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Minimal regulatory network
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FIG. 1: Interaction network for p53A-p53M-MDM2-ARF-Stress. Modified network from [1] where p53A inhibits activation of c-Myc [2]
[3]. c-Myc pro-oncogene induces the expression of p53M from p53A due to de-ragulation in c-Myc [4]. Dashed arrow shows movement
from nucleus to cytoplasm or vice versa, while solid arrow, and bars corresponds to activation, and inhibition on respective node.
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Mathematical framework of the model system
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Here, x3 is c-Myc oncogene, and ω
x3

is the parameter which represents activated p53 dependent decay rate in c-Myc. ω
x3

=

9.963 × 10−8, and rest of all the parameter are the same as in table 1 in main text. See the main text for the detail of the
equations. Red term in coupled differential equation shows the inhibition in c-Myc by p53A.
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Results

Oncogenic regulation of normal and cancer dynamics
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FIG. 2: The left column show three different form of stress discussed about. A1, A2, and A3 display the steady state behaviour against
magnitude of stress for different K3 values 1000.0, 750.0, and 400.0 respectively driven with constant stress. B1, B2, and B3 display the
steady state behaviour against magnitude of stress for different K3 values 2000.0, 1400.0, and 800.0 respectively driven with oscillatory
stress. C1, C2, and C3 display the steady state behaviour against amplitude for different K3 values 700.0, 650.0, and 600.0 respectively
driven with decaying stress. Yellow region, cyan region, and grey region correspond to active, apoptotic, premalignant, and cancer
state respectively. In panel C1, and C2 (wheat region) black line (upper line), and blue line (lower line) show maximum of p53M , and
maximum of p53A in Tps (see the text) time region, which corresponds to the initial cancer condition. In constant stress case we did
not observe pre-malignant regime.
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Phase transition, key to therapeutic intervention and cancer recovery phase
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FIG. 3: A, B, and C show the two parameter (Magnitude of stress (I), K3) steady state behavior of the system driven by different
stress a, b, and c respectively. D shows two parameter cancer recovery behaviour of the system (magnitude of stress, and K3) driven
with decaying stress. On the heap map (panel A, B, and C) green, yellow, and red region indicate active, apoptotic, and cancer phase
respectively.
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