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Additional Figure 1. Estimation of genome size, repeat content, and heterozygosity by 

GenomeScope [1], based on 21 (A), 25 (B), 31 (C) k-mers in clean sequence reads (max k-mer 

coverage at 1000). 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Additional Figure 2. Assessment of the genome assembly by comparison of read spectrum and 

assembly copy number. KAT comp tool [2] allowed to observe that the heterozygous content has 

a representation around of 25x and homozygous content around 55x. Additionally, the major part 

of shared k-mers , in both peaks, were collapsed during the assembly (black zone), remaining a 

single copy of the homozygous content and less of the heterozygous content. 

 

 

 

 

 

 

 



Additional Figure 3. Circular gene map of the mitochondrial genome of Sardina pilchardus. The 

circular gene maps were drawn using GenomeVx [3]. Ribosomal genes are coloured in blue, 

tRNAs in dark grey, and the 13 protein-coding genes are coloured in light and dark green, brown, 

and light grey. 

 

 

 

 



Additional Figure 4. Phylogenetic tree of ray-finned fishes estimated from 13 concatenated 

individual mtDNA protein-coding gene amino acid sequences. Values for branch support 

correspond to Maximum Likelihood bootstrap support values.  

 

 

 

 

 

 

 

 

 



Additional Material Methods 

Assembly & Assessment of Sardine Genome 

To perform the genome assembly we used the Celera Assembler with the following parameters: 

(ovlConcurrency = 16 ; ovlThreads =4; cnsConcurrency  = 64; merSize = 22; merylMemory = 

900000; merylThreads = 64; merThreshold  = 0; merDistinct = 0.9995; merTotal = 0.995; doOBT 

= 0; overlapper = ovl; ovlErrorRate = 0.06; frgMinLen  = 64; ovlMinLen = 40; ovlRefBlockSize 

= 10000000 ; ovlHashBits = 24; ovlHashBlockLength = 800000000; ovlStoreMemory = 500000 

; doFragmentCorrection = 0; unitigger = bogart; utgGraphErrorRate = 0.030; 

utgGraphErrorLimit= 3.25; utgMergeErrorRate = 0.045; utgMergeErrorLimit = 5.25 ; 

utgBubblePopping  = 1; utgErrorRate = 0.03; utgErrorLimit = 2.5; batThreads = 64; 

doExtendClearRanges  = 0; doToggle = 0; cnsMaxCoverage  = 100). 

Overall ortholog comparison across four teleost species  

The annotated gene repertoire were compared with other three teleost fishes using the OrthoFinder 

v2.2.6 [4] software. To achieve this goal we download the proteome of Danio rerio 

(GCF_000002035.6_GRCz11), C. harengus (GCF_000966335.1_ASM96633v1) and Astyanax 

mexicanus (GCF_000372685.2_Astyanax_mexicanus-2.0) from NCBI RefSeq database 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_other/). The three proteomes as well as the 

proteome resulting from the sardine annotation (https://figshare.com/s/98f0644bd974f891143c) 

were used as input to the OrthoFinder. We used the software with the following parameters: (-t 

50 -M msa -S diamond [5]). 

Sardine phylogenomics based on mtDNA protein-coding gene amino acid sequences 

To perform the mitochondrial phylogenetic tree of ray-finned fishes we used the 13-concatenated 

mtDNA protein-coding sequences of each individual presented in Additional File 2, Additional 

Table 4. The gene sequences were aligned with MAFFT v7.309 [6] (model G-INS-i with a 

maximum number of iterative refinement of 1000) and the resultant multiple sequence alignments 

(MSA) were trimmed with TrimAl v1.4.rev8 [7] (automated1 algorithm). Then, the MSA were 

concatenated and the optimal partitioning scheme was selected (BIC ranking method) using 



PartitionFinder version 2.1.1 [8] under the greedy algorithm with proportional branch lengths 

across partitions. Each protein-coding gene was defined as the initial data blocks for the 

partitioning schemes search. Finally, a Maximum Likelihood phylogenetic inference was 

performed using RAxML v. 8.0.0 [9] with 100 rapid bootstrap replicates. 

Gene orthologs of LC-PUFA desaturation and elongation are present in the sardine genome 

and transcriptome 

To address the phylogenetic placement of the identified orthologs we de novo assembled the 

transcriptome of the allis shad (SRA id: SRR1532804) using Trinity [10] with default parameters, 

and candidate coding regions were identified with TransDecoder [11]. We identified Fads2, 

Elovl2 and Elovl5 as the top blast-p [12] hits after querying the allis shad’s predicted coding 

regions against the Atlantic herring’s Fads2 (XP_012687541.1), Elovl2 (XP_012671565.1) and 

Elovl5 (XP_012695835.1) [13]. To obtain the Fads2, Elovl2 and Elovl5 proteins of the liver 

transcriptome of sardine we applied the same methodology above explained. The sequences from 

the longfin inshore squid Doryteuthis pealeii (formerly, Loligo) were obtained from the 

transcriptome available at http://ivory.idyll.org/blog/2014-loligo-transcriptome-data.html. 

Orthologs for the three genes from three invertebrates (Helobdella robusta, Drosophila 

melanogaster and Octopus bimaculoides), 12 Actinopterygii and Sarcopterygian species: 

Astyanax mexicanus, Danio rerio, Gadus morhua, Gasterosteus aculeatus, Latimeria chalumnae, 

Lepisosteus oculatus, Oreochromis niloticus, Oryzias latipes, Petromyzon marinus, Takifugu 

rubripes, Tetraodon nigroviridis and Xiphophorus maculatus, Homo sapiens and Mus musculus) 

were obtained from ENSEMBL [14] (Additional File 4). The amino acid sequences were aligned 

with MAFFT [15] with the L-INS-I option. Maximum-likelihood phylogenetic inference was 

performed with the software RAxML v.8.2.12 [9] for each gene. Tree searches were assessed 

through 100 bootstrap replicates, under an automatic protein model selection plus gamma, that 

automatically determines which is the best protein substitution model for each dataset (the one 

with the highest likelihood score on the parsimony starting tree). To determine the microsynteny 

of the fads2, elovl2 and elovl5 in the sardine genome, we used the C. harengus genome assembly 

as reference [16]. Thus, we collected the C. harengus CDS of at least one flanking gene of each 



side of each target gene, and each one it was blasted [12] (blast-n: -word_size 10, -outfmt 6, -

num_threads 50) against the sardine genome assembly. After that, we manually inspect the blast-

n results and using the qstart, qend, sstart, send and bit score options of outfmt6 format of blast 

software we reconstruct the loci of each gene (Additional File 2, Additional Table 5). 

Additionally, to confirm the neighbors orthology we perform reciprocal blast-p searches of the 

five proteins, corresponding to five genes flanking the genomic locations of fads2, elovl2 and 

elovl5, in C. harengus (lrrc10b, sycp2, eps8l2, gnal and gclc) (Additional File 2, Additional Table. 

6). 

To perform the functional characterization of fads/elovl in yeast we use the sardine transcriptome 

assembly. This was searched with blast-n (defaults) using as query C. harengus fads2 

(XM_012832087.1), elovl2 (XM_012816111.1) and elovl5 (XM_012840381.1) genes. The best 

scoring transcript for each search was retrieved and aligned with the corresponding gene from C. 

harengus. Sequence alignment inspection revealed that sardine elovl2 and elovl5 transcripts were 

5´partial transcripts, while sardine fads2 presented a full ORF transcript. To complete missing 

regions in elovl2 and elovl5 transcripts, a second blast (defaults) search was performed targeting 

the unassembled transcriptome reads using again C. harengus elovl2 and elovl5 genes as query. 

The best scoring reads were collected and upload to Geneious v7.1.9 

(https://www.geneious.com), here elovl2 and elovl5 reads were mapped to the C. harengus elovl2 

and elovl5 mRNA sequence, respectively. Reads overlapping with the missing regions were 

retrieved and assembled to the previously collected sardine transcripts producing a predicated 

ORF which was later used for primer design. Gene specific primers containing the corresponding 

restriction sites were designed to isolate each ORF by PCR (Flash High-Fidelity PCR Master Mix, 

Thermo Fisher Scientific, Waltham, MA, USA) using the Sardina pilchardus liver cDNA (Primer 

sequences and PCR conditions available in Additional File 2, Additional Table 7). PCR products 

were analyzed in agarose gel 1% and products with the expected size were excised, purified, 

digested and cloned into pYES2 (Thermo Fisher Scientific, Waltham, MA, USA) (pYES2-fads2, 

pYES2-elovl5 and pYES2-elovl2). Finally, all constructs were confirmed by Sanger sequencing 

(GATC Biotech, Constance, Germany). 



Functional characterization of fads/elovl genes was carried out by heterologous expression in 

yeast Saccharomyces cerevisiae as previously described [17]. Briefly, after the transformation of 

each sardine gene, the resulting transgenic yeast were grown in the presence of one of the 

following fatty acid substrates: 18:2n–6, 18:3n–3, 20:2n–6, 20:3n–3, 20:3n–6, 20:4n–3, 22:4n–6 

and 22:5n–3 for Fads2; and 18:2n–6, 18:3n–3, 18:3n–6, 18:4n–3, 20:4n–6, 20:5n–3, 22:4n–6 and 

22:5n–3 for Elovl5 and Elovl2. Additionally, to characterize the desaturase activity of the sardine 

Fads2 towards 24:5n–3, the transgenic yeast co-expressing the sardine Fads2 and Danio rerio 

Elovl2 were grown in the presence of 22:5n–3, which was elongated by yeast to 24:5n-3 as 

previously described [18]. Concentrations of the exogenously added substrates were 0.5 mM for 

C18, 0.75 mM for C20 and 1 mM for C22 as uptake efficiency decreases with increasing chain 

length [19] . After 48 h culture at 30 ºC, the yeast cells were harvested, washed and total lipid 

extracted to prepared fatty acid methyl esters (FAMEs) [20] .FAME analyses were performed 

using Fisons GC- 8160 (Thermo Fisher Scientific, UK) gas chromatograph equipped with a 60 m 

× 0.32 mm i.d. × 0.25 μm ZB-wax column (Phenomenex, UK) and flame ionization detector. 

Conversions of exogenously added fatty acid substrates to desaturation or elongation products 

were calculated as [all product area/(all product area + substrate area)] × 100. Substrate fatty acid 

conversion for the Δ6 desaturase activity towards 24:5n–3 was calculated using the same formula 

considering 24:5n–3 as a product of the zebrafish Elovl2 [18]. 
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