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Abstract: Recent advancements in deep learning have spurred the development of numerous novel semantic 10 

segmentation models for land cover mapping, showcasing exceptional performance in delineating precise 11 

boundaries and producing highly accurate land cover maps. However, to date, no systematic literature review 12 

has comprehensively examined semantic segmentation models in the context of land cover mapping. This 13 

paper addresses this gap by synthesizing recent advancements in semantic segmentation models for land cover 14 

mapping from 2017 to 2023, drawing insights on trends, data sources, model structures, and performance 15 

metrics based on a review of 106 extracted articles. Our analysis identifies top journals in the field, including 16 

MDPI Remote Sensing, IEEE Journal of Selected Topics in Earth Science, and IEEE Transactions on 17 

Geoscience and Remote Sensing, IEEE Geoscience and Remote Sensing Letters, ISPRS Journal Of 18 

Photogrammetry And Remote Sensing as the leading journals. We find that research predominantly focuses 19 

on land cover, urban areas, precision agriculture, environment, coastal areas, and forests. Geographically, 20 

35.29% of the study areas are located in China, followed by USA (11.76%), France (5.88 %), Spain (4%) and 21 

others. Sentinel-2, Sentinel-1, and Landsat satellites emerge as the most commonly used data sources. 22 

Benchmark datasets such as ISPRS Vaihingen & Potsdam, LandCover.ai, DeepGlobe, and GID datasets are 23 

frequently employed. Model architectures predominantly utilize encoder-decoder, and hybrid convolutional 24 

neural network-based structures because of their impressive performances, with limited adoption of 25 

transformer-based architectures due to its computational complexity issue, and slow convergence speed. 26 

Lastly, this paper highlights existing key research gaps in the field to guide future research directions. 27 

Keywords: Remote Sensing; Semantic Segmentation; Land Use Land Cover; Deep Learning; Land 28 

Cover Classification  29 

 30 

1. Introduction 31 

Semantic segmentation models are crucial in land cover mapping especially in generating 32 

precise Land Cover (LC) maps [1]. LC maps show various types of land cover, such as 33 

forests, grasslands, wetlands, urban areas, and bodies of water. These maps are typically 34 

created using Remote Sensing (RS) data like satellite imagery or aerial photography [2]. 35 

Land cover maps serve for different purposes, including land use management [3], 36 

disaster management, urban planning [4], precision agriculture [5], forestry [6], building 37 

infrastructure development [7], climate changes problems [8] and others.  38 

Due to advancements in Deep Convolutional Neural Network (DCNN) models, the 39 

domain of land cover mapping has progressively evolved [9]. DCNN are potentially 40 

successful for extracting information from high-resolution RS data [10]. They possess 41 

deep layers and hierarchical architectures, aiming to automatically identify high-level 42 

patterns in data [11]. Although DCNN have shown impressive performance in image 43 

classification task, the conventional models still struggle to capture comprehensive global 44 

information as well as long-range dependencies inherent RS data [12]. Consequently, they 45 
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may not achieve precise image segmentation because could potentially overlook certain 46 

edge details of objects [13]. However, they have successfully contributed valuably to 47 

semantic segmentation methodologies.   48 

Semantic segmentation model allocates every pixel in an image to a predefined class [14]. 49 

It’s effectiveness in landcover segmentation have established them as a mainstream 50 

method [15]. They have demonstrated enhanced performance leading to more accurate 51 

segmentation outcomes. A prominent example of a state-of-the-art (SOTA) semantic 52 

segmentation model is UNet [16]. Recently, many novel semantic segmentation models 53 

tailored for land cover mapping have been proposed, including DFFAN [12], MFANet 54 

[17], Sgformer [18], UNetFormer[19], and CSSwin-unet [20]. Accordingly, these models 55 

have demonstrated exceptional segmentation accuracy in this domain. 56 

In recent years, literature reviews have predominantly explored Deep Learning (DL) 57 

semantic segmentation models. The review [21] presented significant methods, their 58 

origins, and contributions, including insights into datasets, performance metrics, 59 

execution time, and memory consumption relevant to DL-based segmentation projects. 60 

Similar reviews by [14] and [22] categorized existing semantic segmentation with DL 61 

methods based on criteria like supervision degree during training and architectural 62 

design). In addition, [23] summarized various semantic segmentation models for RS 63 

Imagery. These reviews offer comprehensive overviews of DL-based semantic 64 

segmentation models but have not specifically examined their application to land cover 65 

mapping. To address this gap, this literature review focuses on emerging semantic 66 

segmentation models in land cover mapping, aiming to answer predefined research 67 

questions quantitatively and qualitatively. Our objective is to identify knowledge gaps in 68 

semantic segmentation models applied to land cover mapping and understand the 69 

evolution of these models in relation to domain-specific studies, data sources, model 70 

structures, and performance metrics. Furthermore, this review offers insights for future 71 

research directions in land cover mapping. 72 

The next sections of the review are structured as follows: Section II provides the research 73 

questions and method used in conducting the review. Section III delves into the results 74 

obtained from the performed systematic review, discusses the evolution and trends, the 75 

domain study, the data, semantic segmentation methodologies. Section IV challenges and 76 

provides future insights in land cover mapping. Finally, Section IV summarizes the 77 

highlights of the review. 78 

2. Materials and Methods 79 

The methodology used in conducting this comprehensive literature review follows the 80 

PRISMA framework as outlined by [24] of identification, eligibility, screening, and data 81 

extraction. A search strategy was developed to identify the literature for this review 82 

(Figure 1). Peer-reviewed papers published in relevant journals between 2017 and 2023 83 

are reviewed.  In this section, the research questions are formulated, thereafter, the search 84 

strategy was defined as used on Scopus database. The selection of the inclusion and 85 

exclusion criteria was explained as well as the eligibility criteria defined to assess articles 86 

utilized as final record for the bibliometric analysis. 87 

2.1 Research Questions (RQs) 88 

The objectives of the study are addressed based on 4 main research questions. These RQs 89 

are specifically selected to elicit trends, benchmark datasets, the state-of-the-art 90 

architecture, and performances of semantic segmentation in land cover mapping. This 91 

review is built around these RQs. 92 

RQ1. What are the emerging patterns in land cover mapping? 93 

RQ2. What are the domain studies of semantic segmentation models in land cover 94 

mapping? 95 

RQ3. What are the data used in semantic segmentation models for land cover mapping? 96 
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RQ4. What are the architecture and performances of semantic segmentation 97 

methodologies used in Land cover mapping? 98 

2.2 Search Strategy 99 

The search strategy was carried out using Scopus (Elsevier) database 100 

(https://www.scopus.com/search). This database is renowned in the scientific community for 101 

its high-quality journals, extensive, multidisciplinary abstract collection, and it is an 102 

excellent fit for the purposes of review articles [25].  The search keywords used as search 103 

criteria to identify articles from the Scopus database are ‘'semantic AND segmentation', 104 

AND 'land AND use AND land AND cover', AND 'deep AND learning', AND 'land AND 105 

cover AND classification'.  The search string is used to find relevant papers that links deep 106 

learning semantic segmentation to land use and land cover. 107 

2.3 Study Selection Criteria 108 

After the defined search strings are entered on Scopus, a total of 218 articles were initially 109 

retrieved from the scientific database. To further process the data retrieved, the papers are 110 

filtered between 2017 to 2023 excluding conference papers, conference reviews, data 111 

paper, books, and book chapters, articles in the press, conference proceedings, book series 112 

and articles that are not in English language. The stated period 2017 – 2023 is selected to 113 

provide us with the recent development in the field and during search, there were almost 114 

no notable articles published before 2017 on the subject matter. Consequently, the 115 

retrieved record was reduced to 121 articles.  116 

2.4 Eligibility and Data analysis 117 

To determine eligibility and quality assessment of the extracted papers, we remove 118 

articles published in journals that are not Q1 or Q2. This is to ensure that the articles with 119 

rigorous peer review process and quality research output in this field are selected and 120 

synthesize for top quality review. After excluding Journals that are not ranking Q1 and 121 

Q2, 9 articles are excluded, and 112 records are retrieved. For further assessment, titles 122 

and abstracts are assessed regarding their relevance to the study. The relevant study 123 

focused on articles that implemented various deep learning semantic segmentation 124 

models focused on land use/land cover classification, and/or various satellite datasets 125 

extracted through semantic segmentation in different application. Furthermore, hybrid 126 

gold access and review paper are also excluded. This is to ensure that all articles are open 127 

access and 100% articles.  At the end of this step, 6 articles are further excluded bringing 128 

down the record to a total number of 106 articles between the period of 2017 to 2023, which 129 

are eligible for bibliometric analysis.  130 

2.5 Data synthesis 131 

In this section, the data synthesis is an important way to the answer the RQs. The data is 132 

visualized in such a way that it presents findings and synthesizing through quantitative 133 

and qualitative analysis. Categorization and visualization are done to draw important 134 

trends and findings of deep learning semantic segmentation models in land cover 135 

mapping in relation to datasets, applications, architecture, and performance. The study’s 136 

synthesizing themes were developed by full-text content analysis of the 106 articles. 137 

Vosviewer software is used to provide graphical visualizations of occurrence of key terms 138 

taking title, abstract, keywords as input. 139 

https://www.scopus.com/search
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 140 

Figure 1. Flow chart of peer-review procedure 141 

 142 

 143 
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3. Results and Discussion 144 

 145 

This section looks into the results derived from the performed systematic literature 146 

review. Using 106 extracted articles, the results are presented and discussed based on the 147 

RQs.  148 

3.1 RQ1. What are the emerging patterns in land cover mapping? 149 

• Annual distribution of research studies 150 

The annual distribution varies from 2017 to 2023. Figure 2 shows the number of research 151 

articles published annually from 2017 to 2023. The year 2017 saw a modest output of 152 

merely 3 articles. There is a surge in number of articles to 12 in 2020, 17 articles by the year 153 

2021, 30 articles by 2022 and 40 articles by 2023. This observation aligns with the 154 

understanding that the adoption of deep learning semantic segmentation models on 155 

satellite imagery gained significant momentum in 2020 and subsequent years. 156 

 157 

Figure 2. Annual distribution of research studies 158 

• Leading Journals 159 

Figure 3 depicts number of articles published in academic journals of this domain. The 160 

top 13 journals produced over 81% of the number of research studies of semantic 161 

segmentation in land cover mapping. MDPI Remote Sensing (30) has the highest number 162 

of published articles in this domain, follow by IEEE Journal of selected topics in Earth 163 

Science (15), IEEE Transactions on Geoscience And Remote Sensing (12), IEEE Geoscience 164 

and Remote Sensing Letters (5), ISPRS Journal Of Photogrammetry And Remote Sensing 165 

(4) and so on, while 20 other journals have 1 article each published grouped as “other” 166 

category.  167 

40

30

17

12

2 2 2

0

5

10

15

20

25

30

35

40

45

2023 2022 2021 2020 2019 2018 2017

N
u

m
b

e
r 

o
f 

st
u

d
ie

s

Year of  publication

N U M B E R  O F  A R T I C L E S  ( N  =  1 0 6 )



Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 32 
 

 

 168 

 Figure 3. Number of relevant publications in this field distributed per Journals. 169 

 170 

• Geographic distribution of studies 171 

In terms of geographical distribution of studies extracted from Scopus database, 35 172 

countries contributed to the study domain. Almost all continents have contributions 173 

except the African continent. Figure 4 shows that China published 63 articles of the total 174 

106 articles, the second is the United States with 10 articles, followed by India (6), Italy (5), 175 

South Korea (4), United Kingdom(4), Canada, Finland and Germany (3), then Austria, 176 

Australia, Brazil, France, Greece, Turkey, Netherlands and Japan (2) while the rest 177 

countries have 1 each  distributed. 178 

 179 

 180 

   Figure 4: Geographic distribution of studies per country 181 
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• Leading Themes and Timelines 182 

The significant keyword occurrences are obtained from the titles and abstracts of the 183 

extracted articles. The Figure 5 shows relevant and leading keywords. A threshold of 5 184 

was set, which means the minimum number of occurrences of a keyword. Only 68 out of 185 

897 keywords met the threshold. Bibliometric analysis reveals that keywords such as 186 

"high-resolution RS images", "Remote Sensing", "satellite imagery" and "very high 187 

resolution" exhibit prominence, showing strong associations with neural network-related 188 

terms including "Semantic Segmentation", "Deep Learning,", "Machine Learning", and 189 

"Neural Network". The Semantic Segmentation has “attention mechanisms” and 190 

“transformer” as different model’s architectural component. These learning models are 191 

further linked to various application domains, evident in their connections to terms like 192 

"Land Cover Classification", "Image Classification", "Image Segmentation", "Land Cover", 193 

"Land Use “, “Change Detection” and "Object Detection." In 2020, the research revolved 194 

around network architectures, object detection and image processing. In later part of 2021, 195 

there was a notable shift in research domains, predominantly towards image 196 

segmentation, image classification, and land cover segmentation. In 2022 and 2023, there 197 

were pronounced shift in research focusing more to semantic segmentation employing 198 

satellite high resolution images for change detection, land use, and land cover 199 

classification and segmentation. 200 

    201 

Figure 5. Significant keywords occurrence driving domain theme. 202 

 203 
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3.2 RQ2. What are domain studies of semantic segmentation models in land cover 204 

mapping? 205 

In this section, each extracted paper is clustered based on similar study domains areas. 206 

Figure 6 shows the overall mind map of the domain studies. Land cover, urban, precision 207 

agriculture, environment, coastal areas and forest are mostly studied domain areas.  208 

 209 

 210 

                                Figure 6. Land cover mapping domain studies 211 

 212 

In Figure 7, it is evident that among the 106 articles, 36 studies cover both land cover (LC) 213 

classification and segmentation, 24 specifically focus on LC classification, 15 concentrate 214 

on urban applications, 9 address LC segmentation alone, 8 addresses environment issues, 215 

5 center around precision agriculture, 5 are oriented toward coastal applications, with 3 216 

articles addressing LC change detection and 2 focusing on forestry. 217 
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   Figure 7. Number of publications per domain studies 219 

    220 

• Land Cover Studies 221 

In the 72 studies out of 106 related to land cover, research activities encompass land cover 222 

classification (33.3%), land cover segmentation (12.5%), change detection (4.2%), and the 223 

combined application of land cover classification and segmentation (50%). These areas of 224 

study are extensively documented and represent the most widely researched applications 225 

within land cover studies. Land cover classification involves assigning an image to one of 226 

several classes of land use and land cover (LULC), while land cover segmentation entails 227 

assigning a semantic label to each pixel within an image [26]. Land cover refers to various 228 

classes of biophysical earth cover, while land use describes how human activities modify 229 

land cover. On the other hand, change detection plays a crucial role in monitoring LULC 230 

changes by identifying changes over time periods, which can help predict future events 231 

or environmental impacts. Change detection methods employing DL have attained 232 

remarkable achievements [27] across various domains, including urban change detection 233 

[4], agriculture, forestry, wildfire management, and vegetation monitoring [28]. 234 

 235 

• Urban 236 

Among the 15 publications related to urban studies, 38% focus on segmentation 237 

applications, including urban scene segmentation [19,29,30], while 31% address urban 238 

change detection for mapping, planning, and growth [31,32]. For instance, change 239 

detection techniques provide insights into urban dynamics by identifying changes from 240 

remote sensing imagery [7], including changes in settlement areas. Additionally, these 241 

studies involve predicting urban trends and growth over time, managing land use [3], 242 

monitoring urban densification [33] as well as mapping built-up areas to assess human 243 

activities across large regions [34]. 244 

Publications in urban studies also cover 6% in land survey management [35] and 25% in 245 

urban classification and detection [36–40] particularly in building applications and for 246 

Urban Land-Use Classification [41].  247 

 248 
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Out of the 5 publications concerning precision agriculture studies, the research focuses on 250 

various aspects such as crop mapping [42], identification, [43,44], classification [45], and 251 

monitoring [46]. For example, mapping large-scale rice farms [5] monitoring crops to 252 

analyze different growth stages [43], and classifying Sentinel data for creating an oil palm 253 

land cover map [47].  254 

 255 

• Environment 256 

Among the 8 environmental studies analyzed, the research spans various applications. 257 

These include 25% focusing on soil erosion applications  [48,49], which involves rapid 258 

monitoring of ground covers to mitigate soil erosion risks. Additionally, 12.5% of the 259 

studies center around wildfire applications [50] encompassing burned area mapping, 260 

wildfire detection [51], and smoke monitoring [52],  along with initiatives for preventing 261 

wildfires through sustainable land planning [8]. Another 12.5% of the studies involve haze 262 

classification [53] specifically cloud classification using Sentinel-2 imagery. Climate 263 

change research [54] accounts for another 12.5% of the studies, focusing on aspects such 264 

as the urban thermal environment. Furthermore, 12.5% of the studies are dedicated to 265 

vegetation classification [55] and an additional 25% address mining applications [56] 266 

including the detection of changes in mining areas [57]. 267 

 268 

• Forest 269 

Research in this domain encompasses forest classification, including the classification of 270 

landscapes affected by deforestation [58]. Moreso, change detection in vegetation and 271 

forest areas enables decision-makers, conservationists, and policymakers to make 272 

informed decisions through forest monitoring initiatives [6] and mapping strategies 273 

tailored to tropical forests [59]. 274 

 275 

• Coastal Areas 276 

Within this field, 5 studies out of the 106 articles focus on wetland mapping, classification, 277 

and segmentation [10,60–63]. Although, the exploration and study of coastal area remote 278 

sensing image segmentation remains a relatively underexplored research area, as noted 279 

by [61]. This challenge is primarily attributed to the significant complexities associated 280 

with coastal land categories, including issues such as homogeneity, multiscale features, 281 

and class imbalance, as highlighted [64]. 282 

 283 

3.3 RQ3. What are the data used in semantic segmentation models for land cover 284 

mapping? 285 

 286 

In this section, the paper synthesizes extensively employed, particularly the study 287 

location, data source and benchmark datasets used for land cover mapping.  288 

• Study Locations 289 

Figure 8 illustrates the countries where the study areas were located and where in-depth 290 

research was conducted among the extracted articles. Among the 22 countries represented 291 

in 51 studies, 35.29% of the study areas are located in China, with 11.76% in the USA, 292 

5.88% in France, and 3.92% in Spain, Italy, Brazil, South Korea, and Finland each. Other 293 

countries in the chart each account for 1.96% of the study areas. 294 
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 295 

  Figure 8. Number of publications per study location 296 

• Data Sources: 297 

Table 1 presents the identified data sources along with the number of articles and their 298 

corresponding references. The data sources identified in literatures include RS satellites, 299 

RS Unmanned Aerial Vehicles (UAVs) and Unmanned Aircraft Systems (UAS), mobile 300 

phones, Google Earth, Synthetic Aperture Radar (SAR), and LiDAR sources. Among 301 

these, Sentinel-2, Sentinel-1, and Landsat satellites are the most frequently utilized data 302 

sources. It is important to recognize that the primary remote sensing (RS) technologies 303 

include RS satellite imagery, Synthetic Aperture Radar (SAR), and Light Detection and 304 

Ranging (LiDAR). 305 

 306 

Datasources  Number of articles  References 

RS Satellites   

Sentinel -2 7 [46,65–69] 

Landsat 5 [33,70–72]  

Worldview-03 2 [73,74] 

Rapid eye 1 [75] 

Worldview-02 1 [76] 

Quickbird 1 [76] 

ZY-3 1 [49] 

PlanetScope 1 [50] 

Aerial images     

Phantom m multi-rotor AUS 1 [60] 

Quadcopter drone 1 [62] 

Vexcel Ultracam Eagle Camera 1 [77] 

DJI-Phantom 4 pro UAV 1 [48] 

SAR SAT     

RADARSAT-2 1 [78] 

Sentinel -1 6 [10,42,44,65,67,79] 

GF-2 2  [49,80] 

GF-3 1 [81] 

ALOS-2 1 [82] 
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Others     

Earth digitalglobe 2 ,[45,61] 

Mobile phone 1 [35] 

Lidar Sources 1  [37] 

Table 1. Data Sources identified in Review. 307 

RS Imagery: RS data are the most extensively utilized in land cover mapping. In RS, data 308 

are collected from satellite sources such as sentinel-1, Landsat, sentinel-2, WorldView-2 309 

and QuickBird at certain time step intervals for a period. The data capture products of 310 

these satellite include Panchromatic (1 Channel – 2D), Multispectral or Hyperspectral 311 

images [1]. RSI can be represented as aerial images [2], these are taken using Drone or 312 

UAVs. These data usually possess spatial resolution and spectral resolution of certain 313 

image sizes. 314 

Synthetic Aperture Radars Among the radar systems used in Land Cover Mapping, SAR 315 

stands out as a notable data source [83]. SAR utilizes radio detection technology and 316 

constitutes an essential tool in this field. SAR data carries distinct advantages, especially 317 

in scenarios where optical imagery faces limitations such as cloud cover or limited 318 

visibility. SAR can penetrate through cloud cover and offer earth surface imaging even in 319 

the presence of clouds or unfavorable weather conditions. This is one of the key 320 

advantages of SAR technology. Unlike electromagnetic spectrum which are obstructed by 321 

clouds [84].  322 

There are various types of SAR data harnessed for the purpose of land cover mapping, 323 

such as polarimetric synthetic aperture radar (PolSAR) images [82], E-SAR, AIRSAR, 324 

Gaofen-3, RADARSAT-2 datasets [85], GaoFen-2 data [86], GF-2 images[87] and 325 

Interferometric Synthetic Aperture Radar [6]. At present, semantic segmentation of 326 

PolSAR images holds significant utility in the interpretation of SAR imagery, particularly 327 

within agricultural contexts [88]. Similarly, the High-Resolution GaoFen-3 SAR Dataset is 328 

useful for the Semantic Segmentation of Building [34,89,90]. The benchmark dataset 329 

Gaofen-3 (GF-3), comprised of single-polarization SAR images, holds significant 330 

importance [91]. This dataset is derived from China's pioneering civilian C-band 331 

polarimetric SAR satellite, designed for high-resolution RS. Notably, FUSAR-Maps are 332 

generated from extensive semantic segmentation efforts utilizing high-resolution GF-3 333 

single-polarization SAR images [92], while GID dataset is collected from the Gaofen-2 334 

satellite. 335 

Light Detection and Ranging data (LiDAR): LiDAR holds a significant role within the 336 

sphere of land cover mapping and climate change [93]. LiDAR involves the emission of 337 

laser pulses and the measurement of their return times to precisely gauge distances, 338 

creating highly accurate and detailed elevation models of the Earth's surface. It provides 339 

detailed information, including topographic features, terrain variations, and the vertical 340 

structure of vegetation. It stands as an indispensable data source for land cover mapping 341 

endeavors. Notable examples include the utilization of multispectral LiDAR [55], an 342 

advanced RS technology merging conventional LiDAR principles with the capacity to 343 

concurrently capture multiple spectral bands. There's the Follo 2014 LiDAR data, a dataset 344 

that specifically captures Light Detection and Ranging (LiDAR) data in the Follo region 345 

during 2014. Additionally, the NIBIO AR5 (Norwegian Institute of Bioeconomy Research 346 

- Assessment Report 5) Land Resources dataset, developed by the Norwegian Institute of 347 

Bioeconomy Research, represents a comprehensive evaluation of land resources. This 348 

dataset encompasses a range of attributes including land cover, land use, and pertinent 349 

environmental factors [94]. 350 

 351 

 352 

 353 

 354 
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• Benchmark datasets 355 

The benchmark datasets used for evaluation in this domain as identified in the review are 356 

shown in figure 9. ISPR Vaihingen and Potsdam are the widely used benchmark datasets, 357 

followed by GID, Landcover.ai, DeepGlobe and WHDLD. 358 

 359 

  Figure 9. Benchmark datasets identified in literatures. 360 

The ISPRS Vaihingen comprises 33 aerial image patches in IRRGB format along with their 361 

associated digital surface model (DEM) data, each with a size of around 2500 × 2500 pixels 362 

at 9 cm spatial resolution [95,96]. Similarly, the publicly accessible ISPRS Potsdam dataset 363 

encompasses Potsdam city, Germany. It is composed of 38 aerial IRRGB images 364 

measuring 6000 × 6000 pixels each at a spatial resolution of 5 centimeters [97].  365 

The Global Imperviousness Dataset, GID dataset [98] contains 150 images of GaoFen-2 366 

data [86], GF-2 images [87]. The GaoFen-2 data and GF-2 images collectively form an 367 

integral component of the benchmark GID dataset, offering valuable insights into global 368 

imperviousness patterns and land cover characteristics. Every image is composed of 369 

pixels measuring 6908 × 7300 and compose of the R, G, and B bands, each with a spatial 370 

resolution of 4 meters. The GID dataset consist of 5 land-use categories: farmland, 371 

meadow, forest, waters, built-up [99].  372 

The LandCover.ai dataset [100] comprises images chosen from aerial photographs 373 

encompassing 216.27 square kilometers of Poland, a country in central Europe. The 374 

dataset includes 41 RS images, with 33 images having an approximate resolution of 25 cm, 375 

measuring around 9000 × 9000 pixels, and 8 images with a resolution of approximately 50 376 

cm, spanning about 4200 × 4700 pixels [12,17,101]. The dataset was manually categorised 377 

into 4 types of objects such as buildings, woodland, water as well as background. 378 

DeepGlobe Data [102] is another important dataset in land cover mapping. The dataset 379 

stands out as the inaugural publicly available collection of high-resolution satellite 380 

imagery primarily emphasizing urban and rural regions. This dataset comprises a total of 381 

1146 satellite images, each with dimensions of 20448 × 20448." [103]. It is of great important 382 

to Land Cover Classification Challenge. Likewise, the Inria dataset [104] consist of aerial 383 

visual images encompassing 10 regions in the United States and Austria, collected at a 30 384 

cm resolution, with RGB bands [105]. It is organised by 5 cities in both in training and test 385 

data. Every city includes 36 image tiles, each sized at 5000 × 5000 pixels, and these tiles are 386 

divided into two semantic categories: buildings and non-building classes.  387 
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In addition, Disaster Reduction and Emergency Management Building dataset exhibits a 388 

notable similarity to the Inria dataset. It has image tiles size of 5000 × 5000 with a spatial 389 

resolution of 30 cm, all the tiles contain R, G, and B bands [99]. The building dataset from 390 

Wuhan University comprises an aerial dataset encompassing 8189 image patches 391 

captured at a 30 cm resolution. These images are in RGB format, with each patch 392 

measuring 512 × 512 pixels [106]. The Aerial Imagery for Roof Segmentation dataset [107] 393 

is composed of aerial images that encompass the Christchurch city area in New Zealand. 394 

These images are captured at a resolution of 7.5 cm and include RGB bands [105]. It was 395 

captured following the seismic event that impacted the town of Christchurch in New 396 

Zealand. Four images, each with dimensions of 5000 × 4000 pixels, were labeled to include 397 

the following categories:  buildings, cars and vegetation [108]. Other benchmark datasets 398 

include the Massachusetts building and road datasets [109], Dense labeling RS dataset 399 

[110], VEhicle Detection in Aerial Imagery (VEDAI) dataset and LoveDA dataset [111]. 400 

3.4 RQ4. What are the architecture and performances of semantic segmentation 401 

methodologies used in Land cover mapping? 402 

This section investigates the design and effectiveness of recent advancements in novel 403 

semantic segmentation methodologies applied to land cover mapping. In this paper, the 404 

methodologies employed in land cover mapping are classified based on similarities in 405 

their structural components. We have identified three primary architectural structures: 406 

encoder-decoder structures, transformer structures, and hybrid structures. Hybrid 407 

structures involve the integration of various architectural elements, including deep 408 

learning components, encoder-decoder models, transformers, module fusion techniques, 409 

and other parameters. Among 80 articles employing different model structures, 59% 410 

utilized hybrid structures, 36% utilized encoder-decoder structures, and 5% utilized 411 

transformer-based structures. 412 

• Encoder-Decoder based structure 413 

Encoder-decoder structures consist of two main parts: an encoder that processes the input 414 

data and extracts high-level features, and a decoder that generates the output (e.g., 415 

segmentation map) based on the encoder's representations [16]. The authors [112]  416 

suggested an innovative encoding-to-decoding technique known as the Full Receptive 417 

Field network, which utilizes two varieties of attention mechanisms, with ResNet-101 418 

serving as the fundamental backbone. Similarly, a different DL segmentation framework 419 

known as the DGFNET Dual-gate fusion network. [113] adopts an encoder-decoder 420 

architecture design. Typically, encoder-decoder architectures encounter difficulties with 421 

the semantic gap. To address this, the DGFNET framework comprises two modules: the 422 

Feature Enhancement Module as well as the Dual Gate Fusion Module mitigate the impact 423 

of semantic gaps in deep convolutional neural networks, leading to improved 424 

performance in land cover classification. The model underwent evaluation using both the 425 

landcover dataset and the Potsdam dataset, achieving MIoU scores of 88.87% and 72.25%, 426 

respectively. 427 

The article [114] proposed U-Net incorporating asymmetry and fusion coordination. It is 428 

an encoder and decoder architecture with an integrated coordinated attention mechanism, 429 

a non-symmetric convolution block refinement fusion block that gets long term 430 

dependencies and intricate information from RS data. It was reported that the method 431 

was evaluated on DeepGlobe datasets and performed best MIoU of 85.54% as reported 432 

compared to other models like UNet, MAResU-Net, PSPNet, DeepLab v3+ etc. However, 433 

the model has low network efficiency and not recommended for mobile applications. 434 

Also, [115] suggested the Attention dilation-LinkNet neural network, which contains an 435 

encoder-decoder structure. It takes advantage of serial-parallel combination dilated 436 

convolution and 2 channel-wise attention mechanisms, as well as pretrained encoder to 437 

be useful for satellite image segmentation particularly road extraction. The best 438 

performance of an ensemble of the model achieved an IoU of 64.49% on DeepGlobe road 439 

extraction dataset. Table 2 tabulates some semantic segmentation models using encoder 440 
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decoder structure. It shows that these models have relatively impressive generalization 441 

performances on different data, however, accuracy can be further enhanced through 442 

parameter optimization. 443 

Models Datasets Performance metrics Limitation/future work 

RAANet [111]  LoveDA, 

ISPRS Vaihingen  

MIoU=77.28, 

MIoU=73.47 

Accuracy can be improved 

with Optimization. 

PSE-UNet Model[116]  Salinas Dataset 

 

MIoU=88.50 Inaccurate segmentation of 

land cover features with low 

frequencies, superfluous 

parameter redundancy, and 

unvalidated generalization 

capabilities. 

SEG-ESRGAN [117] Sentinel-2 and 

WorldView-2 

image pairs. 

MIoU = 62.78  The assessment of utilizing 

medium-resolution images 

has not been tested 

Class-wise FCN [26] Vaihingen, 

Potsdam 

 

MIoU=72.35, 

MIoU=76.88 

 

Enhancements in 

performance can be achieved 

through class-wise 

considerations for multiple 

classes, along with improved 

and more efficient 

implementations. 

MARE [118] 

 

Vaihingen MIoU=81.76 Improve performance 

through parameter 

optimization and extend 

approach incorporating 

other self-supervised 

algorithms. 

Feature fusion with dual 

attention and flexible 

contextual adaptation. [86] 

Vaihingen,  

GaoFen-2 

MIoU =70.51, 

MIoU =56.98 

 

Computational complexity 

issue. 

Deanet [103] LandCover.ai, 

DSTL dataset, 

DeepGlobe 

MIoU=90.28, 

MIoU=52.70, 

MIoU=71.80 

Suboptimal performance. 

Future efforts involve 

incorporating the spatial 

attention module into a 

single unified backbone 

network. 

An encoder-decoder 

framework featuring 

attention-guided multi-scale 

context integration [119] 

GF-2 images MIoU= 62.3% Reduced accuracy on 

imbalance data. 

Table 2. Encoder-Decoder based semantic segmentation models for land cover segmentation 444 

• Transformer-based structure 445 

Transformer-based architectures are neural network structures originally designed for 446 

natural language processing (NLP), utilizing transformer modules as their fundamental 447 

building components. In the context of land cover mapping tasks, transformer-based 448 

architectures such as the Swin-S-GF [120], BANet [121], DWin-HRFormer [29], spectral 449 

spatial transformer [122], Sgformer [18], and Parallel Swin Transformer have been 450 

developed. Table 9 presents various transformer-based structures alongside their 451 

performance metrics and limitations. Researchers have noted that while these 452 

architectures achieve effective segmentation accuracy with an average OA of 453 

approximately 89%, transformers can exhibit slow convergence and computationally 454 
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expensive, particularly in land cover mapping tasks. This limitation contributes to their 455 

relatively low adoption in land cover segmentation applications. 456 

 457 

Models Data Performance Limitation 

Swin-S-GF [120], GID OA = 0.89 

MIoU=80.14 

Computational complexity issue, 

and 

Slow convergence speed 

BANet [121]  Vaihingen,  

Potsdam, 

UAVid dataset 

MIoU=81.35, 

MIoU=86.25, 

MIoU=64.6 

Combine convolution and 

Transformer as a hybrid structure 

to improve performance. 

Spectral spatial 

transformer  [122] 

Indian dataset OA=0.94 Computational complexity issue 

Sgformer [18] Landcover dataset MIOU=0.85 Computational complexity issue, 

and 

Slow convergence speed 

Parallel Swin 

Transformer [123] 

Postdam, 

GID 

WHDLD 

OA=89.44, 

OA = 84.67, 

OA=84.86 

Performance can improve. 

         Table 3: Transformer-based semantic segmentation models for land cover segmentation 458 

• Hybrid based-structure  459 

A hybrid-based structure combines elements from different neural network architectures 460 

or techniques to create a unified model for semantic segmentation. Traditional 461 

convolutional neural network methods face limitations in accurately capturing boundary 462 

details and small ground objects, potentially leading to the loss of crucial information. 463 

While deep convolutional neural networks are applied for classifying land use covers 464 

results often show suboptimal performance in land cover segmentation task [75]. 465 

However, this result can be tackled by hybrid through introduction of encoder-decoder 466 

style semantic segmentation models, leverage existing deep learning backbone [70], and 467 

explore diverse data settings and parameters in their experimentation [124]. Other 468 

methods of structure’s enhancement include architectural modifications through the 469 

integration of attention mechanisms, transformer architecture, module fusion, and multi- 470 

scale feature fusion[125,126]. Example is the SCOCNN framework [127], which addresses 471 

the limitation faced by CNN through module integration: A module for semantic 472 

segmentation, a module for superpixel optimization, and a module for fusion. While the 473 

evaluated performance of the framework demonstrated improvement, further 474 

enhancement in boundary retrieval can be achieved by incorporating superior boundary 475 

adhesion and integrating it into the boundary optimization module.  476 

Moreso, [128] proposed multi-level context-guided classification method Object-based 477 

CNN. It involves high level feature-fusing and employed a Conditional Random Field for 478 

better classification performance. The model attained a comparable overall accuracy with 479 

DeepLabV3+ at various segmentation scale parameter on Vaihingen dataset and 480 

suboptimal overall accuracy to DeepLabV3+ on Potsdam dataset. Another approach 481 

identified is utilizing a Generative Adversarial Network-based approach for domain 482 

adaptation, such as Full Space Domain Adaptation Network [106]  as well as leveraging 483 

domain adaptation and transfer learning [129]. It has proven to enhance accuracy in 484 

scenarios where source and target images originate from distinct domains. Although the 485 

domain adaption segmentation using RS images remains largely underexplored [130]. 486 

The authors [97] presented a CNN based SegNet model that classifies terrain features 487 

using 3D geospatial data, the model did well on building classification than other natural 488 

objects. The model was validated on Vaihingen dataset and tested on Potsdam dataset, 489 

achieved IoU of 84.90%.  490 
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In addition, [131] proposed SBANet, stands for Semantic Boundary Awareness Network 491 

used to extract sharp boundaries, ResNet was employed as the backbone. Subsequently, 492 

it was enhanced by introducing a boundary attention module and applying adaptive 493 

weights in multitask learning to incorporating both low and high-level features, with the 494 

goals of improving land-cover boundary precision and expediting network convergence. 495 

The method was evaluated on Potsdam and Vaihingen semantic labelling datasets, they 496 

reported that SBANet performed best compared to models like UNet, FCN, SegNet, 497 

PSPNet, Deeplab3+ and others. DenseNet-Based model [132], a proposed method 498 

modified one of the DL backbones DenseNet by adding 2 novel fusions that is the unit 499 

fusion and cross-level fusion. The unit fusion is well detailed-oriented fusion and the 500 

other integrates different information levels. This model with both fusions performed best 501 

on the DeepGlobe dataset.  502 

Furthermore, [98] Suggested a bidirectional grid fusion network, a 2-way fusion 503 

architecture for classifying land in very high-resolution RS data. It encourages 504 

bidirectional information flow with mutual benefits of feature propagation, a grid fusion 505 

architecture is attached for further improvement. The best refined model was tested on 506 

ISPR and GID datasets achieved MIoU performances of 68.88% and 64.01%, respectively. 507 

Table 4 shows some identified hybrid semantic segmentation models and performance 508 

metric in land cover mapping. These models have demonstrated effective performances 509 

with an average overall accuracy of 91.3% across presented datasets. 510 

 511 

Models Datasets Performance metrics Limitation 

RSI-Net [87] Vaihingen,  

Potsdam, 

GID  

 

OA=91.83, 

OA=93.31, 

OA=93.67 

Limitation in 

segmentation of pixel-

wise semantics. 

Enhanced feature map 

fusion decoders can lead 

to performance 

improvements 

CG-Swin [133] Vaihingen,  

Potsdam 

 

 

OA = 91.68 

MIoU=83.39, 

 

OA = 91.93 

MIoU=87.61 

Extending CG-Swin to 

accommodate multi-

modal data sources for 

more comprehensive and 

robust classification. 

HMRT [134] Potsdam 

 

OA = 85.99 

MIoU=74.14 

Parameter complexity 

issue, decrease in 

segmentation accuracy 

due to a lot of noise. 

Optimization is required. 

UNetFormer  [19] UAVid v, 

Vaihingen,  

Potsdam, 

LoveDA 

 

MIoU=67.8, 

OA=91.0 

MIoU=82.7, 

OA=91.3 

MIoU=86.8, 

MIoU=52.4 

Investigate the 

Transformer's potential 

and practicality in 

addressing geospatial 

vision tasks is open for 

research. 

(TL-ResUNet) model 

[135] 

DeepGlobe IoU=0.81 Improve classification 

performance is open for 

research, and developing 

real time and automated 

solution for land use land 

cover 
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CNN-enhanced 

heterogeneous GCN 

[136] 

Beijing dataset, 

Shenzhen dataset. 

MIou= 70.48, 

 

MIoU= 62.45 

Future endeavour is to 

optimize the utilization 

of pretrained deep CNN 

features and GCN 

features across various 

segmentation scales. 

HFENet [137] MZData, 

LandCover Dataset, 

WHU Building Dataset 

MioU= 87.19, 

 

MIoU= 89.69, 

 

MioU= 92.12 

Time and Space 

complexity issues. Future 

work can be to 

automatically fine-tune 

the parameters to attain 

the optimal performance 

of the model. 

           Table 4. Hybrid-based semantic segmentation models for land cover segmentation 512 

4 Land Cover Mapping Challenges, future Insights and Directions 513 

 514 

The challenges highlighted in land cover mapping, as revealed through an extensive 515 

review of existing literature, underscore persistent gaps requiring targeted attention and 516 

innovative solutions in forthcoming research efforts. This section examines these 517 

challenges and outlines potential avenues for future investigation. Key challenges 518 

identified include: 519 

• Extracting boundary information  520 

The precise delineation of sharp and well-defined boundaries [138], the refinement of 521 

object edges [139], the extraction of boundary details [131], and the acquisition of content 522 

details [140] from RS Imagery, all aimed at achieving accurate land cover segmentation. 523 

This research gap remains area that needs further exploration.  524 

Defining clear land cover boundaries is a crucial aspect of RS and geospatial analysis. It 525 

involves precisely delineating the borders that divide distinct land cover categories on the 526 

Earth's surface. Semantic segmentation encounters performance degradation due to the 527 

loss of crucial boundary information [127]. The challenge of delineating precise 528 

boundaries in land cover maps is exacerbated by the heightened probability of prediction 529 

errors occurring at borders and within smaller segments [19,141]. This holds particularly 530 

true in scenarios like the segmentation and classification of vegetation land covers [55]. 531 

An illustrative example of this complexity is encountered when attempting to segment 532 

the boundaries among ecosystems characterized by a combination of both forest and 533 

grassland in regions with semi-arid to semi-humid climates [142].  534 

Unclear boundaries, loss of essential and detailed information at boundaries decreases the 535 

chance of producing fine segmentation results [131,143]. The task of effectively capturing 536 

entire and well-defined boundaries in intricate RS images of very high resolution remains 537 

open for further research and improvement.  538 

• Generating Precise Land Cover Maps 539 

The demand for accurate and timely high-resolution land cover maps is high and are of 540 

immediate importance to various sectors and communities [128]. The creation of precise 541 

land cover maps holds significant value for subsequent applications. These applications 542 

encompass a diverse range of tasks, including vehicle detection [108], the extraction of 543 

building footprints [144], building segmentation [134], road extraction, surface 544 

classification [115], determining optimal seamlines for orthoimage mosaicking within 545 

settlements [145] and land consumption [146]. This offers valuable assistance in the 546 

monitoring and reporting of data within rapidly changing urban regions. However, it has 547 

been reported that generating and automating of accurate land cover maps still present a 548 

formidable challenge [147,148]. 549 
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• Enhancing Deep learning model performance 550 

Improving deep learning semantic segmentation architecture is a notable research gap in 551 

land cover mapping. This gap is characterized by the ongoing need to advance the 552 

capabilities of these models to address complex challenges emanating from producing 553 

land cover maps. Various studies have critically compared the accuracy assessment and 554 

effectiveness of models, both on natural images and RS imagery, aiming to enhance their 555 

generalization performance [10]. Moreover, multiple studies such as [149] have modified 556 

semantic segmentation model to improve generalization performance for land cover 557 

mapping.  558 

• Analysis of RS images 559 

In terms of RS data, extracting information from RS imagery data remains a challenge. 560 

The following factors contributes to inaccurate RS classification, namely the complexities 561 

inherent in deciphering intricate spatial and spectral patterns within RS Imagery [13,150], 562 

the challenge of handling diverse distributions of ground objects with variations within 563 

the same class [26] and significant intra-class and limited inter-class pixel differences[151– 564 

153]. Other contributing factors include data complexity, geographical time difference 565 

[154], foggy conditions[155] and data acquisition errors [147]. Moreso, several studies 566 

have implemented works for very high RS resolution images. However, only few studies 567 

have focused on low and medium-resolution images [70,80,117,156]. As future insight, it 568 

is recommended to conduct more research using fast and efficient DL methods for low 569 

and medium resolution RS.  570 

Another area is the analysis of SAR Images. SAR images is extremely important for many 571 

applications especially in Agriculture.  Researchers find it very challenging classifying 572 

SAR data and the segmentation is poorly understood [88].  Some studies have 573 

undertaken land cover classification and segmentation tasks across diverse categories of 574 

SAR data [91], including polarimetric SAR imagery[78,88,90], single-polarization SAR 575 

images [92], and multi-temporal SAR data [83]. As consideration, we recommend a 576 

roadmap for simplified and automated semantic segmentation of SAR images should be 577 

investigated.  578 

In LiDAR data analysis, [94] pioneered novel deep learning architectures designed 579 

specifically for land cover classification and segmentation, which were extensively 580 

validated using airborne LiDAR data. Additionally, [157] developed DL models that 581 

synergistically leverage airborne LiDAR data and high-resolution RS Imagery to achieve 582 

enhanced generalization performance. Beyond RS Imagery and LiDAR, semantic 583 

segmentation is applied to high-resolution Synthetic Aperture Radar (SAR) images [85,89] 584 

and aerial images of high resolution [2,158]. 585 

• Unlabelled and Imbalance RS data 586 

A large majority of RS images lack high-quality or are largely unlabeled [159], weak and 587 

missing annotations that reduce the model’s performances. The efforts to obtain well- 588 

annotated RS data are expensive, laborious, and highly time-consuming. This affects 589 

generating accurate land use maps, thereby impacting the generation of precise land cover 590 

maps negatively. To mitigate this challenge, exploration into study areas like domain 591 

adaptation techniques [160] and the application of DL models can be considered to 592 

facilitate the creation of accurate land cover maps [161]. Another suggested approach for 593 

addressing the shortage of well-annotated data is to utilize networks capable of utilizing 594 

training labels derived from lower resolution land cover data [162]. Furthermore, it is 595 

advisable to harness the benefits of multi-modal RS data, as its potential to enhance model 596 

performance particularly in situations with limited training samples has not been fully 597 

realized [163]. To overcome the laborious and time-consuming process of manually 598 

labeling data, certain studies such as [155,164] introduced DL models that addressed this 599 

issue. The authors [140] proposed the effectiveness of semi-supervised adversarial 600 

learning methods for handling limited and unannotated high-resolution satellite images. 601 

Furthermore, the investigations by [39,156,165,166] sought remedies for challenges 602 
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stemming from the scarcity of well-annotated pixel-level data and as well as other studies 603 

proposed steps on how to tackle instances of class imbalance[65,161,167]. 604 

Class and sample imbalance of RS images, and data with limited annotation causes 605 

performance degradation, which can lead to poor performance especially in minority 606 

classes [168,169]. 607 

5. Conclusions 608 

This study conducted an analysis of emerging patterns, performance, applications, and 609 

data sources related to semantic segmentation in land cover mapping. The objective was 610 

to identify knowledge gaps within this domain and offer readers a roadmap and detailed 611 

insights into semantic segmentation for land use/land cover mapping. Employing the 612 

PRISMA methodology, a comprehensive review was undertaken to address predefined 613 

research questions.  614 

The results reveal a substantial increase in publications between 2020 and 2023, with 81% 615 

appearing in the top 13 journals. These studies originate from diverse global institutions, 616 

with over 59% attributed to Chinese institutions, followed by the USA and India. Research 617 

focuses primarily on land cover, urban areas, precision agriculture, environment, coastal 618 

areas, and forests, particularly in tasks such as land use change detection, land cover 619 

classification, and segmentation of forests, buildings, roads, agriculture, and urban areas. 620 

Remote sensing (RS) satellites, RS unmanned aerial vehicles (UAVs) and unmanned 621 

aircraft systems (UAS), mobile phones, Google Earth, Synthetic Aperture Radar (SAR), 622 

and LiDAR sources are the major data sources, with Sentinel-2, Sentinel-1, and Landsat 623 

satellites being the most utilized. Many studies use publicly available benchmark datasets 624 

for semantic segmentation model evaluation. ISPRS Vaihingen and Potsdam being widely 625 

employed, followed by GID, Landcover.ai, DeepGlobe, and WHDLD datasets.  626 

In terms of semantic segmentation models, three primary architectural structures are 627 

identified and grouped as encoder-decoder structures, transformer structures, and hybrid 628 

structures. While all models demonstrate effective performance, hybrid and encoder- 629 

decoder structures are most popular due to their impressive generalization capabilities 630 

and speed. Transformer-based structures show good generalization but slower 631 

convergence. Current research directions and expanding frontiers in land cover mapping 632 

emphasize the introduction and implementation of innovative semantic segmentation 633 

techniques for satellite imagery in remote sensing. Furthermore, key research gaps 634 

identified include the need to enhance model accuracy on RS data, improve existing 635 

model architectures, extract precise boundaries in land cover maps, address scarcity of 636 

well-labeled datasets, and tackle challenges associated with low and medium-resolution 637 

RS data. This study provides useful domain specific information. However, there are 638 

some threats to review validity, which include database choice, searched keywords, and 639 

classification bias. 640 
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