Supplementary table: Frequency of occurrence of phyla, genera, and species of microorganisms before and after treatment and their role in metabolism.
	
	Before

	After

	Role in metabolism
	Ref.

	
	N(%)
	N(%)
	
	

	Phylum Firmicutes

	Blautia hydrogenotrophica

	10 (22)
	36(80)
	Involved in regulating the coexistence of anaerobic respiratory pathways.
	1

	Blautia obeum

	3(6)
	34(75)
	It can inhibit the growth of C. perfringens and vancomycin-resistant enterococci, demonstrating its potential as a probiotic with beneficial probiotic effects.
	1

	Butyrivibrio fibrisolvens

	4(8)
	28(62)
	Lack of information in the literature.
	-

	Catenibacterium faecis

	4(8)
	19(42)
	Individuals at a heightened risk of cardiovascular disease exhibit decreased levels of Catenibacterium species in their microbiota.
	2

	Clostridium celerecrescens 

	2(4)
	11(24)
	Lack of information in the literature.
	-

	Clostridium coccoides

	2(4)
	12(26)
	There is a positive association between the prevalence of Clostridium coccoides and a substantial consumption of monounsaturated fatty acids and polyunsaturated fatty acids.
	3

	Enterocloster clostridioformis

	1(2)
	14(31)
	Lack of information in the literature.
	-

	Clostridium fusiformis

	1(2)
	15(33)
	Lack of information in the literature.
	-

	Clostridium indolis

	0
	16(35)
	Lack of information in the literature.
	-

	Clostridium perfringens

	2(4)
	5(11)
	Clostridium perfringens constitutes a significant factor behind histotoxic and intestinal infections in both humans and other animals.
	4

	Clostridium phoceensis

	2(4)
	11(24)
	This Family in the gut microbiome is reduced in athletes' metabolism and increased in sedentary people.
	5

	Coprococcus catus

	2(4)
	23(51)
	Contributes to the production of essential short-chain fatty acids, including butyrate and propionate, which collectively support the well-being of the digestive system and metabolic functions.
	6

	Dorea longicatena

	20(44)
	0
	Biomarkers of inflammation show a positive connection with Dorea longicatena, indicating its potential role in influencing inflammatory processes.
	7

	Enterococcus faecalis

	4(8)
	4(8)
	This Family might cause infections and is resistant to oxidative stress.
	8

	Eubacterium contortum

	1(2)
	10(22)
	Eubacterium contortum can produce p-cresol, an organic compound associated with health implications.
	9

	Eubacterium coprostanoligenes

	9(20)
	0
	Found in obese people's microbiome, might decrease cholesterol levels.
	10

	Eubacterium eligens

	2(4)
	17(37)
	Promising potential of probiotic as a prospective therapeutic focus for addressing atherosclerosis.
	11

	Dorea formicigenerans

	1(2)
	24(53)
	It has been found to exhibit an inverse correlation with insulin resistance.
	7

	Eubacterium halii

	1(2)
	23(51)
	It is being assessed in preclinical and clinical trials as potential next-gen probiotic for advancing innovative dietary supplement formulations.
	12

	Eubacterium ramulus

	3(6)
	25(55)
	Exhibits proficiency in breaking down diverse dietary flavonoids (which provides health benefits).
	13

	Eubacterium ventriosum

	2(4)
	22(48)
	Demonstrates higher prevalence among individuals with elevated body mass index and serves as a producer of butyrate (molecule that contributes to a healthy gut).
	14

	Faecalibacterium  prausnitzii

	13(28)
	44(97)
	This anti-inflammatory family holds the position of being the most prevalent bacterium in the intestinal microbiota of healthy adults.
	15

	Limosilactobacillus reuteri

	0
	36(80)
	
Describes multiple metabolic pathways that boost the creation of anti-inflammatory cytokines and regulate the gut microbiota through the generation of molecules with antimicrobial properties.
	16

	Limosilactobacillus fermentum

	31(68)
	30(66)
	Positively influences the host's antioxidant and anti-inflammatory systems, leading to improved glucose regulation in diabetes.
	17

	Lactobacillus acidophilus

	27(60)
	32(71)
	It can degrade oxalate (a substance that can cause problems) effectively, even when there are other types of carbon sources available that it prefers.

	18

	Lactobacillus crispatus

	5(11)
	32(71)
	It shows promise as a probiotic option for managing dysbiosis, especially in women, with potential applications for both prevention and treatment.
	19

	Lactobacillus gasseri

	1(2)
	32(71)
	It can degrade oxalate (substance that can cause problems) effectively, even when there are other types of carbon sources available that it prefers.
	18

	Lactobacillus ingluviei

	35(77)
	25(55)

	It is related to weight increase.
	20

	Lactobacillus johnsonii

	0
	30(66)
	It has been extensively researched for its probiotic actions, which involve inhibiting pathogens, attaching to epithelial cells, and modulating the immune system.
	21

	Lactobacillus rogosae

	1(2)
	35(77)
	It has anti-inflammatory properties and improves insulin sensitivity.
	22

	Lactobacillus ruminis

	5(11)
	29(64)
	Probiotic resides as a commensal species in the digestive tract and offers potential for application in the functional food field.
	23

	Lactobacillus sakei

	4(8)
	32(71)
	Exhibits probiotic potential based on in vitro assessment and has the ability to potentially lower inflammation by regulating intestinal metabolism.
	24

	Lachnospira pectinoschiza

	28(62)
	17(37)
	It's recognized as a type of Lachnospiraceae bacteria in the human gut that can make use of pectin, a dietary fiber.
	6

	Lachnospira multipara

	1(2)
	28(62)
	It is a 2 butyrate producer, a short-chain fatty acid which improves the gut health.
	25

	Lachnospira straminea

	1(2)
	24(53)
	Lack of information in the literature.
	-

	Bacillus nealsonii

	1(2)
	27(60)
	Lack of information in the literature.
	-

	Odoribacter splanchnicus

	0
	29(64)
	Produces short-chain fatty acids. Reduced levels of Odoribacter have been linked to microbiota-related diseases, including non-alcoholic fatty liver disease, cystic fibrosis, and inflammatory bowel disease (IBD).
	26

	Oribacterium sinus

	39(86)
	15(33)
	Lack of information in the literature.
	-

	Oscillibacter valericigenes

	2(4)
	32(71)
	Is a valerate producer, a type of short-chain fatty acid, generally considered beneficial for gut health.
	27

	Phascolarctobacterium faecium

	2(4)
	31(68)
	It has the capability to generate beneficial short-chain fatty acids like acetate and propionate, which can promote the well-being of the gut.
	28

	Pediococcus pentosaceus

	1(2)
	31(68)
	Certain varieties have been documented to alleviate inflammation, encephalopathy, obesity, and fatty liver in animal studies.
	29

	Roseburia hominis

	3(6)
	38(84)
	Enhances the host's intestinal microbial balance and positively impacts the absorption of nutrients.
	30

	Roseburia intestinalis

	7(15)
	38(84)
	Demonstrates higher prevalence among individuals with elevated body mass index and serves as a producer of butyrate (molecule that contributes to a healthy gut).
	14

	Roseburia inulinivorans

	3(6)
	32(71)
	Contributes to the synthesis of butyrate.
	31

	Roseburia faecis

	3(6)
	32(71)
	Generates short-chain fatty acids, with a particular emphasis on butyrate.
	32

	Roseburia cecicola

	1(2)
	34(75)
	Also generates short-chain fatty acids, with a particular emphasis on butyrate.
	32

	Ruminococcus gnavus

	34(75)
	7(15)
	Among adults, R. gnavus exhibited the most pronounced responsiveness to disturbances in circadian rhythms.
	33

	Ruminococcus bromii

	3(6)
	33(73)
	A crucial species responsible for breaking down resistant starch (a substantial energy source) in the human colon.
	34

	Ruminococcus torques

	4(8)
	22(48)
	Generates an essential enzyme that plays a vital role in the effective production of ursodeoxycholic acid (UDCA), a potent medication used to treat primary biliary cirrhosis and human cholesterol gallstones.
	35

	Phylum Bacteroidetes

	Alistipes finegoldii

	17(37)
	35(77)
	Examination showed a direct link between the prevalence of this group and the acetylation of glycoproteins in overweight women. These glycoproteins have significant roles in biological functions.
	36

	Alistipes indistinctus

	3(6)
	23(51)
	It exhibits a direct relationship with mast cells and substances that stimulate the immune system.
	37

	Alistipes inops

	7(15)
	24(53)
	Lack of information in the literature.
	-

	Alistipes putredinis

	1(2)
	32(71)
	It is a probiotic microorganism that provides advantages to the host organism.
	38

	Alistipes senegalensis

	39(6)
	12(26)
	Is a common family related to people without obesity.
	39

	Alistipes obesi

	31(68)
	37(82) 
	In lean individuals, it was notably more abundant, and its numbers increased as they pursued their dieting regimen.
	40

	Alistipes shahii

	6(13)
	17(37)
	Is also a common family related to people without obesity.
	39

	Bacteroides caccae

	4(8)
	16(35)
	Lack of information in the literature.
	-

	Bacteroides dorei

	39(86)
	29(64)
	Might decrease the production of lipopolysaccharides by gut microbes and prevent the development of atherosclerosis.
	41

	Bacteroides eggerthii

	3(6)
	10(22)
	Lack of information in the literature.
	-

	Bacteroides fragilis

	4(8)
	10(22)
	It serves a significant nutritional function compared to other microorganisms and encourages immune cells to exhibit anti-inflammatory responses.
	42

	Bacteroides massiliensis

	2(4)
	11(24)
	It has been correlated with distinct probabilities of prostate cancer onset or the degree of prostate cancer progression.
	43

	Bacteroides ovatus

	3(6)
	12(26)
	The existence of this bacterium appears to elevate immune cell levels, potentially associating it with an increased risk of Type 2 diabetes in obese individuals.
	44

	Bacteroides stercoris

	1(2)
	9(20)
	Is noticeably more abundant in stool samples from individuals with Diabetic Neuropathy.
	45

	Bacteroides thetaiotaomicron

	3(6)
	13(28)
	It influences the expression of numerous genes involved in various aspects of the host's physiology, aiding the organism in crucial functions.
	46

	Bacteroides uniformis

	6(13)
	14(31)
	Lack of information in the literature.
	-

	Bacteroides vulgatus

	5(11)
	14(31)
	Has the ability to produce GABA.
	47

	Bacteroides xylanisolvens

	0
	17(37)
	Has the ability to degrade Xylan, a  polysaccharide that can serve as a prebiotic.
	48

	Parabacteroides distasonis

	4(8)
	7(15)
	Aerotolerant anaerobic microbe, exhibiting increasing resistance to antimicrobials, and playing dual roles in human health as both a pathogen and a probiotic.
	49

	Parabacteroides merdae

	1(2)
	9(20)
	This group is increased in individuals with hypertension.
	50

	Prevotella bivia

	5(11)
	15(33)
	Lack of information in the literature.
	-

	Prevotella buccalis

	3(6)
	21(46)
	The changes in the level of IL-1β and TNF-α  (immune-related molecules) is associated with this family.
	51

	Prevotella copri

	15(33)
	32(71)
	It plays a crucial role in the digestive system of many people, making it one of the key components.
	52

	Prevotella oris

	2(4)
	15(33)
	A strong positive link exists between the occurrence of P. oris in the oral microbiota and both a person's age and their level of insulin resistance.
	53

	Prevotella stercorea

	4(8)
	13(28)
	These bacteria may collaborate with P. copri to aid in the digestion of dietary fiber present in our food.
	54

	Barnesiella intestinihominis

	2(4)
	19(42)
	Is responsible in the gut for amino acid, carbohydrate and fatty acid degradation.
	55

	Phylum Actinobacteria

	Atopobiom vaginae

	14(31)
	8(17)
	It has been demonstrated to have a significant impact on the development and progression of bacterial vaginosis.
	56

	Bifidobacterium adolescentis

	18(40)
	27(60)
	It is a crucial component of the human gut microbial community, influencing the production of GABA and regulating the communication between the gut and the brain through the gut-brain axis.
	57

	Bifidobacterium bifidum

	21(46)
	32(71)
	It is more common in infants and is associated with lower occurrence of diarrhea caused by the use of antibiotics.
	58

	Bifidobacterium catenulatum 

	7(15)
	22(48)
	It is a commensal gut bacteria in healthy adults.
	59

	Bifidobacterium pseudocatenulatum

	12(26)
	22(48)
	Has also the ability to degrade Xylan, a  polysaccharide that can serve as a prebiotic.
	60

	Bifidobacterium angulatum 

	10(22)
	21(46)
	This bacterial group's β-galactosidase enzymes break down lactose and foster the growth of beneficial gut bacteria, boosting overall gut health.
	61

	Bifidobacterium animalis

	5(11)
	14(31)
	Using it as a probiotic supplement is highly promising for supporting obesity treatment.
	62

	Bifidobacterium dentium 

	6(13)
	18(40)
	It has the capacity to process diverse nutrient sources, including many of plant origin, indicating that B. dentium can utilize dietary compounds.
	63

	Bifidobacterium breve

	3(6)
	17(37)
	Is connected to the maintenance of a stable gut microbiome in individuals who are in a healthy condition.
	64

	Collinsella aerofaciens

	0
	10(22)
	This bacterium's presence is linked to higher secondary bile acid levels, indicating a possible involvement in their production or metabolism in the gut
	65

	Phylum Proteobacteria

	Staphylococcus aureus

	21(46)
	5(11)
	Is a primary reason for biofilm infections on medical equipment, such as prosthetic joints, which impose a substantial healthcare challenge.
	66

	Klebsiella pneumoniae

	13(28)
	4(8)
	It has the potential to act as a pathogen and a driving factor in the onset of hypertension.
	67

	Acinetobacter baumannii

	14(31)
	7(15)
	Contributes significantly to the mortality of patients in the intensive care unit (ICU) by causing a variety of infections in this vulnerable ICU population.
	68

	Escherichia coli

	45(100)
	44(97)
	They are frequently found in the human microbiota, and these isolates can play probiotic, commensal, or pathogenic roles within the host.
	69

	Proteus mirabilis

	9(20)
	3(6)
	It's recognized for its ability to produce urease and the potential infections it can lead to.
	70

	Desulfovibrio piger

	9(20)
	1(2)
	The most frequently encountered sulfate-reducing bacteria in the gut within a surveyed group of healthy adults from the United States.
	71

	Bilophila wadsworthia

	5(11)
	1(2)
	Is able to convert taurine, a common gut substance, into the harmful compound hydrogen sulfide (H2S) by its metabolism. This conversion is linked to inflammatory bowel disease and colorectal cancer.
	72

	Parasutterella excrementihominis

	8(17)
	1(2)
	The study found that higher levels of Parasutterella bacteria in the gut were associated with the activation of a pathway involved in making fatty acids, potentially leading to weight gain. This connection was reinforced when Parasutterella excrementihominis levels decreased in participants who followed a low-carb diet as part of a weight loss program.
	73

	Citrobacter freundii

	7(15)
	2(4)
	C. freundii, as an opportunistic pathogen, can lead to a wide range of infections, including those affecting the urinary tract, respiratory tract, wounds, and bloodstream.
	74

	Phylum Verrucomicrobia

	Akkermansia muciniphila

	11(24)
	45(100)
	It is being assessed in preclinical and clinical trials as a potential next-gen probiotic for advancing innovative dietary supplement formulations.
	12

	Phylum Euryarchaeota


	Methanobrevibacter smithii

	27(60)
	23(51)
	Is considered a biomarker that can indicate a healthy colon.
	75

	Phylum Tenericutes

	Mycoplasma hominis 

	10(22)
	37(82)
	One of the mycoplasma species that is widely acknowledged for its role in causing the most clinically relevant infections.
	76

	Phylum Fusobacteria

	Fusobacterium nucleatum

	0
	28(62)
	It has been traditionally associated with opportunistic infections. Nevertheless, it is a frequent component of the oral microbiome and can establish a mutually beneficial relationship with its host.
	77

	Fusobacterium varium

	10(22)
	1(2)
	F. varium has been associated with both advantageous and detrimental interactions between bacteria and their host.
	78
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