
Feature Description
Medical History Information on demographics, height, weight, family history. Further de-

tails provided on Varghese et al., 2019 (PMID 30761078, supplementary
material). Medication and Diagnosis are not used as features as they are
too closely linked to the target classes.

Questionnaire The number of items that were answered with ’yes’ in the Parkinson’s
Disease Non-Motor Scale by the Movement Disoder Society.

Amplitude Distribution 1 Create an Amplitude-Histogram and pick the 30th to 70th percentile in 5
percent steps.

Side Dominance 2 Use the 90th percentile of the left and right arm and calculate the ratio.
Ratio is a real number between (0, 1]

Standard Deviation of Ac-
celeration

Calculate the Standard Deviation of the raw acceleration data. Each axis
has a separate value.

Fast Fourier Transforma-
tion 3

Calculate the 3-dimensional FFT for the assessment step and use a poly-
nomial regression to reduce the output dimensinoality. Polynomials of
degree 3 are used.

Table A1: Used Features with their description.

Algorithm 1 Amplitude Distribution. The Algorithm shows the procedure for a single timeseries record-
ing in 3 axes. The actual routine repeats this procedure for each assessment step, for each arm.

norm data ← euclidean norm([x,y,z] Acceleration)
norm data ← sort(norm data)
features ← empty List
for i in 0..8 :

features.append(norm data[0.3 + i · 0.05])

Algorithm 2 Side Dominance. The Algorithm shows the procedure for a single timeseries recording in 3
axes. The ratio is calculated with the min/max functions in order to normalize the results to range (0, 1]

norm data left ← euclidean norm([x,y,z] Acceleration-Left)
norm data left ← sort(norm data left)
norm data right ← euclidean norm([x,y,z] Acceleration-Right)
norm data right ← sort(norm data right)

dominance ← min(norm data left[0.9], norm data right[0.9])
max(norm data left[0.9], norm data right[0.9])

1

https://www.frontiersin.org/articles/10.3389/fneur.2019.00048/full


Algorithm 3 Fast Fourier Transformation. The Algorithm shows the procedure for a single timeseries
recording in 3 axes. As the FFT produces for our data hundreds of values for each sample we need to
reduce the dimensionality. Polynomial regression worked best in this case.

fft data ← fft([x,y,z] Acceleration)
regression ← poly regression(fft data, degree=3)
features ← coefficients(regression)

Estimator Accuracy Balanced
Accuracy

Precision Recall F1

MLP 0.864 (0.03) 0.815 (0.05) 0.907 (0.03) 0.913 (0.03) 0.909 (0.02)
SVM - rbf 0.870 (0.02) 0.827 (0.01) 0.913 (0.01) 0.913 (0.03) 0.913 (0.01)
CatBoost 0.887 (0.02) 0.819 (0.04) 0.901 (0.03) 0.956 (0.03) 0.927 (0.01)
Deep Learning 5 0.768 (0.06) 0.591 (0.07) 0.782 (0.03) 0.954 (0.06) 0.859 (0.04)

Table A2: Average Performances with standard deviations after 5-Fold Crossvalidation for classification of 
Parkin-son’s Disease against healthy subjects. Standard Deviation (SD). Radial Basis Function (rbf).

Estimator Accuracy Balanced
Accuracy

Precision Recall F1

MLP 0.823 (0.01) 0.741 (0.03) 0.865 (0.01) 0.905 (0.00) 0.885 (0.00)
SVM - rbf 0.800 (0.02) 0.682 (0.04) 0.831 (0.02) 0.921 (0.01) 0.873 (0.01)
CatBoost 0.817 (0.02) 0.678 (0.03) 0.826 (0.01) 0.956 (0.03) 0.887 (0.01)
Deep Learning 5 0.735 (0.01) 0.512 (0.01) 0.751 (0.01) 0.965 (0.04) 0.844 (0.01)

Table A3: Average Performances with standard deviations after 5-Fold Crossvalidation for classification of 
Parkin-son’s Disease against related movement disorders. Standard Deviation (SD). Radial Basis Function 
(rbf).

Estimator Accuracy Balanced
Accuracy

Precision Recall F1

MLP 0.856 (0.04) 0.772 (0.05) 0.907 (0.02) 0.914 (0.03) 0.910 (0.02)
SVM - rbf 0.838 (0.02) 0.750 (0.03) 0.901 (0.02) 0.897 (0.06) 0.897 (0.02)
CatBoost 0.882 (0.03) 0.757 (0.06) 0.895 (0.02) 0.968 (0.03) 0.929 (0.01)
Deep Learning 5 0.791 (0.03) 0.551 (0.06) 0.814 (0.01) 0.956 (0.03) 0.879 (0.02)

Table A4: Average Performances with standard deviations after 5-Fold Crossvalidation for classification of all 
movement disorders against healthy subjects. Standard Deviation (SD). Radial Basis Function (rbf).

2



Figure A1: Deep Architecture utilizing LSTM Cells to learn from raw acceleration and rotation input. 
Lambda-Layers are used to split the several assessment steps of each subject into separate LSTM Branches. 
The LSTM cells produce 64 outputs each. Both Dense layers produce 11 outputs. The output Dense layer 
produces a single output between [0, 1]. For an increased readability the shapes of this model are not shown. 
The input-shape is (11, 1024, 3). Each branch reshapes the data to (64, 16) to process 16 values at once. The 
output is reshaped to (-1, 1) to process the data with a convolution layer.

Figure A2: Deep learning architecture with simple dense layers. The shape (11, 1024) results from the 11 
assessment steps that were performed by each subject with 1024 datapoints each. This architecture was used 
with the norm (no channels) and with the x-, y-, z-axis as channels recorded by the sensors, changing the shape 
to (11, 1024, 3). A shape of (None, ..) describes the unknown number of samples that will be fed to the model.

3



Figure A3: Deep learning architecture with a mixture of convolutions and dense layers. This architecture was 
used with the norm (no channels) and with the x-, y-, z-axis as channels recorded by the sensors, changing the 
shape to (11, 1024, 3). A shape of (None, ..) describes the unknown number of samples that will be fed to the 
model.

4



Figure A4: Deep learning architecture with a complex Residual Network. This architecture was used with one to five 
residual blocks. Shapes of the layers are not shown due to readability. This architecture uses the same shapes as the 
simpler CNN in Figure 3.

5



Figure A5: Best performing Deep learning architecture with a simple Dense layers. This architecture includes 
a separate input branch for questionnaire features.

6



Architecture Accuracy (SD)
Simple Dense NN 0.736 (0.013)

Fully Connected Network 0.474 (0.063)
reduced FCN 0.554 (0.038)

Residual Network 0.786 (0.016)

Table A5: Classification of 10 assessment steps using deep learning architectures. Performances are the average of a 
5-Fold Crossvalidation with their Standard Deviation in brackets.

Architecture Accuracy Precision Recall F1-Weighted F1
Simple Dense NN 0.946 (0.011) 0.961 (0.020) 0.930 (0.017) 0.946 (0.011) 0.945 (0.010)

reduced FCN 0.896 (0.061) 0.879 (0.083) 0.944 (0.029) 0.892 (0.069) 0.906 (0.044)
ResNet 0.935 (0.016) 0.946 (0.027) 0.925 (0.035) 0.935 (0.016) 0.934 (0.016)

Table A6: Classification of the assessment steps DrinkGlas and PointFinger using deep learning architectures. 
Performances are the average over a 5-Fold Crossvalidation with their standard deviation. FCN = Fully Connected 
Network.

Architecture Accuracy (SD)
Simple Dense NN 0.822 (0.012)

Fully Connected Network 0.748 (0.130)
reduced FCN 0.783 (0.012)

Residual Network 0.837 (0.022)

Table A7: Classification of 5 assessment steps using deep learning architectures. Performances are the average over 
a 5-Fold Crossvalidation with their standard deviation.

7




