensional ”input”
sigma-points

xj = (xj1, x
j
2)
T (49)

or for the special case ”intersection”

xj = (φjR, φ
j
H)T (50)

The propagation through F leads to ”output” sigma-points

xf,jc (k) = F(xj(k − 1)) (51)

or for the special case

xf,jc (k) = F(xj1(k − 1), xj2(k − 1)) =

F(φjR(k − 1), φjH(k − 1)) (52)

The special nonlinear function F is described by (see (5))

xc = ARH(φR, φH) · xRH (53)

where ARH is a nonlinear matrix (6) linearly combined with the position vector xRH = (xR, yR, xH , yH)T .
A fuzzification aims at ARH :

Ffuzz(φR, φH) = Afuzz
RH · xRH =

m∑
l1,l2

wl1(φR)wl2(φH) ·ARH(φl1R, φ
l2
H) · xRH (54)
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Applied to the sigma-points (φjR, φ
j
H) we get a TS fuzzy model described by the following rules Rl1,l2

Rl1,l2 : (55)

IF φjR = Φj
Rl1

AND φjH = Φj
Hl2

THEN xf,jc = ARH(φl1,jR , φl2,jH ) · xRH

where Φj
Rl1
,Φj

Hl2
are fuzzy terms for φjR, φ

j
H ; the matrices ARH are functions of predefined variables φjR and φjH .

This set of rules leads to the result

xf,jc = Ffuzz(φjR, φ
j
H) =

m∑
l1,l2

wl1(φjR)wl2(φjH) ·ARH(φl1,jR , φl2,jH ) · xRH (56)

wl1(φjR) ∈ [0, 1] and wl2(φjH) ∈ [0, 1] are weighting functions with
∑
l1 w

l1 = 1,
∑
l2 w

l2 = 1. The advantage of this
approach is that the l1 × l2 matrices Al1,l2,j

RH = ARH(φl1,jR , φl2,jH ) can be computed off line. Then, the calculation of
mean and covariance matrix is obtained by

xfc (k) =
2n∑
j=0

Wjxf,jc (k)

Pf (k) =
2n∑
j=0

Wjx̃f,jc (k)(x̃f,jc (k))T (57)

x̃f,jc = xf,jc − xfc

From the covariance Pf the variances σcxx, σcyy, σcxy can be obtained

σcxx = E((xfc − x̄fc )2))

σcyy = E((yfc − ȳfc )2)) (58)

σcxy = σcyx = E((xfc − x̄fc ) · (yfc − ȳfc ))

Inverse solution The inverse solution for the Sigma-Point approach is much easier to get than that for the statistical
linearization method. Starting from eq. (34) we build the inverse function

x = F−1(xc) (59)

on the condition that F−1 exists. Then the covariance matrix P is defined in correspondence to the required variances
σcxx, σcyy, and σcxy. The following next steps correspond to equations (34)-(42). The position vector xRH is assumed
to be known. The inversion of F requirers a linearization of xRH and a starting point to obtain a stable convergence to
the inverse F−1. The result is the mean x and the covariance Q at the input. A reliable inversion is only possible for
the 2-input 2-output case.

6-inputs 2-outputs This case works exactly as the 2-input 2-output case along eqs. (34)-(42) due to the fact that the
computation of the Sigma-Points (38)-(40) and the propagation through the nonlinearity F includes automatically the
input and output dimensions.
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5 Simulation results

The following simulations show results of uncertainties of predicted intersections based on statistical linearization and
sigma-point-Transformation. For both methods identical parameters are employed for comparisson reasons (see fig. 2)
Position/orientation of robot and human are given by
xR = (xR, yR)T = (2, 0)Tm
xH = (xH , yH)T = (4, 10)Tm
φR = 1.78rad = 102◦,
φH = 3.69rad = 212◦.
φR and φH are corrupted by Gaussian noise with standard deviations (std) of σφR = σx1 = 0.02 rad, (= 1.1◦),
σφH = σx2 = 0.02 rad, (= 1.1◦) .

Statistical linearization

Table 1 shows a comparison of the non-fuzzy method with the fuzzy approach using sectors of 60◦, 30◦, 15◦, 7.5◦ of the
unit circle for the orientations of robot and human. Notations in table 2 are: σxc - std-computed, σxm - std-measured etc.
As expected, we see that higher resolutions lead to a better match between fuzzy and analytical approach. Furthermore,
the match between measured and calculated values depends on the form of membership functions (MFS). For example,
low input standard deviations (0.02 rad) show a better match for Gaussian membership functions, higher input standard
deviations (0.05 rad = 2.9◦) require Gaussian bell shape membership functions which comes from different smoothing
effects (see columns 4 and 5 in table 2).
A comparison of control surfaces and corresponding measurements xcm, ycm (black and red dots) is depicted in figures
8 - 10. Figure 8 shows the control surface of xc and yc for the non-fuzzy case (4). Control surfaces of the fuzzy
approximations (7) for 30◦ and 7.5◦ sectors [20] are shown in figures 9 - 10. Resolution 30◦ (fig. 9) shows a very
high deviation compared to the non-fuzzy approach (fig. 8) which decreases further down to resolution 7.5◦ (fig. 10).
This explains the high differences between measured and computed standard deviations and correlation coefficients, in
particular for sector sizes of 30◦ and higher.

Table 1: Standard deviations, fuzzy and non-fuzzy results
input std 0.02 Gauss, bell shaped (GB) Gauss 0.05 GB

sector size/ ◦ 60◦ 30◦ 15◦ 7.5◦ 7.5◦ 7.5◦

non-fuzz σxc 0.143 0.140 0.138 0.125 0.144 0.366
fuzz σxc 0.220 0.184 0.140 0.126 0.144 0.367

non-fuzz σxm 0.160 0.144 0.138 0.126 0.142 0.368
fuzz σxm 0.555 0.224 0.061 0.225 0.164 0.381

non-fuzz σyc 0.128 0.132 0.123 0.114 0.124 0.303
fuzz σyc 0.092 0.087 0.120 0.112 0.122 0.299

non-fuzz σym 0.134 0.120 0.123 0.113 0.129 0.310
fuzz σym 0.599 0.171 0.034 0.154 0.139 0.325

non-fuzz ρxyc 0.576 0.541 0.588 0.561 0.623 0.669
fuzz ρxyc -0.263 0.272 0.478 0.506 0.592 0.592

non-fuzz ρxym 0.572 0.459 0.586 0.549 0.660 0.667
fuzz ρxym 0.380 0.575 0.990 0.711 0.635 0.592
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Figure 8: Control surface non-fuzzy
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Figure 9: Control surface fuzzy, 30◦
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Figure 10: Control surface fuzzy, 7.5◦

Sigma-Point method

2-inputs - 2-outputs:

The simulation of the sigma-point method is based on a Matlab implementation of an unscented Kalman filter by
[23]. The first example deals with the 2-inputs - 2-outputs case in which only the orientations are taken into account,
but the disturbances of the positions of robot and human are not part of the sigma-point calculation. A comparison
between the computed and measured covariance show a very good match. The same holds for the standard deviations
σxc, σyc. A comparison with the statistical linearization shows a good match as well (see table 2, rows 1 and 2).

A view at the sigma-points presents the following results: Figure 11 shows the two-dimensional distribution of the
orientation angles (φR, φH) and the corresponding sigma-points s1, ..., s5 where s1 denotes the mean value. Figure
12 shows the two-dimensional distribution of the intersection coordinates (xc, yc) with the sigma-points S1, ..., S5. S1
denotes the mean value and S1, ..., S5 are distributed in such a way that the si are transformed into Si, i = 1...5. From
both figures an optimal selection of both s1, ..., s5 and S1, ..., S5 can be observed which results in a good match of the
computed and measured standard deviations σxc .
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Figure 11: Sigma− Points, input Figure 12: Sigma− Points, output

6-inputs - 2-outputs:
The 6-inputs 2-outputs example shows that the additional consideration of 4 input position coordinates with
σxR = 0.02 leads to similar results both for computed and measured covariances and between sigma-point method
and statistical linearization (see P (7, 7) = σx

2
c , P (8, 8) = σy

2
c , and covar(7, 7) = σx

2
m, covar(8, 8) = σy

2
m, σx2c -

computed, σx2m - measured variation). Table 2 shows the covariance submatrix considering the output positions only.

Computed covariance:

P = 10−1 ×



0.004 −0.000 −0.000 0.000 −0.000 −0.000 −0.030 −0.018
−0.000 0.004 0.000 −0.000 −0.000 −0.000 0.003 −0.017
−0.000 0.000 0.004 0.000 −0.000 −0.000 0.004 0.002
0.000 −0.000 0.000 0.004 −0.000 −0.000 0.001 0.000
−0.000 −0.000 −0.000 −0.000 0.004 0.000 0.000 −0.002
−0.000 −0.000 −0.000 −0.000 0.000 0.004 −0.001 0.004
−0.030 0.003 0.004 0.001 0.000 −0.001 0.235 0.127
−0.018 −0.017 0.002 0.000 −0.002 0.004 0.127 0.165


(60)

σxc = 0.153, σyc = 0.122

Measured Covariance:

covar = 10−1 ×



0.004 0.000 0.000 0.000 0.000 −0.000 −0.028 −0.020
0.000 0.004 0.000 0.001 0.000 −0.000 0.000 −0.020
0.000 0.000 0.004 −0.000 0.001 −0.001 0.003 0.001
0.000 0.001 −0.000 0.004 −0.000 −0.000 −0.000 −0.003
0.000 0.000 0.001 −0.000 0.005 −0.000 −0.001 −0.006
−0.000 −0.000 −0.001 −0.000 −0.000 0.005 −0.000 0.005
−0.028 0.000 0.003 −0.000 −0.001 −0.000 0.213 0.131
−0.020 −0.020 0.001 −0.003 −0.006 0.005 0.131 0.182


(61)

σxc = 0.145, σyc = 0.134
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2-inputs 2-outputs, direct and inverse solution
The next example shows the computation of the direct and inverse case. In the direct case we obtain again similar
values between computed and measured covariances and, with this, standard deviations. The results of the inverse
solution leads to similar values of the original inputs (orientations x1 = φR, x2 = φH ), (see table 2). Simulations of
fuzzy versions showed the same similarities and can therefore be left out here.

Table 2: Covariances, standard deviations - computed and measured
Outputs Covariance, computed Covariance, measured σxc, comp/meas σyc, comp/meas

2 inputs P =

(
0.0213 0.0114
0.0114 0.0159

)
covar =

(
0.0264 0.0146
0.0146 0.0166

)
0.145/0.144 0.126/0.134

2 inputs, stat. lin. - - 0.144/0.142 0.124/0.129

6 inputs P =

(
0.0235 0.0127
0.0127 0.0165

)
covar =

(
0.0213 0.0131
0.0131 0.0182

)
0.135/0.145 0.122/0.134

Direct solution P =

(
0.0234 0.0133
0.0133 0.0151

)
covar =

(
0.0264 0.0146
0.0146 0.0166

)
0.152/0.162 0.128/128

Inverse solution P = 10−3 ×
(

0.4666 0.0522
0.0522 0.4744

)
covar = 10−3 ×

(
0.4841 −0.0190
−0.0190 0.396

)
0.0215/0.0220 0.0217/0.0190

2-inputs 2-outputs, Moving robot/human

The next example deals with robot and human in motion. Figure 13 shows positions and orientations of robot and
human at selected time steps t1...t5 and the development of the corresponding intersections xc.

Figure 13: Moving robot and human

Figure 14 shows the corresponding time plot. The time steps t1...t5 are taken at 0.58s, ..., 4.58swith a time distance
of 1s which are 25 time steps of 0.04s each. Robot and human start at
xR = (xR, yR)T = (2, 0)Tm
xH = (xH , yH)T = (4, 10)Tm
with the velocities
ẋR(k) = −0.21m/s,
ẏR(1) = +0.24m/s,
ẋH(k) = −0.26m/s,
ẏH(1) = −0.24m/s
k - time step
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The x components of the velocities ẋR(k) and ẋH(k) stay constant during the whole simulation.
The y components change their velocities with constant factors

ẏR(k + 1) = KR · ẏR(k)

ẏH(k + 1) = KH · ẏH(k)

where KR = 1.2 and KH = 0.9. The orientation angles start with
φR = 1.78rad
φH = 3.69rad.
and change their values every second according to the direction of motion.

From both plots one observes an expected decrease of the output standard deviations for a mutual decrease of their
distances to the regarding intersection and a good match between computed and measured values xc (see table 3).
With the information about the distance of the robot and the standard deviation from and at the expected intersection,
respectively, it becomes possible to plan either an avoidance strategy or a mutual cooperation between robot and human.

Figure 14: Time plot, robot and human

Table 3: Covariances, standard deviations - computed and measured, moving robot/human
Outputs Covariance, computed Covariance, measured σxc, comp/meas σyc, comp/meas

t1 P =

(
0.0220 0.0017
0.0017 0.0163

)
covar =

(
0.0246 −0.0002
−0.0002 0.0202

)
0.148/0.156 0.127/0.142

t2 P =

(
0.0198 0.0023
0.0023 0.0138

)
covar =

(
0.0222 0.0018
0.0018 0.0153

)
0.140/0.148 0.117/0.123

t3 P =

(
0.0168 0.0030
0.0030 0.0107

)
covar =

(
0.0140 0.0040
0.0040 0.0088

)
0.129/0.118 0.103/0.093

t4 P =

(
0.0151 0.0029
0.0029 0.0083

)
covar =

(
0.0127 0.0014
0.0014 0.0073

)
0.122/0.112 0.091/0.085

t5 P =

(
0.0125 0.0023
0.0023 0.0061

)
covar =

(
0.0102 0.0030
0.0030 0.0056

)
0.112/0.101 0.078/0.074
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6 Summary and conclusions

The content of this work is the prediction of encounter situations of mobile robots and human agents in shared areas
by analyzing planned/intended trajectories in the presence of uncertainties and system and observation noise. In this
context the problem of intersections of trajectories with respect to system uncertainties and Gaussian noise of position
and orientation of the agents involved are discussed. The problem is adressed by two methods: the statistical lineariza-
tion of distributions and the sigma-point-Transformation of distribution parameters. Positions and orientations of robot
and human are corrupted with Gaussian noise represented by the parameters mean and standard deviation. The goal
is to calculate mean and standard deviation/variation at the intersection via the nonlinear relation between positions/
orientations of robot and human on the one hand and the position of the intersection of their intended trajectories on
the other hand.

This analysis is realized by statistical linearization of the nonlinear relation between the statistics of robot and
human (input) and the statistics of the intersection (output). The output results are mean and standard deviation of the
intersection as functions of the input parameters mean and standard deviation of positions and orientations of robot and
human. This work is first carried out for 2 inputs - 2 outputs relations (2 orientations of robot/human - 2 intersection
coordinates) and then for 6 inputs - 2 outputs (2 orientations and 4 position coordinates of robot/human - 2 intersection
coordinates). These cases were extended to their fuzzy versions by different Takagi-Sugeno (TS) fuzzy approximations
and compared with the non-fuzzy case. Up to a certain resolution the approximation works as accurate as the original
non-fuzzy version. For the 2-input - 2-output case an inverse solution is derived, except the 6-input - 2-output case
because of the underdetermined nature of the differential input-output relation.

The sigma-point transformation aims at transforming/propagating distribution parameters - the sigma-points - di-
rectly through nonlinearities. The transformed sigma-points are then converted into distribution parameters mean and
covariance matrix. The sigma-point transformation is closely connected to the unscented Kalman filter which is used
in the example of robot and human in motion. The specialty of the example is a computed virtual system output
(”observation”) - the intersection of two intended trajectories - where the corresponding output uncertainty is a sum of
the transformed position/orientation noise and the computational uncertainty from the fuzzy approximation. In total
the comparison between the computed and measured covariances show very good match and the comparison with the
statistical linearization shows good coincidences as well. Both the sigma-point transformation and the differential sta-
tistical linearization scales for more than 2 variables linearly. However the computing costs for the differential approach
are still higher than that for the sigma-point approach. In summary, a prediction of the accuracy of human-robot tra-
jectories using the methods presented in this work increases the performance of human robot collaboration and human
safety. In future work this method can be used for robot-human scenarios in factory workshops and for robots working
in complicated environments like rescue operations in cooperation with human operators.
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