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Abstract: The solution of structural problems with nonlinear material behaviour in a model order
reduction framework is investigated in this paper. In such a framework, greedy algorithms or
adaptive strategies are interesting as they adjust the reduced order basis (ROB) to the problem of
interest. However, these greedy strategies may lead to an excessive increase in the size of the reduced
basis, i.e. the solution is no more represented in its optimal low-dimensional expansion. Here, an
optimised strategy is proposed to maintain, at each step of the greedy algorithm, the lowest dimension
of the PGD basis using a randomised SVD algorithm. Comparing to conventional approaches such as
Gram-Schmidt orthonormalisation or deterministic SVD, it is shown to be very efficient both in terms
of numerical cost and optimality of the reduced basis. Examples with different mesh densities are
investigated to demonstrate the numerical efficiency of the presented method.

Keywords: model order reduction (MOR); low-rank approximation; proper generalised
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1. Introduction

Numerical simulations appeal as an attractive augmentation to experiments to design and analyse
mechanical structures. Despite the recent improvements in computational resources that makes it
feasible to solve systems with a substantial number of degrees of freedom efficiently, it is of common
interest to reduce the numerical cost of numerical models throughout model order reduction (MOR)
strategies [1]. The performance of MOR techniques has been shown in different fields such as their
application to nonlinear problems [2,3], real-time computations [4] or for performing cyclic, parametric
or probabilistic computations in which the information provided by some queries can be efficiently
reused to respond to other queries that exhibit some similarities [5,6].

A posteriori model reduction techniques such as the Proper Orthogonal Decomposition (POD)
is based on an offline training computations which extract a reduced order basis (ROB) from the
solution of a high fidelity model. This optimal basis is practically built through a singular value
decomposition (SVD) of a snapshot matrix. The singular vectors corresponding to the highest singular
values are used to build the ROB [7]. Then, the problem of interest is confined to this ROB resulting in
a drastic reduction in the numerical cost [1,8]. However, since the ROB has been defined as an optimal
basis for the training stage, some advanced adaptive approaches are required to enrich the basis to
tackle nonlinearities [9]. On another hand, a priori MOR techniques such as the Proper Generalized
Decomposition (PGD) are based on the assumption that the quantities of interest can be written as a
finite sum of products of separated functions, of generalised coordinates, which are sought in online
computations [8,10]. No prior knowledge of the system is required in such a case and the ROB is
directly adapted to the problem of interest by using a greedy algorithm, which enriches the basis when
required [3,11]. However, an issue may be caused by the rapid growth of the ROB basis, whereas
the primary interest of MOR is to benefit from a small sized ROB which provides a nondemanding
temporal updating step. This step is equivalent to a POD step where the spatial modes are fixed and
only the temporal ones are updated. It has been observed that the basis can increase to count some
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hundreds of modes for parametric studies of nonlinear cyclic loading [12], or some thousands for
parametric computations [13]. In [5], some advanced strategies have been proposed to use optimal
parametric path allowing to control the basis expansion optimally.

Another approach to control the increase of the basis is by compressing the ROB. In the context
of reusing a ROB from a previous computation, a learning strategy has been proposed in [14] to
extract an optimal basis from the ROM through a Karhunen-Loève expansion. In a PGD framework,
recompression based on SVD has been evaluated in [15]. However, the SVD step turns out to be
numerically expensive prohibiting its implementation at each iteration. Therefore, it is common to let
the basis increase and compress the results only at convergence to decrease their storage requirements.
Therefore, it appears of interest to test advanced computer science tools to compress the ROB on-the-fly
without creating a bottleneck in the ROM. A detailed review of the most established algorithms to
compute an SVD is provided in [16,17]. These algorithms are not limited to conventional deterministic
methods such as truncated, incremental or iterative SVD but also randomised algorithms [18]. Different
algorithms have been tested for POD application in the case of dynamical problems in [17]. It has been
noticed that randomised SVD algorithms can reduce drastically the numerical cost of the decomposition
required after the training stage. Even if this step occurs only once in the offline stage of POD based
ROM, for nonlinear problems, the number of degrees of freedom and time steps can be vast for the
high fidelity model so that the decomposition process can be a bottleneck.

Our goal here is to maintain the flexibility of the greedy algorithm through the usage of PGD
while controlling the size of the reduced basis with a minimal numerical cost, by proposing to use a
randomised SVD algorithm that provides a nondemanding compressive step after each enrichment
of the basis. The numerical approach will be herein exemplified for the specific case of a fatigue
computation based on continuum damage mechanics in a large time increment (LATIN) framework.
However, the proposed numerical strategy can be generally used to optimise efficiently of the PGD
basis for any application.

This paper is structured as follows. An overview of the LATIN-PGD scheme is provided in
Section 2, followed by a discussion on the optimality of the PGD modes and the different algorithms
to ensure that in Section 3. Lastly, in Section 4, different numerical examples are presented to illustrate
the robustness and efficiency of the proposed algorithm.

1.1. Notation

The notation used in this paper is summarised in Table 1.

Table 1. Symbols and their representation.

Symbolic representation Verbal representation

a, ϕ scalars: lowercase letters
u, x first-order tensors: lowercase boldface letters
I, N second-order tensors: uppercase boldface letters
σ, ε second-order tensors: Greek boldface letters
C,H fourth-order tensor: blackboard bold letters
a column vector
A matrix

2. An overview of the LATIN-PGD method

LATIN is a linearisation scheme that makes it easier to introduce PGD in nonlinear mechanical
computations. A review of the LATIN-PGD method and some of its recent extensions to nonlinear
solid mechanics problems can be found in [8,11].

The LATIN method is a fully discrete non-incremental solution scheme that inherits its efficiency
for mechanical problems from incorporating a priori model order reduction technique, namely PGD.
It is shown in [19], that functions defined over space-time domain, with some regularities, may be
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approximated by PGD. However, it is vital that the number of modes (approximating functions) is
small and the approximation error is low. A summary of the implemented framework is provided
below.

For a generic structural problem defined over space-time domain Ξ = Ω× I = Ω× [0, T] in an
infinitesimal strain and quasi-static framework, the strong form to be solved is represented in Figure 1
[20,21]. The equilibrium equation is linear in terms of the stress and the nonlinearity, in this case, is
introduced through the constitutive model, i.e. in the stress-strain (σ, ε) relationship.
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Figure 1. Graphical representation of the strong form of a structural problem (Tonti Diagram).

In a standard incremental Newton-Raphson scheme, the constitutive relations along with the
kinematic relations are substituted into the balance equation resulting in a nonlinear problem in terms
of the primal variable. However, a different linearisation strategy (LATIN) would be to solve the
equilibrium equations along with kinematic relations in one step and to solve the constitutive relations
in the following step, then to seek a solution that satisfies both of these systems simultaneously. In such
a framework, two sets of equations are distinguished, the local equations described by constitutive
relations (evolution and state laws) and the global equilibrium equation along with the kinematic
compatibility. Data flow between these two systems is required, i.e. to get statically admissible stress
and kinematically permissible strain or displacement, a relation between the stress and the strain
should be assumed. In the same manner, a decision should be taken on what data to pass back from the
global system to the local one; these relations are referred to as search direction equations because they
are nothing more than a line equation in a 12-dimensional space hosting the stress and strain fields.
The main advantage of the LATIN linearisation scheme is confining the computational cost to the
solution of a global linear equation which allows for introducing a model order reduction technique
such as the PGD to reduce this numerical cost [8].

PGD is often used in many query context and quick response simulations where the solution is
approximated by a finite sum of separated functions on each of the problem generalised coordinates,
e.g. the displacement field may be approximated by a finite sum of globally spatial and temporal
functions as

u(x, t) ≈
N

∑
j=1

vj(x) ◦ λj(t), (1)

where N ∈ N and ◦ is the entry-wise Hadamard or Schur multiplication of vectors [8,22]. It is
shown in [8] that a small number of pairs/modes is sufficient to approximate the solution of many
problems with substantial savings in terms of CPU time and memory. In contrary to POD based
techniques (that include a preliminary learning phase), PGD defines the basis of the problem on-the-fly
using a greedy algorithm such that additional pairs are added if necessary, i.e. the approximation error
is controlled by the successive enrichment of the generated basis [23].

The LATIN solution algorithm starts with an elastic initialisation followed by a sequence of two
stages, namely the local and the global ones. These two steps form one LATIN iteration, and they
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are repeated until convergence is reached. Note that at every local and global step, the quantities
of interest over all the space-time points are approximated. The space that belongs to the solution
manifold of the constitutive relations is denoted by Γ while A represents the admissible space that
satisfies the equilibrium equation (static admissibility) along with the kinematic relations (kinematic
admissibility). Hence, the exact solution is defined as a set s = {X, Ẏ} ∈ Γ∩A, where X is the dynamic
conjugate variables and Ẏ represents the evolution of the internal variables. For discussions on the
LATIN convergence behaviour, refer to [8,19,24].

The elastic solution s0 = {X0} takes all the boundary conditions into account, and the following
solutions are computed in terms of corrections to s0. Then, the constitutive model, consisting of the
nonlinear evolution equations in addition to the state equations, is solved and integrated within the
local stage at every space-time point. The outcome of this stage, at the ith iteration, is the solution
ŝi = {X̂ i,

ˆ̇Y i} which is used in the following global stage to obtain si+1. The admissibility equations are
the only ones left to be solved in the global stage. The kinematic admissibility is satisfied by deriving
the strain as the symmetric gradient of the displacement field ε = ∇su and the static admissibility
condition is obtained from the equilibrium equation which reads [25]

∇·σ(x, t) + b = 0 ∀(x, t) ∈ Ω× I , (2)

with u = ū on ∂ΩD, σ · n = t̄ on ∂ΩN , σ is Cauchy stress and b is the body force in the spatial
domain Ω. The use of the Hamilton law of varying action, which is the principle of virtual work
integrated over time [26], leads to the following weak form∫

Ω×I
σ : ε(u∗) dΩ dt =

∫
Ω×I

b · u∗ dΩ dt +
∫

∂ΩN×I
t̄ · u∗ dS dt ∀u∗ ∈ UI0 , (3)

where UI0 = {u(x, t) | u(x, t) ∈ H1(Ω)× C0(I), u = 0 on ∂ΩD × I}. As long as the boundary
conditions are satisfied by the elastic initialisation, the corrections in each iteration, in terms of
displacement, are defined as ∆ui+1 = ui+1 − ui, where the i and i + 1 subscripts refer to the previous
and the current global stage, respectively. The solution of Equation (3) is computationally expensive
due to the integration over the spatial domain. Therefore, the kinematically and statically admissible
fields are computed for the whole space-time domain with the help of PGD, where a separate
representation of the displacement and consequently the strain corrections is introduced as

∆u = v(x) ◦ λ(t), ∆ε = ∇v(x) ◦ λ(t). (4)

Note that the subscript i + 1 is dropped to simplify the notations, and it is assumed that only one
PGD term/pair is generated within one LATIN iteration. Following the derivations in [3,27] by writing
Equation (3) in terms of corrections and introducing the aforementioned PGD scheme results in a
spatial and a temporal problem. These two problems are solved iteratively in a staggered manner using
a fixed-point, alternated directions algorithm [8]. After introducing a finite element discretisation, for
the spatial and the temporal domains, this algorithm renders a space problem, with homogeneous
boundary conditions,

γ K v = f γ ∈ R K ∈ Rn×n v, f ∈ Rn, (5)

and a temporal problem, with zero initial conditions,

a λ = b a ∈ R λ, b ∈ Rnt , (6)

where (n, nt) are the spatial and temporal degrees of freedom and (v, λ) are the spatial and
temporal functions. The stiffness matrix is defined as K =

∫
Ω BTC B dΩ where B is a globally

assembled matrix containing the derivatives of the shape functions and C is a block diagonal matrix
with 6× 6 diagonal blocks representing the elasticity tensor at each integration point. The scaling factor
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in front of the stiffness is defined as γ =
∫
I λTλ dt and the right-hand side f = −

∫
Ω×I BT ( f̂ λ) dΩ dt

where f̂ is a residual obtained from the previous local stage. The temporal problem is defined

by a =
∫

Ω (B v)TC (B v) dΩ and b = −
∫

Ω f̂
T
(B v) dΩ. Using µ modes at iteration i + 1, the

displacement field is approximated by

ui+1 = u0 +
µ

∑
j=1

vj λT
j , (7)

where u0 corresponds to the elastic solution. It is seen that the cost of the global stage is dominated
by the computational cost of the spatial problem, Equation (5), that has an identical dimension to the
linear elastic problem associated with the finite element discretisation. Thus, a trial, POD-like, step
is introduced at the beginning of the global stage that consists of reusing the previously generated
spatial modes while updating the temporal ones [28].

2.0.1. Temporal modes update

Starting from a certain number (µ) of previously generated PGD pairs, the displacement correction
is written as

∆ui+1 =
µ

∑
j=1

vj︸︷︷︸
known

∆λT
j , (8)

where ∆λj(t) is the correction added to the temporal function λj(t). Introducing this assumption
into the temporal problem, Equation (6), leads to

Ã Λ̃T
= B̃ Ã ∈ Rµ×µ B̃ ∈ Rµ×nt , (9)

where

Ãkl =
∫
Ω

(B vk)
TC (B vl) dΩ, Λ̃ = [∆λ1, · · · , ∆λµ], B̃kl =

∫
Ω

(B vk)
T f̂

tl
dΩ. (10)

The cost of this step depends only on the temporal discretisation nt and the number of already
generated modes µ. If the computed approximation introduces a significant change to the original
temporal modes, measured by (‖∆λj‖/‖λj‖), then no further enrichment to the spatial modes is
required and the algorithm continues to the next local stage. Otherwise, this update is ignored as not
to introduce unwanted numerical errors into the temporal functions and a new pair of temporal and
spatial modes is generated.

3. Optimality of the generated reduced basis

Recall that the correction/solution at the ith iteration of the LATIN algorithm, in matrix notation,
reads

Ũ =
µ

∑
j=1

vj λT
j = V ΛT ∈ Rn×nt , (11)

where V = [v1, · · · , vµ] ∈ Rn×µ and Λ = [λ1, · · · , λµ] ∈ Rnt×µ. The representation in
Equation (11) is referred to as an outer-product form [29], such a form requires the storage of µ(n + nt)

entries only to represent Ũ with nnt entries. It is practical to orthonormalise the spatial functions vj
before generating the temporal ones in order to limit the reduced basis size, i.e. the PGD expansion.
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This is traditionally done via a Gram-Schmidt (GS) procedure [3]. An orthonormalisation scheme
based on a GS procedure is summarised in Algorithm 1, where vTl vm = δlm is the inner product
between the spatial modes, δlm is the Kronecker delta and ‖vj‖2

= vTj vj.

Algorithm 1: Gram-Schmidt based orthonormalisation procedure

Data: Previously generated modes {vj, λj} (j = 1, · · · , µ) with vTl vm = δlm
New pair of modes {vµ+1, λµ+1}

Result: Enriched basis {vj, λj} (j = 1, · · · , µ + 1) with vTl vm = δlm

for j← 1 to µ do
Calculate the inner product with an existing mode via p = vTj vµ+1
Subtract the projection from the new mode via vµ+1 ← vµ+1 − p vj
Update existing temporal mode λj = λj + p λj+1

end
Normalise the new spatial mode vµ+1 ← vµ+1/‖vµ+1‖2
Update the new temporal mode λµ+1 ← λµ+1 ‖vµ+1‖2

While experimenting on the LATIN-PGD scheme in a three-dimensional finite element framework,
it has been noticed that reaching a small error required generating many modes, further discussion
about the computational cost is provided in Section 4. This confirms the findings in [2] that
orthonormality of the spatial modes is not enough to confine the PGD expansion, i.e. compressing the
spatial modes only, leaves the temporal ones susceptible to redundancy.

3.1. SVD compression of PGD

As long as PGD is not a unique decomposition and does not ensure the optimality of the generated
modes in terms of a minimal expansion, an optimal decomposition can be obtained via an SVD of
the full solution [30]. An SVD of the solution provides a straightforward scheme to compress both
spatial and temporal information into a minimal set of modes, following Algorithm 2. This is similar
to compressing information from different spatial directions into a single spatial mode.

Algorithm 2: SVD compression of a PGD expansion

Data:
Previously generated modes {vj, λj} (j = 1, · · · , µ)
New pair of modes {vµ+1, λµ+1}
Required number of modes / truncation threshold k < µ + 1, εtol

Result: Enriched basis {vj, λj} (j = 1, · · · , k) with vTl vm = δlm

Compute the full solution Ũ = V ΛT

Compute a thin/truncated SVD of the solution Ũ(µ+1)
=

µ+1

∑
j=1

s̃j ṽj λ̃
T
j

Truncate the decomposition based on s̃k+1/s̃1 < εtol or directly using k
Recover the outer-product representation:

V ← [ṽ1, · · · , ṽk] ∈ Rn×k

Λ← [s̃1 λ̃1, · · · , s̃k λ̃k] ∈ Rnt×k

It is known via the Schmidt-Eckart-Young theorem that the solution Ũ has an optimal
approximation of rank k ≤ µ + 1 with respect to the Frobenius norm that satisfies [29]

‖Ũ − Ũ(k)‖F =
µ+1

∑
j=k+1

s̃2
j . (12)
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The corresponding approximation error in terms of the spectral norm reads

‖Ũ − Ũ(k)‖2 = s̃k+1. (13)

Hence, the PGD expansion may be restricted to a maximum number of modes and Equation (12)
will give a measure of the approximation error due to this enforced truncation. Another way is to
prescribe a subjectively acceptable tolerance εtol that the approximation error should not exceed, e.g.
in the spectral norm this renders to

‖Ũ − Ũ(k)‖2
‖Ũ‖2

=
s̃k+1
s̃1

< εtol. (14)

The computation of a full SVD, in case of n > nt, requires O(nn2
t ) floating point operations (flops)

while seeking a truncated SVD requires O(nntk) flops. Due to the high computational cost of applying
an SVD at each enrichment step in a PGD context, a quasi-optimal iterative orthonormalisation scheme
was proposed in [2,15]. However, another appealing straightforward approach to provide a direct
compression of the PGD modes into a minimal set is utilised here. It consists of using a randomised
SVD algorithm [18] to compress the PGD expansion.

3.2. Randomised SVD (RSVD) compression of PGD

Low-rank matrix decompositions may be computed efficiently using randomised algorithms as
illustrated in this section for an SVD case. Such methods are based on random sampling to approximate
the range of the input matrix, i.e. a subspace that captures most of the matrix effect. Then, the matrix
is restricted to this subspace, and the low-rank approximation of this reduced matrix is sought using
classical deterministic schemes. If Ũ is a dense matrix, the required flops are reduced from O(nntk) to
O(nnt log (k)), where k is the number of the sought dominant singular values of an n× nt matrix. It
is worth mentioning that even when randomised algorithms require a higher number of flops, they
exploit modern multi-processors architecture more efficiently than standard deterministic schemes [18].
An overview of the randomised SVD algorithm applied in a PGD context is briefed in Algorithm 3.

Algorithm 3: RSVD compression of a PGD expansion

Data:
Previously generated modes {vj, λj} (j = 1, · · · , µ)

New pair of modes {vµ+1, λµ+1}

Result: Enriched basis {vj, λj} (j = 1, · · · , k) with vTl vm = δlm

Compute the full solution Ũ = V ΛT ∈ Rn×nt

Approximate a basis E of range(Ũ) via E← Ũ Q ∈ Rn×k̃ with

Q ∈ Rnt×k̃ is a random matrix, k̃ = k + p and p is an oversampling factor taken
experimentally to be in the range of 5 ∼ 10 [18].

Orthonormalise the columns of E such that Ũ ≈ E ETŨ.

Restrict Ũ to the span{col(E)} to get a small matrix S = ETŨ ∈ Rk̃×nt

Compute a truncated SVD S ≈ S(k) = ˜̃V S̃ Λ̃T with k < µ + 1

Expand S to span{col(Ũ)}, i.e. Ũ ≈ E S̃ ≈ E ˜̃V S̃ Λ̃T
= Ṽ S̃ Λ̃T

Recover the outer-product representation:
V ← [ṽ1, · · · , ṽk] ∈ Rn×k

Λ← [s̃1 λ̃1, · · · , s̃k λ̃k] ∈ Rnt×k

Algorithm 3 can be straightforwardly extended to sample the rows of Ũ when nt is large. However,
this is not the case in the current study. It is also possible to exploit the PGD decomposition of the
solution when computing its SVD or RSVD [29], see Algorithm 4 for details.
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Algorithm 4: RSVD compression that exploits the PGD expansion (RSVD-PGD)

Data:
Previously generated modes {vj, λj} (j = 1, · · · , µ)
New pair of modes {vµ+1, λµ+1}
Required number of modes / truncation threshold k < µ + 1, εtol

Result: Enriched basis {vj, λj} (j = 1, · · · , k) with vTl vm = δlm

QR-decomposition:
V = Q

v
Rv ∼ O((µ + 1)2 n)

Λ = Q
λ

R
λ

∼ O((µ + 1)2 nt)

Compute Rv RT
λ
∈ R(µ+1)×(µ+1)

Apply Algorithm 3 to approximate Rv RT
λ

as
k

∑
j=1

s̃j ṽj λ̃
T
j

Recover the outer-product representation:
V ← Q

v
Ṽ ∈ Rn×k

Λ← Q
λ

Λ̃ S̃T ∈ Rnt×k

Algorithm 4 utilises a rank revealing QR-decomposition in order not to rebuild the full matrix.
Further algorithmic details of the presented deterministic and randomised algorithms may be found
in [16–18]. However, the goal of this study is to investigate the behaviour, robustness and efficiency of
the presented algorithms in a PGD framework.

4. Numerical results

The different algorithms are tested in the case of a modified unified viscoplastic viscodamage
model, in an infinitesimal strain settings, derived from [3,31–33]. The analysis is carried out on a
three-dimensional plate made of Cr-Mo steel at 580◦C [34] with a central groove. One-eighth of the
plate with symmetric boundary conditions is shown in Figure 2. The plate geometry is defined by its
length, width and depth being (40, 20, 2)mm while the length and width of the groove are (10, 4)mm.
This plate is subjected to a uniformly distributed displacement field of the form Ud = U0 sin

( 2π
T t
)

with t and T being the time and the time period, respectively.

Figure 2. A plate with a central groove subjected to cyclic loading

Three examples are discussed below. Firstly, the effect of the temporal functions update is
investigated, see Section 2.0.1. Then the PGD behaviour with different orthonormalisation schemes is
analysed to illustrate the optimality of the reduced basis. Lastly, the computational requirements of
the SVD schemes are illustrated throughout a synthetic example.

4.1. POD-like temporal functions update

The analysis of the plate, shown in Figure 2, is carried out on a mesh that consists of 387
hexahedron elements, with eight integration points in each element, resulting in 1884 spatial
displacement degrees of freedom. The model is subjected to a uniformly distributed displacement
field with an amplitude U0 = 0.00606 mm and a time period T = 10 sec. The temporal discretisation
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is chosen such that the domain [0, T] is discretised into 33 time steps. Since the whole time domain
is computed at once, a total of 62172 degrees of freedom are being sought. The commonly used GS
scheme (Algorithm 1) is utilised in this example and the convergence criterion is considered to be
10−10.

The purpose of this test case is to evaluate the importance of the updating step in a PGD approach.
Hence, the number of generated modes along with the number of the LATIN iterations, with and
without this POD-like step, is illustrated in Figure 3.
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(b) ROB size with the updating step
Figure 3. The size of the generated reduced basis.

It is seen in Figure 3 the convergence rate of LATIN is not affected by this updating step but
the computational cost is sharply decreased. Moreover, such a step is crucial to limit the size of
the PGD expansion. With the updating step, only half the number of modes where generated in
comparison with the approach without any update. Due to this favourable nature, the updating step is
implemented in the rest of the examples.

4.2. PGD behaviour with different orthonormalisation schemes

The previous example with the same spatial discretisation is subjected to 12 load cycles with
different amplitudes, in the range of [0.0033, 0.0066]mm. The temporal domain is divided into 12
intervals, each corresponding to one cycle, and the ROB generated within one cycle is reused in the
following cycles. The convergence criterion is considered to be 10−4.

The nonlinearity and the rapid damage evolution can be seen in Figure 4a where the damage
value at the end of each cycle is plotted with respect to the number of cycles. The first PGD temporal
function of each cycle, after convergence, is illustrated in Figure 4b.
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Figure 4. Damage evolution and first PGD temporal mode in each cycle.

The simulation is carried out using Algorithms 1 to 4 and the resulting number of PGD modes
with respect to the number of cycles is depicted in Figure 5. It is shown in Figure 5a that using
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Algorithm 1 resulted in a ROB with 18 modes while Algorithms 2 to 4 reduced this number to 11
modes by adding a maximum of one supplementary mode for each cycle. It is emphasised that
Algorithms 2 to 4 provide the same ROB. However, their computational cost differs as illustrated in
Section 4.3.
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Figure 5. Number of PGD modes in each cycle using different orthonormalisation schemes.

It is observed that an SVD compression provides optimality of the ROB. It also has interesting
properties such as not rejecting any mode in the current example. In other words, due to the optimality
of the generated ROB, the POD-like step plays a noticeable role in convergence and there is no need
for further enrichment of the ROB.

The inner product of the spatial modes in each case, after the last cycle, with their corresponding
SVD of the acquired solution is shown in Figure 6. As expected, the GS modes are far from the optimal
SVD ones while, trivially, Figure 6b depicts an almost diagonal matrix. The off-diagonal entries are
caused by the temporal functions update at the final iterations. It is of interest to point out that an
excessive RSVD (eRSVD) step after the temporal functions update, which seems to be an unnecessary
step, restricts the ROB to six modes only as illustrated in Figure 6c.
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(c) e(R)SVD
Figure 6. ROB optimality w.r.t. an SVD of the resulting solution.

The ensured optimality of the ROB is of interest when used with challenging examples such
as in many-query context, due to the expected slow growth of the ROB. In order to investigate the
robustness and the behaviour of the ROB, in a many-query context with a large number of degrees
of freedom, the plate model is discretised into 13812 hexahedron elements, with eight integration
points in each element, resulting in 50547 spatial displacement degrees of freedom. The temporal
discretisation consists of 33 time step in each cycle resulting in 1668051 degrees of freedom in each
cycle. The plate is subjected to a uniformly distributed displacement field with a uniformly distributed
random amplitudes in the range of [18, 22] · 10−5 mm and a time period T = 10 sec. The convergence
criterion is considered to be 10−4.

The resulting number of PGD modes with respect to the number of cycles using GS and SVD
algorithms is illustrated in Figure 7. It is seen that using a GS algorithm allows the ROB to grow to
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contain 126 pairs of modes while SVD algorithms confine this size to 21 modes, using a truncation
threshold of 10−8. Accepting a bigger approximation error with a truncation threshold of 10−5 reduces
the number of modes to 11 pairs while an e(R)SVD scheme introduces further reduction to seven
modes without any rejection or truncation due to the maintained optimality of the ROB.
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(R)SVD (εtol = 10−5)

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

Number of cycles

N
um

be
r

of
PG

D
m

od
es

(d) Number of PGD modes using e(R)SVD

Figure 7. ROB size using different orthonormalisation algorithms.

It is worth noting that in this example the SVD orthonormalisation schemes, other than e(R)SVD,
were invoked 53 times only compared to 125 times with the GS algorithm. Hence, this explains the
low computational requirements of Algorithms 2 to 4 in comparison with Algorithm 1 as summarised
in Figure 8b. The eRSVD scheme was invoked in each LATIN iterations. However, due to the small
number of generated modes, the required time to update the temporal functions is drastically decreased
in comparison with the other schemes, see Figure 8a for a profiler summary.
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Figure 8. The required time to perform the temporal update and the orthonormalisation steps.
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4.3. Comparision between deterministic and randomised SVD schemes

Since it is clear from Figure 8 that all deterministic and randomised SVD schemes are of interest
to compress the PGD expansion on-the-fly. Following is an example that illustrates the difference
between Algorithms 2 and 3 in case of two synthetic matrices M1 ∈ R106×102

and M2 ∈ R106×103
. The

cost to extract the first 10, 20 and 30 singular vectors is recorded and summarised in Figure 9.
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Figure 9. The required time to extract the first 10,20 and 30 singular vectors using SVD and RSVD.

It is worth noting that the timing for each algorithm depends on the available computational
resources but their relative performance is what we are after. The RSVD algorithm is implemented in
MATLAB® and uses its built-in SVD routine.

5. Conclusion and further research

Different orthonormalisation techniques were investigated to ensure the optimality of the PGD
decomposition. These techniques and their effect on the PGD greedy algorithm are illustrated
throughout examples with a varying number of degrees of freedom. It is found that a randomised SVD
algorithm is a promising scheme to ensure the optimality of PGD expansions. It introduces beneficial
time saving by limiting the number of modes compared to a Gram-Schmidt procedure and, at the
same time, it shows a drastic speed-up compared to a deterministic SVD scheme. Another promising
approach is proposed here where the randomised SVD scheme is invoked at each LATIN iteration,
after the temporal update or the basis enrichment. This approach is referred to, in the current work, as
(eSVD/eRSVD) and it shows desired properties such as ensuring an optimal basis in each iteration and
eliminating the need to enrich the basis more than needed, i.e. no modes are rejected. The proposed
numerical strategy, though it is presented in a LATIN-PGD framework, can be used to optimise PGD
basis for any application.
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flops Floating point operations
GS Gram-Schmidt
MOR Model order reduction
ROM Reduced order model
ROB Reduced basis
POD Proper orthogonal decomposition
PGD Proper generalised decomposition
SVD Singular value decomposition
RSVD Randomised singular value decomposition
e(R)SVD Excessive SVD/RSVD applied at each iteration after ROB enrichment or temporal update
LATIN Large time increment
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